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Abstract. In this paper we study the dynamic behavior of threshold
networks on undirected signed graphs. While much attention has been
given to the convergence and long-term behavior of this model, an open
question remains: How does the underlying graph structure influence net-
work dynamics? While similar papers have been carried out for threshold
networks (as well as for other networks) these have largely focused on
unsigned networks. However, the signed graph model finds applications
in various real-world domains like gene regulation and social networks.
By studying a graph parameter that we call ”stability index,” we search
to establish a connection between the structure and the dynamics of
threshold network. Interestingly, this parameter is related to the con-
cepts of frustration and balance in signed graphs. We show that graphs
that present negative stability index exhibit stable dynamics, meaning
that the dynamics converges to fixed points regardless of threshold pa-
rameters. Conversely, if at least one subgraph has positive stability index,
oscillations in long term behavior may appear. Finally, we generalize the
analysis to network dynamics under periodic update schemes and we ex-
plore the case in which the stability index is positive for some subgraph
finding that attractors with superpolynomial period on the size of the
network may appear.

Keywords: complex systems · discrete dynamical systems · automata
networks.

1 Introduction

In this paper we study the dynamics of threshold-type functions within net-
works of different entities, where relationships are characterized as friendly or un-
friendly. More precisely, the model is defined by a non-oriented graphG = (V,E),
with V denoting individuals and E representing the different relationships be-
tween them. To each of these edges a weight of +1 or -1 is assigned, signifying
friendly or negative connections, respectively.

In this graph-based framework, each node holds an internal state from the
set {−1,+1}. This state will evolve in time via a deterministic local transition
function governed by a threshold rule. Specifically, a node adopts a +1 state if
the weighted sum of its neighboring nodes’ states, factoring in edge weights (+1
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or -1), surpasses a predefined threshold; otherwise, the node takes on a state
of -1.

The primary update scheme is parallel, where all nodes undergo simultane-
ous updates. However, we study a broader spectrum of update schemes, with a
particular emphasis on periodic updates. Periodic updates involve a set of finite
collections µ = {A1, . . . , Ap}, where Ai constitutes subsets of the vertex set V .
During each step, updates occur sequentially across sets, progressing from the
first to the last, with parallel updates taken place within each set. Notably, a sin-
gle vertex may belong to multiple sets, potentially leading to multiple updates
within a single step. A distinct scenario, termed the block sequential update
scheme, emerges when µ constitutes a partition of V , ensuring that each vertex
updates only once per step. An additional common scheme is sequential, where
vertices update individually according to a predefined order dictated by a per-
mutation of the vertex set V, σ ∈ Σ(|V |) , with sets µ = {σ(1), σ(2), . . . , σ(n)}.

In this framework, this work focuses on the link between these two latter
described dimensions: firstly, the structural landscape given by the structure of
the graph (including the sign assignation and the underlying structure) within
which dynamics unfurl. Secondly, the dynamic evolution of threshold functions
under diverse update schemes in the context of signed graphs.

Threshold networks A threshold network is a tuple T = (G,W, {−1, 1}, b, F )
where G = (V,E) is non-oriented a graph, W = W (G) is the graph’s adjacency
matrix (possibly with real weights), F is a collection of threshold functions F =
(F1, . . . , Fn), and {−1, 1} emphasize the set of possible states.

Originating from McCulloch and Pitts [21], threshold networks were con-
ceived as an initial model for the nervous system. These networks feature units
interconnected by threshold functions, emulating neuron behavior [23,22,17]. In
addition, Thomas and Kauffman applied similar principles to gene interaction
modeling using Boolean functions [25,18]. In fact, threshold functions play a
vital role in gene interaction models, with multiple studies exploring dynamics
and resilience of cell cycle networks [20,6,24].

In terms of the model studied as a dynamical systems, as it shown in [12] for
networks with undirected graphs, parallel iterations of symmetric configurations
tend to converge to fixed points or limit cycles of period 2. In addition, symmet-
ric networks with non-negative diagonal entries converge to fixed points during
sequential iteration [9]. Both results are obtained by the analysis of decreasing
energy functional similar to the spin glass model. Interestingly, this approach
also provides bounds to the convergence time. In the last years, the dynamics
have been also studied from a computational complexity standpoint [10,5] and
also from a structural approach [24].

Signed graphs In this paper, we focus on the dynamics of threshold-type
functions in non-oriented graphs with edges marked as -1 or +1. Originating from
Heider’s work on attitudes and cognitive organization [16], the model captures
the balance theory relating to attitude changes among individuals. As presented
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in the seminal paper [3], the model represents relationships using graphs, with
edges as +1 (friendship) or -1 (unfriendly) connections, considering symmetric
relationships.

In [14], the notion of balance in signed graph is presented. A graph is balanced
if the vertex set can be partition into two sets, with negative edges connecting
them. This can be as a generalization of the concept of bipartition in unsigned
graphs. In fact, as same as the latter case in which all the circuits must have
an even number of edges, circuits in a signed graph play an important role for
balance. If G is a signed graph, we define the sign of a cycle in G as the product
of the sign of the its edges. We say that a cycle in G is even (resp. odd) it
has an even (resp. odd) amount of edges. A signed graph G is balance if no
cycle is negative. A dual notion is the notion of antibalance. We say that G is
antibalanced if any even cycle in G has positive sign and any odd cycle has
negative sign. In other words, a signed graph is antibalanced if even cycles have
an even amount of negative edges and odd cycles have an odd amount of negative
edges.

Starting from this initial standpoint, two natural questions arise: how can we
measure how close is a graph to be balanced? and how difficult is to know if a
graph is balanced? Regarding the first question, different measures and indices
have been proposed [3,14,2]. Notably, the frustation index (resp. number) is
defined on a signed graph G as the minimum amount of edges (resp. vertices)
whose removal results on a balance graph. Regarding the second question, it is
known that computing these two numbers is impractical (computation of both
indices are linked to classical NP-hard problems, see [27] for a complete review
on problems related to negative and positive cycles).

Involving signed graphs, several applications can be found in social dynam-
ics, computational chemestry, physics, politial science, systems biology, among
others [1]. On the other hand, signed graphs and the balance notion appear in
the context of the spin glass problem in statistical physics [4]. A generalized spin
network consists in a set on nodes connected with signs +1 and -1, where in each
node there is a particle with spin +1 or -1. The magnetization of the network is
related to minimize the energy, given by the sum of the product of contiguous
spins orientation weighted with their signs. Then obtaining a magnetized ma-
terial consists of reaching a spin configurations that minimizes such a quantity,
which is also related with the notion of balance and the balance index, although
physicists prefer to talk about frustration [19,7,26]. A graph is frustrated if there
exists an even circuit with an odd number of negative connections or an odd cir-
cuit with an even number of negative connections, i.e. frustration is equivalent
to antibalance in signed graphs.

1.1 Our contribution

We introduce the parameter, S(G), which encodes the interplay between the
graph structure of the network and its dynamical behaviour. Specifically, this
index, called the stability index is defined as S(G) = −n− d+ + d− + 2m− 4p,
where n and m represent the number of vertices and edges of G respectively,
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d+ and d− denote the number of positive and negative loops, and p indicates
the minimum number of edges necessary for the graph to achieve anti-balance.
A signed graph is antibalanced if it exists a partition of the nodes (A,B) in
which all the internal edges (edges connecting only nodes in A or nodes in B)
are negative and all the edges between nodes in A and B are positive. This is
related to the sign of the cycles as it is discussed in the paper.

In this context, we are interested on study the behavior of parallel iterations.
Our analysis uncovers a pivotal connection: the stability of the network depends
on the value of S(G′) for each subgraph G. When S(G′) < 0 for each subgraph,
the parallel dynamics exclusively converge to fixed points, underscoring the in-
timate connection between the graph’s inherent structure and its dynamical
behavior.

More precisely, we present two main theorems, the first one, for the syn-
chronous update scheme:

Theorem. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network. If
for each subgraph G′ ⊆ G we have that S(G) < 0 then, T admits only fixed
points.

And then, we generalize this result for arbitrary periodic update schemes:

Theorem. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network and
let us consider a periodic update scheme µ = (I1, . . . , Ip). If for any 1 ≤ ℓ ≤ p
we have that for all subgraph G′ ⊆ G(Iℓ), S(G′) < 0 then, T admits only fixed
points.

Conversely, for the synchronous update scheme, we find that if a graph G is
such that S(G) ≥ 0 then dynamics admits an attractor of period 2.

Observe that the difference between two-cycle and attractor with period two
plays a role in the theorem that is analyzed through different lemmas. Roughly
speaking, a two cycle is an attractor of period 2 (a time-periodic configuration
with period 2) in which any node in the network change its state. In lieu, an
attractor of period 2 may have nodes that which state is fixed (they are stable).

Finally, in the context of periodic update schemes, we provide an example of
a network defined on a regular topology (a cycle graph) along with an update
scheme for which the assumptions of the previous theorem do not hold (there
exists a subgraph with a positive stability index) and this network exhibits an
attractor with superpolynomial period relative to the network’s size.

1.2 Organization of the paper

In Section 3.1 we study the synchronous update scheme. In particular, we study
sufficient and necessary conditions for stability depending on the stability in-
dex. In Section 3.2 we study the stability of the network under general periodic
update schemes. We deduce from previous section that the main theorem for
synchronous update schemes can be extended to this setting. Then, we explore
what happens when the sufficient conditions are not fulfill by showing an ex-
ample of a very simple network which exhibits attractors with non-polynomial
period on the size of the network.
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2 Preliminaries

Signed graphs A signed graph is a tuple G = ((V,E ∪ D), z) where G is a
non-directed graph with set of nodes V , set of edges E and set of self-loops D,
and z : E → {−1, 1} is an assignation of signs for each edge in G. In the rest of
the paper, we will denote a signed graph without self-loops simply as (G, z). In
addition, we will call n the number of nodes in G, i.e. n = |V |, we will call m
the number of edges in G, i.e. m = |E| and finally, we will call d+ (resp. d−) the
amount of positive (resp. negative) self loops in G.

Given a signed graph G we denote by W (G) = (wij) its adjacency matrix.
More precisely,

wij =

{
ε ∈ {−1, 1} if {i, j} ∈ E

0 otherwise.

Stability index of a graph Let (G, z) be a signed graph. We define the sign of a
subgraphH of G as the product of the sign of the its edges. We say that a cycle in
G is even (resp. odd) it has an even (resp. odd) amount of edges. There is a very
well known property of signed graph that it is known as balance. A graph (G, z)
is balanced if no cycle is negative. A dual notion is the notion of antibalance. We
say that (G, z) is antibalanced if any even cycle in G has positive sign and any
odd cycle has negative sign. In other words, a signed graph is antibalanced if
even cycles have an even amount of negative edges and odd cycles have an odd
amount of negative edges

In this context, if (G, z) is a signed graph we can always switch the sign of
the edges, i.e, change any positive edge by a negative edge and vice versa. We
call this graph −G. It is not hard to see that a graph is antibalanced if and only
if −G is balanced.

In addition, observe that if z(e) = 1 for each e ∈ E then, a balance graph
is a bipartite graph. Oftenly, in the literature, it is defined the number ϕ(G) as
the minimum size of a set of edges X ⊆ E such that G − X is balanced. This
parameter is called the frustration index of the graph. In this paper, we will work
with the amount p(G) (or simply p when the context is clear) which correspond
to the minimum size of a set of edges X ⊆ E such that G−X is antibalanced.
Observe that p(G) = ϕ(−G). We present in Figure 1 some examples of frustrated
cycles.

Finally, we define the stability index of a signed graph (G, z,D) as the number

S(G) = −n− d+ + d− + 2m− 4p.

In Figure 2, we show the value of alpha for some examples. We observe that
in the first graph the value of p is 1 since we need to remove only an edge in
order to have an antibalanced graph. Thus, S = −1. For the second graph, we
have that the cycle is antibalanced, so p = 0 and S = 5. Finally, for the last
one, we have that we need to remove two edges in order to have an antibalanced
graph. In addition, it is easy to see that deleting only one edge does not define an
antibalanced graph. Thus, we deduce p = 2 and S = −3. We will see in the next
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Fig. 1. Some examples of frustrated and non-frustrated graphs.

section that this graph parameter is closely related to the dynamics of threshold
networks.
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Fig. 2. Values for the stability index in different graphs. In the first graph (from left
to right), we have that p = 1, in the second graph p = 0 and finally p = 2.

Threshold networks A threshold automata network is a tuple T = (G =
(V,E),W (G), {−1, 1}, b, F ) where G is a signed graph, W (G) is the signed ad-
jacency matrix of G, b ∈ Z|V | is called a threshold vector and the functions
F = (F1, . . . , Fn), with Fi : {−1, 1}V → {−1, 1}, are called threshold local func-
tions and they are defined as:

x(t+ 1) = Fi(x(t)) =


1 if

∑
j∈V

wijx(t)j − bi > 0,

x(t)i if
∑
j∈V

wijx(t)j − bi = 0,

−1. otherwise

Observe that the second case in the previous expression defines what to do in a
tie case scenario, i.e. the case in which for some node i the sum of the states of its
neighbors is exactly bi. For example, in the case of the majority rule, i.e. when
bi = 0, a tie case scenario happens if for some node i the amount of neighbors in
state 1 is the same than the amount of neighbors in state −1. Of course this can
only happen if a node has even degree. In that case, the previous definition can
be modeled as positive loops in each node in the network. When the majority rule
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is defined in this way, it is usually called stable. In addition, other tie-breaking
functions can be defined (see for example [5]). A very well studied case for the
majority rule, is known in the literature as crazy spin or unstable. In this case,
a node changes its states if it is in a tie-case scenario instead of preserving it.
More precisely, we have:

x(t+ 1) = Fi(x(t)) =


1 if

∑
j∈V

wijx(t)j − bi > 0,

−x(t)i if
∑
j∈V

wijx(t)j − bi = 0,

−1. otherwise

Observe that when the degree of a node is even, this tie-breaking rule can be
modeled as a negative loop. Unsurprisingly, the choice of the tie breaking rule
will have a great impact in the dynamics. We illustrate this with the example in
Figure 3.

Stable majority Unstable majority

Fig. 3. Example of a stable majority rule dynamics vs unstable majority rule dynamics
defined on the same graph: in the left panel, we have a stable majority dynamics which
reach a fixed point. On the right panel we have an unstable majority dynamics which
reach a two-cycle.

Periodic dynamics over T We call x ∈ {−1, 1}V , i.e., an assignation of states
for each node in a signed graph G = (V,E), a configuration. Let I ⊆ V be a
subset of vertices and x ∈ {−1, 1}V an arbitrary configuration. We define the
transition function associated to I as the function:

FI(x) =

{
xi if i ̸∈ I

Fi(x) if i ∈ I,

In simple words FI assigns a new state to any node in I according to its
local threshold function. We say that nodes in I are being updated. Consider
now ℓ ∈ N and a sequence µ = (I1, . . . , Iℓ) such that Ik ∈ P(V ), where P(V ) is
the power set of V. Now, given a configuration x, we define the global transition
function of the network Fµ : {−1, 1}V → {−1, 1}V by
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Fµ(x) =
(
FIℓ ◦ FIℓ−1

◦, . . . , ◦FI2 ◦ FI1

)
(x).

The sequence µ induces via F a dynamics on the set of configurations {−1, 1}V
in the following way: given an initial condition x0 = x we define xt = F t(x) for
all t ≥ 1. We say that µ is a periodic update scheme for the network T .

Generally speaking, function Fµ will assign a new global state for the network
by sequentially applying the transition function associated to each set I ∈ µ
according to its order. In a generic application of F nodes will be updated
according to the order of the sets in µ. First, all the nodes in I1 will be updated,
then, the ones in I2, I3, and so on. When the nodes in the set Ip are updated,
the next global state of the network has been completely computed and in order
to compute the next state, the same process is repeated. We call the size of an
update scheme a number r > 0 such that |Ik| ≤ r for each k ∈ {1, . . . , ℓ}.

Formally speaking, the map Fµ induces a dynamical system in the set of all
the possible assignations of states for the nodes in G, i.e. {−1, 1}V . We call an
assignation of states x ∈ {−1, 1}V a global configuration or simply a configuration
when the context is clear. We call an orbit a sequence of configurations x1, . . . , xℓ

such that xi+1 = Fµ(xi) for i ∈ N, i.e. each term in the sequence is obtained
by applying S to the previous term. Observe that, since the number of possible
configurations is finite, each orbit is eventually periodic, i.e. there exists some
T, p ≥ 0 such that xT+p = xT . In simple words, this means that after some time
each configuration will reach eventually a periodic orbit. Any periodic orbit of
period p is called an attractor of period p. In the case in which p = 1 the
attractors are called fixed points. Some abuse of notation is introduced in the
literature and the attractors of a threshold network are also called cycles. In this
work, we are going to refer to cycles in graphs and cycles in the dynamics without
making an explicit difference whenever the context is clear. We distinguish the
case in which p = 2. We call this special type of attractors two-cycles. In the
case of a two-cycle in which each node changes its state, i.e. xi ̸= Fµ(x)i for all
i ∈ V , we call it a total two-cycle or simply total-cycle when the context is clear.
We show an example of a total-cycle and a two-cyle in Figure 4. We say that
a threshold network is stable if it has only fixed points. Otherwise, we say that
the network is unstable. There are some important particular cases of periodic
update schemes such as the case of the parallel or synchronous update scheme
in which each node updates its state at the same time, i.e. µ = {V }. In this
case we simply write F instead of Fµ. Another interesting case is the one of the
block sequential update schemes, in which µ is a partition of V . An important
example of block sequential update scheme is the case sequential update schemes.
In sequential update schemes each I ∈ µ is such that I = {v}, i.e. each set is
a singleton. We can see µ in this case as a permutation of set V of the nodes
of the network. We show an example of a simple dynamics under these update
schemes in Figure 6. In these latter Figure, we have a conjunctive network. In
this case, all the thresholds are θ = 0, and thus, the nodes locally compute an
AND function. In Figure 6 we show three different update schemes. A is the
parallel update scheme, B is the sequential update scheme and C is a block
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Fig. 4. Example of two majority threshold network exhibiting two-cycles and total
two-cycles. In the upper panel, a majority network exhibiting a total two cycle. In the
bottom panel, a majority network exhibiting a two-cycle. Observe that in this case two
of the nodes in the triangle are always in state 1 and the rest of the nodes are switching
states.

sequential update scheme. Observe that the dynamics induced in each case are
different. In fact, A reaches a total two-cycle and B and C reach a fixed point.

Finally, let x be an attractor for T . We introduce the following notation: we
call G′(x) = G[V ′] to the graph induced nodes that are switching states, i.e.
V ′(x) = {v ∈ V : xv ̸= F (x)v}. Whenever the context is clear, we write only G′

or V ′.

3 Results

In this section we study the link between the stability index of a signed graph
G = (V,E ∪ D, z) and the dynamics induced by a threshold network defined
over G. We will study first the synchronous dynamics, i.e. the one induced by
a synchronous or parallel update scheme. In particular, we give both sufficient
and necessary conditions for stability. We study stability from two approaches
first, the existence of only fixed points as attractors for the dynamics and also
the existence of total two cycles. Then, we study the dynamics in the periodic
case. In this section, we show that if we have no assumptions, long cycles (super
polynomial cycles in the size of the network) may appear. Finally, for the block
sequential case, we give some conditions for stability.

3.1 Synchronous or parallel dynamics

Sufficent conditions for stability. First, we cite a known result from [12,9]
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Proposition 1. Let T be a threshold network defined over a non-directed graph
G in which its adjacency matrix W (G) satsfies that W (G)ij ∈ {−1, 1}. If W (G)
is non-negative definite then, the synchronous update scheme admits only fixed
points.

The latter result is based on the energy functional

E(x) =
1

2
xTWx+ bTx

which is not-increasing. In fact, if the following functional is defined:

∆E(xt) = E(xt+1)− E(xt) =

n∑
i=1

δi −
1

2
(xt+1 − xt)W (xt+1 − xt),

where δi = (xt+1
i − xt

i)(
n∑

i=1

wijx
t
j − bi), it is shown in [9,13], this difference is

non-negative, i.e. the energy function is a non-increasing function. This has an
important consequence in the dynamics, limiting the long-term behavior of the
system to only fixed points and attractors of period 2. Moreover, if the energy
delta is strictly negative, T admits only fixed points. In [13] the authors explore
under which conditions attractors of period 2 may appear. More precisely, they
explore a sufficient and necessary conditions on the interaction graph of T in
which the latter situation holds. In this section, we present a generalization of
their result to signed graphs. In order to do that, we start by stating the following
technical lemma:

Lemma 1. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network.
Suppose that there exists a configuration x ∈ {−1, 1} such that xi ̸= x′

i for all
i ∈ V where x′ = F (x). Then, we have that ∆E(x) ≤ 2S(G′(x))

We can now present the main theorem of this section:

Theorem 1. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network.
If for each subgraph G′ ⊆ G we have that S(G) < 0 then, T admits only fixed
points.

Necessary conditions for stability. Now we face the problem of studying
what happens if the hypothesis of the previous lemma do not hold. More pre-
cisely, we are interested in the case in which there exist some G′ ⊆ G such that
S(G′) ≥ 0 First observe that if G is just a length 1 negative path, i.e. E = {i, j}
and wij = −1 then, T = (G, b) where bi = bj = 0 is a threshold automata
network which admits a two-cycle. In fact, for xi = xj = 1 we have the cycle
(1, 1) ↔ (−1,−1). Generally speaking, we give in the next result a sufficient con-
dition for the de existence of two-cycles. This condition is given in the following
lemma and it is ilustrated in Figure 5
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Fig. 5. An example of a network that exhibits a two cycle that is not a total cycle.
Nodes in blue are in state 1 and nodes in −1 are in white. Sets B and P in Lemma 2
are given explicitely for this particular configuration. Observe that S = 1 ≥ 0 but the
network does not exhibit total two-cycles.

Lemma 2. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network.
T admits a two-cycle if and only if there exists a configuration x ∈ {−1, 1}V
such that, for all u ∈ V we have:

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1 + |bu|,

where B(x, u)+ = {v ∈ N(u) : xv = xu, wuv = +1}, B(x, u)− = {v ∈
N(u) : xv = xu, wuv = −1}, P (x, u)+ = {v ∈ N(u) : xv ̸= xu, wuv = +1} and
P (x, u)− = {v ∈ N(u) : xv ̸= xu, wuv = −1}.

From the latter lemma we deduce the following direct result:

Corollary 1. Let G = (V,E,W (G)) be a signed graph. There exists a threshold
vector b ∈ Z such that the threshold network T = (G = (V,E),W (G), {−1, 1}, b, F )
admits a total cycle if and only if there exists a configuration x ∈ {0, 1}V such
that: ∀u ∈ V ,

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1,

where B(x, u)+ = {v ∈ N(u) : xv = xu, wuv = +1}, B(x, u)− = {v ∈ N(u) :
xv = xu, wuv = −1}, P (x, u)+ = {v ∈ N(u) : xv ̸= xu, wuv = +1} and
P (x, u)− = {v ∈ N(u) : xv ̸= xu, wuv = −1}.

Remark 1. Observe that the condition in the previous corollary implies that a
signed graph admits attractors of period 2 if and only if bu = 0 for all u ∈ V.
In the case in which the edges have only positive weight, this latter threshold
defines the majority rule. Thus, in the case of an unsigned graph, another way
to interpret the previous corollary is that if a graph does not admit attractors
of period 2 for the majority rule, it will have only fixed points for any other
threshold.
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Theorem 2. Let G = (V,E,W (G)) be a signed graph. If there exists a
threshold vector b ∈ Z such that the threshold network T = (G =
(V,E),W (G), {−1, 1}, b, F ) admits a total cycle, then S(G) ≥ 0. Conversely,
if S(G) ≥ 0 then there exist a threshold vector b ∈ Z such that the threshold
network T = (G = (V,E),W (G), {−1, 1}, b, F ) admits admits an attractor of
period 2.

Remark 2. 1. As it is shown in [10] there are some case in which S(G) ≥ 0 and
there are no total cycles.

2. If there are at least one node with a negative loop then, there exists a total
cycle. In fact, let us call i to a node having a negative loop. We can fix in
state −1 all the nodes in G − i by using the same technique that we used
in the proof of the previous lemma and defining bi = −|N(i)G|. By doing
this we have that

∑
u∈V

wuixi − bu = −xi − |N(i)G|+ |N(i)G| = −xi. Thus, if

xi = 1 the node i changes its state to 1 and if it is in state −1 it changes to
1.

3.2 Periodic update schemes.

We extend the results of the previous section to the case of periodic update
schemes. Remember that a periodic update scheme is a sequence µ = (I1, . . . , Iℓ)
such that Ik ∈ P(V ), where P(V ) is the power set of V. From now on, for
a periodic update scheme µ = (I1, . . . , Iℓ) we are going to call G(Ik) to the
subgraph induced by the set of nodes Ik

Theorem 3. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network
and let us consider a periodic update scheme µ = (I1, . . . , Ip). If for any 1 ≤ ℓ ≤ p
we have that for all subgraph G′ ⊆ G(Iℓ), S(G′) < 0 then, T admits only fixed
points.

Proof. The result holds as a consequence of the fact that for each k ∈ {0, . . . , p}
the nodes that may change its state are the nodes in Ik and the nodes in any
other Is with s ̸= k are fixed. Thus, since any subgraph G′ ⊆ G(Ik) satisfies
S(G′) < 0 then, the energy is decreasing.

Attractors with superpolynomial period in cycle graphs We show that
if there are some graph such that S(G) attractors with period p > 2 may appear
even restricted to cycle graphs.

In order to illustrate this, we show the following example corresponding to
an elementary cellular automaton with periodic boundary conditions. Observe
that this is the same than considering a particular threshold network defined
over a cycle graph. In the example of the figure, the local rule of each node is
the majority rule but in tie case the nodes will switch its state. This can be
represented by a negative loop in each cell.

As can be noted in the example of Table 1 in the anex, after applying a
particular periodic update scheme, attractors of period 5 may appear.
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Observe that in this case S(G) = −8 − 0 + 16 + 8 − 4 × 0 = 16 > 0 since
p = 0, n = m and each node has a negative loop.

We also observe that this construction can be done for each even number n
such that n > 6. Thus, one can exhibit networks with attractors of period n− 3
for each n where n is even and n > 6.

Lemma 3. For each n > 6, such that n is even, there exists a periodic update
scheme µ, a cycle graph Cn and a threshold network T defined over Cn such
that, T admits attractors of period n− 3.

We can generalize this idea in order to show that for N > 0 there exists a
threshold network of size N admitting attractors of super-polynomial period. In
order to show this result, we use Lemma 3 together with the previous technical
result. This is a classical technique used in [13,11,8]

Theorem 4. There exists a threshold network T defined over a cycle graph CN

such that T admits attractors of super-polynomial period in N.

4 Discussion

In this paper, we have presented a graph parameter, the stability index, which
links the dynamics of a threshold network with the structure of the underlying
signed graph. The sign of this parameter for subgraphs allow us to determine
wether the dynamics is stable or not. However, as it is mentioned at the beginning
of the article, computing this index could be very impractical (computing p is
NP-hard in general). In this sense, a particularly interesting approach, could
be the study of update schemes induced by sets of bounded size. For example,
it is simple to see that if one study the family of all update schemes with at
most 3 nodes, the stability for connected graphs can be characterized in terms
of forbidden subgraphs (notably signed triangles). In this context an exhaustive
study of different subgraphs could be a promising approach. Finally, it could be
also interesting to study the structure of particular graph structures that may be
of interest of some applications such as regulatory networks or social networks.
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A Full proofs

A.1 Synchronous update schemes

Lemma 1. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network.
Suppose that there exists a configuration x ∈ {−1, 1} such that xi ̸= x′

i for all
i ∈ V where x′ = F (x). Then, we have that ∆E(x) ≤ 2S(G′(x))

Proof. We have that ∆E ≤
n∑

i=1

δi − 1
2 (x

′ − x)W (x′ − x). First, observe that for

each i we have −δi ≤ −2, thus we have that ∆E(x) − 2n 1
2 (x

′ − x)W (x′ − x).
Then, by expanding the term 1

2 (x
′ − x)W (x′ − x), we get the following bound

for the energy difference:

∆E ≤ −2n− 2d+2d− + 4φ(x),

where φ(x) =
∑
i<j

−wijxixj . =
∑
i<j

wijxixj . Observe that in the previous

quadratic form, we have change the terms yi = (x′
i−xi) ∈ {−2, 2} to xi ∈ {−1, 1}

so a factor of 2 has appeared multiplying ϕ. Also, observe that if −G is balanced,
the configuration x∗ in which vertices of the same color are connected by positive
edges maximizes φ and in the general case, the amount of frustrated edges will
decrease the value of φ. In fact, for x (and, actually, for any configuration) we
can define the sets E±± = E±±(x) = {e = (i, j) : (xi = xj = ±1), wij = ±1}
and δ± = δ±(x) = {e = (i, j) : xi ̸= xj , wij = ±1}. Observe that if −G is
balance, we have that E+− = E−− = δ+ = ∅.

Then, we have that:

φ(x) =
∑
E++

wijxixj +
∑
E+−

wijxixj

+
∑
E−−

wijxixj +
∑
E−+

wijxixj

+
∑
δ+

wijxixj +
∑
δ−

wijxixj

Thus,

φ(x) = (|E++|+ |E−+|+ |δ−|)− (|E+−|+ |E−−|+ |δ+|).

Since m = |E++|+ |E−+|+ |δ−|+ |E+−|+ |E−−|+ |δ+|) we have that:

φ(x) = m− 2(|E+−|+ |E−−|+ |δ+|).

Finally, as the number of frustrated edges in the configuration x is exactly
|E+−|+ |E−−|+ |δ+| we have that p = ϕ(−G) ≤ |E+−|+ |E−−|+ |δ+| and thus,

max
x∈{−1,1}

φ(x) = m− 2p,
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and the we deduce

∆E ≤ −2n− 2d+ + 2d− + 4m− 8p = 2S(G)

Theorem 1. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network.
If for each subgraph G′ ⊆ G we have that S(G) < 0 then, T admits only fixed
points.

Proof. Observe that T can only admit attractors of period 2 and fixed points.
Let us assume that T admits some attractor of period two. Let us define V

′
=

{i ∈ V : xi ̸= x′
i} induces a subgraph G

′
of G. From the previous lemma, we

have that ∆E = E(x′)−E(x) ≤ 2S(G′
) < 0, and thus E(x′) < E(x). Similarly,

since x has period 2, we deduce E(x) < E(x′), which is a contradiction.

Lemma 2. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network.
T admits a two-cycle if and only if there exists a configuration x ∈ {−1, 1}V
such that, for all u ∈ V we have:

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1 + |bu|,

where B(x, u)+ = {v ∈ N(u) : xv = xu, wuv = +1}, B(x, u)− = {v ∈
N(u) : xv = xu, wuv = −1}, P (x, u)+ = {v ∈ N(u) : xv ̸= xu, wuv = +1} and
P (x, u)− = {v ∈ N(u) : xv ̸= xu, wuv = −1}.

Proof. First, let us assume that G admits a two-cycle x ∈ {−1, 1}V . Let us
define B(x, u)+ = {v ∈ N(u) : xv = xu, wuv = +}, B(x, u)− = {v ∈ N(u) : xv =
xu, wuv = −1}, P (x, u)+ = {v ∈ N(u) : xv ̸= xu, wuv = +1} and P (x, u)− =
{v ∈ N(u) : xv ̸= xu, wuv = −1}. Since x is a total cycle, for each u ∈ V we
have that two cases:

1. if xu = 1 then, F (x)u = −1,
2. if xu = −1 then, F (x)u = 1.

If we use the definition of the local rule, we deduce that the latter cases are
equivalent to the following conditions:

1. if xu = 1 then,
∑
x∈V

wuvxv − bu > 0,

2. if xu = −1 then,
∑
x∈V

wuvxv − bu < 0.

Finally, if we re-write the latter in terms of the sets P and B we deduce the
following conditions:

1. if xu = 1 then, wuu+(|B(x, u)+|−|B(x, u)−|)−(|P (x, u)+|−|P (x, u)−|) ≥ 1+
bu,

2. if xu = −1 then, wuu+(|B(x, u)+|−|B(x, u)−|)−(|P (x, u)+|−|P (x, u)−|) ≥
1− bu,
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And thus, the conditions hold.
Now suppose there exists some configuration x such that

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1 + |bu|

Then, in particular, we have that the latter condition imply that:

1. if xu = 1 then, F (x)u = −1,
2. if xu = −1 then, F (x)u = 1.

And thus, x is a two-cycle. The proposition holds.

Corollary 1. Let G = (V,E,W (G)) be a signed graph. There exists a threshold
vector b ∈ Z such that the threshold network T = (G = (V,E),W (G), {−1, 1}, b, F )
admits a total cycle if and only if there exists a configuration x ∈ {0, 1}V such
that: ∀u ∈ V ,

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1,

where B(x, u)+ = {v ∈ N(u) : xv = xu, wuv = +1}, B(x, u)− = {v ∈ N(u) :
xv = xu, wuv = −1}, P (x, u)+ = {v ∈ N(u) : xv ̸= xu, wuv = +1} and
P (x, u)− = {v ∈ N(u) : xv ̸= xu, wuv = −1}.

Proof. First, assume that there exists b such that G admits two-cycles. Let x be
a two-cycle for G. Let us define B(x, u)+ = {v ∈ N(u) : xv = xu, wuv = +},
B(x, u)− = {v ∈ N(u) : xv = xu, wuv = −}, P (x, u)+ = {v ∈ N(u) : xv ̸=
xu, wuv = +} and P (x, u)− = {v ∈ N(u) : xv ̸= xu, wuv = −}. By the previous
lemma, we have that:

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1 + |bu|

And thus,

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1

Conversely, if we have

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1

for some configuration x we can define bu = 0 for all v ∈ V and thus, by the
previous remark, we have that x is a two-cycle. The corollary holds.

Theorem 2. Let G = (V,E,W (G)) be a signed graph. If there exists a
threshold vector b ∈ Z such that the threshold network T = (G =
(V,E),W (G), {−1, 1}, b, F ) admits a total cycle, then S(G) ≥ 0. Conversely,
if S(G) ≥ 0 then there exist a threshold vector b ∈ Z such that the threshold
network T = (G = (V,E),W (G), {−1, 1}, b, F ) admits admits an attractor of
period 2.
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Proof. First, observe that for each configuration x ∈ {−1, 1}V we have:∑
u∈V

(|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) =

2(|E++|+ |E−+|+ |δ−|)− (|E+−|+ |E−−|+ |δ+|) = 2φ(x)

And thus, 2φ(x) =
∑
u∈V

(|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|).

Now, by the previous corollary, we have that: for all u ∈ V,

wuu + (|B(x, u)+| − |B(x, u)−|)− (|P (x, u)+| − |P (x, u)−|) ≥ 1,

Then, we deduce that

d+ − d− + 2φ(x) ≥ n,

Thus, we get

S(G) ≥ −n+ d+ − d− + 2φ(x) ≥ 0.

Conversely, let us assume S(G) ≥ 0. Then, there exists some configuration
x∗ ∈ {−1, 1} such that φ(x∗) ≥ ϕ(x). Again, observe that φ(x∗) = m−2p. Thus,
we have that S(G) = −n+d+−d−+2ϕ(x∗) ≥ 0. By rearranging the latter term
we get that:

∑
u∈V

(
wuu + (|B(x∗, u)+| − |B(x∗, u)−|)− (|P (x∗, u)+| − |P (x∗, u)−| − 1)

)
≥ 0.

Thus, there must exist some subset V ′ ⊆ V such that, for every u ∈ V ′, we
have that

wuu + |B(x∗, u)+| − |B(x∗, u)−|)− (|P (x∗, u)+| − |P (x∗, u)−|)− 1 > 0.

Then, thanks to Corollary 1, there exists some threshold vector b′ ∈ Z|V ′|

such that b′ induces a total cycle y on the subgraph V ′. We are going to extend
b′ to a threshold vector on G named b such that, there exists some x which is
an attractor of period 2 for T . The idea is that we are going to fix in state
−1 any node outside of V ′ by defining a large enough value for its threshold
(for example, a value greater than the degree of the node) and we are going
to slightly change the value of b′i for any node in V ′ so it can change its state
without being affected by the state of its neighbors in G \ G′. More precisely,
let us define bi = b′i − (|NG(i)| − |NG′(i)|), i.e. for each node in V ′ we consider
the same threshold b′i but we substract the amount of neighbors that are not in
V ′. In addition, we define bi = 2|NG(i)| whenever i ∈ V \ V ′. We are going to
define xi = yi whenever i ∈ V ′ and xi = −1 whenever i ̸∈ V ′. Observe that x is
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an attractor of period 2 for T . In fact, for each node u ∈ V ′ we have that:∑
u∈V

wuvxv − bu =∑
u∈V ′

wuvxv − (|N(u)|G − |N(u)|′G)− b′u + (|N(u)|G − |N(u)|′G) =∑
u∈V ′

wuvyv − b′u.

And for every node u ∈ V \ V ′ we have that∑
u∈V

wuvxv − bu =
∑
u∈V

wuvxv − 2|N(u)G| < 0.

The corollary holds.

A.2 Periodic update schemes

Theorem 3. Let T = (G = (V,E),W (G), {−1, 1}, b, F ) be a threshold network
and let us consider a periodic update scheme µ = (I1, . . . , Ip). If for any 1 ≤ ℓ ≤ p
we have that for all subgraph G′ ⊆ G(Iℓ), S(G′) < 0 then, T admits only fixed
points.

Proof. The result holds as a consequence of the fact that for each k ∈ {0, . . . , p}
the nodes that may change its state are the nodes in Ik and the nodes in any
other Is with s ̸= k are fixed. Thus, since any subgraph G′ ⊆ G(Ik) satisfies
S(G′) < 0 then, the energy is decreasing.

Lemma 3. For each n > 6, such that n is even, there exists a periodic update
scheme µ, a cycle graph Cn and a threshold network T defined over Cn such
that, T admits attractors of period n− 3.

Proof. By a straightforward induction argument, the example in Table 1 (which
corresponds to the case n = 8) can be extended to any even n > 6.

We present now a technical lemma (see [15] for more details) that we are going
to use to show the main result of this section.

Lemma 4 ([15]). Let m ≥ 2 and P(m) = {p ≤ m | p prime}. If we define
π(m) = |P(m)| and θ(m) =

∑
p∈P(m)

log(p) then we have π(m) ∼ m
log(m) and

θ(m) ∼ m.

Theorem 4. There exists a threshold network T defined over a cycle graph CN

such that T admits attractors of super-polynomial period in N.
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Proof. Let as fix m > 0. Now, as a consequence of the previous lemma, we
have that for each pi ∈ P(m) there exists a threshold network Ti of size 2ki
defined over a cycle graph such that Ti has attractors of period pi. In fact, it
suffices to define ki = pi+3

2 ∈ N. Now, we are going to construct a cycle of
size CN by concatenating each cycle C2ki

. In addition, we are going to define
a threshold network T over Cs in which each node will have the same local
rule than in T⟩, i.e., each node in T is equipped with the unstable majority
rule. Observe that if we define a configuration x as the concatenation of each
of the attractors xi defined over Ti and we consider µ as the update scheme
obtained by the union of the sets in each update scheme µi, we have that the
dynamics of each cycle es completely independent of the rest. Thus, we have a
threshold network T on CN admitting an attractor of period T ≥ exp(θ(m)).

Also observe that N =
π(m)∑
i=1

pi + 3π(m). Using the latter technical lemma, we

deduce that m = π(m) logm and that N = π(m)2 logm. Thus, we have that

T ≥ 2Ω(
√
N logN). The lemma holds.

1 2 3 4 5 6 7 8 Updated nodes

-1 1 -1 -1 -1 -1 1 -1 {3, 5}
-1 1 1 -1 -1 -1 1 -1 {1, 2, 7, 8}
1 -1 1 -1 -1 -1 -1 1 {4, 6}
1 -1 1 1 -1 -1 -1 1 {1, 2, 7, 8}
-1 1 1 1 -1 -1 1 -1 {3, 5}
-1 1 1 1 1 -1 1 -1 {1, 2, 7, 8}
1 -1 1 1 1 -1 -1 1 {4, 6}
1 -1 1 1 1 1 -1 1 {1, 2, 7, 8}
-1 1 1 1 1 1 1 -1 {3, 5}
-1 1 1 1 1 1 1 -1 {1, 2, 7, 8}
1 -1 1 1 1 1 -1 1 {4, 6}
1 -1 1 1 1 -1 -1 1 {1, 2, 7, 8}
-1 1 1 1 1 -1 1 -1 {3, 5}
-1 1 1 1 -1 -1 1 -1 {1, 2, 7, 8}
1 -1 1 1 -1 -1 -1 1 {4, 6}
1 -1 1 -1 -1 -1 -1 1 {1, 2, 7, 8}
-1 1 1 -1 -1 -1 1 -1 {3, 5}
-1 1 -1 -1 -1 -1 1 -1 {1, 2, 7, 8}
1 -1 -1 -1 -1 -1 -1 1 {4, 6}
1 -1 -1 -1 -1 -1 -1 1 {1, 2, 7, 8}

Table 1. Dynamics of an attractor of period 5 obtained by applying the update scheme
µ = ({3, 5}, {1, 2, 7, 8}, {4, 6}, {1, 2, 7, 8}.
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1 2

43

µ = {{1, 2, 3, 4}}

A B

t = 0 −→ (−1, 1, 1,−1)
t = 1 −→ (1, 1,−1,−1)

t = 2 −→ (1,−1,−1,−1)

t = 3 −→ (−1,−1,−1,−1)

µ = {{1, 3}, {2, 4}}

C

t = 0 −→ (−1, 1, 1,−1)
t = 1 −→ (1, 1, 1,−1)

t = 2 −→ (1,−1, 1,−1)

t = 3 −→ (1,−1,−1,−1)
t = 4 −→ (1,−1,−1,−1)

µ = {{1}, {2}, {3}, {4}}

t = 5 −→ (−1,−1,−1,−1)
t = 4 −→ (−1, 1, 1,−1)

t = 3 −→ (1,−1,−1, 1)

t = 2 −→ (−1, 1, 1,−1)

t = 1 −→ (1,−1,−1, 1)

t = 0 −→ (−1, 1, 1,−1)

Fig. 6. Threshold network with θv = 0 for each v ∈ V under different update schemes.
A) Parallel update scheme, B) Sequential update scheme and C) Block sequential
update scheme.


