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Abstract

Boolean dynamical systems (BDSs) represent the evolu-
tion of interactions inside a finite network of entities taking
Boolean states over discrete time. These networks are clas-
sically used to model interactions of biological networks. In
this context, a genetic network can be represented by both
a Transition Graph (TG) and an Interaction Graph (IG). The
precise relationship between IG and TG has been studied for
many years in dynamical systems theory while still an open
question. The global purpose of this article is to further study
this relationship via a logical representation of BDSs into
a nonmonotonic modal logic called Hypothesis Logic (H).
While the dynamics of a BDS are characterized by a func-
tion f , an important part of the studies focused on the anal-
ysis of both stable configurations (i.e. fixed points of f ), and
stable/unstable cycles of f . For the representation of some
genetic networks with no negative feedback circuits, results
were previously obtained with some well known nonmono-
tonic formalisms. So far however, BDSs representation by
most of these formalisms does not permit to capture cyclic
dynamical behaviors. Notably, the equivalent of a negative
circuit has no extension in default logic (DL). This is em-
barrassing because these cycles may represent real interac-
tions in living organisms like the cell cycle. This possible
lack of extensions in DL was studied in H, for which theo-
ries always have extensions while some of these, called ghost
extensions, are actually not extensions of the corresponding
theories in DL. This paper addresses to the question of a
first representation of the dynamics of BDSs with H, and
ghost extensions appear to be a powerful tool in this respect.
As we are especially concerned with cycles, it provides us
with hints of simple algorithms for computing exhaustively
both stable/unstable cycles and fixed points: distinguishing
between stable/unstable as well as enumerating all the solu-
tions in practice would be a major advance that would lead to
apprehend better inner fundamental aspects in biology.

1 Introduction

Biological networks are representations of the bioprocesses
on three levels of interactions into the biological cell: ge-
nomic, protein and metabolic level. The techniques which
are the most used in Network Modeling are boolean net-
works, bayesian belief network and metabolic network mod-
eling methods. The boolean network are well adapted for
Gene Regulatory Networks. At this level, it is considered
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the genes are on-off switches which do not act indepen-
dently. Two genes are connected if the expression of one
gene modulates the expression of another one by activation
or inhibition. It is interesting to remark some genes control
the response of the cell to changes in the environment by
regulating other genes.

From a logical point of view, a biological system can be
considered as a set of interacting elements changing along
discrete time. Genetic networks are specific biological sys-
tems that represent how the proteins/genes in a cell interact
for the survival, reproduction, or death of this cell. These
interactions can be studied in the context of automata net-
works and Boolean dynamical systems (BDSs) as a set of
entities taking Boolean states. Founding theorems (Demon-
geot, Noual, and Sené 2012; Melliti et al. 2015; 2013; Remy
et al. 2003; Remy, Ruet, and Thieffry 2008; Richard 2010;
Richard and Comet 2007; Robert 1986; Thomas 1981) have
focused on feedback circuits (simply called circuits here-
after).

A genetic network can be represented by both a tran-
sition graph (TG) and an interaction graph (IG). The re-
lationship between TG and IG has been studied for many
years in dynamical systems theory, but remains an impor-
tant open question. This paper adresses this question with
help of a representation of BDSs via a nonmonotonic modal
logic called Hypothesis Logic (H): our logic-based ap-
proach seems to be a step toward a global clarification of
this relationship. Preliminary results were already given in
(Siegel et al. 2017).

The study of genetic networks is a source of relevant ques-
tions regarding knowledge representation. First, interactions
appear as a form of causality; as such, we expect to model
it thanks to logical inferences, but of which kind? The use
of classical logic is inadequate in this context because it
cannot deal with inconsistencies. Moreover, what we learn
arises largely from long and expensive experiments. Hence,
we know only a small part of the interactions while this
knowledge can be revisable, uncertain, contradictory and
even false. Eventually, algorithmic complexity is a crucial
issue regarding the need to provide algorithms with reason-
able calculation times in practice. These questions have been
studied in artificial intelligence since the late 1970s, espe-
cially by the use of both particular nonmonotonic logics and
techniques derived from constraint programming. In partic-
ular it is possible to use default logic (DL) (Reiter 1980) and



answer set programming formalism (ASP) (Lifschitz 1999).
The dynamics of a BDS are characterized by a function

f and an updating mode. An important part of the studies
done on BDSs focused on the analysis of both stable con-
figurations (i.e. fixed points of f ), and stable/unstable cy-
cles of f . For the representation of some genetic networks
with no negative feedback circuits, results have been ob-
tained with DL (Doncescu, Siegel, and Le 2014),(Doncescu
and Siegel 2015). Representation of a BDS by whatever
DL, ASP or other nonmonotonic formalisms, enables to find
fixed points. But, these representations are not suitable for
finding cycles. Notably, the equivalent of a negative circuit
has no extensions in default logic. This is embarrassing be-
cause these cycles may represent real interactions in living
organisms like the cell cycle (Davidich and Bornholdt 2008;
Li et al. 2004), or the circadian cycle (Akman et al. 2012;
Roenneberg and Merrow 2003). This possible lack of ex-
tensions in default logic has been fully studied in the con-
text of hypothesis logic (H) (Schwind and Siegel 1994;
Siegel and Schwind 1993). In this logic, theories always
have extensions while some of these, called ghost exten-
sions, are actually not extensions of the corresponding the-
ories in default logic. Moreover, very simple and efficient
algorithms, used for solving SAT problems, can be applied
to the computation of extensions, fixed points and cycles.

The representation of the dynamics of BDSs in H aims
at making possible to discriminate between stable configu-
rations (fixed points), limit cycles and unstable cycles. We
introduce representations for both Interaction Graphs and
Asynchronous Transition Graphs in H, which allows us to
exhibit new formal results. Ghost extensions play here a key
role. This approach provides us with hints of simple algo-
rithms for distinguishing between stable/unstable as well as
enumerating all the solutions in practice. This would be a
major advance regarding better inner fundamental aspects in
biology.

In what follows, Section 2 presents basic definitions for
BDSs and Section 3 reminds the basics of nonmonotonic
and hypothesis logic. Section 4 gives a representation of IGs
into H and prove some properties related to this represen-
tation. Section 5 studies relationships between ATGs of a
BDS and H: Theorem 3 states that there exists an isomor-
phism between stable configurations and stable extensions,
and Theorem 4 states that every negative feedback circuit
admits a set of ghost extensions whose semantics is analo-
gous to BDS dynamical cycles.

2 Finite Boolean dynamical systems

A finite discrete dynamical system (DDS) describes the evo-
lution of the interactions in a network of n entities numbered
from 1 to n, over discrete time. This evolution is the dy-
namics of the system. An example of such a system is the
representation of genetic networks, namely networks rep-
resenting interactions between the genes or the proteins of
a cell (Aracena et al. 2006; Demongeot et al. 2011; 2010;
Fauré et al. 2006; Kauffman et al. 2003; Mendoza, Thi-
effry, and Alvarez-Buylla 1999). In the context of genetic
networks, an entity i 2 {1, ..., n} depicts a protein whose
concentration is denoted by xi so that there is only a finite
number of possible concentrations. In such networks, given

a protein i, a set of interactions for proteins on i gives the
conditions for this set to increase or decrease the concentra-
tion of i.

Regarding Boolean dynamical systems (BDSs) studied in
this paper, the concentrations xi are in {0, 1}. In this case,
xi = 1 denotes the presence of i and xi = 0 its absence. Yet
xi = 1 (resp. xi = 0) is the activation (resp. inhibition)
or the production (resp. destruction) of the protein.

Note that what is written xi = 0 (resp. xi = 1) in the
context of BDS corresponds logically to v(i) = 0 (resp.
v(i) = 1), where v is the standard valuation function of
propositional logic. Hence, a protein i is nothing else than
a propositional variable. Abusing the notations we autho-
rize ourselves to write either i,¬i as well as xi,¬xi depend-
ing on the context. For instance, x = (¬x1, x2,¬x3) corre-
sponds to x = (¬1, 2,¬3) or even simply (1, 2, 3).

Consider V = {1, ..., n} a set of n entities. A configu-
ration x = (x1, ..., xn) of the system is an assignment of
a truth value xi 2 {0, 1} to each element i of V . The set
of all configurations (Jacob and Monod 1978), also called
the space of configurations, is denoted by X = {0, 1}

n.
The dynamics of such a system is modeled via both a func-
tion f , called the global transition function, and an updat-
ing mode that defines how the elements of V are updated
along time. More formally, f : X ! X is such that
x = (x1, ..., xn) 7! f(x) = (f1(x), ..., fn(x)), where
each function fi : X ! {0, 1} is a local transition
function that gives the evolution of the state xi over time.
There exists an infinite number1 of updating modes among
which the parallel and the asynchonous ones remain the
most used. The parallel (or perfectly synchronous) updat-
ing mode is such that all the entities of the network are up-
dated at each time step. Conversely, the asynchronous up-
dating mode is a non-deterministic variation in which only
one entity is updated at a time. In the sequel, we restrict
our study to asynchronous dynamics (Melliti et al. 2015;
Remy, Ruet, and Thieffry 2008; Richard and Comet 2007).

2.1 Asynchronous transition graphs

Every dynamic being characterized by a function f and an
updating mode, an important part of studies done on BDSs
focused on the analysis of both stable configurations (i.e.
fixed points of f ), and stable/unstable cycles of f . Regarding
the asynchronous case, this study is fulfilled via the notion
of Asynchronous Transition Graph (ATG) associated with f .

Let X = {0, 1}
n be the configuration space and con-

sider a function f : X ! X . The asynchronous dynamics
of f is given by its ATG G (f) = (X,T (f)), the digraph
whose vertex set is the configuration space and arc set is
the set of transitions: T (f) = {(x, y) 2 X

2
| x 6= y, x =

(x1, ..., xi, ..., xn), y = (x1, ..., xi�1, fi(x), xi+1, ..., xn)}

If (x, y) 2 T (f), then the Hamming distance between x

and y equals 1 (the transition is unitary). An orbit in G (f)

is a sequence of configurations (x0
, x

1
, x

2
, ...) such that ei-

ther (xt
, x

t+1
) 2 T (f) or xt+1

= x
t, if xt

= f(x
t
) (i.e.,

x
t has no successors). A cycle of length r is a sequence of

configurations (x1
, ..., x

r
, x

1
) with r � 2 whose configura-

1Infinite, because deterministic updating modes are basically
defined as infinite sequences of subsets of nodes of the network.
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tions x
1
, ..., x

r are all different. From this, we derive what
is classically called an asynchronous attractor in dynami-
cal systems, namely a terminal strongly connected compo-
nent (SCC) of G (f), i.e. a SCC with no outward transitions.
Among attractors, in the sequel, we will pay particular at-
tention to stable configurations (fixed points) and cycles. A
stable configuration is a trivial attractor, i.e. a configura-
tion x such that 8i 2 V, xi = fi(x), which implies that
x = f(x). A stable cycle is a cyclic attractor such that, on
G (f), 8t < r, xt+1 is the unique successor of xt and x

1 is
the unique successor of xr. If an attractor is neither trivial
nor cyclic, it is called a stable oscillation. When it is pos-
sible to get out from a SCC, this SCC is called an unstable
cycle or oscillation depending on which it is cyclic or not.

An orbit that reaches a stable configuration stays there
endlessly. Similarly, if it reaches a stable cycle, it adopts
endlessly a stable oscillating behavior.
Example 1 (Boolean positive and negative circuit of size 3)

Consider V = {1, 2, 3}, X = {0, 1}
3 and the two following

functions f and g such that f(x1, x2, x3) = (¬x2,¬x3, x1)

and g(x1, x2, x3) = (¬x3, x1, x2). From the functions f

and g, it is easy to derive their related ATGs, G (f) and
G (g), pictured in Figure 1. For each arc (x, y) in G (f) and
G (g), if x 6= y then x differs from y by a single component.
There are up to 3 transitions leaving each configuration.
Here, G (f) has two stable configurations, (¬1, 2,¬3) and
(1,¬2, 3) while all the other configurations belong to an
unstable cycle pictured in bold. G (g) has a stable cycle
pictured in bold. This cycle is stable because there is only
one transition (corresponding to one arrow in the picture)
leaving from each configuration, which is not the case for
the unstable cycle of G (f).

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

G (f) G (g)

Figure 1: ATGs of functions f and g given in Example 1.
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�
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1 2

3

+
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(a) (b)
Figure 2: (a) IG associated with ATG G (f) and (b) IG asso-
ciated with ATG G (g) of BDSs defined in Example 1.

2.2 Interaction graphs and circuits

A TG is an excellent tool for studying the behavior of a
function. But in practice biological data come from exper-

iments that generally yield correlations among gene expres-
sions. This information is classically modeled by interaction
graphs, exponentially more compact and more “readable”
than TGs. Contrary to TGs, these graphs only give static in-
formation about how entities act on each other.

The IG of a BDS of function f is induced by its local tran-
sition functions fi. An important line of research on BDSs
concerns what we can say about the TG of a BDS by know-
ing only its static specification, that is its function, and thus
its IG.

An IG is a signed digraph G = (V, I), where V =

{1, ..., n} is the set of vertices and I ✓ V ⇥ S ⇥ V ,
with S = {�,+}. An arc (i,+, j) (resp. (i,�, j)) 2 I

is said to be positive (resp. negative). A circuit C =

{(i1, s(1,2), i2), ..., (ik, s(k,1), i1)} of size k in terms of
graph theory is elementary if all is that compose it are dis-
tinct. A circuit is positive (resp. negative) when it contains
an even (resp. an odd) number of negative arcs. From the
BDS point of view, the presence of an arc (i, s, j) in an IG
G means that the value of i affects that of j: we say that i
regulates j.

Consider the toy example where j has only one incoming
arc, from i. In this case, the effect of the regulation is very
simple: if the arc is positive (resp. negative), the state of j
will take the value (resp. the opposite value) of that of i af-
ter one update, such that fj(x) = xi (resp. fj(x) = ¬xi).
Notice that elementary circuits are regulated this way. For
example Figure 2 pictures the IGs associated with the ATGs
of the BDSs defined from f and g in Example 1.

More generally, an IG G = (V, I) represents the exis-
tence of the interactions involved between its entities in V .
Specifying the nature of these interactions and the condi-
tions under which they occur effectively leads to relate G

to a BDS of function f , so that G becomes the IG of f

and is then denoted by G(f) = (V, I(f)). This is done
by assigning a local transition function fi to every i 2 V

so that 8j 2 V, 9x 2 {0, 1}
n
, fi(x) 6= fi(x

j
) ()

(j, s, i) 2 I(f), where, given x = (x1, ..., xn), x
j

=

(x1, ..., xj�1,¬xj , xj+1, ..., xn). We generalize this nota-
tion by x = (¬x1, ...,¬xn). Such a specification induces
the minimality of G(f) because each arc represents an ef-
fective interaction.

Note 1 Consider a BDS and its associated IG G(f), such
that arc (i, s, i) belongs to I(f). If s = + (resp s = �),
this arc makes i tending to maintain (resp. negate) its state.
It depends of course on whether i admits other in-neighbors
than itself or not and on the positive or negative influence of
these neighbors. In the case i admits no other in-neighbors,
it is trivial that i endlessly maintains (resp. negate) its state
if s = + (resp. s = �).

Let us present now the asynchronous dynamical behav-
iors of a Boolean positive circuit and of a Boolean negative
circuit of size 4 in Examples 2 and 3 below.

Example 2 (Boolean positive circuit of size 4) Consider
the BDS of function f(x1, x2, x3, x4) = (¬x4, x1,¬x2, x3).
Figure 3-a depicts the corresponding IG. This BDS admits
two stable configurations, (1, 2¬3,¬4) and (¬1,¬2, 3, 4),
and an unstable oscillation.
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Example 3 (Boolean negative circuit of size 4) Consider
the BDS of function g(x1, x2, x3, x4) = (¬x4, x1, x2, x3).
Figure 3-b depicts the correponding IG. This BDS admits
one stable cycle of length and one unstable cycle of length 8

1 2

34

+

�

+

�

1 2

34

+

+

+

�

(a) (b)
Figure 3: (a) IG of Boolean positive circuit of size 4 (Exam-
ple 2) and (b) negative circuit of size 4 (Example 3).

2.3 General central results

By considering that BDSs are good candidates for qualita-
tively modeling genetic networks (since established by the
seminal papers of (Kauffman 1969) and (Thomas 1973)),
the presence of several attractors in their dynamical behav-
iors allows to model the cellular specialization at the level
of cells. Indeed, if a genetic network controls a phenomenon
of specialization, the cell will specialize (i.e. will acquire
a particular phenotype or a specific physiological function)
according to the attractor towards which its underlying BDS
evolves. These works and the numerous other ones using
BDSs (or, more generally, DDSs) highlighted the essential
role of studies aiming at understanding the formal relations
between IG and TG. They also clearly underlined the essen-
tial role of circuits, nowadays known as the behavioral com-
plexity engines in dynamical systems. This comes in partic-
ular from Robert who established that, if the IG G(f) of a
DDS f is acyclic, then f converges towards a unique stable
configuration (Robert 1986). Moreover, in (Thomas 1981),
Thomas conjectured that G(f) of a asynchronous DDS f

must contain a positive (resp. negative) circuit for the latter
to admit several stable configurations (resp. a non-trivial at-
tractor such as a stable cycle or a more complex one). These
two conjectures have been proven to be true under the hy-
pothesis of asynchronous updating mode (Remy et al. 2003;
Remy, Ruet, and Thieffry 2008; Richard 2010; Richard and
Comet 2007). Furthermore, notice that in (Remy et al. 2003),
the authors showed that an asynchronous positive circuit of
size n admits two attractors, namely two stable configura-
tions x and x , and that an asynchronous negative circuit ad-
mits only one attractor, namely a stable cycle of length 2n.

Note 2 While in the following we use positive and nega-
tive feedback circuits because of their central role in dy-
namic, our definitions and results hold for the full general
framework. For instance the example proposed in Figure 4
is tractable inside our framework. Due to lack of space we
do not treat here.

3 Nonmonotonic, default, hypothesis logics

Representing IGs with a logical formalism seems natural be-
cause the way an arc (i, s, j) is interpreted suggests a close
relation with what is called material implication in logic.

1

2

3

4

5

+

+

�

�

+

+

Figure 4: .

Such a representation from classical logic is not adapted be-
cause it leads to inconsistencies in most cases. A way to
manage these inconsistencies is provided by nonmonotonic
formalisms, among which default logic or ASPs (a more
tractable restriction of default logic). Default logic (DL)
(Reiter 1980) concerns standard formulas to which contex-
tual inference rules called defaults are added in order to deal
with revisable informations: a default is a local inference
rule d =

A :B
C , whose application specifically depends on

the formulas A, B, C that compound it. The intuitive mean-
ing is: “If A holds, if B is coherent/consistent with what is
known, then C holds”. The fact that a default can be trig-
gered or not depending on the context, further leads to a
notion of extensions as max-consistent sets of formulas with
respect to the trigger of the defaults used to get it. The under-
lying reasoning is nonmonotonic because adding here a new
information may invalidate previously triggered defaults.

There is clearly a connection between default extensions
and stable configurations of a BDS (Doncescu, Siegel, and
Le 2014; Doncescu and Siegel 2015). Also, recent works
have studied the connection between ASP stable models and
stable configurations. A drawback is that these connections
are limited to the representation of stable configurations only
(included odd circuits)while it tells nothing about unstable
cycles. The problem arises from the way to capture all the
dynamics.

Another drawback, actually linked to the first one, is that
in DL, some theories may simply have no extensions at all,
thus depicting a form of deep inconsistency which renders
computation more difficult. By definition, DL only com-
putes stable extensions. Such a type of extension is limited
since it appears too cheap to handle with more than stabil-
ity while we expect to capture also unstable cycles, e.g. the
simple default theory (d =

:A
¬B ,

:B
¬C ,

:C
¬B ), linked to the rep-

resentation of a negative circuit, has no stable extension.
This drawback is overcome by justified DL (Lukaszewicz

1988) as well as by hypothesis logic. While justified DL ex-
clusively consists in a reformulation of the conditions by
which extensions are obtained, hypothesis logic is both a
reformulation and a generalization of DL inside the frame-
work of a normal bimodal logic. It actually generalizes jus-
tified (and hence classical) DL in the following way: while
stable extensions are a special case of justified extensions,
justified extensions are in turn a special case of the exten-
sions obtained by hypothesis logic. Besides, the specific way
hypothesis logic answers the question of the lack of exten-
sions in DL sheds a new light on the representation of the
dynamics in BDSs. In the context of a theoretical study con-
cerning BDSs, we will find in Logic the formal criterias that
help delimiting the “good” properties of a langage devoted
to such a study. This is indeed the role of Logic to state rep-
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resentation theorems between a langage and the objects this
langage concerns. We expect hypothesis logic to be a right
candidate as such a langage because it overtakes some of the
limitations of DL (and hence ASP also).

3.1 Hypothesis Logic

Hypothesis logic H is a bi-modal logic2 with two modal op-
erators L and [H]. If f is a formula, the intuitive meaning
of Lf is f is proved/stated. The dual H of [H] is defined as
Hf = ¬[H]¬f . It was introduced in (Schwind and Siegel
1994; Siegel and Schwind 1993). The intuitive meaning of
Hf is f is a hypothesis, and hence [H]f means ¬f is not a
hypothesis.

A default A :B
C is interpreted in H by the modal formula

LA ^ HB ! LC whose intuitive meaning is: If A is stated
and B is a valid hypothesis then C is stated. The language
of H, denoted by L (H), is defined by the following rules:

• Any formula of first-order logic is in L (H).
• If f and g are in L (H) then formulas ¬f , (f ^ g),

(f _ g), (f ! g), Lf , [H]f , Hf are too.
L has the properties of the modal system T and [H] has those
of the modal system K. As a consequence, the inference
rules and axiom schemata of H are:

• All inference rules and axiom schemata of first-order
logic.

• (N[H]): ` f =) ` [H]f , the necessitation rule for [H].

• (NL): ` f =) ` Lf , the necessitation rule for L.
• (K[H]): ` [H](f ! g)) ! ([H]f ! [H]g), the distri-

bution axiom schema for [H].
• (K[L]): ` L(f ! g) ! (Lf ! Lg), the distribution

axiom schema for L.
• (TL): ` Lf ! f , the reflexivity axiom schema for T .
Unlike L, [H] has no reflexivity axiom schema and, as it

stands, there is so far no connections between L and [H]. We
make this connection by adding the following link axiom
schema:

(LI) : ` ¬(Lf ^H¬f).

This very weak axiom is one of the bases of H. It means that
it is impossible to prove f and to assume the hypothesis ¬f
at the same time. Note the following equivalences: ¬(Lf ^

H¬f) () Lf ! ¬H¬f () H¬f ! ¬Lf . The
first one means that if we prove f , we cannot assume the
hypothesis ¬f , the second that if we assume the hypothesis
¬f , we cannot prove f .

3.2 Hypothesis theories and extensions

H is a monotonic logic. In order to catch nonmonotonicity, a
notion of extension is added similarly to default logic. How-
ever, contrary to the latter, two kinds of extensions are con-
sidered here, namely stable extensions and ghost extensions.
More formally :

2For a classical lecture on modal logics, see for instance (Chel-
las 1980), among others.

Definition 1 Let H be the hypothesis logic:
• A hypothesis theory is a pair T = {HY,F}, where F is

a set of formulas of H and HY is a set of hypotheses.
• An extension E of T is a set E = Th(F [ HY

0
), such

that HY
0 is a maximal subset of HY consistent with F.

• E is a stable extension if it satisfies the coherence prop-
erty: 8Hf, ¬Hf 2 E =) L¬f 2 E. Hence, given the
link axiom schema, we get: 8f,L¬f 2 E , ¬Hf 2 E

• E is a ghost extension otherwise, i.e. if it satisfies:
9Hf, ¬Hf 2 E and L¬f /2 E

Hence for a ghost extension, we only get: 8f,L¬f 2

E ) ¬Hf 2 E

In other words, ghost extensions are “pre”–stable exten-
sions.

Theorems 1 and 2 below give fundamental properties of
H. Their proof are given in (Siegel and Schwind 1993;
Schwind and Siegel 1994).

Theorem 1 If F is consistent then T = {HY,F} has at
least one extension.

Theorem 2 Let � = {D,W} be an arbitrary default the-
ory. � can be translated into a hypothesis theory T (�) such
that:

1. W is consistent, T (�) admits at least one extension;
2. The set of standard extensions of � is isomorphic to the

set of stable extensions of T (�).

Thus, an extension is obtained by adding one of the largest
sets of hypotheses to F while remaining consistent. Note that
if F is consistent, then there is always an extension, which is
not the case in DL. Intuitively, E is stable if each time it is
forbidden to assume the hypothesis f , ¬f is proven. It is a
ghost extension otherwise. Stable extensions correspond to
the standard extensions of DL (and to stable models of ASP).
They represent stable configurations of BDSs. Ghost exten-
sions do not have any correspondence in DL. While default
theories may have no extensions, this is not the case in hy-
pothesis theories. Nevertheless, default theories that have no
extensions seem to contain what looks very much like stable
or unstable cycles. In the sequel, by using H, we show that
stable cycles are characterized by ghost extensions. More-
over, specific unstable cycles can also be characterized by
ghost extensions, but the generalization of this result is a
conjecture yet.

4 Representing Interaction Graphs into H

We saw previously that a genetic network modeled by a BDS
can be represented by both an ATG and an IG. As told,
an important and open question concerns the formal links
between these two representations. This section deals only
with IGs. Let G be an arbitrary IG. Such a graph is trans-
lated into a hypothesis theory T (G) and properties related
to extensions of T (G) are then proved. These properties will
be used in the next section, devoted to ATG: G will be the
IG related to an ATG, while both stable configurations and
stable cycles of the ATG are studied thanks to T (G). The-
orem 3 states that there exists an isomorphism between sta-
ble configurations of G and stable extensions of T (G) and
Theorem 4 states that every negative feedback circuit corre-
sponds to a set of equivalent ghost extensions.
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4.1 Representation

One of the interests of hypothesis logic is that this bi-
modal logic enables us to use three kinds of informa-
tion: i, Li and Hi. This increasing of expressive power al-
lows a more precise representation of biological networks.
Hence, by combining modalities with negations, we can use
{i,Hi,H¬i,Li,L¬i}.

Given an IG G of a BDS modeling the genetic network of
a cell, and i a protein, using hypothesis logic, we define that:
• i means that i is present in the cell and ¬i means that it is

absent.
• Li means that i is produced by the cell (i is being ac-

tivated) and ¬Li means that i is not produced (i is not
being activated).

• L¬i means that i is destroyed by the cell (i is being in-
hibited) and ¬L¬i means that i is not destroyed (i is not
being inhibited).

• Hi (resp. ¬Hi) means that the cell gives (resp. does not
give) the permission for attempting to produce i. In other
words, the cell has (resp. has not) the ability to activate i.

• H¬i (resp. ¬H¬i) means that the cell gives (resp. does not
give) the permission for attempting to destroy i. In other
words, the cell has (resp. has not) the ability to inhibit i.
Regarding the use of H in this context, the role of an ex-

tension appears to gather a maximum of consistent permis-
sions. Note that even if Hi stands for the cell giving per-
mission to attempt the production of i, this production is not
mandatory. It can be carried out or not, according to the con-
text (i.e. the set of all interactions in the cell). Similarly H¬i

gives the authorization to destroy i.
Meanwhile, it is important to note that Li and L¬i are

actually actions (production or destruction of a protein). So
there is a difference between L¬i which says that i is de-
stroyed, and ¬Li which says that i is not produced, and
hence is weaker. Likewise, there is a similar distinction be-
tween H¬i and ¬Hi.

We first focus on some important properties of our trans-
lation with respect to genetic networks3.
Proposition 1 If G is the IG of a BDS modeling a genetic
network and if i is a protein, the following holds in H:

(1) Li ! i and L¬i ! ¬i (i.e. if i is produced (resp. de-
stroyed), then i is present (resp. absent).)

(2) ¬(Li^H¬i) and ¬(L¬i^Hi) (i.e. it is impossible to pro-
duce (resp. destroy) i and to give the permission to destroy
(resp. produce) i it at the same time.)

(3) ¬(Li ^ L¬i) (i.e. it is impossible to produce and destroy
i at the same time.)

4.2 Translation of an interaction graph.

An IG G = (V, I) is translated into a hypothesis theory
T (G) = {HY(G),F(G)} so that every arc (i, s, j) 2 I is
translated into a pair of implications of H. More precisely:

3Note to the rewievers: all the proofs of the original propo-
sitions and theorems given in the paper can be found at
the url https://amubox.univ-amu.fr/index.php/s/
nhwsZ5eqV8BYVv1

• A positive arc (i,+, j) is translated into: {Hi !

Lj,H¬i ! L¬j}.
• A negative arc (i,�, j) is translated into: {Hi !

L¬j,H¬i ! Lj}.
• F(G) is the union of the translations of all elements of

I .
• HY(G) is the set of all Hi and H¬i appearing in F(G).

Note 3 This translation only uses implications between two
atomic formulas. These implications could be considered as
binary clauses. Therefore only a fragment of the plain for-
malism H is used in this paper, which is enough for the
description of ”conventional” BDSs. Note that H formulas
may contain all the logical connectors (^,_,¬,!,$ ...)

hence full H can be used to describe other properties of bio-
logical networks, e.g. the binding (two proteins bind to give
a new protein). It is also possible to assert the proposition i

alone or Li alone or Hi alone. We can even avoid the double
implication {Hx ! Ly,H¬x ! L¬y} given for the trans-
lation of a BDS: for some functions only one involvement of
the two can be enough. This increases the expressive power
of the formalism, which in turn should increase the algorith-
mic complexity, but H is still usable however.

The following definitions and propositions, are needed for
understanding the intuition behind this representation of IGs
by H. They will especially allow us to state properties and
theorems 3 and 4 which make links between IGs and ATGs.
In H, it is usually allowed to have both Hi and H¬i. Regard-
ing the fragment of H used here, Proposition 2 below shows
that this no longer holds, because of the double logical im-
plication obtained from our translation of an arc:
Proposition 2 Let G = (V, I) an IG and i 2 V . For every
Hi of T (G), ¬(Hi ^H¬i) holds.

Definition 2 Let G = (V, I) an IG such that V = {1, .., n}.
Let T (G) = {HY(G),F(G)} the translation of G into
a hypothesis theory. Let E = {Th(F(G)) [ {Hyk}}

be an extension of T (G) obtained by adding to F(G) a
maximal consistent set {Hyk} of hypotheses, with yk 2

{1, ..., n,¬1, ...,¬n}. (For lightening the reading, we sim-
ply write that E is an extension of G). We have:

1. E is complete if, for all i 2 V , Hi 2 E or H¬i 2 E.
2. A vertex i 2 V is free in E if Li /2 E and L¬i /2 E. It

is fixed otherwise.
3. The degree of freedom of E, denoted deg(E), is the

number of free vertices that compose it.
4. The mirror of E, denoted mir(E), is defined as

mir(E) = Th(F(G) [ {H¬yk}).
5. The generating set of E, denoted Gen(E) is the set of

formulas (Hy ! Lz) 2 F(G) such that Hy 2 {Hyk}.
6. The graph of E, denoted by G(E), is the unsigned di-

graph of vertices {y1, ..., ym} such that:

(yi, yj) 2 G(E) () (Hyi ! Lyj) 2 Gen(E).

Proposition 3 Let G be an IG and E one of its extensions.
The mirror of E is also an extension of G.

Intuition might suggest that the notions of stable exten-
sion, complete extension, and extension of degree 0 are
equivalent. In fact this is wrong in the general case and it
is only possible to prove that a stable extension is complete.
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But we prove that, when any vertex of the IG G has an in-
coming arc, if E is complete then E is both stable and of
degree 0; this is especially the case for circuits.

Proposition 4 Let G = (V, I) be an IG of a given BDS f

and let E be an extension of G. The following holds:
1. If E is stable, then E is complete.
Moreover, if each of the vertices of G has at least one

incoming arc:
2. If E is complete, then deg(E) = 0.
3. If E is complete, then E is stable.
4. If E is stable then deg(E) = 0.

Proposition 5 Let E = {Th(F(G))[ {Hyk}} be an exten-
sion and consider Gen(E) its generating set:

1. E = {Th(Gen(E)) [ {Hyk}}.
2. If Hx 2 {Hyk} then Gen(E) cannot contain both

Hx ! Ly and H¬x ! L¬y at the same time.
3. If deg(E) = 1 then an order can be chosen among the

yk with a circular permutation such that: Gen(E) = {Hi !

L(i+ 1),H(i+ 1) ! L(i+ 2), ...H(i� 2) ! L(i� 1)}.

Proposition 6 Given G = (V, I), with V = {1, ..., n}, a
negative circuit of size n, then:

1. T (G) has no extensions of degree 0.
2. T (G) has 2n extensions of degree 1. We will say that

these 2n extensions are equivalent.

The examples below serve as an illustration of the notions
introduced here.

Example 2 (continued) Consider the BDS of the function
f(x1, x2, x3, x4) = (¬x4, x1,¬x2, x3) studied in Exam-
ple 2 and Figure 3. This BDS corresponds to a positive cir-
cuit. Its admits two stable configurations, (x1, x2,¬x3,¬x4)

and (¬x1,¬x2, x3, x4) and an unstable oscillation. Let G(f)

the IG of f , depicted in Figure 3-b. By construction G(f) is
a set of four arcs:

• G(f) = {(1,+, 2), (2,�, 3), (3,+, 4), (4,�, 1)}

The positive arc (1,+, 2) is translated into H by the pair
of formulas {H1 ! L2,H¬1 ! L¬2} and the negative arc
(2,�, 3) is translated by the pair {H2 ! L¬3,H¬2 ! L3}.
The other arcs are translated in the same way, therefore the
translation of G(f) into a hypothesis theory is T (G(f)) =

{HY(G(f)),F(G(f))}, where:
•HY(G(f)) = {H1,H2,H3,H4,H¬1,H¬2,H¬1,H¬4}

• F(G(f)) = {H1 ! L2,H¬1 ! L¬2,H2 ! L¬3,

H¬2!L3,H3!L4,H¬3!L¬4,H4 ! L¬1,H¬4 ! L1}

We can show that T (G(f)) has two stable extensions:
E1 obtained by adding to F (G(f)) the set of hypoth-
esis {H1,H2,H¬3,H¬4} and E2 obtained by adding
to F (G(f)) the set of hypotheses {H¬1,H¬2,H3,H4}

4.
These extensions correspond to the two stables configura-
tions of the related BDS.

• E1 = Th(F(G(f)) [ {H1,H2,H¬3,H¬4}),
• E2 = Th(F(G(f)) [ {H¬1,H¬2,H3,H4}).
In the sequel, given i a proposition of propositional cal-

culus, we will consider that i, Hi,Li, ¬i, ¬Hi et ¬Li are
4This is shown by attempting to add to F(G(f)) each subset of

HY(G(f)) and keeping only those which are the maximals ones
consistent with F(G(f)).

literals of H, and that Hi ! Lj is a clause. From the deduc-
tive closure of E1 with subsumption, we obtain that these
extensions are logically equivalent to sets of literals:

•E1 = Th{H1,H2,H¬3,H¬4,¬H¬1,¬H¬2,¬H3,¬H4,

L1,L2,L¬3,L¬4,¬L¬1,¬L¬2,¬L3,¬L4, 1, 2,¬3,¬4}

•E2 = Th{H¬1,H¬2,H3,H4,¬H1,¬H2,¬H¬3,¬H¬4,

L¬1,L¬2,L3,L4,¬L1,¬L2,¬L¬3,¬L¬4,¬1,¬2, 3, 4}

For the sake of simplicity, let us assimilate any extension
Th(F(G(f)) [ {H1, ...,Hn}) with the set of hypotheses
{H1, ...,Hn} associated with it. Looking at E1 we notice
that, in accordance with Definitions 1, and 2, we have:

• E1 and E2 are stable extensions because for all i,
¬Hi 2 E1 (resp E2) ) L¬i 2 E1 (resp E2).

• E1 is complete because for all i, either Hi belongs to
E1 or H¬i belongs to E1.

• For all i, Li 2 E1 or L¬i 2 E1. So all vertices are
fixed, and the degree of freedom of E1 is 0.

• E2 is the mirror of E1.
• The generating set of E1, is Gen(E1) =

H1 ! L2,H2 ! L¬3,H¬3 ! L¬4,H¬4 ! L1}.
• The graph of E1, depicted in Figure 5-c, is: G(E) =

(1, 2), (2,¬3), (¬3,¬4), (¬4, 1).

From the biological side, the subset {L1,L2,L¬3,L¬4}
of E1 represents the expression pattern of each protein in
E1: 1 and 2 are produced by the cell and 3 and 4 are de-
stroyed. Moreover the subset {1, 2,¬3,¬4} of E1 (in fact
the vertices of G(E)) gives the status of each proteins: 1 and
2 are present in the cell and ¬3 and ¬4 are absent. Similarly
in E2, the subsets {¬L1,¬L2,L3,L4} and {¬1,¬2, 3, 4}

represent the expression pattern and the status of proteins.
An intuition of the computation of E1 is given by the con-

struction process described by Figure 5. Figure 5-a is the IG
of f . Figure 5-b gives the construction of E1. At first E1

is empty. We add to E1 the hypothesis H1 2 HY (G(f)).
Since (H1 ! L2) 2 F (G(f)) we get L2. The instance
(L2 ! ¬H¬2) of the axiom LI of H then tells that it is
impossible to have H¬2. Construction of E1 goes on by
adding the hypothesis H2 to E1. We get L¬3 with H2 !

L¬3 2 F (G(f). The axiom LI gives ¬H3 and we add the
hypotheses H¬3 which gives L¬4. We end up by adding
H¬4 which gives L1.

By only looking at i we have G(E1), the graph of E1

(Figure 5-c) which represents the first stable configuration of
f . In this final graph, each arc between 2 vertices denotes the
relation of causality that links the corresponding proteins:
for 1 to be present we need 4 to be absent, that is 3 to be
absent in its turn, which is involved by the presence of 2,
itself caused by the presence of 1 and so on... In a similar
way, we build the extension E2 starting from H¬1.

Example 3 (continued) Consider the BDS of the function
g(x1, x2, x3, x4) = (¬x4, x1, x2, x3) studied in Example 3.
It admits one attractor (a stable cycle of length 8). It admits
also an unstable cycle of length 8. Let be G(g) the IG of g.
By construction it is a set of four arcs:

• G(g) = {(1,+, 2), (2,+, 3), (3,+, 4), (4,�, 1)}

Following the same guidelines as above, the translation of
G(g) into a hypothesis theory is T (G(g)) gives us here eight
ghost extensions. The first one is:
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Figure 5: (a) IG G(f), (b) Construction of extension E1 and
(c) G(E1) (the graph of E1) of the positive circuit defined
in Example 2.

• E1 = Th(F(G(g)) [ {H1,H2,H3})

= Th({H1,H2,H3,¬H¬1,¬H¬2,¬H¬3,¬H¬4,

¬H4,L2,L3,L4,¬L¬1,¬L¬2,¬L3,¬L¬4, 2, 3, 4}).
The generator set of E1 is {H1!L2,H2!L3,H3!L4}.
The literal ¬H¬1 2 E1 characterizes E1 as a ghost ex-
tension because L1 /2 E1. The extension is not complete
because it contains neither H4 nor H¬4. Vertex 1 is free
because E1 contains neither L1 nor L¬1. This is the only
free vertex, hence E1 is a ghost extension of degree 1. For
this extension, vertices 2, 3 and 4 are fixed while nothing
is known about 1. The drawing of E1 (Figure 6-b) shows
what happens. Similary to Example 2, E1 is constructed by
adding {H1, H2, H3} to F(G(g)). The set {L2,L3,L4} is
obtained, which yields {2, 3, 4} from axiom (T). Hence it
is impossible to add H¬4 because (H¬4 ! ¬L4) from the
axiom of coherence and L4 2 E1. Also, one can not add
H4 because (H4 ! L¬1) 2 F(G(g)) and L1 2 E1, which
will imply 1 and ¬1 with axiom (T). In Figure 6-b, the place
for 1 is empty because the extension cannot contain both L1

and L¬1, and 1 is free. Indeed, in order to get L1, we should
use H¬4 ! L1, which is impossible because L4 is true and,
because from the axiom of coherence, L4 ! ¬H¬4. We
cannot have L¬1 because H1 is true and H1 ! ¬L¬1. The
graph of E1, G(E1) is depicted in Figure 6-c.

It is important to see that the notion of degree of freedom
plays a key role here. Noting that Figure 6-b (resp. Figure 6-
c) are not circuits because there is no arc between L4 (resp.
4) and the place of 1. From L4 we can then escape the in-
complete circuit. Let us indeed show how to do it. Since
E1 is an extension, E2 the mirror of E1 is also an extension
from Proposition 3 (see Figure 7). Taking into account that 1
is free in E1 and also in E2, E1 and in E2 can be connected
(E1 ⌦ E2) by binding L4 to L¬1 using H¬4 on one hand,
and L¬4 to L1 using H4 on the other hand (Figure 8-a). By
linking G(E1) and G(E2) (Figure 8-b), we then obtain a cy-
cle (1, 2, 3, 4,¬1,¬2,¬3,¬4) of length 8 such as depicted.
This cycle represents the expression pattern of each protein
over time: we turn two times in the IG until returning to the
initial state.

In this example, there are actually eight equivalent
extensions E1 = {L2,L3,L4}, its miror E2 =

{L¬2,L¬3,L¬4} and 6 other extensions which come from
permutations on i, namely:

{L3,L4,L¬1}, {L4,L¬1,L¬2}, {L¬1,L¬2,L¬3},

{L¬2,L¬3,L¬4}, {L¬3,L¬4,L1}, {L¬4,L1,L2}.
Note that each of these extensions corresponds to 3 suc-

cessive entities of the cycle above. The latter cycles con-

1 2

34
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+

�

L2

L3L4

H1

H2

H3

1 2

34

(a) (b) (c)

Figure 6: (a) Interaction graph G(g), (b) Construction of ex-
tension E1 and (c) G(E1) (graph of E1) of the negative
circuit defined in Example 3 (continued).
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Figure 7: (a) E1 and (b) his mirror E2 of the negative circuit
defined in Example 3 (continued)
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Figure 8: (a) Construction of E1 ⌦ E2 and (b) its graph
G(E1 ⌦ E2) of the negative circuit defined in Example 3

tains implicitly each of the 8 possible extensions. There is a
trick here since we actually used an update that is not asyn-
chronous, but this trick, aiming at authorizing synchronous
changes appears to be virtuous. It will be seen that these 8

extensions correspond to the stable cycle of the ATG G (g).

5 Representing Asynchronous Transition

Graphs into H

Consider an asynchronous BDS, whose its IG is G = (V, I)

and its ATG is G . Let T (G) = {HY(G),F(G)} be the hy-
pothesis theory associated with G. Up to now, we have stud-
ied the representation of IGs into hypothesis logic.

This section studies the relationship between this repre-
sentation and the ATG. It uses Kripke semantics (Kripke
1963) that has been defined for normal modal logics, i.e.,
the logics that contain at least axiom (K). We only provide
here the bases needed for our developments. A Kripke struc-
ture is a digraph K = (W,R) where W (the universe) is a
set {wk} of worlds and R ✓ W ⇥ W is a binary relation
among worlds: the accessibility relation. When wk Rw

0
k,

w
0
k is accessible from wk. A Kripke model is obtained by
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assigning in every world a truth value to every proposition
i. A world is then mapped to a logical interpretation, and
hence implicitely to a state of a BDS. Modal formulas other
than i are assigned to worlds with the following condition:
for all f , Lf is true in a world wk if and only if f is true
in all reachable worlds from w. The different axioms that
hold in different modal logics depend on the properties of
the accessibility relations R. It is known that:

1. For the modal system K, R is any relation.
2. Axiom (T) holds if and only if R is reflexive.

Example 4 Consider the Kripke structure K such that
K = (W,R), where W = {w1, w2, w3} and R =

{(w1, w2), (w1, w1), (w2, w2), (w3, w3)}.
Consider now that a truth value is assigned to three vari-

ables in each world of the universe W such that: w1 =

{1, 2, 3}, w2 = {¬1, 2, 3}, w3 = {¬1,¬2, 3}. Let us add
modal formulas with respect to the definition of Krypke se-
mantic. For example in w1, L2 is true because 2 is in both
w1 and w2 (the worlds that are reachable from w1). For the
sake of clarity, we do not put in this schema the negations of
modal formulas. Now, consider H. If w1 was an extension,
then it would be a ghost extension of degree 1, because L2

and L3 are true while neither L1 nor L¬1 are. Similarly, for
both worlds w2 and w3, if they were extensions, they would
be stable extensions of degree 0 because for all i 2 {1, 2, 3},
either Li or L¬i is true; they would then correspond to sta-
ble configurations of a related BDS because they do not ad-
mit any outward arcs.

w3

2
3 3

¬1
2

¬1
¬2
3

1
L2

L3
L2
L¬1 L¬1

L3
L¬2

L3

w1 w2

Figure 9: Kripke universe discussed in Example 4.

We use the Kripke structure K = (W,R) whose finite set
of worlds W is the set of all interpretations (called canon-
ical universe) such that wk Rw

0
k if and only if w0

k is reach-
able from wk and differs from wk by one and only one
proposition. Under these conditions, the ATG of any BDS
is a Kripke structure. Since the modal system T is reflexive,
loops appear on every world. Given such a framework, for
any world wk and any entity x, Lx = true if and only if
x = true in every w

0
k reachable from wk.

Example 1-continued Consider the previous function
g(x1, x2, x3) = (¬x3, x1, x2) of Example 1. Similarly to
Example 3-continued, constructing the related hypothesis
theory leads the following set of formulas:

F(G(g)) = {H1 ! L2,H2 ! L3,H3 ! L¬1,

H¬1 ! L¬2,H¬2 ! L¬3,H¬3 ! L1},
which allows to obtain the following 6 equivalent exten-
sions, by focusing only on the Li and L¬i which are true:

E1 = (L2,L3), E2 = (L¬1,L3), E3 = (L¬1,L¬2),

E4 = (L¬2,L¬3), E5 = (L1,L¬3), E6 = (L1,L2).
Figure 9 is a simplified representation of the Krypke

model associated with the theory F (G(g)). The 8 vertices

are the worlds, and the arrows express the accessibility rela-
tion. There is a loop on each vertex because (T) is reflexive.
The 6 extensions E1, .., E6 are represented by the 6 vertices
whose degree of freedom is minimal (that is of degree 1).
The other two vertices {1,¬2, 3} and {¬1, 2,¬3} are not
extensions because they are not maximal. Note that these 6
extensions correspond to the 6 configurations of the stable
cycle of the corresponding ATG of function g given in ex-
ample 1 (Figure 11). Note also that the set of arrows that
represent the accessibility relation contains the set of arrows
that represent the ATG transitions of g. The missing arrows
are the loops that represent the reflexivity. By taking in ac-
count that the degree of a world is a natural generalization
of degree of an extension, we get the following results.

Proposition 7 Let K = (W,R) be a Kripke structure as-
sociated with an IG and its underlying hypothesis theory. If
wk 2 W is a world of degree �, there are exactly � worlds,
different from wk, reachable from wk

Theorem 3 Let S be an asynchronous BDS, G and G the
corresponding IG and ATGs and T (G) the hypothesis the-
ory related to G.

1. If E is a stable extension of T (G) and if {Ly1, ...,Lyn}
is the set of all Li and L¬i that are true in E, and if the xi
are the Boolean values of the yi, then {x1, ..., xn} is a stable
configuration of S .

2. {x1, ..., xn} is a stable configuration of T (G), then
there exists a stable extension E of G that contains
{Ly1, ...,Lyn}, such that yi = i (resp yi = ¬i) il xi = 1,
(resp. xi = 0).

Theorem 4 Let S be an asynchronous BDS of ATG G ,
whose IG G is a negative circuit. Let E1 be a ghost ex-
tension of T (G). The set of all extensions equivalent to E1

corresponds to a stable cycle of G .

¬1,L¬2,L¬3

L¬1,L¬2, 3

¬1, 2,¬3

L¬1, 2,L3

L1,¬2,L¬3

1,¬2, 3

L1,L2,¬3

1,L2,L3

Figure 10: Krypke representation of F(G(g)).

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

Figure 11: ATG of function g given Example 1.
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Note 4 With same arguments as those used for the proof
of proposition 7, if deg(E)>1 the Kripke model gives at
least one possibility to exit from a cycle. The cycle is then
unstable.

6 Conclusion

This paper is an attempt for representing BDSs into Hypoth-
esis Logics; the difficulty is to find how to represent the dy-
namics. There is still much to study, especially regarding
a generalization of Theorem 4 to unstable cycles. Note 4
above is a hint for such a study. Another perspective is the
validation of BDS representation in H by the obtaining of
fundamental theorems. The fact that the logical representa-
tion of a positive circuit has two stable mirror extensions
and, that a negative circuit is equivalent to a single set of 2n
equivalents ghost extensions is a step towards this valida-
tion because it corresponds to the esults set in (Remy et al.
2003). The case of synchronous transitions remains under
consideration for a further study. Note that an extension is
obtained by adding a consistent maximal set of hypotheses.
Since it is possible to test whether consistency is preserved
when adding each hypothesis, the computation of extensions
is non-deterministic and constructive (which is not the case
for DL and ASP).
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