
On Boolean automata networks (de)composition∗

Kévin Perrot1, Pacôme Perrotin2, and Sylvain Sené1

1Université publique, France
2Aix-Marseille Univ., Toulon Univ., CNRS, LIS, Marseille, France

March 9, 2020

Abstract

Boolean automata networks (BANs) are a generalisation of Boolean
cellular automata. In such, any theorem describing the way BANs com-
pute information is a strong tool that can be applied to a wide range of
models of computation. In this paper we explore a way of working with
BANs which involves adding external inputs to the base model (via mod-
ules), and more importantly, a way to link networks together using the
above mentioned inputs (via wirings). Our aim is to develop a powerful
formalism for BAN (de)composition. We formulate three results: the first
one shows that our modules/wirings definition is complete; the second one
uses modules/wirings to prove simulation results amongst BANs; the final
one expresses the complexity of the relation between modularity and the
dynamics of modules.

Keywords: Boolean automata networks, modules, wirings, simulation.

1 Introduction

Boolean automata networks (BANs) can be seen as a generalisation of cellular
automata that enables the creation of systems composed of Boolean functions
over any graph, while cellular automata only operate over lattices of any di-
mension. The study of the dynamics of a BAN, that describes the set of all
computations possible in such a system, is a wide and complex subject. From
very simple networks computing simple Boolean functions to possibly infinite
networks able to simulate any Turing machine, the number of configurations
always grows exponentially with the size of the network, making any exhaus-
tive examination of its dynamics impractical. The study of such dynamics is
nevertheless an important topic which can impact other fields. BANs are for ex-
ample used in the study of the dynamics of gene regulatory networks [8, 12, 17]
in biology.

∗This article is an extended version of [15].

1

Many efforts to characterise the dynamics of BANs have already been put
forward. For example, some studies [1, 14] examine the behaviour of networks
composed of interconnected cycles. The modularity of BANs has been studied
from multiple perspectives. In particular from a static point of view [2, 13], and
a functional one [4, 7, 16]. In this paper, we explore a compositional approach to
BANs that allows to decompose a BAN into subnetworks called modules, and to
compose modules together in order to form larger networks. We define a module
as a BAN on which we add external inputs. These inputs are used to manipulate
the result of the network computation by adding extra information. They can
also be used to interconnect multiple modules, making more complex networks.
Those constructions resemble the circuits described in Feder’s thesis [10], and
modules can be seen as a generalisation of circuits over any update mode.

Section 2 discusses the possible motivations for a (de)compositional study
of BANs. Section 3 introduces BANs and update modes, and Sections 4 and 5
develop a formalism for the modular study of BANs, justified by a first theo-
rem showing that any network can be created with modules and wirings. We
also present an application of our definitions to BAN simulation in Section 6,
leading to a second theorem stating that composing with local simulations is
sufficient to (globally) simulate a BAN. Section 7 presents and analyses two
illustrations of the principles presented in Section 2. Finally, Section 8 proposes
an algebraic interpretation of the dynamics of modules, and leads to properties
on said dynamics. It also contains the last theorem of this paper, which states
the complexity of a decision problem over modules which concerns wirings, and
their effect on the dynamics of said modules.

2 Motivations

BANs, despite being very simply defined locally, become complex to analyse as
the representation of their dynamics grows exponentially in the size of their net-
works. BANs have been proven to be Turing-complete [5] and as most Turing-
complete systems are able to show complex and emergent properties.

Yet, an important number of networks can be partially understood when
viewed through the lens of functionality (what an object is meant to achieve).
Functionality enables to use abstraction to reduce the considered network (or
some part of it) to the computation of a function or the simulation of a dynamical
system. Assuming a functionality of the parts of a network can let us conclude
on the functionality of the network itself, at the cost of letting aside an absolute
characterisation of its dynamics (which is often practically impossible). Such
a functional interpretation aims at offering the possibility to make verifiable
predictions in a short amount of time.

It is not known if every Boolean automata network can be cut into a rea-
sonable amount of parts to which one can easily affect a functionality. We will
justify our present argument by illustrating it in Section 7.

2

3 Boolean automata networks

3.1 Preliminary notations

Let us first describe some of the notations used throughout the paper. Let
f : A → B be a mapping from set A to set B. For S ⊆ A we denote f(S) =
{b ∈ B | ∃a ∈ S, f(a) = b}. We denote f

∣∣
S

the restriction of f to the domain S,

f
∣∣
S

: S → B such that f
∣∣
S

(a) = f(a) for all a ∈ S. Let dom(f) be the domain
of f , and g ◦ f the composition of f then g. For f and g two functions with
disjoint domains of definition, we define f t g as the function defined such that:

f t g(x) =

{
f(x) if x ∈ dom(f)

g(x) if x ∈ dom(h)
.

We denote B = {0, 1} the set of Booleans. For K a sequence of m elements,
the sub-sequence from the i-th element to the j-th element is denoted K[i,j].
We sometimes define functions without naming them with the notation a 7→ b,
signifying that for any input a the function will return b. For example, the
function n 7→ 2 × n is a function that takes a number n and returns the value
of n multiplied by 2.

3.2 Definitions

A BAN is based upon a set S of automata. Each automaton in S, or node, is at
any time in a state in B. A configuration of the network is defined as a function
S → B. The size of the network is the cardinal of S.

The state of every automaton is bound to evolve as a function of the config-
uration of the entire network. Each node has a unique function, called a local
function that is predefined and does not change over time. A local function is
thus a function f defined over f : (S → B)→ B.

A BAN F defined over S is formally described as a function that assigns a
local function to every node in a set S. As (S → B)→ B is the set of all possible
local functions over S, it follows that F is defined as F : S → (S → B)→ B. For
each s ∈ S, we denote fs = F (s) the local function of automaton s. Similarly,
for x a configuration, we denote xs = x(s).

We can now define a naive way to update a BAN. From a configuration x,
construct an iteration x′ such that x′s is obtained by the application of the local
function fs over x, or x′s = fs(x), for every s ∈ S. This definition however
is very limiting: it only allows so called parallel updates of our system. Some
might imagine updating only some of the automata of the network, before using
the resulting configuration to update the rest of the automata.

In general, the computation of a BAN should allow updates of automaton
of the network by any order, and with any proportion of parallelism or sequen-
tialisation. We set the following definition of an update over our BAN to be as
general as possible.

Definition 1. Any δ ⊆ S is an update over S.

3

One can apply multiple consecutive updates to a BAN to effectively execute
the BAN over an update mode. An update mode is simply a sequence of updates
that is denoted ∆, where ∆k is the kth update of the sequence.

Slight changes to the update mode of a BAN can deeply change its compu-
tational capabilities [3, 11]. Most results that assume a parallel update mode
cannot be applied to a sequential network; the reciprocal is also true.

We define the union operator between updates modes as it will be useful for
the proof of our last theorem.

Definition 2. Let ∆, ∆′ be two update modes over a set S. The union of ∆
and ∆′ denoted ∆ ∪ ∆′ is the update mode defined as (∆ ∪ ∆′)k = ∆k ∪ ∆′k.
The size of ∆ ∪∆′ is the maximum among the sizes of ∆ and ∆′.

We assume that ∆k = ∅ if k is greater than the size of ∆. Given an update
δ, we can define the endomorphism Fδ over the set of all configurations. For
every configuration x, we set Fδ(x)(s) = fs(x) if s ∈ δ, and Fδ(x)(s) = x(s) if
s /∈ δ. In other words, the value of s in the new configuration is set to fs(x)
only if s ∈ δ, otherwise the Boolean affectation of s remains xs. Now, we can
define the execution of F in a recursive way.

Definition 3. The execution of F over x, under the update mode ∆, is the
function F∆ : (S → B) → (S → B) defined as F∆[1,k](x) = F∆k

(F∆[1,k−1](x)),
with F∆[1,1](x) = F∆1(x).

Throughout this paper we represent BANs as graphs called interaction
graphs. Interaction graphs are a classical tool in the study of BANs. For a BAN
F defined over S, the interaction graph of F is the oriented graph G = (S, ε),
where (s, s′) ∈ ε if and only if the variable xs influences the computation of the
function F (s′).

4 Modules

Modules are BANs with external inputs. Such inputs can be added to any local
function of a module, and any local function of a module can have multiple
inputs. When a local function has n inputs, the arity of this function is increased
by n. These new parameters are referred to by elements in a new set E: the
elements of E describe the inputs of the module; those of S describe the internal
elements of the module. To declare which input e ∈ E is affected to each function
fs, we use function α.

Definition 4. Let S and E be two disjoint sets. An input declaration over S
and E is a function α : S → P(E) such that {α(s) | s ∈ S} is a partition of E.

For each s, α(s) is the set of all external inputs of function fs. The partition
proposition is important because without it, some input could be assigned to
multiple nodes, or to no node at all, which is contrary to our vision of input.
To simplify notations, we sometimes denote Es = α(s). Now, let us explicit the
concept of a module.

4

a b c

a1
a2 a3

b1 b2

c1

Figure 1: Interaction graph of the module detailed in Example 1.

Definition 5. A module M over (S,E, α) is defined such that, for each s ∈ S,
M(s) is a function M(s) : (S ∪ Es)→ B.

If M is a module defined over (S,∅, s 7→ ∅), M is also a BAN. To compute
anything over this new system, we need a configuration x : S → B and a
configuration over the elements of E.

Definition 6. An input configuration over E is a function i : E → B.

Let x be a configuration over S, and i an input configuration over E. As x
and i are defined over disjoint sets, we define xti as their union. Such an union,
coupled with an update over S, is enough information to perform a computation
over this new model.

Definition 7. Let x be a configuration over S and i an input over E. Let δ be
an update over S. The computation of M over x, i and δ, denoted Mδ(x t i),
is the configuration over S such that Mδ(xt i)(s) = fs(xt i

∣∣
Es

) for each s ∈ δ,
and Mδ(x t i)(s) = x(s) for every s ∈ S \ δ.

In the following example, we assume a total order over S ∪E, allowing us to
intuitively write configurations as binary words. For example, x = 101 means
x(a) = 1, x(b) = 0 and x(c) = 1.

Example 1. S = {a, b, c}, and E = {a1, a2, a3, b1, b2, c1}. We define α such
that α(a) = {a1, a2, a3}, α(b) = {b1, b2} and α(c) = {c1}. Let M be a module
over (S,E, α), such that M(a) = xb ∨ a1 ∨ a2 ∨ a3, M(b) = ¬xb ∨ xc ∨¬b1 ∧ b2,
and M(c) = ¬c1. Let x = 101, i = 000010 and δ = {a, b}. We get that
Mδ(xt i) = M{a,b}(101t 000010) is such that Mδ(xt i)(a) = fa(xt i

∣∣
Ea

) = 0,

Mδ(x t i)(b) = fb(x t i
∣∣
Eb

) = 1, and Mδ(x t i)(c) = x(c) = 1. Therefore

Mδ(x t i) = 011. A representation of this module is pictured in Figure 1.

Let us now define executions, while considering that the input configuration
can change over time.

Definition 8. Let t > 1. Let I = (i1, i2, . . . , it−1) be a sequence of input
configurations over E, X = (x1, x2, . . . , xt) a sequence of configurations over S,
and ∆ an update mode over S of size t. (X, I,∆) is an execution of M if for
all 1 ≤ k < t, xk+1 = M∆k

(xk ∪ ik).

5

This definition allows for variation over the inputs over time. As this par-
ticular feature is not needed throughout this paper, we also propose a simpler
definition of executions over modules which only allows fixed input values over
time.

Definition 9. Let i be an input configuration over E. The execution of M over
xt i with update mode ∆ is an endomorphism over the set of all configurations,
denoted M∆. It is defined as M∆[1,k](x t i) = M∆k

(M∆[1,k−1](x t i) t i), with
M∆[1,1](x t i) = M∆1

(x t i).

Similarly to a BAN, we can represent a module with an interaction graph.
The definition is the same as the interaction graph of a BAN, to which is added
smalls arrows which represent the inputs of the network, pointed on the nodes
they are attached to.

5 Wirings

The external inputs of a module can be used to encode any information. For
instance, we could encode any periodic (or non-periodic) sequence of Boolean
words into the inputs of a given module. We could also encode the output of
a given BAN or module, combining in some way the computational power of
both networks. Such a composition of modules is captured by our definition
of wirings. A wiring is an operation that links together different inputs and
automata from one more or modules, thus forming bigger and more complex
modules.

We decompose this compositional process into two different families of op-
erators: the non-recursive and the recursive wirings. The first ones connect
the automata of one module to the inputs of another; the second ones connect
the automata of a module to its own inputs. A wiring, recursive or not, is de-
fined by a partial map ω linking some inputs to automata. Let us first define
non-recursive wirings.

Definition 10. Let M , M ′ be modules defined over (S,E, α) and (S′, E′, α′)
respectively, such that S, S′ and E,E′ are two by two disjoint. A non-recursive
wiring from M to M ′ is a partial map ω from E′ to S.

The new module result of the non-recursive wiring ω is denoted M �ω M
′

and is defined over (S ∪ S′, E ∪ E′ \ dom(ω), αω). The input declaration of
M �ω M ′ is αω(s) = α(s) \ dom(ω) (in particular, αω(s) = α(s) if s ∈ S).
Given s ∈ S ∪ S′, the local function M �ω M

′(s), denoted fωs , is defined as

fωs (x t i) =

{
fs(x

∣∣
S
ti
∣∣
Es

) if s ∈ S

f ′s(x
∣∣
S′ti

∣∣
E′
s\dom(ω)

t(x ◦ ω
∣∣
E′
s
)) if s ∈ S′

.

In this new module, some inputs of M ′ have been assigned to the values of some
elements of M . Such assignments are defined in the wiring ω. For any s ∈ S∪S′,
the function M �ω M

′(s) (denoted fωs) is defined over (S∪S′∪αω(s))→ B. In

6

the case s ∈ S′, the image of x t i is given by f ′s which expects a configuration
on S′ ∪ E′s: the configuration on S′ is provided by x, and the configuration on
E′ is partly provided by i (on E′s \ dom(ω)), and partly provided by (x ◦ω) (on
dom(ω) ∩ E′s).

Definition 11. Let M be a module over (S,E). A recursive wiring of M is a
partial map ω from E to S.

With ω defining now a recursive wiring over a module M , the result is similar
if not simpler than in the definition of non-recursive wirings. The new module
obtained from a recursive wiring ω on M is denoted �ω M and is defined
over (S,E \ dom(ω), αω) with the input declaration defined as, for any s ∈ S,
αω(s) = α(s) \ dom(ω). Given s ∈ S, x and i, the local function �ω M(s) is
denoted fωs and is evaluated to fωs (x t i) = fs(x t i

∣∣
Es\dom(ω)

t(x ◦ ω
∣∣
Es

)).

Recursive and non-recursive wirings can be seen as unary and binary oper-
ators respectively, over the set of all modules. For any ω, we can define the
operators �ω and �ω. For simplicity we define that M �ω M ′ = ∅ and
�ω M = ∅ if the wiring ω is not defined over the same sets as M or M ′. Notice
that both the recursive and non-recursive wirings defined by ω = ∅ are well
defined wiring. They define two operators, �∅ and �∅, that will be useful
later on.

Proposition 1. The following statements hold.

(i) ∀M, �∅ M = M .

(ii) ∀M,M ′, M �∅ M ′ = M ′ �∅ M .

(iii) ∀M,M ′,M ′′, M �∅ (M ′ �∅ M ′′) = (M �∅ M ′) �∅ M ′′.

Proof.
∀M,M ′,M �∅ M ′ = M ′ �∅ M .

By definition, M �∅ M ′ and M ′ �∅ M are both defined on (S ∪ S′, E ∪
E′, α t α′). For any s ∈ S, M �∅ M ′(s) = M ′ �∅ M(s) and for s′ ∈ S′,
M �∅ M ′(s′) = M ′ �∅ M(s′).

∀M,�∅ M = M .

By a similar argument, �∅ M is by definition defined on (S,E, α) such that
�∅ M(s) = M(s) for any s ∈ S.

∀M,M ′,M”,M �∅ (M ′ �∅ M”) = (M �∅ M ′) �∅ M”.

By definition, the left side of this equation is defined over (S ∪S′ ∪S”, E ∪E′ ∪
E”, α t α′ t α”) as is the right side of this equation. The two modules defining
the same functions, we obtain the result.

7

For simplicity of notations, we will denote the empty non-recursive wiring
as the union operator over modules: M ∪M ′ = M �∅ M ′.

It is quite natural to want to put two modules together, by linking the input
of the first to states of the second, and conversely. Our formalism allows this
operation in two steps: first, use a non-recursive wiring to connect all of the
desired inputs of the first module to states of the second module. Then, use a
recursive wiring to connect back all of the desired inputs of the second module
to states of the first module.

We now express that recursive and non-recursive wirings are expressive
enough to construct any BAN or module, in Theorem 1. Our aim is to show
that for any division of a module into smaller parts (partitioning), there is a
way to get back to the initial module using only recursive and non-recursive
wirings.

Definition 12. Let (S,E, α). Let P be a set such that {Sp | p ∈ P} is a partition
of S. We define the corresponding partition of E as {Ep =

⋃
s∈Sp α(s) | p ∈ P}.

Definition 13. We can now develop the corresponding partition of the input
declaration, and define the partition of M itself. For every p ∈ P , we define
αp = α

∣∣
Sp

over Sp and Ep.

Definition 14. For every p ∈ P , let Qp verify Qp ∩ S = ∅ and |Qp| = |S|,
and let τp : S → Qp be a bijection. For any p ∈ P , the sub-module Mp over
(Sp, Ep ∪ τp(S \ Sp), αp) is defined for s ∈ Sp as, for all x : S → B and for all
i : E → B,

Mp(s)(x
∣∣
Sp
tip) = M(s)(x t i),

where ip(e) = i(e) if e ∈ Ep and ip(e) = x(τ−1
p (e)) if e ∈ τp(S \ Sp).

In the previous definition, the purpose of each Qp is to work as a representa-
tion of the set S for every sub-module Mp. Without it, every module Mp would
have used the set (S \ Sp) ∪ Ep as input set. However our definition of wiring
requires the input sets of the wired modules to be disjoint from each other. The
sets Qp are a workaround to bypass this technical point.

Example 2. Let S = {a, b, c, d}, E = {e}, P = {r, s, t} and Sr = {a, d},
Ss = {b} and St = {c}. For each p ∈ P , we define Qp = {ap, bp, cp, dp}. In the
module Mr, αr(a) = ∅ and αr(d) = {br, cr}. In the module Ms, αs(b) = {as}.
In the module Mt, αt(c) = {e}. The modules Mr,Ms and Mt are defined over
disjoint sets and can be wired (see Figure 2 for an illustration).

As a reminder, the union operator over modules is defined to be the result
of an empty non-recursive wiring.

Theorem 1. Let M be a module and {Mp | p ∈ P} any partition of that module,

then there exists a recursive wiring ω such that M = �ω
(⋃

p∈P Mp

)
.

Sketch of Proof: We construct ω to wire every link lost in partition P .

8

a b

cd

a b

cd

S

Sr

Ss

St

Figure 2: Interaction graphs related to Example 2. The interaction graph of
the original module is on the left and the interaction graphs of the partition of
M are on the right. Notice that we did not represent the input sets E, Qr, Qs
and Qt.

Proof. By definition of the empty wiring, the module
⋃
p∈P Mp is defined over

(S,E ∪
⋃
p∈P τp(S \ Sp),

⊔
p∈P αp) and for all s ∈ S, x : S → B and i : E → B

verifies ⋃
p∈P

Mp

 (s)(x t i′) = M(s)(x t i). (1)

Knowing that i′(e) = i(e) for e ∈ Es, and i′(s) = x(τ−1
p (s)) for s ∈ Qp. Let ω

be the recursive wiring over
⋃
p∈P Mp with domain

⋃
p∈P τp(S \ Sp) such that

ω(q) = τ−1
p (q) given p such that q ∈ Qp.

By definition of the recursive wiring, the module �ω (
⋃
p∈P Mp) is defined over

the set (S,E, α). For all s, x, i, we now have that

�ω

⋃
p∈P

Mp

 (s)(x t i) =

⋃
p∈P

Mp

 (s)(x t i
∣∣
Es
t(x ◦ ω

∣∣
τp(S\Sp)

)). (2)

By our definitions of ω and i′, we have that i′ = i
∣∣
Es
t(x ◦ ω

∣∣
τp(S\Sp)

). From

that, and Equations 1 and 2, we infer that for all s, x, i:

�ω

⋃
p∈P

Mp

 (s)(x t i) = M(s)(x t i).

Therefore for any s:

�ω

⋃
p∈P

Mp

 (s) = M(s),

which concludes the proof.

Theorem 1 allows to say that our definition of wiring is complete: any BAN
or module can be assembled with wirings. It can be reworked more algebraically.
LetM denote the set of all modules (which includes ∅), and for any n ∈ N, let

9

Mn denote the set of all modules of size n (we have M =
⋃
n∈NMn). For any

subset A ⊆ M we denote A
ω

the closure of A by the set of wiring operators⋃
ω{�ω,�ω}. The following result is a direct corollary of Theorem 1.

Corollary 1. The set of all modules is equal to the closure by any wiring of the
set of modules of size 1,

M =M1
ω
.

Proof. Trivially, Mω

1 ⊆M. For any M ∈ M of size n, we know by Theorem 1
that in particular the n-partition of M into sub-modules of size 1 can be wired
into the original module M . Therefore M =Mω

1 .

Every module in M1 is of size 1, but as the set of inputs E of a module is
not bounded, the set M1 is infinite. In our opinion, this corollary is enough to
demonstrate that our definition of modules and wirings is sound.

6 Simulation

BANs are by nature complex systems and sometimes, we like to understand the
computational power of a subset of them by demonstrating that they are able
to simulate (or be simulated by) another subset of BANs. By simulation, we
generally mean that a BAN is able to reproduce, according to some encoding,
all the possible computations of another BAN.

Simulation is a powerful way to understand the limitations and possibilities
of BANs. It is still difficult to prove if any two BANs simulate each other. In the
present paper our aim is to prove that the proposition of simulating any BAN
can be reduced in some cases to the proposition of locally simulating any Boolean
function. Locally simulating a function means that a module reproduces any
computation of that function, when the parameters of the function are encoded
in the module inputs. Our claim is that if we can locally simulate every function
of a BAN, in a way such that the simulating modules are able to communicate
with each other, then we can simulate the same BAN with a bigger module
which is obtained by a wiring over the locally simulating modules. In this
context, modules become a strong tool to reduce the complexity of simulation
(which is a global phenomena) to a local scale, which is more tractable.

Let us go into further details. For F a BAN over the set S, our aim is to
simulate F . For this purpose, for each a ∈ S, we create Ma, a module which
is defined over some sets (Ta, Ea, αa) and locally simulates the function fa. To
assert this local simulation we need to define a Boolean encoding φa over the
configurations of Ma. We also need to define how these modules communicate
with each other, and in the end how they will be wired together. For any couple
a, b ∈ S such that a 6= b, we define the set Ua,b as a subset of Ta. This set
represents all the automata of Ma that are planned to be connected to inputs
of Mb. We can say that the elements of Ua,b are the only way for the module
Ma to send information to the module Mb. We define which information is
sent from Ma to Mb at any time with a Boolean encoding φa,b over the set of

10

configurations on Ua,b. By definition we always have that if Ua,b 6= ∅, then
φa(x

∣∣
Ta

) 6= • ⇒ φa,b(x
∣∣
Ua,b

) = φa(x
∣∣
Ta

). This means that if a module encodes

an information (• being the absence of information, i.e. in this case φa(x
∣∣
Ta

)

equals 0 or 1), the same information is sent from that module to each module
that is meant to receive information from it. In other words, all encodings are
coherent.

Now that our modules are set to communicate with each other, we only need
to wire them to each other. The precise nature of this wiring is defined, for every
pair a, b ∈ S such that a 6= b, by the function Ia,b : Eb → Ua,b which we call
interface between a and b. By definition:

• for every s ∈ Ua,b, there exists e ∈ Eb such that Ia,b(e) = s (surjectivity);

• for every b ∈ S,
⊔
a Ia,b is a total map from Eb to

⋃
a Ua,b.

With such an interface defined for every pair (a, b), the final wiring connecting all
modules together is decomposed in two steps. The first one empty-wires every
module together, the second one applies a recursive wiring which is defined as
the union of every interface Ia,b. The last condition that we have stated over
the definition of an interface lets us know that the obtained module has no
remaining inputs; it can be considered as a BAN, defined over T =

⋃
a∈S Ta.

All these sets are illustrated in Figure 3.

Example 3. Let S = {a, b, c, d}. Let Ta = {e, f, g, h}, Tb = {i, j, k}, Tc =
{l,m} and Td = {n}. Let T = Ta ∪ Tb ∪ Tc ∪ Td. Let Ea = {eg, eh}, Eb =
{ei, ek, e′k}, Ec = {em} and Ed = {en}. Let Ua,b = {f, g}, Ub,c = {j}, Uc,d =
{l}, Ud,a = Ud,b = {n}, and any other U set empty. We will define interfaces as
the following: Ia,b(ei) = f , Ia,b(ek) = g, Ib,c(em) = j, Ic,d(en) = l, Id,a(eh) = n,
Id,a(eg) = n and Id,b(e

′
k) = n (see Figure 3).

Definition 15. Let A be a set. A Boolean encoding over A is a function
φ : (A → B) → ({0, 1, •}), such that there exists at least one x such that
φ(x) = 0 and one x such that φ(x) = 1.

For x : A→ B (a Boolean configuration over a set A), φ(x) = 1 means that
x encodes a 1, φ(x) = 0 means that x encodes a 0, and φ(x) = • means that x
does not encode any value. Each φa is defined as an encoding over Ta, and each
φa,b as an encoding over Ua,b.

By definition we enforce that

if Ua,b 6= ∅, then φa(x
∣∣
Ta

) 6= • ⇒ φa,b(x
∣∣
Ua,b

) = φa(x
∣∣
Ta

).

Given a BAN on S and some a ∈ S, let us now define the local simulation of
function fa by a module Ma. We want to express that given any configuration
x : S → B, all the configurations x′ : Ta → B and input configurations i′ : Ea →
B such that x′, i′ encode the same information as x, the result of the dynamics
on x′, i′ in the simulating module must encode the result of the dynamics on x in
the simulated automaton. To express that x′ encodes the state of a in x is easy:

11

a b

cd

e f

gh

i

jk

l mn

S

Ta

Ua,b

Tb

Ub,c

Tc

Uc,d

Td

Ud,a, Ud,b

T

Figure 3: Interaction graphs of the modules detailed in Example 3. The inter-
action graph of the original BAN is on the left and the interaction graph of the
simulating BAN is on the right. The simulating BAN is decomposed into four
sub-modules, one for each node in S. Notice that we did not represent the input
sets Ea, Eb, Ec and Ed. The connections between the sets Ta, Tb, Tc and Td
are based upon the interfaces defined in the example.

φa(x′) = xa. To express that i′ encodes the state of all b 6= a in x requires an
additional notation. On the one hand we have φb,a : (Ub,a → B) → ({0, 1, •}),
and on the other hand we have i′ : Ea → B describing the input-configuration of
module Ma, and Ib,a : Ea → Ub,a describing the interface from b to a. To plug
these objects together, we put forward the hypothesis that if Ib,a(e) = Ib,a(e′),
then i′(e) = i′(e′) for any e, e′ ∈ Ea. This hypothesis is justified by the fact
that the wiring applied by Ib,a enforces the value of two inputs connected to the
same element to be the same. Now, we define i′◦I−1

b,a the configuration over Ub,a

such that i′ ◦ I−1
b,a (s) = i′(e) for any e such that Ib,a(e) = s. By our hypothesis

this configuration is well defined.

Definition 16. Let a ∈ S, fa be a Boolean function over S and Ma a module
over (Ta, Ea, αa), with φa (resp. φb,a) a Boolean encoding over Ta (resp. Ub,a).
Given a finite update mode ∆ over Ta, Ma locally simulates fa, denoted by
Ma ≺∆ fa, if for all x : S → B,

1. and for all x′ : Ta → B such that φa(x′) = xa,

2. and for all i′ : Ea → B such that for all b 6= a we have φb,a(i′ ◦ I−1
b,a) = xb,

12

3. we have:
φa(Ma∆(x′ t i′)) = fa(x).

This local simulation can be defined on a wide range of update modes ∆.
To ensure that the simulation works as planned at the global scale, we restrict
the range of update modes ∆ used for the local simulations, to those where no
automata with input(s) are updated later than the first update.

Definition 17. An update mode ∆ over a module M is defined to be input-first
if for all k > 1 and all s ∈ ∆k, we have α(s) = ∅.

Definition 18. We define that M is able to input-first simulate f if there exists
an input-first ∆ such that M ≺∆ f .

Intuitively, such update modes let us make parallel the computation of
modules; all information between modules is communicated simultaneously
at the first frame of computation (update), followed by isolated updates in
each module. To define global simulation, we introduce the global encoding
Φ : (S → B) → (S′ → B) ∪ {•} which always verifies that for all x′ : S′ → B,
there exists x : S → B such that Φ(x) = x′.

Definition 19. Let F and F ′ be two Boolean automata networks over S and S′

respectively. We define that F simulates F ′, denoted by F ≺ F ′, if there exists a
global encoding Φ such that for all x′, x such that Φ(x) = x′, and for all δ′ ⊆ S′,
there exists a finite update mode ∆ over S such that Φ(F∆(x)) = F ′δ′(x

′).

Given the definitions of local and global simulation, for any BAN F over a
set S, we define each module Ma as earlier, each defined over (Ta, Ea, αa), along
side each set Ua,b, Ia,b and each encoding φa, φa,b.

Theorem 2. Let F be a BAN over S. For each a ∈ S, let Ma be a module
over (Ta, Ea, αa) that locally simulates F (a) in an input-first way. There exists
a recursive wiring ω over T =

⋃
a∈S Ta such that

�ω

(⋃
a∈S

Ma

)
≺ F .

Sketch of Proof: We prove that the execution of the module M obtained
from the wiring ω can be built from the execution of each Ma. We apply the
hypothesis of local simulation on each Ma, and obtain a global simulation.

Proof. By definition of the empty wiring,
⋃
a∈SMa is defined over (T,

⋃
a∈S Ea,⊔

a∈S αa). Let ω =
⋃
a,b∈S,a6=b Ia,b. By definition of Ia,b, we can easily see that

the module M = �ω
(⋃

a∈SMa

)
is defined over (T,∅, s 7→ ∅) and can be seen

as a Boolean automata network. Let us prove that, for all a ∈ S, for all input-
first simulating update mode ∆ for the module Ma, for any ∆′ update mode
over T \ Ta, and for any x : T → B, the following equation holds:

M∆∪∆′(x)
∣∣
Ta

= Ma∆(x
∣∣
Ta
t(x ◦

⊔
b

Ib,a)). (3)

13

At the first step of the execution, the wiring ω implies that for any s ∈ Ta, for
any x, M(s)(x) =

(⋃
a∈SMa

)
(s)(xt (x ◦ω)). From the definition of the empty

wiring, we can deduce in particular that M(s)(x) = Ma(s)(x
∣∣
Ta
t(x ◦ ω

∣∣
Ea

)).

By definition of the interfaces, this notation is equivalent to ∀s ∈ Ta,M(s)(x) =
Ma(s)(x

∣∣
Ta
t(x ◦

⊔
b Ib,a)).

Let us define A = {s ∈ Ta | α(s) 6= ∅} and B = Ta \A. By the definition of
∆, we know that s ∈ ∆k with k > 0 implies s ∈ B.

Let us look at the A part of this problem. Let δ = ∆0 and δ′ = ∆′0. We can
trivially deduce from the previous statement that:

Mδ∪δ′(x)
∣∣
A

= Maδ(x
∣∣
Ta
t(x ◦

⊔
b

Ib,a))
∣∣
A

.

Furthermore, there is no s ∈ A such that s ∈ ∆k for any k > 0. We can simply
conclude since no update is made to any function of A in the rest of the exe-
cution that Mδ∪δ′(x)

∣∣
A

= M∆∪∆′(x)
∣∣
A

, and that Maδ(x
∣∣
Ta
t(x ◦

⊔
b Ib,a))

∣∣
A

=

Ma∆(x
∣∣
Ta
t(x ◦

⊔
b Ib,a))

∣∣
A

. In conclusion of this A part, M∆∪∆′(x)
∣∣
A

=

Ma∆(x
∣∣
Ta
t(x ◦

⊔
b Ib,a))

∣∣
A

.

Let us now consider the B part of the problem. For s ∈ B, we have
M(s)(x) = Ma(s)(x

∣∣
Ta
t(x ◦ ω

∣∣
Es

)). By definition of B, s ∈ B implies Es = ∅.

We can conclude that ∀s ∈ B,M(s)(x) = Ma(s)(x
∣∣
Ta

). We deduce, for any

δ ⊆ Ta and δ′ ⊆ T \ Ta, that Mδ∪δ′(x)
∣∣
B

= Maδ(x
∣∣
Ta
ti)
∣∣
B

, for i any input
configuration over Ea. By a simple recursive demonstration, we can easily show
that M∆∪∆′(x)

∣∣
B

= Ma∆(x
∣∣
Ta
ti)
∣∣
B

.

Reuniting the A and B parts of this demonstration, we obtain that M∆∪∆′(x)
= Ma∆(x

∣∣
Ta
t(x ◦

⊔
b Ib,a))

∣∣
A
∪Ma∆(x

∣∣
Ta
ti)
∣∣
B

. Assuming i = x ◦
⊔
b Ib,a, we

obtain M∆∪∆′(x) = Ma∆(x
∣∣
Ta
t(x ◦

⊔
b Ib,a)), and prove the lemma described

in Equation 3.

Let us now define Φ : (T → B) → (S → B) ∪ {∅} such that, for any
x : T → B, Φ(x) = ∅ if there exists a ∈ S such that φa(x

∣∣
Ta

) = ∅, and

Φ(x)(a) = φa(x
∣∣
Ta

) otherwise. Let x and x′ such that Φ(x) = x′, and x′ 6= ∅.
Let δ ⊆ S be an update over F . Let us define, for any a ∈ δ, the update mode
∆a such that ∆a is an input-first update mode upon which Ma simulates the
function F (a); by hypothesis such an update mode can always be found.

Let us define the update mode ∆ over T such that ∆ =
⋃
{∆a | a ∈ δ}. We will

now prove that Φ(M∆(x)) = Fδ(x
′). First, we can clearly see that M∆(x) =⊔

{M∆(x)
∣∣
Ta
| a ∈ S}, which can be developed into M∆(x) =

⊔
{M∆(x)

∣∣
Ta
| a ∈

δ} t
⊔
{x
∣∣
Ta
| a ∈ S \ δ}, from which we infer:

M∆(x) =
⊔
{M∆a∪

⋃
b∈δ,b6=a ∆b

(x)
∣∣
Ta
| a ∈ δ} t

⊔
{x
∣∣
Ta
| a ∈ S \ δ}.

14

Using the lemma formulated in Equation 3, this can be rewritten into:

M∆(x) =
⊔
a∈δ

Ma∆a
(x
∣∣
Ta
t(x ◦

⊔
b

Ib,a)) t
⊔

a∈S\δ

x
∣∣
Ta

.

As the result of an execution of the module Ma is always defined as a configu-
ration over Ta, we can infer the following encoding of M∆(x) by Φ :

Φ(M∆(x))(a) =

{
φa(Ma∆a

(x
∣∣
Ta
t(x ◦

⊔
b Ib,a))) if a ∈ δ

φa(x
∣∣
Ta

) if a ∈ S \ δ .

We know by definition of x and x′ that φa(x
∣∣
Ta

) = x′a and that φb,a(x ◦ Ib,a ◦
I−1
b,a) = φb,a(x

∣∣
Ub,a

) = φb(x
∣∣
Tb

) = x′b by definition of φb,a. From this we can

apply the local simulation definition and obtain:

Φ(M∆(x))(a) =

{
fa(Φ(x)) if a ∈ δ
φa(x

∣∣
Ta

) if a ∈ S \ δ =

{
fa(Φ(x)) if a ∈ δ
Φ(x)(a) if a ∈ S \ δ. .

Futhermore, by the definition of an update over F , we can write that:

Fδ(x
′)(a) =

{
fa(x′) if a ∈ δ
x′(a) if a ∈ S \ δ .

Finally, by definition of x′ = Φ(x):

Fδ(x
′)(a) =

{
fa(Φ(x)) if a ∈ δ
Φ(x)(a) if a ∈ S \ δ ,

which implies Φ(M∆(x)) = Fδ(x
′), and concludes the proof.

This theorem helps us investigate if every BAN can be simulated by a BAN
with a given proposition, hence justifying that theoretical studies can impose
some restrictions without loss of generality. If every function f can be locally
simulated by a given module with a proposition P, and if proposition P is
preserved over wirings, then we know that any BAN can be simulated by another
BAN with the proposition P. This is formally proven for the two following cases,
involving disjunctive clauses and monotony respectivly:

Corollary 2. Let F be a BAN. There exists F ′ such that F ′ ≺ F and every
function of F ′ is a disjunctive clause.

Proof. With Theorem 2 in mind, we only need to demonstrate that for any
function f , there exists a module locally simulating it in a input-first way, in
which every function is a disjunctive clause.

Let us consider F a BAN set over S. Let a ∈ S. We decompose fa into a
set of disjunctive clauses Ca such that fa(x) =

∧
c∈Ca

c(x).

Let Ma = (Ta, Ea, αa) be a module with Ta = {uc | c ∈ C} ∪ {ra}, Ea =
{eb,c,a | a 6= b, and the variable xb is included in clause c}. For all b, c, eb,c,a ∈

15

ra

uc

uc′

−

−

−

+

−

eb,c′,a

ed,c′,a

¬fa(x)

Figure 4: Interaction graph of the locally disjunctive module for the example
function fa(x) = xa ∧ (¬xb ∨ xd). We name the clauses of fa as c = xa and
c′ = ¬xb ∨ xd. Notice that most of the signs are inversed to simulate a AND
gate.

α(uc) if and only if xb is included in clause c. For c 6= c′, eb,c,a /∈ α(u′c) and
α(ra) = ∅.

For c ∈ Ca, x a configuration over Ta and e a configuration over Ea, Ma(uc)
is the function described by fuc(x, e) = c(xa 7→ ¬x(ra) t xb 7→ ¬e(eb,c,a)). The
function M(r) is the function fra(x, e) =

∨
c∈Ca

¬x(uc).

This local module is shaped as a pyramid where the base is constitued of
one node for every disjunctive clause of the simulated function, and the top
of exactly one node that represents the result of the function. It follows from
this definition that every function of this module is a disjunctive clause. An
illustrated example of such a local module is presented in Figure 4.

We define Ub,a such that Ub,a = {ra} if the variable xb is included in one of
the clauses of the function fa, and Ub,a = ∅ otherwise.

The encodings φa and φb,a for every b such that Ub,a 6= ∅ are defined such
that φa(x) = φb,a(x

∣∣
Ub,a

) = ¬x(ra). This means that the node r represents the

inverse of the result of the function.
We always define Ib,a(eb,c,a) = rb. More intuitively, to resolve the value of

the variable xb in a clause of fa, look for the value of the node rb in the local
module Mb. We reverse it back to the correct value thanks to the inversion of
each input of each clause automaton.

We shall now prove that Ma locally simulates fa in an input-first way.
Let ∆a = ({uc | c ∈ Ca}, {ra}) be an input-first update mode for the module

Ma. We will sometimes note ∆a = (δ, δr) in further developments.
Let x be a configuration over F . Let x′ be a configuration over Ta such that

φa(x′) = xa. Let i′ be an input configuration over Ea such that for any b 6= a,
φb,a(i′ ◦ I−1

b,a) = xb.
Such a x′ is a configuration over Ta with x′(ra) = ¬xa. Such a i′ is a config-

uration over Ea such that i′(eb,c,a) = ¬xb for every b and c. Such configurations
are well defined and can always be found.

To prove the above local simulation, we have to show that φa(Ma∆a
(x′ t

i′)) = fa(x), which can be simplified into ¬Ma∆a
(x′ t i′)(ra) = fa(x). By the

16

definition of an execution over a module, this can be developed into:

Ma∆a
(x′ t i′)(ra) = fra(Maδ(x

′ t i′), i′)

=
∨
c∈Ca

¬Maδ(x
′ t i′)(uc) =

∨
c∈Ca

¬c(xa 7→ ¬x′(ra) t xb 7→ ¬i′(eb,c,a))

= ¬
∧
c∈Ca

c(xa 7→ ¬x′(ra) t xb 7→ ¬i′(eb,c,a)).

By the above hypothesis, this can be simplified into:

Ma∆a
(x′ t i′)(ra) = ¬

∧
c∈Ca

c(xa 7→ xa t xb 7→ xb),

which let us simply conclude that:

¬Ma∆a
(x′ t i′)(ra) =

∧
c∈Ca

c(x) = fa(x)

wich proves the local simulation of fa by Ma. From this result and the fact
that the proposition that function are locally defined by disjunctive functions
isn’t broken by any wiring, we conclude the result.

Corollary 2 utilizes the Theorem 2 to show that any BAN can be simulated by
a BAN only composed of disjunctions as local functions. This result was known,
and is presented here to give an example of an application of Theorem 2.

Another example of this theorem is the demonstration that any BAN can be
simulated by a BAN only composed of monotone local functions. This second
corollary requires the demonstration of a lemma which follows.

Lemma 1. Let S be a set. Let x : S → B. Let f be a Boolean function over S.
Let S′ = {s, s− | s ∈ S}. There exists f ′ a monotone Boolean function over S′

such that f(x) = f ′(x t s− 7→ ¬x(s)).

Proof. For reminder, we assume that x ≤ x′ if and only if x(s) ≤ x′(s) for every
s ∈ S, and that f ′ is monotone if and only if x ≤ x′ ⇒ f ′(x) ≤ f ′(x′).

For x′ an execution over S′, and s ∈ S, we note code(x′, s) ⇔ x′(s) =
¬x′(s−). Let f be a Boolean function over S.

We define f ′ over the set S′ as the following:

f ′(x′) =

f(x′

∣∣
S

) if for every s ∈ S, code(x′, s)
1 if for every s ∈ S,¬code(x′, s)⇒ x′(s) = x′(s−) = 1
0 otherwise

.

From this definition we clearly see that for all configurations x over S, f(x) =
f ′(x t s− 7→ ¬x(s)). Let us now show that f ′ is monotone.

17

Let x′ and x” be two configurations over S′, such that x′ < x”. This implies
that for all s′ ∈ S′, x′(s′) ≤ x”(s′) and that there is at least one s′ ∈ S′ such that
x′(s′) < x”(s′). This clearly implies that the propositions ∀s ∈ S, code(x′, s)
and ∀s ∈ S, code(x”, s) cannot both be true.

Let us suppose ∀s ∈ S, code(x′, s) and ∃s ∈ S,¬code(x”, s). As x′ < x”, for
every s ∈ S such that ¬code(x”, s), we now that x”(s) = x”(s−) = 1. This
implies that f ′(x”) = 1, and that f ′(x′) ≤ f ′(x”).

Let us now suppose that ∃s ∈ S,¬code(x′, s) and ∀s ∈ S, code(x”, s). By a
similar argument, we now suppose that for every s ∈ S such that ¬code(x′, s), we
have that x′(s) = x′(s−) = 0. This implies that f ′(x′) = 0, and f ′(x′) ≤ f ′(x”).

Let us finally suppose that ∃s ∈ S,¬code(x′, s) and ∃s ∈ S,¬code(x”, s).
In this case, we know that f ′(x′) = 1 ⇒ f ′(x”) = 1 since x′ < x”. Assuming
f ′(x′) = 0 naturally implies f ′(x′) ≤ f ′(x”).

We can now demonstrate the following corollary.

Corollary 3. Let F be a BAN. There exists F ′ such that F ′ ≺ F and every
function of F ′ is monotone.

Proof. Let F be a BAN defined over set S. For every a ∈ S, we define
Ma = (Ta, Ea, αa) a module with Ta = {ua,−, ua,+}, Ea = {eb,a,+, eb,a,− |
xb is included in fa}. The function α is such that eb,a,+ ∈ Ea ⇒ eb,a,+ ∈
α(ua,+) and eb,a,− ∈ Ea ⇒ eb,a,− ∈ α(ua,−).

Let S be a configuration over S. We define the monotone function f ′a over
the set {s, s− | s ∈ S} that for every configuration x verifies fa(x) = f ′a(xts− 7→
¬x(s)). The existence of such a function is given by Lemma 1.

For x′ a configuration over Ta, and i a configuration over Ea, We define
Ma(ua,+) as a function that verifies:

Ma(ua,+)(x′ t i) =

f ′a(a 7→ x′(ua,+) t a− 7→ x′(ua,−) t
⊔
b 6=a

(
b 7→ i′(eb,a,+) t b− 7→ i′(eb,a,−)

)
)

The function Ma(ua,−) is given by Ma(ua,−)(x′ t i) = ¬Ma(ua,+)(x′ t i).
This local module is composed of two automata, one that computes the

original function and one that computes the negation of the original function.
This allows us to simulate the original network while being locally monotone.
The monotony is given by the fact that the configurations used for simulation
are now incomparable to each other. A representation of an example is presented
in Figure 5.

We define Ub,a such that Ub,a = Ta if the variable xb is included in function
fa, and Ub,a = ∅ otherwise.

The encodings φa and φb,a for every b such that Ub,a 6= ∅ are defined by:

φa(x′) = φb,a(x′) =

 1 if x′(ua,+) = 1 and x′(ua,−) = 0
0 if x′(ua,+) = 0 and x′(ua,−) = 1
• otherwise

.

18

ua,+ ua,−

fa(x) ¬fa(x)

eb,a,+

ec,a,+

eb,a,−

ec,a,−

Figure 5: Interaction graph of the locally monotone module for the example
function fa(x) = xa ∧ (¬xb ∨xc). As xa is present in the local function, the two
automata composing this module loop between each other and themselves.

For every b such that Ub,a 6= ∅, we define Ib,a(eb,a,+) = ub,+ and
Ib,a(eb,a,−) = ub,−. In other words, the positive (resp. negative) value of au-
tomaton b is given by the value of the positive (resp. negative) node of the local
module Mb.

Let us prove that Ma locally simulates fa in a input-first way.
Let ∆a = {Ta} be an input-first way update mode for the module Ma.

Let x be a configuration over F . Let x′ be a configuration over Ta such that
φ(x′) = xa. Let i′ be an input configuration over Ea such that for any b 6= a,
φb,a(i′ ◦ I−1

b,a) = xb.
Such a x′ verifies x′(ua,+) = xa and x′(ua,−) = ¬xa. Such a i′ verifies

i′(eb,a,+) = xb and i′(eb,a,−) = ¬xb for every b 6= a. Theses configurations are
well defined.

To prove the local simulation of fa by Ma, we have to show that
φa(Ma∆a

(x′ t i′)) = fa(x). This is equivalent to:

⇔
{
Ma(u+,a)(x′ t i′) = fa(x)
Ma(u−,a)(x′ t i′) = ¬fa(x)

⇔
{
Ma(u+,a)(x′ t i′) = fa(x)
¬Ma(u+,a)(x′ t i′) = ¬fa(x)

⇔Ma(u+,a)(x′ t i′) = fa(x)

⇔ f ′a(a 7→ x′(ua,+) t a− 7→ x′(ua,−) t
⊔
b6=a

(
b 7→ i′(eb,a,+) t b− 7→ i′(eb,a,−)

)
)

= fa(x).

We noticed earlier that x′(ua,+) = ¬x′(ua,−) and that i′(eb,a,+) = ¬i′(eb,a,−)
for every a 6= b. This implies that our this evaluation of f ′a can be developed as
follows:

19

a b

c

d e

f

g

h

++

+

−

−

−
−

+ −+

−
−

+

a b

c

d e

f

g

h

++
−

−
−

−

−+

+

−

+

−

+
F

M1 M2
M3

Figure 6: Representation of a Boolean automata network F next to the three
different modules M1, M2 and M3 that compose it. The function of each au-
tomaton is defined as a disjunctive clause with a positive literal for each inci-
dent “+” edge, and a negative literal for each incident “−” edge. For example,
fh(x) = xc ∨ ¬xe.

f ′a(a 7→ x′(ua,+) t a− 7→ x′(ua,−) t
⊔
b 6=a

(
b 7→ i′(eb,a,+) t b− 7→ i′(eb,a,−)

)
)

= fa(a 7→ x′(ua,+) t
⊔
b6=a

b 7→ i′(eb,a,+)) = fa(a 7→ xa t
⊔
b 6=a

b 7→ xb)

= fa(x),

which proves that Ma locally simulates fa. Using this lemma, knowing that the
Lemma 1 implies the monotony of each function in the local modules and the
simple fact that local monotony is not broken by any wiring, we use Theorem 2
to conclude this proof.

Theorem 2 and consequent corollaries only concerns BANs, and it could
be expected to obtain more general results concerning modules. Such a result
would need a definition of simulation between modules, and such a definition
would imply an interpretation of the information provided by the simulating
module’s inputs. We choose not to develop this particular idea, as this theorem
was only meant to apply to BANs. A generalisation of this result to modules
would be a good subject for future works.

7 Examples

To illustrate and justify the notions that are presented in Section 2, we shall now
present two examples of BANs that can be partially understood by cutting them
into modules. The first example is a toy BAN illustrated in Figure 6. In this
representation we assume the function of each automaton to be a disjunctive
clause with one literal for each incident edge, the sign of which dictates the sign
of the literal.

20

Looking at this example, it does not seem easy to express the entire be-
haviour of the BAN F . Its representation is a strongly connected graph with
multiple interconnected positive and negative cycles. Yet, cutting this graph
into multiple modules and analysing the functionality of each of them is an easy
way to understand interesting parts of the dynamics of the network.

By assuming the decomposition of F as shown in Figure 6, we can start to
attach a functionality to each module. Module M1 is a positive cycle, where the
configuration xa = xd = 1 is a fixed point (whatever the input). Its functionality
can be identified as a “one time button” that cannot be pushed back. Module
M2 is a negative cycle, which are known for their long limit cycles. The difference
here is that as M2 has two inputs, its behaviour can be stabilised into a fixed
point by a fixed input. For example, the fixed point xb = xe = 1, xc = 0 can
be obtained with the constant input ib = 1, ie = 0. Finally, the module M3 is
acyclic and thus only computes the Boolean function ¬ig∨(¬ih∧ ih′). It follows
that M3 stabilises to a fixed point under any constant input.

This simple analysis leads us to the following conclusion: every fair execution
(meaning executing every automaton an infinite amount of time) of F which
verifies xa = xd = 1 at any moment stabilises into a fixed point. This is true
because xa = xd = 1 implies that the “one time button” of M1 is pushed in,
which locks the behaviour of M2 into a fixed point, which leads M3 to compute
a Boolean function over a fixed input. This somewhat informal demonstration
has led us to a conclusion that was not easily implied by the architecture of the
network, showcasing the usefulness of understanding networks as composition
of parts to which one can assign functionalities.

The second example is drawn from a model predicting the cell cycle se-
quence of fission yeast [6]. This network is represented in Figure 7, and can
be decomposed into a more abstract network, where each node represents a
module of the original network. This network is represented in Figure 8 and its
modules are constructed as follows: C = {Rum1,Ste9}, D = {Cdc,Cdc∗},F =
{Cdc25}, G = {Mik}, I = {Start,SK}, J = {PP,Slp1}. A quick analysis of
these modules leads us to sort them into three categories: cycles (C,D), func-
tions (F,G) and igniters (I, J). Let us now explain this organisation in an
informal way.

The two cycle modules C and D are organised in a 4-cycle of negative feed-
back which means that if considered separately from the rest of the network,
those two modules would behave as antagonists: in most cases, when the au-
tomata of C (resp. D) are evaluated to 1, the automata of D (resp. C) will be
evaluated to 0. Modules F and G can be viewed as functions which help D and
C respectively to be evaluated to 1; they both are influenced by J in different
ways. Modules I and J are called igniters because they turn themselves to 0
every time they are evaluated to 1, but not before influencing the other nodes.
Module I inhibits C when activated, and can be considered as the input of the
whole network. Module J is activated by D, activates C and G, and inhibits F .

From this we can conclude that if the network stabilises, it will more likely
stabilise by evaluating C to 1 and D to 0. This conclusion arises from the fact
that D activates J , which in turn inhibits D directly, but also inhibits F (which

21

Start SK Cdc

Rum1

Ste9

PP Slp1

Cdc25 Mik

Cdc*

Figure 7: Representation of the network simulating the cell cycle sequence of
fission yeast extracted from [6]. Activating interactions are represented by sim-
ple arrows and inhibiting interactions by flat arrows. The detail of each node’s
function is available in the original paper.

C D G

I J F

Figure 8: Abstract representation of the interactions between the modules
C,D, F,G, I and J based upon the network represented in Figure 7.

activates D) and activates G (which inhibits D). This also means that F will
be evaluated to 0 and G to 1. Finally, I and J will naturally be evaluated to
0 because of the natural negative feedback that compose them. This particular
evaluation of the network (only C and G to 1) is actually the main fixed point
of the network’s dynamics put forward in [6] and is named G1. This shows that
such a fixed point can be described without the need to compute the 210 = 1024
different configurations of the network and their dynamics.

8 Algebraic exploration of the dynamics of mod-
ules

This section takes insipiration into the work of [9] and explores the idea of
an algebraic representation of a module’s dynamics. Our aim is to start a
characterisation of the effects of wirings upon the module’s dynamics using
algebra.

The dynamics of a module are meant to represent the relation between every
possible state of the system in the form of a graph. The original paper [9]
expresses such a representation as a couple (D, f), with D a set of states and f
the next-state function which maps each state to the next one. In our approach,
we will describe the dynamics of a module M = (S,E, α) as a couple (D,R),

22

with D the set of all configurations x : S → B, and R ⊆ D2 a relation such
that xRx′ if and only if there exists an update δ and an input i such that
Mδ(x, i) = x′. Starting from any configuration, the behaviour of a module for
which the inputs or update mode is not choosen ahead of time is naturally
non deterministic. The obtained graph over a BAN corresponds to what is
commonly called a General Transition Graph.

The multiplication operator on modules’ dynamics is directly taken out from
the original paper [9] and reads as follow:

(D,R)× (D′, R′) = (D ×D′, R×R′)
where (x, x′)(R×R′)(y, y′)⇔ (xRy and x′R′y′).

Considering M , M ′ two modules with (D,R) and (D′, R′) as their respective
dynamics, it is easy to see that the module M �∅ M ′ has (D,R)×(D′, R′) as its
dynamics. Furthermore, the special module M = (S = ∅, E = ∅, α : ∅ → ∅)
has dynamics (D = {a}, R) such that aRa, which is the neutral element of
the multiplication operator described above. Considering these facts we can
clearly express that the category of all dynamics generated by modules is a
commutative monoid over the multiplication operator. It is also a submonoid
of the commutative monoid (D,×) from [9].

This monoid of dynamical systems generated from modules can be shown to
have no zero like element, as the empty dynamical system cannot be generated
from any module. This can clearly be checked as the size of the dynamics of a
module is always of the form 2n, where n is the size of the module.

As this paper describes a type of composition of modules in which the empty
wiring is only a very specific case, let us look at some possible characterisation
of wirings. As any wiring M �ω M ′ can always be rewritten into the form
�ω′ (M �∅ M ′), and as the algebraic effect of the empty non-recursive wiring
upon the dynamics of the modules has already been characterised, we shall only
discuss the algebraic effect of wirings of the recursive type.

As it is the purpose of a recursive wiring to affect an input to the value of an
automaton, it is understandable that the effect of that wiring on the algebraic
dynamics (D,R) would be to remove some pairs in R. To take a basic example,
the module composed of only one function fa(xa, ie) = ie defines a couple
(D,R) where R is the relation containing every possible pair of configurations
over {a} → B, i.e. 0R0, 0R1, 1R0 and 1R1. Applying the recursive wiring
ω(e) = a, we obtain the BAN containing only the function fa(xa) = xa. The
couple (D′, R′) of this new system would be such that 0R′0 and 1R′1 only. This
monotonicity of recursive wirings is formalised in the following proposition.

Proposition 2. Let M = (S,E, α) and M ′ = (S,E′, α′) be modules, with
(D,R) and (D′, R′) their respective dynamics. If there exists a recursive wiring
ω over M such that �ω M = M ′, then R ⊇ R′.

Proof. Let us take x, y ∈ D such that xR′y. This implies that there exists an
input i′ and an update mode δ such that M ′δ(x, i

′) = y. Let us take an input i
over M such that i

∣∣
E′= i′, and for all e ∈ E \ E′, i(e) = ω(e)(x). This way, i

23

reproduces the behaviour of the wiring ω. It follows that Mδ(x, i) = y, which
means that xRy.

This somewhat simple proposition offers the interesting insight that spec-
ifying the behaviour of the inputs of the network will always lead to simpler
dynamics. This idea has been hinted at in the past [7, 14], and we propose
here a formalisation of it in a broader context, where inputs can exist. In this
interpretation those inputs could represent parameters external to the system,
or unknown factors.

This proposition allows us to describe the evolution of the dynamics of a
network during its creation. The first stage consists of uniting the different
necessary parts of the network, and the second consists in the recursive wiring of
every input that is planned to connect those parts together. Keeping those two
stages in mind, we can see the evolution of the dynamics itself has two separate
monotonous phases: the first one sees the dynamics of the network explode
exponentialy in size, with an increasing complexity of connections between the
possible states depending on the number of inputs added to the interaction
graph. The second phase is also monotonous, as the number of configurations
stays constant, and sees the number of edges decrease, as some of the inputs
left over from the first phase are wired to the network.

This process of input wiring is key in understanding the evolution of the
dynamics. In a practical sense, it means that wiring an input fixes it’s value to
the value of a part of the network. Understanding the influence of wirings on
the dynamics of networks would be a very powerful tool in practical cases. To
that effect we express a decision problem on the existence of a one input wiring
that would remove a target edge in the graph dynamics of a module. We shall
call this decision problem the Reductive Wiring Existence problem.

Reductive Wiring Existence problem
Instance : A module M = (S,E, α), and x, x′ such that there exists δ, i, such
that Mδ(x, i) = x′.
Question : Does there exist ω a recursive wiring over M wiring exactly one
input (|dom(ω)| = 1)

such that for all δ, i we have �ω Mδ(x, i) 6= x′?

The aim of such a problem is to mesure the practicability of this approach,
as well as allowing for a more precise characterisation of the evolution of the
dynamics under wirings. The complexity of the above problem actually comes
from the complexity of the Reductive Wiring problem.

Reductive Wiring problem
Instance : A module M = (S,E, α), and x, x′ such that there exists δ, i, such
that Mδ(x, i) = x′,

and ω a recursive wiring over M .
Question : For all δ, i do we have �ω Mδ(x, i) 6= x′?

24

Theorem 3. The Reductive Wiring problem is co-NP complete.

Proof. We will first prove that this problem is in co-NP, and then prove that it
is co-NP hard.

Let us call RW the langage of all positive instances of the Reductive Wiring
problem. Let a = (M,x, x′, ω) be a positive or negative instance of the problem.
The Reductive Wiring is in co-NP if and only if there exists a langage B in P
and a polynomial p(n) such that

a ∈ RW⇔ ∀b ∈ {0, 1}≤p(|a|), (a, b) ∈ B.

In the context of the Reductive Wiring Existence problem, b is defined as
a pair containing an input configuration i and an update δ on M . We shall
define that (a, b) ∈ B if and only if b does not correctly encode a pair as stated
above, or if �ω Mδ(x, i) 6= x′, with b = (i, δ). It is clear that B ∈ P since the
computation of �ω Mδ(x, i) 6= x′ is only the computation of every local function
in M , after the application of the wiring ω. We can also see that if a ∈ RW,
then for every pair (i, δ) defined as above, (a, (i, δ)) ∈ B. It is also true that
if there exists b such that (a, b) /∈ B then �ω Mδ(x, i) = x′ with b = (i, δ),
then the instance a verifies a /∈ RW. Finally, every b is in polynomial size of
a since it is a map that for each of the |S| × |E| possible wirings, assigns an
input configuration of size |E| and an update of size |S|. We conclude that the
Reductive Wiring problem is in co-NP.

Let us now prove that it is co-NP hard. The problem that we will reduce from
is the Boolean unstatisfiability problem, or co-SAT. For any instance φ ∈ co-
SAT with n different variables, let us construct a module M such that S = {s},
E = {e1, . . . , en, en+1}, and α such that α(ek) = s for k ≤ n + 1. The local
function of the node s will be the following: let us note ψ the formula of the
instance φ in which every instance of the variable xk for k ≤ n is substituted for
the input variable ek. We then define fs(x, i) = i(en+1)∨ψ(i), where ψ(i) is the
formula ψ evaluated according to i. The edge x, x′ that we aim to remove in the
graph of the dynamics of M is the one such that x(s) = 0 and x′(s) = 1. This
edge always exists before any wiring, as setting the input en+1 to 1 will always
influence the value of the node s from 0 to 1. Finally, we define the recursive
wiring ω as the wiring which only connects the input en+1 to the node s.

Let us prove that the answer to the Reductive Wiring problem for this
instance is equivalent to the unsatisfiability of φ. Note that only two updates
δ = {s} and δ′ = ∅ are possible, and since the latter will never lead to any
evolution of the configuration, we will use the update δ = {s} for the rest of
the demonstration. In �ω M and under the configuration x(s) = 0, the local
function fs(x, i) is equivalent to the computation of 0∨ψ(i), which is equivalent
to ψ(i). As we can see, φ is positive in co-SAT if and only if the instance M,x, x′

is positive in the Reductive Wiring Existence problem.
Finally, it is clear to see that the above proposed reduction is polynomial,

as the construction itself is defined with |S| = 1 and |E| = n+ 1.

Corollary 4. The Reductive Wiring Existence problem is co-NP complete.

25

Proof. To prove that this problem is in co-NP, we only have to see that the
number of wirings ω with |dom(ω)| = 1 is |S| × |E|. Knowing this, we can
resolve this problem by resolving the Reductive Wiring problem on the same
instance a polynomial amount of times.

To prove that it is co-NP hard, let us take an instance φ ∈ co-SAT and
take the same exact construction as in the last demonstration, only here the
final construction does not include a specific wiring ω to test. To show that
it is nonetheless equivalent, we have to see that between all the possible n + 1
wirings, n of them leave the input en+1 unconnected, which gives a trivial
positive solution to the resolution of the local function fs. The only non trivial
wiring is therefore the same as in the last demonstration, which leads to the
equivalent result that the Reductive Wiring Existence problem is co-NP hard,
and therefore co-NP complete.

These results hint that the prediction of the evolution of the dynamics of a
module upon wiring is a costly process. However it is interesting to note that
the above mentionned complexity scales on the number of inputs of the studied
modules. The co-NP completeness arises here from the exploration of all possible
input configurations and possible updates: in a case where the number of inputs
is logarithmic on the module size and where the update mode is restricted to
a family of polynomial size, the problem would be solvable in polynomial time
by a brute force algorithm. In particular, the prediction of the evolution of
the dynamics of a module, when this module evolves under the parallel udpate
mode, with a low number of inputs, would be easier to predict. It is however
important to note that fixing the update mode of the network only does not
reduce the complexity of the problem, as characterised in the following corollary.

Corollary 5. The Reductive Wiring Existence problem, restricted to the parallel
update mode, is co-NP complete.

Proof. This corollary naturally follows from the fact that the demonstration of
the Corollary 4 can be applied as long as the update mode containing only the
node s is allowed.

9 Conclusion

The three theorems formulated in this article tell us that seeing BANs as modu-
lar entities is a way to discover useful results. With the simple addition of inputs
to BANs, we have expressed a general simulation structure that can be used to
understand the computational nature and limits of given properties over BANs.
We have also met simple but instructive results when envisioning the dynamics
of modules as algebraic structures. Let us underline that all the definitions and
results, except ones related to complexity classes, can be applied to BANs and
modules defined over countably infinite sets of automata and inputs.

Wherever Turing-completeness is observed, complex behaviours emerge that
cannot be simply or quickly formulated from the basic rules of the computation.

26

In such situations, the solution is either to compute every single possibility to
capture the whole dynamics of the observed system, or to simplify the model.
We believe that the framework developed in this paper is a strong candidate to
enable us to decompose complex networks into parts with tractable functional-
ities, and to make conclusions about the whole network at a cheaper cost.

Adding inputs to BANs is an interesting way of studying the evolution of a
network upon modification, as it offers a formalisation of the idea of unknown
parameters that influence the network. We believe that improving the under-
standing of such inputs shall improve our comprehension of the relation between
a network and its dynamics.

Acknowledgements This work was funded mainly by our salaries as a French
State agent and therefore by French taxpayers’ taxes, and secondarily by the
ANR-18-CE40-0002 FANs project, the ECOS-Sud C16E01 project, the STIC
AmSud CoDANet 19-STIC-03 (Campus France 43478PD) project, and the
PACA Region project 2015 01134 “Fri”.

References

[1] A. Alcolei, K. Perrot, and S. Sené. On the flora of asynchronous locally non-
monotonic Boolean automata networks. In Proceedings of SASB’15, volume 326
of ENTCS, pages 3–25, 2016.

[2] U. Alon. Biological networks: the tinkerer as an engineer. Science, 301:1866–1867,
2003.

[3] J. Aracena, Luis Gómez, and L. Salinas. Limit cycles and update digraphs in
Boolean networks. Discrete Applied Mathematics, 161:1–12, 2013.

[4] G. Bernot and F. Tahi. Behaviour preservation of a biological regulatory network
when embedded into a larger network. Fundamenta Informaticae, 91:463–485,
2009.

[5] M. Cook. Universality in elementary cellular automata. Complex Systems, 15:1–
40, 2004.

[6] M.I. Davidich and S. Bornholdt. Boolean network model predicts cell cycle se-
quence of fission yeast. PLoS One, 3:e1672, 2008.

[7] F. Delaplace, H. Klaudel, T. Melliti, and S. Sené. Analysis of modular organi-
sation of interaction networks based on asymptotic dynamics. In Proceedings of
CMSB’12, volume 7605 of LNCS, pages 148–165, 2012.

[8] J. Demongeot, E. Goles, M. Morvan, M. Noual, and S. Sené. Attraction basins as
gauges of robustness against boundary conditions in biological complex systems.
PLoS One, 5:e11793, 2010.

[9] A. Dennunzio, V. Dorigatti, E. Formenti, L. Manzoni, and A. E. Porreca. Polyno-
mial equations over finite, discrete-time dynamical systems. In Cellular Automata,
pages 298–306, Cham, 2018. Springer International Publishing.

[10] T. Feder. Stable networks and product graphs. PhD thesis, Stanford University,
1990.

27

[11] E. Goles and L. Salinas. Comparison between parallel and serial dynamics of
Boolean networks. Theoretical Computer Science, 396:247–253, 2008.

[12] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22:437–467, 1969.

[13] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: simple building blocks of complex networks. Science, 298:824–
827, 2002.

[14] M. Noual. Updating Automata Networks. PhD thesis, École Normale Supérieure
de Lyon, 2012.

[15] K. Perrot, P. Perrotin, and S. Sené. A framework for (de)composing with Boolean
automata networks. In Proceedings of MCU’18, volume 10881 of LNCS, pages
121–136, 2018.

[16] H. Siebert. Dynamical and structural modularity of discrete regulatory networks.
In Proceedings of COMPMOD’09, volume 6 of EPTCS, pages 109–124, 2009.

[17] R. Thomas. Boolean formalization of genetic control circuits. Journal of Theo-
retical Biology, 42:563–585, 1973.

28

	Introduction
	Motivations
	Boolean automata networks
	Preliminary notations
	Definitions

	Modules
	Wirings
	Simulation
	Examples
	Algebraic exploration of the dynamics of modules
	Conclusion

