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Abstract

This paper addresses the question of the impact of the boundary
on the dynamical behaviour of finite Boolean automata networks on
Z2. The evolution over discrete time of such networks is governed by a
specific stochastic threshold non-linear transition rule derived from the
classical rule of formal neural networks. More precisely, the networks
considered in this paper are finite but the study is done for arbitrarily
large sizes. Moreover, the boundary impact is viewed as a classical
definition of a phase transition in probability theory, characterising in
our context the fact that a network admits distinct asymptotic be-
haviours when different boundary instances are assumed. The main
contribution of this paper is the highlight of a formula for a necessary
condition for boundary sensitivity, whose sufficiency and necessity are
entirely proven with natural constraints on interaction potentials.

Keywords: Boolean automata networks, non-linearity, stochastic pro-
cesses, phase transitions, boundary sensitivity.

1 Introduction

Understanding the influence of the frontiers (or boundaries, or environment)
of systems composed of interacting entities is a problem born in the 1920’s.
In physics, after the seminal parper of Ising in 1925 dealing with phase tran-
sitions in ferromagnetic systems [26] and the first theoretical proof of their
existence by Onsager in 1944 [34], the most important works on this subject
are certainly those that focused at the end of the 1960’s on lattice gas mod-
els. Amongst these works, those of Dobrushin [17, 18] and Ruelle [38, 39] are
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obviously the most known in the sense that they presented the first results
proving that the Ising model embedded into a square lattice admits a phase
transition depending on the nature of its boundary conditions. Even if these
works were dived in physics, they opened many questions in other disciplines.
Indeed, issues underlying the role of boundaries on systems is all the more
pertinent in frameworks at the frontier of theoretical computer science and
biology. For instance, boundary conditions may allow to represent the post-
transcriptional actions of non-coding rnas in the genetic context [27], exter-
nal electric fields in the neural context [3], and also hormone flows control
in both of these [11].

Since decades, researches in discrete mathematics and fundamental com-
puter science have put the emphasis on the modelling abilities of automata
networks concerning interaction networks. In particular, since their intro-
duction in the works of McCulloch and Pitts [31] and Kauffman [29, 28],
Boolean automata networks (bans for short) have been at the centre of
numerous studies in the field of biological networks modelling, like neural
networks [20, 24, 25, 21, 9, 8], genetic regulation networks [30, 43, 44, 41,
32, 4, 36] and more recently social networks [16, 12]. This can be easily ex-
plained by their very high level of abstraction that makes them ideal objects
to capture formally the essence of interactions and to focus on qualitative
aspects of their dynamics (e.g., the information transmissions).

In this paper, our attention has focused on a fundamental analysis of the
asymptotic dynamical behaviours of a particular class of bans on Z2 sub-
jected to the influence of distinct boundary instances. Previous works on
linear stochastic threshold bans (lsbans for short) showed that the sensitiv-
ity of such bans against their boundary is quite similar to that of the Ising
model [13, 14]. In the same lines and on the basis of preliminary results [15],
the main contribution of this paper is an explicit formula of a necessary con-
dition according to which non-linear stochastic threshold bans (nsbans for
short) are effectively subjected to the impact of changes of their boundary in-
stances. Our interest in non-linearity comes from the fact that non-linearity
is an original way to model entity coalitions. For instance, about biological
regulation networks, it gives a way to represent protein complexes [32, 2, 7]
inside the local transition functions, which prevents from transforming the
structural features of networks by adding vertices and edges to their under-
lying interaction graphs. Thus, non-linearity constitutes a means to explicit
cooperative or competitive coalitions without increasing problem sizes (i.e.,
the sizes of their inputs).

First, in Section 2, we give the main definitions and notations used through-
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out the paper, by basing ourselves on the classical model of lsbans. Then,
Section 3 presents the complete description of non-linear stochastic bans
considered in this paper. After that, in Section 4, we develop the interme-
diary results that lead to the explicit formula characterising the condition
that is necessary for nsbans to be structurally sensitive to their boundary in-
stances. Then, a discussion highlighting perspectives of this work concludes
the paper.

2 Definitions and notations

2.1 Classical stochastic threshold BANs

Before we define formally nsbans, for the sake of clarity and in order not
to burden the reading, let us present every useful concept in the context of
lsbans.

The geometric structure of a lsban N of size n on Z2 is given by a connected
undirected graph G = (V,E), where V = {0, . . . , n − 1} ⊆ Z2 is the set of
automata, and E ⊆ {{i, j} | i, j ∈ V } is the set of edges that connect
automata of N so that ∀i, j ∈ V, {i, j} ∈ E ⇐⇒ dL1(i, j) ≤ 1, where dL1 is
the L1 distance. Informally, each automaton of V is connected to itself and
its nearest automata, which means that N is defined according to the von
Neumann neighbourhood from the cellular automata standpoint [45]. The
complete structure of N is obtained by associating with every edge {i, j} ∈ E
a label w{i,j} ∈ R6=0 (the non-zero real numbers) that is called the interaction
weight between i and j and by relating to G a vector θ of dimension n
taking values in Rn. In the sequel, we make particular use of the notion of
neighbourhood and distinguish the neighbourhood Ni of automaton i defined
as Ni = {j | {i, j} ∈ E} from the strict neighbourhood N ∗i of automaton i
defined as N ∗i = {j 6= i | {i, j} ∈ E}. Furthermore, each automaton evolves
according to a common transition function. This is ensured by the fact that,
in the sequel, the complete structure of every N considered satisfies isotropy,
translation invariance, and ∀i, j ∈ V, θi = θj . Notice that (i) N is isotropic
if and only if ∀i, j, j′ ∈ V, j, j′ ∈ N ∗i , w{i,j} = w{i,j′}, and that (ii) N is
translation invariant if and only if ∀i, i′ ∈ V, s = i′ − i, ∀j ∈ Ni, w{i,j} =
w{i′,j+s}.

Since we focus on bans, the state xi of each automaton i of N can take
values in {0, 1}. Because of the discrete nature of time, abusing language,
the state of automaton i at time step t ∈ N is denoted by xi(t). From this,
we derive that the configuration space of N is {0, 1}n and denote by vector

3



x(t) of dimension n (where x(t) = (xi(t))i∈V ∈ {0, 1}n) the configuration of
N obtained from the initial configuration x = x(0) after t time steps. Now,
let us introduce the classical definition of the transition function of a lsban
that is a generalisation of the Boltzmann machine [1, 23] to the framework
of threshold bans. It defines P (xi(t+ 1) = 1 | x(t)) that is the conditional
probability for automaton i to be in state 1 at time step t+ 1, knowing the
states of its neighbours at time t, such that:

∀i ∈ V, ∀t ∈ N, P (xi(t+ 1) = 1 | x(t)) =
e

(
∑
j∈Ni

w{i,j}·xj(t)−θi)/T

1 + e
(
∑
j∈Ni

w{i,j}·xj(t)−θi)/T
, (1)

where θi is the threshold of automaton i and T ∈ R+ is a temperature pa-
rameter and allows to make the network studied “more or less probabilistic”.
Indeed, when T tends to 0, the transition function above is equivalent to the
classical deterministic one [31, 19], except for the value 0 of the exponent of
the exponential, for which the choice is not 0, but 1 or 0 with probability 1

2 ;
when it tends to +∞, the probability for the state of any automaton to be
equal to 1 is 1

2 .

2.2 Centre, boundary and simplifications

Classically, in graph theory [22, 6], the notions of boundary and centre are
defined for directed graphs as follows, considering a directed graph G =
(V,E). The boundary of G is the set of its sources, a source of a directed
graph G = (V,E) being a vertex i ∈ V whose number of inward edges equals
0. Now, let G = (V,E) be a connected directed graph, let i, j ∈ V and let
us define a vertex i ∈ V as a sink if the number of its outward edges equals
0. The graph distance d(i, j) from i to j equals the length of the shortest
path from i to j if this path exists and +∞ otherwise. The eccentricity ε(i)
of vertex i is defined as:

ε(i) =

{
Maxj ∈V \{i}(d(i, j) < +∞) if i is not a sink,

+∞ otherwise.

From this, the centre of G is the set of its vertices of minimal eccentricity.
Let us now explain how to adapt these definitions in our context, considering
an arbitrary lsban N with its associated interaction graph G = (V,E).

First of all, remark that the definition of the centre adapts easily to N .
Indeed, it suffices to use punctually the matching directed version N. of N
and its associated interaction graph G. = (V,E.) whose edge set E. ⊆ V ×V
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Figure 1: Structure of a system S in Z2 built from a ban N whose automata
are represented in white and light grey (central cells) to which have been
added boundary automata (in dark grey).

is simply obtained by decoupling every edge of E into two edges so that:
{i, j} ∈ E =⇒ (i, j), (j, i) ∈ E.. Now, since G is undirected and has
consequently no source vertices, N has no boundary in the sense of the
definition above. So, to define the boundary of N , here also, we use N. and
G.. Let V c = Z2 \ V be the set of vertices that complements V to recover
Z2. The boundary V ext of N is then defined by V ext = {i ∈ V c | ∃j ∈
V, dL1(i, j) = 1}. The states of elements of V ext remain fixed. From this,
we derive that the interaction graph G = (V, E) of the system S that recovers
N and V ext is such that V = V ∪ V ext and E = E ∪ {(i, j) | i ∈ V ext, j ∈
V, dL1(i, j) = 1}. Furthermore, we enforce S to maintain the isotropy and
translation invariance properties of N . That means that ∀i, j, k ∈ V, i, j ∈
V, k ∈ V ext, dL1(i, j) = dL1(i, k) = 1, w(i,k) = w{i,j}, where w(i,k) is the
interaction weight that k has on i. Thus, by extending the definitions of
neighbourhood and strict neighbourhood to E rather than E only, such an
automaton k of S is a source of G and is such that k ∈ Ni whereas i /∈ Nk.
Finally, in informal terms, S is a ban that is built from N by adding to
it peripheral automata that act on N and whose states remain fixed. An
illustration of such a system S is pictured in Figure 1.

For the sake of simplicity in the following analysis and without loss of gener-
ality, for any automaton i of N , its threshold θi is made null (∀i ∈ V, θi = 0)
and its role is played by the self-interaction weight w{i,i}. Thus, from now
on, w{i,i} always participates to the computation of the transition function
of automaton i, whatever the state of the latter is. From this, we derive a
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new version of Equation 1 accounting for the notion of boundary:

∀i ∈ V, P (xi(t+ 1) = 1 | x(t)) =
e

(w{i,i}+
∑
j∈N∗

i
w{i,j}·xj(t))/T

1 + e
(w{i,i}+

∑
j∈N∗

i
w{i,j}·xj(t))/T

. (2)

Before we introduce some notions dealing with probability theory, let us
add that this study is restricted to attractive stochastic bans, i.e. bans
that satisfy the following property: ∀i, j ∈ V, j ∈ N ∗i , w{i,j} > 0 so that for
every i ∈ V , the probability for i to be in state 1 at time t+ 1 knowing the
global configuration of the ban at time t increases proportionately to the
number of its neighbours being in state 1.

2.3 Markov chains, invariant measures and phase transitions

From Equation 2, obviously, the dynamical behaviour of an arbitrary lsban
N of size n (resp. of its associated system S) is a finite stationary Markov
chain whose random variables are the possible configurations of N (resp. of
S) such that:

∀t ∈ N∗, P (x(t+ 1) | x(t)) = P (x(t) | x(t− 1)).

Let C be the stationary Markov chain representing the dynamical behaviour
of N (remember that the boundary is not a part of N , since V ext * V by
definition). The Markovian matrix p underlying C is the matrix of order 2n

such that:

∀i, j ∈ {0, 1}n, pi,j = P (x(t+ 1) = j | x(t) = i).

Let us now define the notion of invariant measure (or stationary probability
distribution). An invariant measure of C is a vector µ whose entries are
non-negative and sum to 1 that satisfies:

µj =
∑

i∈{0,1}n
µi · pi,j .

In other words, µ is a normalised left eigenvector of the Markovian matrix
associated with the eigenvalue 1. A notable fact is that such a µ defines
an attractor of C (and consequently of N). Furthermore, by Equation 2, it
is obvious that Markovian matrices of lsbans contain only positive coeffi-
cients. As a consequence, the Perron-Frobenius theorem applies and ensures
the uniqueness of the invariant measure of N . Now, consider the system S.
More precisely, let us consider an instance S◦ of S such that the state of
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each automaton of V ext has been fixed to a value in {0, 1} and denote by
µ◦ the invariant measure of N when covered by S◦. Consider also another
distinct instance S• of S and µ•. Although the invariant measure of N is
unique, µ◦ = µ• does not hold a priori. As Dobrushin did in [17, 18], we say
that a ban N is boundary sensitive if and only if µ◦ 6= µ•. It admits a phase
transition, if this difference still holds for the limits of these invariance mea-
sures when the number of vertices n of N tends to infinity. The existence
of a phase transition that corresponds to the persistence of the boundary
sensitivity when the size of N tends to infinity can be called asymptotic
boundary sensitivity.

In what follows, we propose a method to prove a structural parametric
condition, based on the asymptote of bans, that is necessary for boundary
sensitiveness. Such a condition defines then a domain of phase transitions.
Notice that the word “asymptote” has to be considered here both on the sizes
and the dynamical behaviours.

2.4 Past results on LSBANs

In [13, 14, 40], we obtained several results on lsbans in this framework.
The major ones, of analytical nature, are described in the three following
theorems (the first one deals with the notions of updating modes; for more
details, see [40, 37]).

Theorem 1. Let N be a lsban and let W ⊆ V a subset of automata be
sparse if and only if ∀i, j ∈ E, i 6= j, wi,j = 0. The emergence of a phase
transition from its asymptotic behaviour whatever its size occurs under the
same conditions when N evolves according to the parallel updating mode, any
of the sequential updating modes and every block-sequential updating mode
equivalent to a block-parallel updating mode built recursively from successive
subdivisions of N in sparse blocks.

Theorem 2. One-dimensional lsbans do not admit any phase transition
in view of their boundaries.

Theorem 3. Let N be an arbitrary attractive lsban on Z2. If N admits a
phase transition in view of its boundary, then N is defined such that u0,i +
2u1,i,j = 0, where, ∀i, j ∈ V, u0,i =

w{i,i}
T and u1,i,j =

w{i,j}
T .

Theorem 3 gives a necessary condition for the emergence of a phase transi-
tion. In order to obtain the characterisation (without proving it however) of
the domain of phase transition, we performed an empirical study based on
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Monte-Carlo simulations. The conclusions emphasised that the domain is
located on a semi-straightline of equation u0,i+ 2u1,i,j = 0. One of the most
interesting points here is that this result is analogous to that found by Ruelle
on the ferromagnetic Ising model [39]. Other studies were also led on repul-
sive lsbans (i.e., with negative wi,j ’s). They emphasised that the domain
of phase transitions is then located in a large neighbourhood of the semi-
straightline u0,i+2u1,i,j = 0, as it has been shown for the anti-ferromagnetic
Ising model by Dobrushin [18].

3 Non-linear stochastic BANs

Now that every important notion for the study has been defined and ex-
plained, we give precisions about nsbans. First of all, notice that all the
previous definitions extend simply and apply naturally to nsbans.

3.1 Interaction potentials

Consider an arbitrary two-dimensional lsban and Equation 2. For any
automaton i ∈ V , we give an important role to two particular parame-
ters, namely the interaction potentials u0,i and u1,i,j (cf. definitions above)
which provide respectively images of the self-interaction weights and of the
strict neighbours interaction weights with respect to the temperature pa-
rameter T . The nsbans we are interested in are such that the evolution of
their automata over time does not only account for these two parameters
anymore but for three parameters, u0,i, u1,i,j and η. Function η (see be-
low) provides the images of non-linear collective interaction potentials that
neighbour automata can activate when several are in state 1 simultaneously.
These collective interaction potentials can thus take different forms accord-
ing to the configuration in the neighbourhood of automaton i. Notice that
nonlinearity has already been addressed on the Ising model considering only
triplet potentials [47, 46, 35]. Now, let us define and list below the possible
interaction potentials which are taken into account. To do so, let us consider
an automaton i of a nsban N with its interaction graph G = (V,E) and its
underlying covering system S:

− the unique singleton potential of i is defined as u0,i = w{i,i}/T ;

− the four possible couple potentials of i are defined as ∀j ∈ N ∗i , u1,i,j =
w{i,j}/T ;
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− the ten triplet potentials of i are defined as ∀j, ` ∈ Ni, j 6= `, u2,i,〈j,`〉 =
w{i,〈j,`〉}/T (at least two distinct neighbours of i are in state 1);

− the ten quadruplet potentials of i are defined as ∀j, `,m ∈ Ni, j 6= ` 6=
m, u3,i,〈j,`,m〉 = w{i,〈j,`,m〉}/T (at least three distinct neighbours of i
are in state 1);

− the five quintuplet potentials of i are defined as ∀j, `,m, p ∈ Ni, j 6= ` 6=
m 6= p, u4,i,〈j,`,m,p〉 = w{i,〈j,`,m,p〉}/T (at least four distinct neighbours
of i are in state 1);

− the unique sextuplet potential is defined as ∀i, j, `,m, p ∈ Ni, i 6= j 6=
` 6= m 6= p, u5,i,〈i,j,`,m,p〉 = w{i,〈i,j,`,m,p〉}/T (every neighbour of i is in
state 1).

Since bans considered are isotropic and translation invariant, let us right
now simplify notations and denote the singleton up to sextuplet interaction
potentials respectively by u0, u1, u2, u3, u4 and u5. For the sake of clarity
and in order to give some insights about these interaction potentials, notice
that, for instance, a triplet potential u2 is the interaction weight normalised
by T that automaton i receives from the set of neighbour automata j and
`. In other words, it represents the interaction potential that the group
composed of j and ` together (viewed as a new kind of interacting entity) has
on i. Remark also that interaction potentials are “cumulative” in the sense
that an automaton that is subjected to a triplet potential is also subjected
to one or two couple potentials (depending on i belongs or not to the group
acting on itself) and its singleton potential (which always takes part in the
computation of its new state). Figure 2 illustrates these different interaction
potentials and the neighbourhood configurations that make them possible.

3.2 NSBANs definition

From the definition of interaction potentials above, we derive directly that
of nsbans given in Definition 1 below.

Definition 1. Let G = (V,E) a digraph whose vertices are automata in Z2.
A two-dimensional nsban N of size n and order k, 2 ≤ k ≤ 6, associated
with G is a ban whose local transition functions are stochastic and such
that:

∀i ∈ V, P (xi(t+ 1) = 1 | x(t)) = h ◦ exp ◦ pi(x(t)), (3)

where h(y) = y
1+y , and pi(x(t)) = u0+

∑
j∈N ∗i

u1 ·xj(t)+ηki (x(t)) is the global

interaction potential received by i at time t, and where ηki (x(t)) is called the
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singleton u0

couples u1

triplets u2

quadruplets u3

quintuplets u4

sextuplet u5

Figure 2: Relations between all the different possible neighbourhood con-
figurations possibles of an arbitrary automaton i ∈ V of a nsban on Z2

and the interaction potentials they induce. The automata in black (resp.
white) represent active automata (resp. inactive automata). In the two first
lines related to singleton and couple potentials, automaton i is half-black
half-white to make explicit the fact that the singleton potential is taken into
account at each time step of the evolution and that the taking into account
of couple potentials in the computation of the new state of i at time t + 1
does not depend on its state at time t but only depends on the states of
its strict neighbours at time t (cf. paragraph before Equation 2 at page 5).
Furthermore, in the four last lines, we distinguish configurations by putting
on the left (resp. on the right) those in which the central automaton is
inactive (resp. active).

non-linear term of N and accounts for collective interaction potentials such
that:

ηki (x(t)) =



0 if k = 2,∑
j1,j2∈Ni
j1 6=j2

u2 · xj1(t) · xj2(t) if k = 3,∑
j1,...,jk−1∈Ni
j1 6=... 6=jk−1

u2 · xj1(t) · xj2(t) + . . .+

uk−1 · xj1(t) · . . . · xjk−1
(t) otherwise.

It follows that particular nsbans of order k = 2 are actually lsbans whereas
those of order k ≥ 3 are effectively non-linear because of their non-null non-
linear term and are consequently generalised Boltzmann machines extended
to account several kinds of non-linear interaction potentials. From now on,
we only focus on nsbans of order 3 ≤ k ≤ 6.
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3.3 Transfer matrix

Let N? be a nsban in Z2 of size n and order 3 ≤ k ≤ 6. We denote its
underlying interaction graph by G? = (V ?, E?) and its associated Markov
chain (whose related Markovian matrix is p?) by C?. In order to ease the
analysis of Section 4, let us give a new notation for configurations based
on cylinders of set theory. In the sequel, a configuration x ∈ {0, 1}n is
denoted by the cylinder [A,B] ∈ {0, 1}n where A = {i ∈ V ? | xi = 1} and
B = {i ∈ V ? | xi = 0}.

Now, consider the invariant measure µ of C?. By definition, µ satisfies
the following projective and conditional relations. Projective equations are
defined as:

∀[A,B] ∈ {0, 1}n, ∀i ∈ A,
µ([A,B]) + µ([A \ {i}, B ∪ {i}]) = µ([A \ {i}, B]),

where µ([A,B]) stands for the stationary probability to observe configura-
tion [A,B]. Conditional equations are defined as:

∀i ∈ V ?, µ([{i}, ∅]) =
∑
A,B

Φi(A,B) · µ([A,B]),

where µ([{i}, ∅]) is the stationary probability for automaton i to be in state
1 and Φi(A,B) is the conditional probability given in Equation 3 for au-
tomaton i to be in state 1 at time step t + 1 knowing configuration [A,B]
at time t such that:

µ(xi(t+ 1) = 1 | [A,B]) = Φi(A,B) =

h ◦ exp ◦ pi([A,B]) =
e
u0+

∑
j∈N∗

i
∩A u1·xj(t)+ηki ([A,B])

1 + e
u0+

∑
j∈N∗

i
∩A u1·xj(t)+ηki ([A,B])

.

From now on, we abuse the notation of η by considering that ηki ([A,B]) =
ηki (A) for not weighting down the writing of equations. Furthermore, by
hypothesis of the translation invariance property, N? owns a spatial Marko-
vian character that allows to study its dynamical behaviour by analysing
only that of the sub-nsban N of size 5 whose interaction graph G = (V,E)
is the sub-graph of G? restricted to the vertices in the neighbourhood No of
one arbitrary central automaton o of N?1. Consider that the four automata

1Notice that the choice of a central node is not mandatory in this theoretical framework
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of the strict neighbourhood of o are distinguished lexicographically so that
N ∗o = {1, 2, 3, 4}. Notice that, because the following analysis needs it, the
concept of cylinder [A,B] is restricted to automata of N ∗o , i.e., A,B ⊆ N ∗o ,
so that the non-linear term becomes:

ηki (A) =



∑
j1,j2∈Ni∩(A∪{o})

j1 6=j2
u2 · xj1(t) · xj2(t) if k = 3,∑

j1,...,jk−1∈Ni∩(A∪{o})
j1 6=... 6=jk−1

u2 · xj1(t) · xj2(t) + . . .+

uk−1 · xj1(t) · . . . · xjk−1
(t) otherwise.

Let us now introduce the concept of positive transfer matrix, whose definite
character and phase transition existence are related.

Definition 2. Let N? be a nsban of size n and order k on Z2. Let N
be the restriction of N? whose interaction graph is G = (V,E) such that
No = V = {o, 1, 2, 3, 4}. The transfer matrix M associated with N is the
matrix of order 2|N

∗
o | whose coefficients are those of the following linear

system of projective and conditional equations in which the unknowns are

but may have importance in the context of simulations because of the impossibility to
simulate the dynamical behaviours of infinite nsbans. In this case, focusing on a central
automaton of N∞ is relevant in the sense that it is the farthest from the boundary on
average and is as a consequence a priori amongst the automata that are the less influenced
by the boundary instances.
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the µ’s:

µ([{1, 2, 3, 4}, ∅]) + µ([{2, 3, 4}, {1}]) = µ([{2, 3, 4}, ∅])
µ([{1, 2, 3, 4}, ∅]) + µ([{1, 3, 4}, {2}]) = µ([{1, 3, 4}, ∅])
µ([{1, 2, 3, 4}, ∅]) + µ([{1, 2, 4}, {3}]) = µ([{1, 2, 4}, ∅])
µ([{1, 2, 3, 4}, ∅]) + µ([{1, 2, 3}, {4}]) = µ([{1, 2, 3}, ∅])
µ([{2, 3, 4}, {1}]) + µ([{3, 4}, {1, 2}]) = µ([{3, 4}, {1}])
µ([{2, 3, 4}, {1}]) + µ([{2, 4}, {1, 3}]) = µ([{2, 4}, {1}])
µ([{2, 3, 4}, {1}]) + µ([{2, 3}, {1, 4}]) = µ([{2, 3}, {1}])
µ([{1, 3, 4}, {2}]) + µ([{1, 4}, {2, 3}]) = µ([{1, 4}, {2}])
µ([{1, 3, 4}, {2}]) + µ([{1, 3}, {2, 4}]) = µ([{1, 3}, {2}])
µ([{1, 2, 4}, {3}]) + µ([{1, 2}, {3, 4}]) = µ([{1, 2}, {3}])
µ([{3, 4}, {1, 2}]) + µ([{4}, {1, 2, 3}]) = µ([{4}, {1, 2}])
µ([{3, 4}, {1, 2}]) + µ([{3}, {1, 2, 4}]) = µ([{3}, {1, 2}])
µ([{2, 4}, {1, 3}]) + µ([{2}, {1, 3, 4}]) = µ([{2}, {1, 3}])
µ([{1, 4}, {2, 3}]) + µ([{1}, {2, 3, 4}]) = µ([{1}, {2, 3}])
µ([{4}, {1, 2, 3}]) + µ([∅, {1, 2, 3, 4}]) = µ([∅, {1, 2, 3}])∑

[A,B]∈{0,1}|N∗o | Φo(A,B) · µ([A,B]) = µ([{o}, ∅])

. (4)

From Definition 2 and Equation 4, we derive:

M =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Φ4 Φ3 Φ2 Φ1 Φ0



,

where: Φ4 = eu0+4u1+η
k
o (No)

1+eu0+4u1+η
k
o (No)

, Φ3 = eu0+3u1+η
k
o (A)

1+eu0+3u1+η
k
o (A)

(with |A| = 3), Φ2 =

eu0+2u1+η
k
o (A)

1+eu0+2u1+η
k
o (A)

(with |A| = 2), Φ1 = eu0+u1+η
k
o (A)

1+eu0+u1+η
k
o (A)

(with |A| = 1) and

Φ0 = eu0
1+eu0 .
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4 Boundary sensitivity of attractive NSBANs – The-
ory

As evoked above, N? is boundary sensitive if and only if two different in-
stances of its covering system S admit distinct invariant measures. For the
latter statement to hold, structural parameters that characterise the sys-
tem instances have to be intimately related [18, 39]. From a more local
point of view, for N? to be boundary sensitive, this invariant measure non-
uniqueness needs to be retrieved at the level of the stationary probability
of central automaton o. Now, the transfer matrix M above characterises
the asymptotic dynamical behaviour of o. From the previous lines, it is
easy to derive that a linear dependency between projective and conditional
equations of the linear system of Equation 4 is necessary for o to behave
asymptotically differently when subjected to two distinct instances of the
system S covering N?. So, we are going to prove a necessary and sufficient
condition on nsbans that validates the nullity of the determinant of their
transfer matrices.

In [10], Demongeot analysed some properties of Markov random fields and
obtained a general formula characterising the nullity of the determinants of
transfer matrices like those described above. That resulted in the following
lemma of which we will make a specific use.

Lemma 1. The nullity of the determinant of the transfer matrix M is char-
acterised by:

DetM = 0 ⇐⇒
∑
K⊆N ∗o

(−1)|N
∗
o \K| · Φo(K,N ∗o \K) = 0.

Notice that Lemma 1 is dived into the general framework of random fields
and gives no precisions about structural conditions of phase transitions in
our context. Nevertheless, on its basis, we derive another characterisation
of the nullity of DetM that makes sense for nsbans.

Definition 3. Let N be an attractive nsban of order k in Z2 and let i be
an arbitrary automaton of N . The non-linear term of i, denoted by ηki , is
symmetric if and only if:

∀K ⊆ N ∗i , ηki (N ∗i ) = ηki (K) + ηki (N ∗i \K).

Notice that the choice of this symmetry condition directly comes from the
linear dependency of projective and conditional equations of Equation 4

14



induced by the nullity of DetM . More precisely, this linear dependency
means that there exists a specific relation between the interaction potentials
u’s that define N . As shown in [13, 40] in the context of lsbans, this
peculiar relation is a counter-balancing relation between negative singleton
potentials and positive couple potentials. From this knowledge, it seemed
natural that the same kind of counter-balancing relation occurs in nsbans.
Now, remark that the symmetry of the non-linear term constitutes a way to
build non-linear interaction potentials of different signs in order to favour
the counter-balancing effect.

Let us prove that a particular case of the non-linear symmetry is necessary
and sufficient for DetM = 0 to hold. To do so, let us begin by studying
properties of the general symmetric non-linear term. In the sequel, let us
consider that, for any K ⊆ N ∗o , the non-linear term ηko (K) is symmetric and
equals −2u0 −

∑
j∈N ∗o u1 − ηko (N ∗o \K). First, Lemma 2 gives a characteri-

sation of the symmetric non-linear term.

Lemma 2. Let N be an attractive nsban of order k in Z2. Given an
arbitrary K ⊆ N ∗o and the non-linear term on K defined by ηko (K) = −2u0−∑

j∈N ∗o u1−ηko (N ∗o \K), the symmetry property of the non-linear term of N
verifies:

∀K ⊆ N ∗o , ηko (K) = ηko (N ∗o )− ηko (N ∗o \K)

⇐⇒ u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0. (5)

Proof. Denoting ηko (N ∗o )−ηko (N ∗o \K) by ηsym and developing the left mem-
ber of Equation 5 by definition of the non-linear term, trivially, we have:

∀K ⊆ N ∗o , ηko (K) = ηsym ⇐⇒ − 2u0 −
∑
j∈N ∗o

u1 − ηko (N ∗o \K) = ηsym

⇐⇒ − 2u0 −
∑
j∈N ∗o

u1 = ηko (N ∗o )

⇐⇒ u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0.

Now, let us express the symmetric property of the non-linear term by means
of the conditional probabilities Φo’s.
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Lemma 3. Let N be an attractive nsban of order k in Z2. Then, the
following equation holds:

∀K ⊆ N ∗o , u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0

⇐⇒ Φo(K,N ∗o \K) + Φo(N ∗o \K,K) = 1. (6)

Proof. The proof is made directly by expanding and then simplifying the
right member of Equation 6. First, we have:

∀K ⊆ N ∗o , Φo(K,N ∗o \K) + Φo(N ∗o \K,K) = 1

⇐⇒ eu0+
∑
j∈K u1+η

k
o (K)

1+eu0+
∑
j∈K u1+η

k
o (K)

+
e
u0+

∑
j∈N∗o \K

u1+η
k
o (N
∗
o \K)

1+e
u0+

∑
j∈N∗o \K

u1+η
k
o (N∗o \K)

= 1

⇐⇒ e
u0+

∑
j∈N∗o \K

u1+η
k
o (N
∗
o \K)

1+e
u0+

∑
j∈N∗o \K

u1+η
k
o (N∗o \K)

= 1− eu0+
∑
j∈K u1+η

k
o (K)

1+eu0+
∑
j∈K u1+η

k
o (K)

⇐⇒ e
u0+

∑
j∈N∗o \K

u1+η
k
o (N
∗
o \K)

1+e
u0+

∑
j∈N∗o \K

u1+η
k
o (N∗o \K)

=
e−u0−

∑
j∈K u1−η

k
o (K)

1+e−u0−
∑
j∈K u1−ηko (K)

.

Consider this last equation. In order to ease the reading, let us do the
following change of variable: let ν` and νr (resp. δ` and δr) be respectively
the numerators (resp. the denominators) of the left and right members.

Furthermore, let κ = e
∑
j∈N∗o \K

u1−
∑
j∈K u1−ηko (K)+ηko (N ∗o \K). Then, we have:

∀K ⊆ N ∗o , Φo(K,N ∗o \K) + Φo(N ∗o \K,K) = 1

⇐⇒ ν`
δ`

= νr
δr
⇐⇒ ν` · δr = νr · δ` ⇐⇒ ν` + κ = νr + κ

⇐⇒ ν` = νr ⇐⇒ eu0+
∑
j∈N∗o \K

u1+ηko (N ∗o \K) = e−u0−
∑
j∈K u1−ηko (K)

⇐⇒ u0 +
∑

j∈N ∗o \K u1 + ηko (N ∗o \K) = −u0 −
∑

j∈K u1 − ηko (K)

⇐⇒ ηko (K) = −2u0 −
∑

j∈N ∗o u1 − ηko (N ∗o \K).

Now, by the hypothesis of the symmetry of the non-linear term, we have:

∀K ⊆ N ∗o , Φo(K,N ∗o \K) + Φo(N ∗o \K,K) = 1

⇐⇒ ηko (K) = ηko (N ∗o )− ηko (N ∗o \K),

and, by Lemma 2, we obtain:

∀K ⊆ N ∗o , Φo(K,N ∗o \K) + Φo(N ∗o \K,K) = 1

⇐⇒ u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0,
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which is the expected result.

Now, we own all the necessary intermediary elements to prove that the
symmetry of the non-linear term is sufficient for DetM to be null. This leads
to Proposition 1, which will be made finer later to obtain a characterisation
of the structural necessary condition for phase transition to hold.

Proposition 1. Let N be an attractive nsban of size n and order k in Z2.
A symmetric non-linear term is sufficient for the nullity of DetM :

u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0 =⇒ DetM = 0. (7)

Proof. First, let us show that the symmetry of the non-linear term is a
sufficient condition of the nullity of DetM . From Lemma 1 and because
of the parity of the cardinal of N ∗o (the number of subsets of N ∗o of even
cardinal equals the number of subsets of N ∗o of odd cardinal), we have:

DetM = 0 ⇐⇒
∑
K⊆N ∗o

(−1)|N
∗
o \K| · Φo(K,N ∗o \K) = 0

⇐⇒
∑
K⊆N ∗o

(−1)|N
∗
o \K| × 1

2
· (Φo(K,N ∗o \K) + Φo(N ∗o \K,K)) = 0. (8)

Then, from Lemma 3, we have:∑
K⊆N ∗o

(−1)|N
∗
o \K| · 1

2
= 0 =⇒ DetM = 0.

Notice that the previous equation always holds under the general hypothesis
of symmetry of the non-linear term of N (see Equation 6). As a result,
following Lemmas 1, 2 and 3, we obtain:

u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0 =⇒ DetM = 0,

which is the expected result.

Now we have succeeded in showing that the symmetry of non-linear terms
is sufficient for the nullity of DetM to hold, let us pursue by showing to
what extent it is also a necessary condition. To do so, let us define two
new elements that will be useful to reach our goal: the symmetry of the
interaction potentials u’s, called the symmetry condition (cf. Definition 4),
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and the the compensation between the global potentials of configurations,
called the compensation condition (cf. Definition 5).

Let h = h ◦ exp be the exponential homographic function defined as h(x) :
x 7→ ex

1+ex . From the transfer matrix M (cf. page 13), let us denote the
following quantities Qi which correspond respectively to the exponents of
the conditional probabilities Φi, i.e. the global potentials of a configura-
tion, for i ∈ {0, . . . , 4}, that have to be taken into account in the formula
characterising the nullity of DetM in Lemma 1:

Q0 = u0,

Q1 = u0 + u1 + u2,

Q2 = u0 + 2u1 + 3u2 + u3,

Q3 = u0 + 3u1 + 6u2 + 4u3 + u4,

Q4 = u0 + 4u1 + 10u2 + 10u3 + 5u4 + u5.

Moreover, let us use the following notation: ∀i ∈ {0, . . . , 4}, g(Qi, Q4−i) =
h(Qi) + h(Q4−i).

Definition 4. The symmetry condition, based on the interaction potentials
u’s, is given by:

Q0 +Q4 = 0, Q1 +Q3 = 0 and Q2 = 0.

From this definition of symmetry, we will see in Lemma 4 a characterisation
of this condition which is the generalisation of the Ruelle’s condition [39] of
phase transition as it appears in Proposition 1.

Lemma 4. We have the following equivalence that relates the symmetry
condition to the interaction potentials:

Q0 +Q4 = 0, Q1 +Q3 = 0 and Q2 = 0 ⇐⇒ u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0.

Proof. By definition, we have first that (Q0 + Q4)/2 = u0 + 2u1 + ηko (N ∗o )
2 .

From this, we derive directly that Q0 +Q4 = 0 ⇐⇒ u0 + 2u1 + ηko (N ∗o )
2 = 0.

Now, let us denote by Kj any subset of the strict activated neighbourhood
of the central automaton o of cardinal j. By Definition 3 of the symmetry
of the non-linear term and Lemma 2, we can write:

3u2 + u3 = ηko (K2) =
ηko (N ∗o )

2
= −u0 − 2u1

18



that implies that Q2 = 0 and, similarly:

7u2 + 4u3 + u4 = ηko (K1) + ηko (K3) = ηko (N ∗o ) = −2u0 − 4u1

that implies that Q1 +Q3 = 0, which is the expected result.

Notice that Lemma 4 emphasises the counter-balancing effect between global
potentials of complementary configurations of the neighbourhood of the cen-
tral automaton, as mentioned above at page 15.

Definition 5. The compensation condition is given by:

Q2 =
Q0 +Q4

2
=
Q1 +Q3

2
.

We will use in the sequel a weaker notion, named the half compensation
condition, defined as: Q2 = Q0+Q4

2 or Q2 = Q1+Q3

2 . From this, let us prove
that the symmetry condition is sufficient for having both the nullity of DetM
and the half compensation condition.

Lemma 5. The symmetry condition implies both DetM nullity and the half
compensation condition. Formally, we have:

Q0 +Q4 = 0, Q1 +Q3 = 0 and Q2 = 0

=⇒ Q2 = 0, DetM = 0 and Q2 =
Q0 +Q4

2
.

Proof. From Proposition 1 and Lemma 4, it is direct that the symmetry
condition is sufficient for the nullity of DetM . Furthermore, notice that
under the hypothesis of the symmetry condition, we have Q2 = 0 and Q0 +
Q4 = 0. As a consequence, we get the half compensation condition: Q0+Q4

2 =
Q2.

Lemma 6 below presents a relation between the half compensation condition
and the compensation condition through the nullity of DetM .

Lemma 6.

Q2 = 0, DetM = 0 and Q2 =
Q0 +Q4

2

=⇒ Q2 = 0 and
Q0 +Q4

2
= Q2 =

Q1 +Q3

2
.
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Proof. Let us consider the expansion of DetM = 0. We have:

DetM = 0 =⇒ g(Q0, Q4) + 6h(Q2)− 4(g(Q1, Q3)) = 0

=⇒ (g(Q0, Q4)− 2h(Q2))− 4(g(Q1, Q3)− 2h(Q2)) = 0

=⇒ (
g(Q0, Q4)

2
− h(Q2))− 4(

g(Q1, Q3)

2
− h(Q2)) = 0

=⇒ (
g(Q0, Q4)

2
− h(Q2))− 4(

g(Q1, Q3)

2
− h(Q2)) = 0

(9)

Furthermore, consider the Jensen’s inequalities that can be generalised in
the case of a sigmoid function f symmetric with respect to its inflection
point by:

sgn(
x+ y

2
)× f(x) + f(y)

2
≤ sgn(

x+ y

2
)× f(

x+ y

2
),

the equality being possible only if x + y = 0. In our case, because h is
a sigmoid function symmetric with respect to its inflection point, we can
write:

∀i ∈ {0, . . . , 4},

sgn(
Qi +Q4−i

2
)× h(Qi) + h(Q4−i)

2
≤ sgn(

Qi +Q4−i
2

)× h(
Qi +Q4−i

2
).

Now, by hypothesis of the half compensation condition Q0+Q4

2 = Q2 and
because Q2 = 0 (due the symmetry condition), we have:

g(Q0, Q4)

2
= h(Q2).

Thus, following Equation 9, g(Q1,Q3)
2 − h(Q2) = 0. And, since Q2 = 0 by

hypothesis, Q2 is the barycentre of (Q1, Q3) such that Q1+Q3

2 = Q2, and we
get the expected result.

Lemma 7 below shows that the compensation condition associated with
Q2 = 0 implies the symmetry condition. The proof is the direct consequence
of the instanciation of Q2 = 0 in the symmetry condition.

Lemma 7.

Q2 =
Q0 +Q4

2
=
Q1 +Q3

2
and Q2 = 0

=⇒ Q0 +Q4 = 0, Q1 +Q3 = 0 and Q2 = 0.
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From Proposition 1 and Lemmas 4, 5, 6 and 7, we get the expected Theo-
rem 4 that characterises the nullity of DetM from the symmetry condition.

Theorem 4.

Q0 +Q4 = 0, Q1 +Q3 = 0 and Q2 = 0

=⇒ Q2 = 0, DetM = 0 and Q2 =
Q0 +Q4

2

=⇒ Q2 = 0 and
Q0 +Q4

2
= Q2 =

Q1 +Q3

2
=⇒ Q0 +Q4 = 0, Q1 +Q3 = 0 and Q2 = 0.

5 Boundary sensitivity of attractive NSBANs – Sim-
ulations

In order to illustrate this family of nsbans sensitive to their boundary and
to empirically check the sufficiency of the condition obtained, we have per-
formed numerical simulations. The general idea has been to consider two
dimensional bans dived into squared lattices, of increasing sizes. The mea-
sure that has been taken into account, denoted by S and called dissimilarity
measure, consists in computing asymptotically the difference of the activity
of their central automata (i.e., the number of asymptotic time steps dur-
ing which central automata are in state 1) when nsbans are subjected to
two distinct boundary instances. The details of the simulation protocol are
presented in [15]. Figure 3 pictures the results obtained on the family of
nsbans of order k = 3, that is the family considering singleton, couple and
triplet interaction potentials with coalitions of pairs of cells.

More precisely, considered nsbans have been subjected to the following
boundary instances: ◦ = (0, . . . , 0) and • = (1, . . . , 1). This choice comes
from results obtained in [5] that show that they are those that induce the
maximal influence on the behaviour of attractive nsbans of order k ≤ 2. The
dissimilarity measure presented is the average of five dissimilarity measures
obtained from five distinct simulations (with different initial conditions) of
the dynamical behaviours of 20 000 nsbans of order 3 of respective sizes 11×
11, 37×37 and 131×131. The number of steps employed to let every nsban
evolve to its equilibrium has been fixed to 10 000 and dissimilarity measure
S has been computed on the 1 000 following time steps. Notice that every
couple of values on the plane (0, u1, u2) corresponds to one nsban defined
according to parameters u0 = 0, 0 ≤ u1 ≤ 20 and −10 ≤ u2 ≤ 0 with a
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Figure 3: Emerging phase transitions in nsbans of order 3 on the straightline
2u1 + 5u2 = 0.

variation step equal to 0.1. The lattice sizes chosen allow to obtain results on
bans of three different orders of magnitude, which supports the pertinence
of the results. In particular, for any size, the dissimilarity measures that
are significantly strictly positive are located on the straightline of equation
2u1 + 5u2 = 0, which corresponds to what has been obtained theoretically.
Indeed, for nsbans of order 3, the generalised Ruelle’s condition related to
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the nullity of DetM is:

u0 +

∑
j∈N ∗o u1

2
+
ηko (N ∗o )

2
= 0 ⇐⇒ u0 +

4u1

2
+

(
5
2

)
u2

2
= 0

⇐⇒ u0 + 2u1 + 5u2 = 0,

which gives
2u1 + 5u2 = 0

as illustrated in Figure 3 when u0 = 0. Moreover, by considering the fol-
lowing global interaction potentials Q0 and Q4, to which are applied the
symmetry and the compensation conditions detailed above and the nullity
of u0, u3, u4 and u5, we get 2u1 + 5u2 = 0 which supports the previous
result.
As a consequence, the results obtained with simulations emphasise that the
parametric equation of the nullity of the transfer matrix determinant is
also a sufficient condition. Indeed, although there exists on the straightline
2u1+5u2 = 0 (reduced to the plan of attractive nsbans) values of parameters
where the dissimilarity measure is weak, this line clearly shows a frontier
between two domains in the phase space, one with S = 0 and another noisy
one with S ≈ 0.

6 Conclusion

This paper aimed at addressing the problem of the emergence of phase
transitions due to the influence of boundaries in the dynamical behaviour
of attractive nsbans on Z2. With this work, we have generalised existing
results, notably by exploiting on nsbans the knowledge already owned on
lsbans.

Theoretical questions that stay open, or those that have been highlighted in
this study, are numerous. Of course, the problem of the characterisation of
the domain of phase transition remains open although it has been addressed
pertinently here in the attractive case. Also, the case of repulsive nsbans, in
which the strict neighbourhood interaction potentials are negative, has not
been studied for now. Except this, we think that the most ambitious and
interesting work for the future would be to become progressively closer to the
biological reality. While bans on Z2 present undeniable advantages to lead
such a study, to relax step by step their inherent constraints could allow to
obtain new insights about the behaviour of biological interacting systems.
The constraint that seems to be the first to be removed is the functional
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translation invariance (by preserving the global translation invariance on
lattices). The idea would be to make interaction potentials as functions of
the interaction weights but also of the distance of automata to the centre
of the network. Another aspect that opens interesting properties is the
loss of the synchronism imposed by the parallel updating mode used here.
Being given the difficulties underlying the notion of boundary sensitivity,
it is certain that combining it with that of structural robustness (in the
sense of Thom [42], whose objective is to understand the impact of changes
of global transition functions on the dynamical behaviours of dynamical
systems) dealt with variations of updating modes is indisputably a long term
project. However, it is a necessary step if we expect fundamental general
results biologically practical.

From the application point of view, the results obtained have shown that the
information provided by the environment of a network is effectively broad-
cast throughout the whole network, even when the network is arbitrarily
large. This suggests that the boundaries play a significant role in systems,
and not only in those that are “regular”. Consequently, any study in a mod-
elling context should address the problem of the impact of the boundary
before changing its underlying abstraction level. This work could also have
direct applications in the classical framework formal neural networks and
their associative memory and learning properties [24, 33], where boundaries
could perturb or facilitate these two phases of memorisation and restitu-
tion by computation. Thus, it would be interesting to identify boundaries
allowing and boundaries avoiding expected associations. Eventually, non-
linearity itself could be at the center of further works. As it has been evoked,
it gives a mean to integrate cooperative and competitive coalitions without
increasing problem sizes, which is a major parameter when we attempt to
characterise the dynamical behaviour of regulation networks. So, in the
context of automata networks viewed as models of “real” genetic regulation
networks, to succeed in formally describing the conditions under which the
use of non-linear functions rather than the adding of new vertices in the
architecture of networks could constitute a relevant benefits for theoretical
bio-informatics.
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Grenoble 1 – Joseph Fourier, 2008.

[41] D. Thieffry and R. Thomas. Dynamical behaviour of biological regula-
tory networks – II. Immunity control in bacteriophage lambda. Bulletin
of Mathematical Biology, 57:277–297, 1995.

[42] R. Thom. Structural Stability and Morphogenesis. W. A. Benjamin,
1975.

[43] R. Thomas. Boolean formalisation of genetic control circuits. Journal
of Theoretical Biology, 42:563–585, 1973.

[44] R. Thomas. On the relation between the logical structure of systems and
their ability to generate multiple steady states or sustained oscillations.
In Numerical Methods in the Study of Critical Phenomena, volume 9 of
Springer Series in Synergetics, pages 180–193. Springer, 1981.

[45] J. von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, 1966. edited and completed by A. W. Burks.

[46] F.Y. Wu. Rigorous results on the triangular Ising model with pair and
tripletinteractions. Physics Letters A, 153:73–75, 1991.

[47] X.N. Wu and F.Y. Wu. Exact results for lattice models with pair and
triplet interactions. Journal of Physics A: Mathematical and general,
22:L1031, 1989.

28


