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Abstract. The purpose of this paper is to present some results about the
influence of fixed boundary conditions in biological regulation networks.
More precisely, we will present theoretical and simulation results in the
context of theoretical connected regulation networks on Zd. These re-
sults will show under which conditions phase transitions emerge from the
asymptotic behaviour of such networks when they are subjected to the
influence of fixed boundaries. Furthermore, we will expose some math-
ematical results obtained on the regulation network of the floral mor-
phogenesis of the plant Arabidopsis thaliana that explain experimental
results on the necessary presence of a Gibberellin hormone for the plant
to develop normally.
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1 Introduction

The comprehension of the behaviour of real biological systems is a difficult
problem that researchers, from many different disciplines, are now more and
more to study. Some works have highlighted the particular topology of biological
networks such as gene regulation networks [1,2]. Nevertheless, their behaviour
can be sometimes better understood by studying more theoretical networks such
as the ones of cellular automata [3]. Certain cellular automata, for instance
the Game of Life, are known to present some features very close to real life
systems. However, most researches have been focused on the comprehension
of emergent phenomena in infinite and periodic (toric) cellular automata [4,5],
which could be criticised. Indeed, living systems do not develop infinitely and
each of their components, e.g., a cell, is confined in a large but finite space. Thus,
in this presentation, we decide to focus on finite systems, with fixed boundaries
surrounding them. More precisely, we will study the influence of these fixed
boundaries on biological systems whose evolution follows extended Hopfield-like
laws [6].

After a presentation of the main notations and definitions of the biological
regulation networks models that we have decided to study, we will expose some



theoretical and simulation results obtained on regular theoretical regulation net-
works whose nodes are located at vertices of lattices on Zd. In particular, we
will show that the influence of boundaries can lead to the emergence of phase
transitions.

In a second part, in the theoretical context of dynamical systems, we will
present some results on the robustness of the attraction basins of a real biological
network against stochastic state perturbations. In particular, we will explain
mathematically the impact of a Gibberellin hormone on the gene regulation
network of the floral morphogenesis of the plant Arabidopsis thaliana.

2 Hopfield-Like Networks

In this work, we consider regulation networks whose evolution follows two
different versions of an Hopfield-like law depending on the properties that we
want to highlight. Thus, in the first part of this paper, we will focus on an
extended stochastic Hopfield rule whereas we will use in the second part an
extended deterministic Hopfield rule.

We will denote by R a connected threshold boolean network of n nodes which
are located at vertices of Zd. We assume that these nodes have two possible
activity states, defined by:

σi(t) =

{
0 if the node i is inactivated at time t,

1 if the node i is activated at time t.

Let σ(t) = (σi(t))i∈R ∈ Ω = {0, 1}n be the current configuration of the network
at time t, where Ω is the set of all possible configurations of R.

Such a network can be represented by a matrix Wn×n, called the interaction
matrix. In this matrix, the coefficient wij ∈ R represents the interaction potential
of the influence exerted by the node j on the node i.

Definition 1. The neighbourhood of a node i, denoted by Ni, is the set of nodes
j for which the interaction potential does not vanish. More formally, we have:
j ∈ Ni ⇔ wij 6= 0.

Let us denote by H(σi(t)) the activation potential of the node i at time t.
H(σi(t)) is then defined by:

H(σi(t)) =
∑
j∈Ni

wij · σj(t)

From this activation potential, we define the two following evolution rules,
the first (resp. second) one corresponding to a deterministic (resp. stochastic)
evolution of the network. In the sequel, we will speak about deterministic and
stochastic Hopfield-like models. In these two definitions, the parameter θi denotes
the activation threshold of the node i.



Definition 2. In the deterministic model, the state of the node i at time t + 1
is computed by:

σi(t+ 1) = H(H(σi(t))− θi)

where H is the Heaviside step function defined by: H(x) =

{
0 if x ≤ 0,

1 otherwise.

Definition 3. In the stochastic model, the state of the node i at time t + 1 is
computed by [7]:

P (σi(t+ 1) = α | σj(t), j ∈ Ni) =
eα·(H(σi(t))−θi)/T

1 + eα·(H(σi(t))−θi)/T

where α ∈ {0, 1} and T is the temperature of the network R.

Eventually, let us remark that, when T = 0, we recover the determinis-
tic model. On the contrary, when T tends to infinity, the nodes are activated
with probability 1

2 whatever their neighbours’ state is. T actually increases the
randomness in the network, until it becomes equiprobable for the nodes to be
activated or inactivated.

3 Boundary Conditions and Phase Transitions

In this section, we are going to expose some theoretical and simulation results
about the influence of fixed boundaries on theoretical networks (regular and
connected networks whose nodes are located at vertices of Zd) whose evolution
is ruled by the stochastic model. We are not going to give the details of these
results but only present the main ideas to obtain them. However, we will cite
the papers, already published or accepted but needing to be revised, in which
details such as the proofs of the theorems and the simulation protocol are given.

3.1 Definitions

What is called fixed boundary in a theoretical network is the set of nodes j of
Rc = Zd\R (the complementary of R in Zd) such that: ∃i ∈ R s.t. j ∈ Ni and i /∈
Nj . Moreover, there exist different local updating iteration modes. The mode is
called parallel when all the nodes of the network are updated simultaneously at
time t; it is called sequential when only one node is updated at time t and all
the n nodes are updated after n iterations of time; it is called block-sequential
when the network is divided in several blocks (disjoint subsets of vertices) and
when these blocks are updated sequentially and the nodes into these blocks are
updated simultaneously. Let us remark that the parallel an sequential modes are
particular block-sequential modes.



3.2 Theoretical Results

First of all, let us notice that all the presented theoretical results have been
proven for attractive (i.e., wij > 0) symmetrical (i.e., wij = wji) networks. The
results presented in this subsection are detailed in [8].

The first important theoretical result concerns the updating iteration modes
and is valid for any dimension. We prove that the emergence of a phase transition
as a result of the influence of fixed boundaries is equivalently observable in the
parallel and the sequential updating iteration modes and also in certain block-
sequential cases. The idea is to find a proportionality relation between the free
energies of such networks in Zd when the latter use a parallel or a sequential
updating rule. The proof is made by induction on different particular block-
sequential modes, by reducing the size of blocks, until obtaining the sequential
mode.

The second result is valid in one dimension. We prove that the influence of
fixed boundary conditions cannot lead to the emergence of phase transitions and
is consequently not significant in one-dimensional networks. Here, the first idea
is to reduce the Markovian matrix of the system to the one of the unique neigh-
bourhood of a node. From this, we determine under which parametric conditions
a phase transition can occur. Then, we prove that the asymptotic behaviour of
such networks is characterised for any parametric conditions by a probability
measure that is uniquely determined when the size of network tends to infin-
ity. We actually provide a proof of uniqueness of the invariant measure in these
networks.

3.3 Simulation Results

Here, the idea is to go further and to know how fixed boundaries have an
impact on more complex theoretical networks. We have decided to not limit
ourselves neither to one-dimensional networks nor to attractive and symmetrical
networks. However, because of the underlying difficulties in this new context, the
study of these more complex networks is performed by using simulations. The
results presented in this subsection can be found in [9,10].

The main results are: (i) the generalisation of the previous result on the
absence of phase transitions in attractive and symmetrical one-dimensional net-
works to repulsive (wij < 0), not symmetrical anymore, not isotropic and not
translation invariant networks; (ii) the numerical highlighting of the existence
of phase transitions in two dimensions and the study of their geometrical shapes
depending on two parameters for six different kinds of theoretical networks.

Figure 1 presents the results obtained for isotropic, translation invariant and
attractive two-dimen-sional networks when they are represented by square lat-
tices of different sizes.

4 Robustness of Attraction Basins

The studied biological regulation networks being particular discrete dynam-
ical systems, before presenting results of robustness on these networks, we are
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Fig. 1. Simulation results of the isotropic, translation invariant and attractive
case when the network is respectively represented by a square grid (a) 11×11, (b)
37×37 and (c) 131×131. The results are presented on the domain of parameters
u0 = [−10, 0] and u1 = [0, 5] with a resolution of 0.05 where wii = u0 and
wij = u1.

going to give some useful definitions coming from the dynamical systems theory.
Let us note that, in this section, we will focus on biological regulation networks
whose evolution is ruled by the deterministic model.

4.1 Definitions

A deterministic discrete dynamical system is a triple (X,T, f) where X is
the configurations space, T = Z is the time space and f is a deterministic flow
defined by f : X × T 7→ X. Let us consider a configuration x of X and apply
successively to it a flow f . Since the space of configurations is a finite set and
f is deterministic, it is trivial that x evolves in a finite time towards either
a configuration which cannot evolve anymore, i.e. a fixed point, or a sequence
of configurations which repeat themselves indefinitely, i.e., a limit cycle. These



particular sets of configurations are called the attractors of the system. Let us
now consider an attractor A. We will denote by B(A) the subset of X such as
all its elements have their limit set of f(x, T ) in A. B(A) is called the attraction
basin of A.

Definition 4. The eccentricity ε(v) of a graph vertex v in a connected graph G
is the maximum graph distance between v and any other vertex u of G.

In real biological regulation networks, the boundary is defined by the set of
nodes of maximal eccentricity. We are now going to show the neccessity of the
presence of a Gibberellin hormone in the gene regulation network of the floral
morphogenesis of the plant Arabidopsis thaliana. Indeed, we are going to show
that the plant cannot develop normally without the hormone.

4.2 Influence of a Hormone on the Floral Development of
Arabidopsis thaliana

We have to precise that we work on a gene regulation network that is an
extension of the Mendoza network [11] obtained thanks to new biological data
found in the literature. Then, let us note that the hormone (GA) tends to inhibit
the protein RGA which is a boundary node of the network. So, we are going to
present the differences existing between the behaviour of the network when the
state of RGA is fixed to 0 or not. In particular, we are going to emphasise the
links between RGA and the attraction basins. The complete description of the
variation around the Mendoza network on which this work is based and the
following results are published in [12,13].

Let us note that the dynamics of the networks when the updating iteration
mode is sequential bring to eight fixed points. Two of them correspond to the
sepal tissue, one to the petal tissue, one to the carpel tissue, one to the stamen
tissue, two to the inflorescence tissue and one to a tissue that has never been
seen by experimentation.

First of all, we focus on the impact of the fixed inhibition of RGA on the
size of the attraction basins of the network and we measure the relative sizes of
the attraction basins. The influence of the fixed inhibition of RGA thanks to the
repressive flow of Gibberellin significantly reduces the important disequilibrium
induced by potential state changes of RGA and increases the probability to
choose an initial configuration in a floral lineage attraction basin. Consequently,
the presence of the hormone GA improves the chances that the plant has to
develop normally.

Then, to go further in the direction of the comprehension of the GA influence
on the floral morphogenesis of Arabidopsis thaliana, we develop a stochastic pro-
tocol that measures the probabilities that initial configurations have to change
their attraction basins when they are subjected at the begining to probabilistic
state pertubations. As a result, we obtain the characteristic polynomials of the
probabilities depending on the parameter α that corresponds to the state per-
tubation rate. These results confirm the results obtained on the influence of the



fixed activation of the protein RGA on the relative sizes of attraction basins and
allow us to prove mathematically the results obtained by biologists by experi-
mentation and presented in [14]. They also give indications to improve the gene
regulation network in order to make it more realistic.
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6 Conclusion and Perspectives

This work has shown the influence of fixed boundaries on theoretical and
biological regulation networks. From the biological point of view, this study is
of interest because fixed boundaries can be considered as an external magnetic
field, a chemical potential, or even an external activity exerted on the considered
population of genes for instance.

If we consider the first part on the theoretical regulation networks, it would be
useful to focus on the link between the stochastic and the deterministic Hopfield-
like models. Another objective would be to generalise the theoretical method to
the complicated kinds of networks studied with a computer-based approach.
Concerning the second part on the robustness of the attraction basins of the
network modelling the floral morphogenesis of Arabidopsis thaliana, one of the
main perspectives would be to implement the stochastic protocol in a Monte-
Carlo algorithm in order to make it possible to study larger biological networks.
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