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Abstract. This paper gives new simulation results on the asymptotic
behaviour of theoretical neural networks on Z and Z2 following an ex-
tended Hopfield law. It specifically focuses on the influence of fixed
boundary conditions on such networks. First, we will generalise the the-
oretical results already obtained for attractive networks in one dimen-
sion to more complicated neural networks. Then, we will focus on two-
dimensional neural networks. Theoretical results have already been found
for the nearest neighbours Ising model in 2D with translation-invariant
local isotropic interactions. We will detail what happens for this kind of
interaction in neural networks and we will also focus on more compli-
cated interactions, i.e., interactions that are not local, neither isotropic,
nor translation-invariant. For all these kinds of interactions, we will show
that fixed boundary conditions have significant impacts on the asymp-
totic behaviour of such networks. These impacts result in the emergence
of phase transitions whose geometric shape will be numerically charac-
terised.

Keywords: Stochastic neural networks; Hopfield model extension; Phase
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1 Introduction

The objective of this paper is to study the influence of fixed boundary con-
ditions on particular discrete dynamical systems, namely neural networks. This
work is motivated by the fact that, in theoretical biology, researches on neural
networks and more generally on the structural stability of regulatory networks
are more and more deployed to understand their capacity to adapt to natural
constraints (see [1,2,3]). Boundary conditions are one of the structural features
on which it seems to be of great interest to focus in order to obtain more knowl-
edge about dynamical systems useful to medicine and biology.

In some dynamical systems, the impact of specific parameters expresses itself
by the appearance of phase transition. Phase transitions correspond to sharp and
sudden changes of the behaviour of systems. They have been intensively studied
by physicists, mathematicians and more recently computer scientists [4,5]. They
have been shown to have a significant importance in particular in the study of



robustness of many systems [6,7,4]. In this paper, we explore phase transitions
phenomena in the context of the fixed boundary conditions impact in neural
networks.

More precisely, this paper presents complementary results to those presented
in [8]. In [8], we theoretically prove that the influence of fixed boundary con-
ditions on one-dimensional attractive neural networks is not significant and
does not lead to the emergence of phase transition. Here, we decide to go fur-
ther and give more general results (resp. new results) on one-dimensional (resp.
two-dimensional) neural networks subjected to fixed boundary conditions. Be-
cause of the high underlying difficulties of theoretical studies of phase transi-
tion, we are going to proceed with simulations. Thus, we will present a com-
puter assisted method to study phase transition phenomena emerging from the
influence of fixed boundaries on the thermodynamic behaviour of complex neu-
ral networks. Moreover, we will not restrict ourselves to neither attractive nor
isotropic and translation-invariant systems since they do not seem to be real-
istic from the biological point of view. We will hence study the attractive and
repulsive form of three kinds of neural networks: the isotropic and translation-
invariant ones (called homogeneous), the isotropic but non-translation-invariant
ones (called non-translation-invariant) and the anisotropic and non-translation-
invariant ones (called inhomogeneous). More precisely, in these different cases,
we are going to define the interaction matrix W depending on two parameters
u0 and u1 which will be defined in the next section. We will then show that,
in homogeneous Hopfield-like neural networks, our results are identical to those
obtained in the Ising model. Furthermore, we will numerically highlight the ge-
ometrical shapes of emerging phase transitions in the case of more complicated
neural networks.

Because of the strong closeness between the networks which will be stud-
ied in this paper and the Ising model, we will introduce in Section 2 the most
important results about the influence of boundary conditions in the context of
ferromagnetic networks. Then, after a presentation in Section 3 of the chosen
way to study the influence of fixed boundaries in neural networks, Section 4 will
detail the results obtained on different one- and two-dimensional neural networks
in order to highlight the emergence (or not) of phase transitions due to boundary
conditions. Furthermore, we will show that, by passing from the homogeneous
to the inhomogeneous case, despite a significant decrease of the relative weight
of boundary conditions, the global behaviour of neural networks significantly de-
pends on these boundary conditions. Eventually, some perspectives of this work
will be presented in Section 5.

2 Boundary influence and the Ising model

In [9], Ising developed a simple probabilistic model imitating the dynamics
of ferromagnetic particles networks of n elements on a lattice R of Zd. In this
model, a particle i has two possible states at time t: up-oriented (σi(t) = +1) or
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u0,I + 2 · u1,I = 0

u0,I

u1,I

Fig. 1. Parametric conditions on u0,I and u1,I showing phase transitions for
the Ising model in Z2 in the isotropic and translation-invariant attractive and
repulsive cases. They illustrate the results obtained by Dobrushin and Ruelle.
The bottom right corner, that corresponds to the attractive case, shows that the
phase transition (in bold) takes place on a part of the straight line u0,I+2·u1,I =
0. The upper left corner, relative to the repulsive case, shows that the phase
transition (the striped space) can occur on a neighbourhood of this straight line.

down-oriented (σi(t) = −1). Also, a particle gets the influence of an external field
on itself and has an interaction on each of its nearest neighbours. Likewise the
extended version of the Hopfield law defined in [8], such networks can be entirely
described by interaction matrices Wn×n in which coefficient wij indicates the
action of the j-th particle on the i-th. With Ni denoting the neighbourhood of
the particle i (including i itself), the interaction potential of i at time t is defined
by:

HI(σi(t)) = −
∑

j∈Ni\{i}

wij · σi(t) · σj(t)− h · σi(t)

The state of a ferromagnetic particle at time t+ 1 is then defined by:

PI(σi(t+ 1) = +1 | σj(t), j ∈ Ni\{i}) =
eHI(1)/T

1 + eHI(1)/T

where HI(1) = −
∑
j∈Ni\{i} wijσj(t)− h.

The results obtained in our framework of neural networks that we will ex-
pose in the sequel are very close to the results obtained on the Ising model by
Dobrushin [10,11] and Ruelle [12,13,14]. It is thus relevant to briefly recall them.

They focused on Ising networks which were attractive (wij < 0) or repul-
sive (wij > 0) isotropic (for all i ∈ R, wij = wij′ for all j, j′ ∈ Ni\{i})
and translation-invariant (for all i, i′ such that i 6= i′ and for all j1, . . . , jk ∈
Ni\{i} and j′1, . . . , j

′
k ∈ Ni′\{i′}, such that, ∀l = 1, . . . , k, j′l = jl + i′ − i (the



vertices i’s equalling 0 at the top left until n− 1 at the bottom right), we have:
wii = wi′i′ and (wij1 , . . . , wijk) = (wi′j′1 , . . . , wi′j′k)). They gave general results
about phase transitions. The method that they used to obtain their results is
judicious and seems to be appropriate in our context. They defined a local poten-
tial UI by a couple of parameters (u0,I , u1,I) that are related to the coefficients
of the interaction matrix W such that:

∀i, j s.t. j ∈ Ni\{i}, u0,I = h/T and u1,I = wij/T

With this approach, Dobrushin and Ruelle made it possible to study the
asymptotic evolution of such networks by only basing on variations of this pair
of local potentials (u0, u1). They exposed some properties of phase transitions
emphasising the influence of geometrical boundaries and gave the two following
theorems, which are illustrated in Figure 1.

Theorem 1. If U is attractive (u1 < 0), then a phase transition occurs only on
the straight line defined by the equation u0 + du1 = 0 when the network tends
to Zd, below a critical temperature Tc,a.

Theorem 2. If U is repulsive (u1 > 0), then a phase transition can only occur
on a particular region of the space (u0, u1) corresponding to a large “parabolic”
neighbourhood of the straight line defined by the equation u0 + du1 = 0 when
the network tends to Zd, below a critical temperature Tc,r.

In this paper, we will extend these specific results to the Hopfield-like net-
works as those presented in [8]. Their main properties are going to be recalled.
So, this study will focus on neural networks whose evolution follows a stochastic
version of the Hopfield law. In these networks, if ∂extR denotes the boundary of
the neural network R such that i ∈ ∂extR ⇔ i ∈ Zd\R, ∃j ∈ R s.t. j ∈ Ni, the
interaction potential of a neuron i is defined by:

H(σi(t)) =
∑

j∈Ni∩R
wij · σj(t) +

∑
j∈Ni∩∂extR

wij · σj(t)

where σ denotes the configuration of the boundary.

The evolution of a neuron from time t to time t+ 1 is then defined by either:

P (σi(t+ 1) = 1 | σj(t), j ∈ Ni\{i}) =
eH(1)/T

1 + eH(1)/T
(1)

or

P (σi(t+ 1) = α | σj(t), j ∈ Ni) =
eα·H(σi(t))/T

1 + eH(σi(t))/T
(2)

The rule 1 corresponds to an external field (threshold like as in [15], where
the threshold θ = −wii) that does not depend on the state of i at time t and the
rule 2 (a stochastic version of the rule used in [16,17]) corresponds to an external
influence depending on the state of i at time t (it is the case in neural networks
for an axonal or somatic potential modulation depending on the existence of a



previous axonal firing or in genetic regulation networks for a post-transcriptional
action like the one of microRNAs which prevents a proteic repression or induc-
tion). More precisely, we will use the rule 2 in all the performed simulations
and the rule 1 with external field to give a theoretical result about attractive
Hopfield-like networks for which both rules give the same minimal energies as
the Boltzmann machine for same initial configurations.

Let us eventually notice that the coefficients u1 = wij/T and u0 = wii/T
take here the opposite values than in the Ising model.

3 Simulation protocol

As it has been discussed in the introduction, the theoretical characterisation
of phase transitions in discrete dynamical systems is known to be a difficult
problem. In order to bypass the underlying difficulties, it seems to be reasonable
to think of this problem in a different way. Indeed, before we try to obtain any
theoretical results about phase transitions in complex neural networks, we may
wonder whether phase transitions really occur and if they can be highlighted.
Thus, in this section, we present a method based on simulations that allows to
obtain some significant results on this kind of phenomenon in this framework.

3.1 Preliminary definitions and influence of boundary

As the main definitions for the one-dimensional case are given in [8], we are
only going to give here definitions for two-dimensional neural networks.

Definition 1. The eccentricity ε(v) of a graph vertex v in a connected graph G
is the maximum L1-distance between v and any other vertex w of G.

First of all, in this paper, let us note that we focus on theoretical networks
represented by finite square lattices on Z2. We will be concerned by the von
Neumann neighbourhood. Then, it is easy to define the boundary of such net-
works by using the geometrical properties of the lattices. The boundary in Z2

of a square lattice R is thus the set of neurons which do not belong to R and
have one and only one neighbour inside R, set at which we add the four corner
neurons. In the same way, it is easy to define the centre CR of R. Let us notice
that CR is a set of one or four neurons depending on the parity of the side size of
the studied square lattice. Indeed, if the size of the lattice is odd, the centre of R
is defined by a set composed by the neuron whose eccentricity is minimal. Else,
if its side size is even, it is easy to split by the median axes the network R in four
square sub-networks R1, R2, R3, R4 of equal sizes. Each of these sub-networks
contains one corner of R and, in each of them, it is easy to find the neuron Ci
the furthest from the corner. By merging the four sub-networks, we obtain R
and the centre of R is then the set of these four Ci’s as illustrated in Figure 2.
Thus, according to this definition, the central vertices of a network R on Z2 cor-
respond exactly to the vertices of R of minimal eccentricity. Let us enumerate



the neurons of the network from 0 to n − 1 from left to right and from top to
bottom of the lattice. Then, if we define a configuration of the network at time
t by the following sequence σ(t) = {σ0(t), σ1(t), . . . , σi(t), σi+1(t), . . . , σn−1(t)},
the state of the centre of the network is defined by:

σCR
(t) = σn−1

2
(t)

for an odd side size lattice and by:

σCR
(t)

q
{σn

2−
√

n
2 −1

(t), σn
2−
√

n
2

(t), σn
2 +
√

n
2 −1

(t), σn
2 +
√

n
2

(t)}

otherwise.

(a) (b)

Fig. 2. Definition of the boundary (in dark grey) and the centre (in light grey)
of neural network lattices for (a) an odd size and (b) an even size.

In the sequel, we will give a quantitative measure of the influence of fixed
boundary conditions on neural networks by focusing only on their impact on the
centre. We will denote this measure by S. Since we consider networks on lattices
on Z or Z2, it is trivial to understand that the highlight of the influence of
boundary conditions on the centre is a sufficient condition to prove their influence
on the whole network. Indeed, their influence on it implicates the propagation
of the states of the boundary vertices through all the vertices separating them
from the centre, i.e., through the whole network.

3.2 Simulation constraints

Let us remind the result obtained by Onsager [18] proving that the aggrega-
tion of ferromagnetic particles states in the Ising model can occur only below a
critical temperature. In our framework, as in the Ising model, the phase transi-
tions emerging from the asymptotic behaviour of networks following a Hopfield-
like law and resulting from the influence of boundary conditions, if they exist, can



occur only at low temperature too. Indeed, it is easy to prove that the increase
of the temperature in such systems augments the randomness until uniformity
when the temperature tends to infinity.

Furthermore, let us note that a major difficulty exists when we want to
simulate this kind of system: it is impossible to check whether the dynamics of
the network has converged or not, whatever the number of iterations of time is.
Indeed, in a paper published in 1996 [19] which proposes the algorithm coupled
from the past, Propp and Wilson indicate that, even after the system underlying
Markov chain has evolved for a long time, there does not exist a method that
proves whether the system has converged if (i) the temperature is below the
critical one or if (ii) the system is not attractive. So, our work takes place in a
difficult framework and we are going to explain what the chosen method is in
order to obtain significant results.

3.3 Simulation protocol details

In order to numerically highlight and characterise the emergence of phase
transitions due to variations of fixed boundary conditions, it is important to
analyse the results obtained from a large enough sample of initial conditions.
However, because of the time complexity of the protocol, any figure presented in
the sequel (see Section 4) corresponds to the results obtained for one initial con-
figuration randomly chosen at the beginning of the simulation and whose density
is 0.5, i.e., the probability for a neuron to be activated is 0.5. We will discuss
nevertheless the dependence of the results on the choice of initial configurations.
Furthermore, the evolution law is normalised on the temperature such that the
temperature T = 1. Moreover, in order to bypass the underlying problem of
convergence, we have decided to focus on a specific fixed portion of the orbit of
the system. This portion is obtained by letting the neural network evolve during
a long enough transient time, denoted by TT the set of transient iteration times,
and by measuring the influence of boundaries during a sampling time, denoted
by TS the set of sampling iteration times. More precisely, the cardinal of TS
equals the number of iterations during those the computation of the measure is
executed.

Let us now detail the quantitative measure S chosen in order to get a good
approximation of the influence of the boundary conditions on neural networks.
As it has been suggested above, S has to measure the influence of the states
of the boundary vertices on the centre. A relevant idea for S is to compute
the difference between the activities of the centre, i.e., the difference between
the numbers of sampling iterations during which the centre has been activated,
observed in a certain domain of the parameters u0 and u1 when the boundaries
are differently valued. So, if we consider two different boundaries ∂1 and ∂2, it
will be easy to compute the two corresponding central activities S∂1 and S∂2

in order to compare them. Then, a relevant result would be to emphasise that
there exist particular zones in the predefined domain of parameters u0 and u1
on which there is a significant difference between S∂1 and S∂2 . Also, it would



be essential to show that these particular zones still exist when the size of the
networks increases. Besides, this kind of result will not only lead us to numerically
prove the existence of phase transitions as a result of the influence of boundary
conditions. It will also allow us to highlight where this influence acts.

More formally, the activity of a neuron i, i.e., the number of iterations during
which i has been activated (the activity of i) over |TS| iterations is defined by:

Si =
∑
t∈TS

σi(t)

Then, the central activity of the network over these |TS| iterations is conse-
quently defined by:

S =
∑
i∈CR

Si

Now, The influence of the fixed boundary conditions has to be highlighted
by comparing the results of the two measures S that depend on two different
boundaries. Thus, we are going to define some specific boundary conditions which
we will use in the sequel. So, for all i ∈ ∂extR, we have:

σ
(0)
i = 0 (3)

σ
(1)
i = 1 (4)

σ
(01)
i =

{
0 if |li + ci| is even

1 otherwise
(5)

σ(10) =

{
0 if |li + ci| is odd

1 otherwise
(6)

where li (resp. ci) represents the horizontal (resp. vertical) coordinate of the
neuron i of ∂extR.

With the previous notations, we can now denote the activity of the central
neurons when all the vertices of the boundary are fixed to 0 (resp. 1) by S(0)

(resp. S(1)). In the same way, we also denote by S(01) and S(10) the activity
of the central neurons when the vertices of the boundary follow respectively
the rules defined by the equations 5 and 6. Let us remark that the choice of
the boundaries makes sense since we will compare the central neurons activities
with quite different (equations 3 and 4) and quite similar (equations 5 and 6)
boundary conditions.

As we have remarked that the simulation results depend on the attractiv-
ity/repulsivity of the network, we have decided to present the results for attrac-
tive networks by using the equations 3 and 4 and those for repulsive networks
by using the equations 5 and 6. So, the two different measures that we are going
to compute are precisely defined by the arithmetic averages (on the number of



sampling iterations and central nodes) of the absolute values of the differences
between the activities depending on the chosen boundaries:

Sα =
|S(0) − S(1)|
|TS| · |CR|

for the attractive case and

Sβ =
|S(01) − S(10)|
|TS| · |CR|

for the repulsive case.

3.4 Studied lattices and reading of the results

All the simulations performed aim at showing if the dynamics of the cen-
tral neurons of such systems evolving with a parallel updating iteration mode
change their behaviour according to the activating, inhibiting or double nature
of boundaries influencing them. They consist also in a precise computation of the
strength of this influence. Moreover, usually in physics, to numerically prove the
existence of a thermodynamic phase transition in the behaviour of a dynamical
system, it is necessary to obtain identical results on this system for three sizes
of different order of magnitude. Thus, in the one-dimensional case, we have per-
formed simulations on neural networks where n = 53, n = 503 and n = 5003. In
the two-dimensional case, we have chosen the three following sizes: n = 11× 11
(i.e., 121 neurons), n = 37 × 37 (i.e. 1369 neurons), and n = 131 × 131 (i.e.
17161 neurons) for which we will present and discuss the results. These numbers
may appear to be small but the execution time of the simulations has prevented
us to go further. However, these lattices sizes give a sample in respect with the
physicist method to argue the emergence of phase transitions. Let us also notice
that all these sizes are prime numbers to avoid side effects such as periodicity as
much as possible.

Finally, the presentation of the results will be done with three-dimensional
graphics on which the vertical axis named S corresponds to the quantitative
measure of boundaries influence and the horizontal plane represents the domain
of the two parameters u0 and u1 on which the measure is computed. Moreover,
in these graphics will be exposed two surfaces: the first one (in red dominance)
gives the exact values of the measure obtained by computation and the second
one (in black dominance) gives a maybe more readable indication on the measure
level (i.e., its normalised altitude).

4 Simulation results

In this section, first, we are going to give the major definitions. Then, we will
illustrate and generalise the theoretical results obtained in [8] by showing that the



Fig. 3. Simulation results obtained for all one-dimensional Hopfield-like network
cases where the size of the network is n = 53, n = 503 or n = 5003.

asymptotic behaviour of one-dimensional neural networks does not depend on
fixed boundaries. Eventually, in the third part, we will focus on the case of two-
dimensional neural networks and show the non-uniqueness of the quantitative
measure discussed in the previous section.

4.1 Definitions

Before presenting simulation results in three different kinds of one- and two-
dimensional neural networks, we are going to give more details about the notions
of homogeneity, non-translation-invariance and inhomogeneity. As it is said in
the introduction of the paper, our goal is to numerically characterise phase tran-
sitions phenomena by conserving the Dobrushin’s and Ruelle’s approach. Be-
cause it seems to be relevant to go further than to just work with homogeneous
networks in a biological context, we will formally define the interactions in un-
derlying graphs depending on the two parameters u0 and u1 on which we want
our study to be based. The formal definition of homogeneous interactions being
given in Section 1, here, we give those corresponding to non-translation-invariant
and inhomogeneous networks.

First of all, let us remind the formal definition of isotropy and translation-
invariance properties.

Definition 2. A system is isotropic (or rotation-invariant) if it exhibits the
same characteristics in all directions. Consequently, a Hopfield-like network R
is called isotropic if, for all neuron i of R, all the interaction coefficients that its
neighbours have on it are identical. Formally, we have:

∀i ∈ R, ∀j, j′ ∈ Ni\{i}, wij = wij′



Definition 3. Let (wij1 , . . . , wijk) be the interaction coefficients the k neigh-
bours of the neuron i have on i. A Hopfield-like network R is translation-invariant
if such coefficient sequences are identical for all i’s whatever their place in the
grid is. Formally, we have, if j′s = js + (i′ − i),∀s = 1, . . . , k:

∀i, i′ ∈ R, (wij1 , . . . , wijk) = (wi′j′1 , . . . , wi′j′k).

(a) (b) (c)

Fig. 4. Simulation results of the homogeneous attractive case when the neural
network is respectively represented by a grid (a) 11 × 11, (b) 37 × 37 and (c)
131× 131. The results are presented on the domain of parameters u0 = [−10, 0]
and u1 = [0, 5] with a resolution of 0.05.

Let us now discuss non-translation-invariant neural networks that seem to
be closer to biological systems. In this kind of system, the synaptic weights
corresponding to the actions that a neuron i receives from its neighbours are
defined by a function of the L1-distance between the neuron i and the closest
neuron belonging to the centre of the network. More formally, we define:

wij =


u0 if j = i,

u1

1+η·d(i,CR) if j ∈ Ni\{i},
0 otherwise.

where η takes values in [0, 1]. When this parameter is equal to 0, the system
follows a homogeneous extended stochastic Hopfield rule. When it is greater
than 0, it permits to include more and more non-translation-invariance and, thus,
to give specific information about the effects of this non-translation-invariance
introduction in neural networks. We will see in the sequel that the differences
between the obtained results for “simple” (η = 0 or η = 1) attractive neural
networks have led us to use this parameter in order to have more details on the
influence of non-translation-invariance in the specific case of attractive networks.



The last kind of neural networks studied is the inhomogeneous one. The
definition of these systems is really close to the one that corresponds to the non-
translation-invariant ones. The difference is that anisotropy is added. To do that,
the synaptic weights wij are defined by a function of the L1-distance between
the neuron j and the closest neuron belonging to the centre of the network.
Formally, we have:

wij =


u0 if j = i,

u1

1+η·d(j,CR) if j ∈ Ni\{i},
0 otherwise.

4.2 One-dimensional neural networks

This subsection aims at illustrating and generalising to other kinds of neural
networks the theoretical result of [8]. This result shows that the behaviour of
one-dimensional attractive neural networks does not admit phase transition as a
consequence of the influence of fixed boundary conditions. Indeed, there exists a
property of constant probability for the centre to be activated or inhibited at the
asymptotics whatever the boundaries of the network are. Here, since we focus on
one-dimensional networks, we only fix the boundary states values to 0 and 1 and
compute Sα. To numerically prove that different fixed boundary conditions have
the same influence on the whole network, the simulation results must present a
phase diagram whose the surface of Sα values is null whatever the u0 and u1
are.

We have seen that such results are observed in all cases of large one-dimensional
attractive and repulsive neural networks. As illustrated in Figure 3, the quan-
titative measure Sα vanishes whatever the values of the parameters u0 and u1
are. That corroborates the fact that there is no phase transition in the one di-
mensional case. Indeed, the probability for the centre to be activated is the same
whatever the boundaries and the kind of interactions are. Let us finally notice
that the results given by the simulation of the dynamics of such neural networks
are a first step in the direction of the validation of our simulator.

4.3 Two-dimensional neural networks

In this subsection, we give results about three different kinds of interactions in
two-dimensional neural networks. We respectively name these kinds of networks
homogeneous, non-translation-invariant and inhomogeneous networks. Thus, we
give the results obtained on attractive neural networks and then, we expose what
happens in the repulsive ones. More precisely, for these two different kinds of net-
works, we will present the sub-cases of homogeneity, non-translation-invariance
and inhomogeneity.



M =



1 1 0 . . . 0 0
1 0 1 . . . 0 0
1 0 0 . . . 0 0
...
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...
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...
0 0 0 . . . 0 1
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eu0+3u1
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Fig. 5. Matrix of projectivity M for nearest-neighbours two-dimensional neural
networks.

• • • • ◦ ◦ ◦ ◦
• × • • × • . . . ◦ × • • × ◦ . . . ◦ × • • × ◦ . . . ◦ × ◦ ◦ × ◦
• ◦ • ◦ • ◦ • ◦

Table 1. Possible neighbourhoods of the centre of a neural network where a “•”
corresponds to a firing neuron and a “◦” corresponds to an inactive one.

Attractive neural networks

• Results on homogeneous networks

Figure 4 illustrates the values of u0 and u1 for which the effects of boundary
conditions can be observed. Thus, we can see that the influence of fixed boundary
conditions takes place in a small neighbourhood of the straight line defined by
u0 +2u1 = 0. Let us note that this neighbourhood tends to reduce exactly to the
straight line u0 +2u1 = 0 by increasing the lattice size such that it is highlighted
by Figure 4 (c). This result has been checked for all the executed simulations.

Furthermore, the three presented phase diagrams show that the influence of
fixed boundary conditions happens after a certain value of the parameter u0.
This value is identical whatever the size of the lattice is and is approximatively
equal to −3. Consequently, this threshold is critical for the appearance of a
significant value of the measure Sα. Since the phenomenon of influence of fixed
boundary conditions appears at a specific value of a parameter whatever the size
of the system is, we can argue that it corresponds to a phase transition.

Now, let us discuss in a more formal way the existence of this phase transi-
tion characterising the influence of fixed boundary conditions on homogeneous
attractive neural networks (this step will allow to validate our simulator).

Proposition 1. In two-dimensional attractive stochastic Hopfield-like networks
(with the rule with external field), the emergence of phase transition resulting
from the influence of fixed boundary conditions can occur on the straight line
defined by u0 + 2u1 = 0, which is the condition of linear dependence between



projective and conditional equations defining the probability of the activity of the
network centre [8].

Proof. In order to prove that u0 + 2u1 = 0 is a linear dependence condition,
it seems useful to focus on a simplification of the Markovian character of the
system. To do that, let us use the general mathematical method described in [8].
Then, we can easily obtain a matrix M of size 24 × 24 (see Figure 5) that
contains the coefficients of the projective and conditional equations describing
the 24 possible states of the 4 strict neighbours of a central neuron given in
Table 1. The objective is to prove that u0 + 2u1 = 0 ⇒ DetM = 0. Indeed,
if the determinant of M is not null, it means that all the unknowns can be
expressed as a function of the probability of the centre to be activated; thus,
an independent equation allows a unique determination of the probabilities of
activity in boundary cylinders as a function of the probability of activity in the
centre. This kind of parametric condition prevents phase transitions observations
because of the uniqueness of the invariant measure.

The determinant of this matrix is defined by:

DetM = (−e4u0+10u1 + 4e4u0+9u1 − 6e4u0+8u1 + 4e4u0+7u1

− e4u0+6u1 + 3e3u0+9u1 − 7e3u0+8u1 + e3u0+7u1

+ 6e3u0+6u1 + e3u0+5u1 − 7e3u0+4u1 + 3e3u0+3u1

− 3e2u0+7u1 + 7e2u0+6u1 − e2u0+5u1 − 6e2u0+4u1

− e2u0+3u1 + 7e2u0+2u1 − 3e2u0+u1 + eu0+4u1

− 4eu0+3u1 + 6eu0+2u1 − 4eu0+u1 + eu0)

/ [(1 + eu0+4u1)(1 + eu0+3u1)(1 + eu0+2u1)(1 + eu0+u1)(1 + eu0)]

The vanishing equation of the determinant: DetM = 0 admits a set of four
solutions among which appears u0 = −2u1. We get the expected result. �

Consequently, theoretically, we prove that phase transition in attractive Hopfield-
like networks can occur on the straight line u0+2u1 = 0. Let us remark that this
equation is the one corresponding to the only observed phase transition with sim-
ulations independently of the initial conditions, which validates the simulator and
show that phase transitions only occur on this straight line. Ruelle proved this
result in 1972 for Ising networks by using the pressure differentiability (see [20]).

• Results on non-translation-invariant networks

The study of non-translation-invariant attractive neural networks gives sig-
nificant results about the influence of boundaries in large networks as Figure 6
shows. The introduction of non-translation-invariance in a homogeneous neural
network does not only change the position of the parametric domain of phase
transition but also the shape of this domain.



(a) (b) (c)

Fig. 6. Simulation results of the non-translation-invariant attractive case when
the neural network is respectively represented by a grid (a) 11× 11, (b) 37× 37
and (c) 131× 131. The first (resp. second) line of this figure presents the results
when η = 1 (resp. η = 0.5).

Let us first focus on the case where η = 1. Significant values of Sα are
observed in a triangular domain of (u0, u1) which is defined by the two straight
lines: u0 + 2u1 = 0 and u0 + 2

5u1 = −2. More precisely, we can remark that the
influence of fixed boundary conditions is strong in the neighbourhood of the line
2
5u1 = −2 and tends to disperse and to be weakened by approaching the line
u0 + 2u1 = 0 for low values of the couple of parameters (u0, u1). Furthermore,
let us note that this value tends to vanish in the triangular domain for high
values of the couple of parameters (u0, u1). We can also notice that this domain
stays the same by increasing the size of the lattice. Furthermore, significant
values of Sα start for the same specific value of u0 than in the homogeneous
case, i.e., approximatively u0 = −3. Therefore, we can argue that the influence
of boundary conditions in the attractive non-translation-invariant case leads to
the emergence of a phase transition. More generally, if we execute simulations
on a large number of different initial configurations, we obtain the same kind of
results. However, the phase transition line on which the measure Sα is strong
is not always u0 + 2

5u1 = −2 but is always included in the triangular domain
of parameters described above. In this case, the dispersion of the measure takes



(a) (b) (c)

Fig. 7. Simulation results of the inhomogeneous attractive case when the neural
network is respectively represented by a grid (a) 11 × 11, (b) 37 × 37 and (c)
131 × 131. The first (resp. second) line of this figure presents the results when
η = 1 (resp. η = 0.5).

place around the straight line in the direction of the characteristic straight lines
delimiting the domain of phase transition.

Now, if we focus on a smaller introduction of non-translation-invariance (η =
0.5), we can highlight the same kind of phenomenon although the characteristic
straight lines delimiting the phase transition domain are u0 + 2u1 = 0 and
u0 + 5

4u1 = 0. Here also, the value of u0 for which the phase transition appears is
u0 = −3. Here too, if we execute a large number of simulations on different initial
configurations, we remark a possible rotation of the second phase transition line
in this triangular domain.

In conclusion, we can say that the loss of translation-invariance changes the
occurrence of phase transition in attractive neural networks. The results stay
coherent with those obtained in the homogeneous attractive case. Indeed, phase
transitions can occur in a neighbourhood of a straight line which corresponds to
a rotation of the one observed in homogeneous neural networks. What seems also
to be important is the appearance of a larger parametric domain of boundaries
influence which increases when we introduce more non-translation-invariance.



Consequently, it would be of interest to study more precisely these rotation and
dispersion phenomena induced by the introduction of non-translation-invariance.

• Results on inhomogeneous networks

Let us focus on the first line of Figure 7. First, we can observe that the
introduction of anisotropy leads to different results than those obtained on non-
translation-invariant neural networks. In inhomogeneous networks, being given
an initial configuration, the influence of fixed boundary conditions is observable
on a straight line and there is no dispersion of the measure Sα. Indeed, the
presented phase diagrams show that the fixed boundary conditions have an im-
pact on the straight line defined by u0 + 4

5u1 = 0. We can note that the results
stay the same with the increasing of the size of the grid. Moreover, like in all
the previous cases, it is important to remark that the value of u0 from which a
significant value of Sα is obtained is u0 = −3. Thus, we can also conclude here
that the influence of fixed boundary conditions leads to the emergence of phase
transition.

Now, by considering the second line of Figure 7, we reach the same conclusion,
except that the phase transition straight line is defined by u0 + 5

4u1 = 0. In this
case also, the results are identical whatever the size of the lattice is and the
critical value of u0 is −3.

Finally, from a more global point of view, in these two cases, if we consider a
large number of simulations on different randomly chosen initial configurations,
a small rotation of the phase transition can happen depending on the initial con-
figuration. That is why we argue that, in inhomogeneous neural networks, phase
transitions can appear in a small triangular domain of parameters (u0, u1) which
corresponds to a neighbourhood of the phase transition straight lines previously
defined. Thus, the introduction of anisotropy reduces the dispersion of the sig-
nificant values of Sα and, consequently, the appearance of phase transitions in
inhomogeneous networks happens in a smaller domain of (u0, u1), which allows
to increase the robustness of non-translation-invariant neural networks against
the influence of fixed boundary conditions.

Repulsive neural networks The objective of this subsection is to give sim-
ulation results on repulsive neural networks. The interest of this specific study
comes directly from the natural properties of regulation networks, which always
present a significant proportion of inhibition and even can be totally inhibited
like in the case of the n-switches [21,22].

First of all, let us focus on repulsive homogeneous networks. The influence
exerted by fixed boundary conditions on these networks is more complex than the
influence observed in attractive networks. The domain of parameters under which
the influence can occur is not a straight line but a parabolic domain in which the
symmetric of the straight line obtained in the attractive case is included. Thus,



(a) (b) (c)

Fig. 8. Simulation results of the repulsive case when the neural network is respec-
tively (a) homogeneous, (b) non-translation-invariant and (c) inhomogeneous.
The phase diagrams presented are those obtained for lattices 131 × 131 when
η = 1.

the action of fixed boundary conditions in such neural networks is quite similar to
the one observed on ferromagnetic systems described by the Ising model. As we
can see in Figure 8 (a), the influence of the boundary conditions takes place in a
large neighbourhood of the straight line u0+2u1 = 0 which seems to be delimited
by the two following lines : u0 ≈ 1 and u1 ≈ −1. By performing simulations
on lattices of different sizes with a random choice of initial configurations, we
have remarked that the results obtained are always qualitatively identical, which
allows to conclude in the existence of a phase transition.

Now, let us consider the adding of non-translation-invariance and/or anisotropy.
Just like in the repulsive homogeneous case, the study of the influence of bound-
ary conditions in no longer translation-invariant and/or anisotropic repulsive
neural networks shows phase transitions in a certain domain of parameters
(u0, u1) (see Figure 8 (b) & (c)). This phenomenon is quasi similar to the one
discussed in the previous paragraph. Indeed, here again, certain values of the
measure Sβ are significantly far from 0, allowing the phenomenon of phase tran-
sition to occur in a large domain of parameters that cannot be reduced to a
straight line.

However, some small differences with the homogeneous case can be pointed
out. Then, one can notice that, for these two different kinds of neural networks,
the slope is the same for the two lines delimiting the phase transition domain
but is different from the one observed in the homogeneous case (whose influence
domain slope is significantly more important). Finally, we have to notice that
the two domains of boundary conditions influence are included in the domain
observed in the homogeneous case.



Eventually, it is important to notice that the results presented in Figure 8 are
those for which we have obtained the larger domains of phase transitions. Indeed,
depending on the initial condition, other kinds of phase transitions can occur.
However, the essential point is that all these domains are always contained in the
presented ones. Thus, these numerical results allow us to conclude that, if phase
transitions occur in repulsive neural networks, they are observable in domains
corresponding to a large parabolic neighbourhood of the domains obtained in
attractive neural networks.

5 Conclusion and perspectives

This paper has presented new numerical results on phase transitions inherent
to the influence of fixed boundary conditions on complex neural networks. The
existence (or the absence) of phase transitions has been confirmed by identical
qualitative and quantitative results obtained for networks sizes of different orders
of magnitude.

Thus, simulations have confirmed the fact that no phase transition phe-
nomenon can occur when the network is one-dimensional. Moreover, in two-
dimensional networks, we observe a certain robustness of the qualitative shape
of the phase transition parametric set with respect to the isotropy breaking or
translation-invariance breaking. Despite the appearance of a triangular paramet-
ric domain under which phase transitions can occur in non-translation-invariant
and inhomogeneous attractive networks, the three different kinds of attractive
neural networks studied show that the emergence of phase transitions can hap-
pen in the neighbourhood of a straight line. On the contrary, the shape of
this parametric domain for repulsive neural networks is closer to a parabolic
one. Nevertheless, we have seen that the effect of the networks features can be
quite different according to the nature of the networks. Indeed, attractive net-
works are more sensitive to isotropy/anisotropy and translation-invariance/non-
translation-invariance than repulsive networks. The latter keep similar locali-
sation in the parametric space when their features vary. These results are of
particular interest because neural networks are generally composed by an im-
portant proportion of repulsive interactions.

There exists a lot of perspectives to this work. First of all, the first point
that seems interesting to study is what are the properties of the influence of
boundaries in graphs that correspond to the reality of biological networks. In
this research, we have voluntary reduced the problem to simple networks that
have classical properties. However, different studies [23,24] have shown that the
shape of biological networks such as neural networks or protein networks is not
close to the one of a cellular automaton on Z2. They rather have a lot of common
properties with complex networks such as scale-free or small-world networks. We
would like to know if the theoretical and simulation results that we have obtained
in this work can be applied in such more general cases.



Furthermore, what also seems to be judicious is to focus on the link between
the stochastic version and the deterministic version of the Hopfield model, by
decreasing progressively the temperature in order to let it tend to 0.

Finally, we would like to go further in the characterisation of these mentioned
phase transitions in respect to the influence of boundary conditions. Indeed, it
would be of interest to know if there exist links between boundary influence and
the percolation theory for example. We would also like to generalise our theoret-
ical method to the more complicated kinds of neural networks studied here with
only a computer-based approach. Another perspective would be to focus on more
realistic updating rules, e.g., which are block-parallel (see definition in [8]) with
each block having its own dynamics, i.e., each block does not wait the end of
the updating of all blocks to restart a new sequential updating, when the blocks
are distinct.
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