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Abstract. This paper aims at giving a general and precise method to
achieve a good understanding of discrete dynamical systems by focusing
on their attraction basins. This work is the result of a previous one which
has permitted to show that the structural changes introduced by fixed
boundary conditions on regulatory networks could directly and strongly
influence the properties of their attraction basins. In this paper, we give
an exhaustive stochastic study protocol to understand what happens on
attraction basins of dynamical systems when the latter are subjected
to state perturbations. Then, we give an application of this protocol
by giving the results obtained on a specific system which is a model of
the Arabidopsis thaliana flower’s morphogenesis, depending on a specific
boundary condition.
Keywords: Complex systems, robustness, boundary conditions, stochas-
tic protocol.

1 Introduction

Questions on robustness of dynamical systems and more precisely of complex
systems tend to become central in many disciplines. Intending to answer these
questions seems to be crucial to understand the dynamical behaviour of such
systems. Besides, relevant researches deployed on this thematic in various fields,
attached to highlight the robustness of complex systems in different contexts,
from the robustness as a consequence of the structural complexity of real net-
works to the robustness against updating iteration or topological perturbations,
are numerous in the literature (see for example [1,2,3,4,5]).

In [6], the authors exposed three relevant kinds of robustness in the context
of theoretical biology that seem to be of interest in more general frameworks,
concerning the influence of changes in updating rules, architecture constraints
or boundary conditions. In a previous work, we decided to focus on the last
one and we argued that the dynamics of biological networks, and more gener-
ally of complex systems, is certainly regulated by fixed boundaries, illustrated
for instance by external magnetic fields, chemical potentials or environmental



constraints. In [7], we focused on threshold Boolean networks and emphasised
the influence of fixed boundary conditions on the attraction basins of a specific
biological regulatory network describing the flower’s morphogenesis of the plant
Arabidopsis thaliana. Indeed, we have mathematically pointed out the impact of
the hormone Gibberellin on the size of attraction basins of this system but also
on the distances separating them.

In this context of robustness in complex dynamical systems, we propose in
this paper to go further by presenting a stochastic protocol giving the exact abil-
ity for a configuration of a certain attraction basin to fall into another basin when
it is subjected to a state perturbation defined thanks to a parameter denoted by
α and called the state perturbation rate. We show also that such an exhaustive
study allows to obtain probabilities for a perturbed trajectory to keep or change
its basin in an exact polynomial form which seems to be a good mathemati-
cal representation for the treated problem. Moreover, in a context of theoretical
biology, we present an application of this protocol in order to characterise the
influence of a fixed boundary on the dynamics of a genetic regulatory network
modelling the flower’s morphogenesis of Arabidopsis thaliana.

In this paper, Section 2 will give the necessary definitions about dynamical
systems and oriented graphs to broach the discussion on the notion of state
perturbation and exhaustive protocol allowing to characterise the probabilities to
go across the different basins of attraction exposed in Section 3. Then, Section 4
will expose the complementary results (from [7]) on the flower’s morphogenesis
of Arabidopsis thaliana obtained thanks to this protocol before concluding and
giving the main perspectives in Section 5.

2 Preliminary definitions

The systems ruled by interactions between elements taking place over time
are called dynamical systems. In this work, we focus more precisely on dynamical
systems whose underlying time is defined on a discrete space which are called
discrete dynamical systems. More formally, a discrete dynamical system is defined
by a triple (X,T, f), where:

– X is a finite set, called the space of configurations,
– T equals Z and is called the time space and
– f is the flow generated by a map F : X × T 7→ X and satisfies f(x, 0) = x

and f(f(x, t1), t2) = f(x, t1 + t2), where f(x, t) denotes the state reached at
time t on the orbit f(x, T ) starting in state x at time 0.

Let us consider a subset A of X and denote by B(A) the basin of attraction of
A. B(A) is the subset of X such as all its elements have their limit set of f(x, T )
in A, this limit set being the subset of X whose elements evolve towards a
configuration of A after a succession of applications of the flow f . Furthermore,
let us consider a configuration x of X and apply successively to it a flow f .
Since the space of configurations is a finite set, whatever the flow f is, it is



trivial that x evolves in a finite time towards either a configuration which cannot
evolve anymore, i.e. a fixed point, or a sequence of configurations which repeat
themselves indefinitely, i.e., a limit cycle. As in [8], in this work, we do not impose
the Poincaré’s restriction defining a limit cycle as having inevitably a non empty
attraction basin. These two particular kinds of configurations, resulting from
successive applications of the flow f on a discrete dynamical system are called
the attractors of the system.
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Fig. 1. Transitions in the space of configurations of a discrete dynamical system
admitting four different attractors A1 (a fixed point), A2 (a limit cycle of length
7), A3 (a fixed point) and A4 (a limit cycle of length 2). The four corresponding
attraction basins B(A1), B(A2), B(A3) and B(A4) are separated from each other
by plain black lines (the basins frontiers), the black dots represent the different
configurations belonging to the space of configurations and the arrows illustrate
the transitions between the configurations resulting from the applications of f .

A standard mathematical representation of a discrete dynamical system is by
the use of a graph whose vertices (resp. edges) represent the components (resp.
interactions) of the system; in the context of networks, we will speak about nodes
(resp. bonds). Let us recall briefly the major graph definitions [9] used in this
paper. Let be G = (V,E) an oriented graph where V is the set of vertices and
E is the set of edges.

Let vi and vj be two distinct nodes of V and P be a subset of E defined by
P = {e1, e2, . . . , el}. P is a path from vi to vj if the beginning of the edge e1
is the vertex vi, the end of the edge el is the vertex vj and the final vertex of
each edge of P is the beginning vertex of the next edge of P . The length of a
path equals the number of edges that compose it. The L1-distance between two
vertices vi and vj is the length of the shortest path from vi to vj . The eccentricity
of a vertex vi is the maximum L1-distance between vi and any other vertex of
the graph G. The minimal not null eccentricity of the graph is called the graph
radius and the maximum eccentricity of G is called the diameter of the graph.



The centre of a graph G is the set of vertices whose eccentricity equals the
graph radius. We will say that such vertices are central. In the same way, the
boundary of a graph G is the set of vertices whose eccentricity equals the graph
diameter. We will say that such vertices are peripheral. As it is exposed in [7],
the algorithm for the computation of the centre of an arbitrary graph is of
important time complexity. In the general case, it needs O(|V |3) operations. In
the case of sparse graphs, i.e., where |E| is significantly less than |V |2, thanks
to the algorithm of Johnson [10], this number of operations can be reduced to
O(|V |2 · log|V |+ |V | · |E|).

In this work, we have decided to restrict our study to threshold Boolean
networks following the Hopfield law [11] which are particular kinds of discrete
dynamical systems. This choice comes from our wish to be clear enough in the ex-
planation of the protocol exposed in Section 3 and its presentation will show that,
despite this restriction, it is applicable in all kinds of either continuous or dis-
crete dynamical systems because of the genericity of the notions used. So, let us
consider such an arbitrary network represented by the oriented graph G = (V,E)
and composed hence by |V | nodes and |E| bonds between these nodes. Each node

has two possible activity states defined by: ∀i ∈ V, σi(t) =

{
0 if i is inactive

1 else
,

if σ(t) = (σi(t))i∈V ∈ Ω = {0, 1}|V | is the current configuration of the network
G at time t.

The interactions between nodes are captured in an interaction matrix de-
noted by W|V |×|V | in which the coefficient wij ∈ R represents the interaction
weight that the node j has on the node i. If wij is negative (resp. positive),
the node j is called an inhibitor (resp. activator) of the node i (if it is null, j
does not act on i). Furthermore, Ni represents the neighbourhood of the node i
and is formally defined by: i, j ∈ V ; j ∈ Ni ⇔ wij 6= 0. We can now define the
temporal evolution of such a network. The deterministic version of the Hopfield
law is defined by:

σi(t+ 1) = H(Hi(σ(t))− θi)

where H is the Heaviside step function (H(x) = 1 if x > 0 and H(x) = 0 if
x ≤ 0), Hi(σ(t)) =

∑
j∈Ni

wij ·σj(t) is the activation potential of the node i and
θi ∈ R is its activation threshold. Less formally, the state of the node i at time
t + 1 equals 1 if its activation potential at time t is greater than its activation
threshold.

3 Protocol

The purpose of this section is to present a solution for measuring the ability
of a discrete dynamical system to change its behaviour depending on state per-
turbations, i.e., for measuring how its configurations can fall out their attraction
basins due to these perturbations.



3.1 Known hypotheses

First, let us give the definitions and the hypotheses on which the protocol is
based and conserve the notations given above. Consequently, let us consider an
arbitrary threshold Boolean network denoted by G = (V,E). We assume that the
step of capture of the m attractors (and thus the one of the m attraction basins)
has already been executed by simulating the dynamics of the network by succes-
sive applications of the given deterministic transition rule on all the 2|V | possible
initial configurations. So, we get a perfect knowledge of the m basins of attrac-
tion of G and we know for each possible initial configuration its corresponding
attraction basin. We denote these m attraction basins by B1, B2, . . . , Bm. As we
focus on the changes of behaviour of such a network depending on state pertur-
bations, we define α = [0, 1] as the uniform probability for a node to change its
state. We will call this probability the state perturbation rate.

Let k ∈ {0, . . . , |V |} be the number of nodes changing their state during the
state perturbation of a configuration. For a given configuration and a given value
of k, the set Kk of all the possible state changes is the set of all the possible
choices of k elements in a set of |V | elements. The cardinal of this set is thus
exactly the binomial coefficient:

|Kk| =
(
|V |
k

)
3.2 Protocol core

With these first elements, we can define the probability for a configuration
c to become the configuration c′ differing from c only on a set of k nodes de-
noted by pk. This probability is binary because the perturbation pk makes the
configuration c to become the configuration c′ or not and is consequently given
by:

P (c→ c′ | pk) = 0 or 1

From this, it is easy to define the global probability for c to become c′ if we
consider all the possible state changes for a given value of k. This probability is
computed by:

P (c→ c′|k) =

∑
pk∈K P (c→ c′ | pk)(

|V |
k

)
Furthermore, the probability to execute k state changes in a configuration c

depending on the value of the state perturbation rate α is defined by:

Pα(k) =

(
|V |
k

)
· αk · (1− α)n−k

We can now define the probability depending on the state perturbation rate
α for a configuration c to become the configuration c′. This probability is:

Pα(c→ c′) =

|V |∑
k=0

(P (c→ c′|k) · Pα(k))



The probability for the configuration c to become a configuration being a
part of the attraction basin Bj is directly obtained from the previous one and is
defined by:

Pα(c→ Bj) =
∑
c′∈Bj

Pα(c→ c′)

To finish, we easily obtain the probability to fall over from an attraction
basin Bi to the one denoted by Bj by computing:

Pα(Bi → Bj) =

∑
c∈Bi

Pα(c→ Bj)

|Bi|

Thanks to this stochastic protocol allowing to compute these global proba-
bilities, we can obtain the characteristic polynomials of the passage probabilities
from an attraction basin Bi to another one Bj for i, j ∈ {1, . . . ,m} depending
on the state perturbation rate α. Let us finally note that the form of these char-
acteristic polynomials will be: Pα(Bi → Bj) = z|V | · α|V | + z|V |−1 · α|V |−1 · (1−
α) + . . .+ z1 · α · (1− α)|V |−1 + z0 · (1− α)|V |.

3.3 Discussion

We have just presented an exhaustive stochastic protocol bringing a new
knowledge about discrete dynamical systems and their robustness against state
perturbations. Numerous perturbations such as synchrony perturbation [3] or
topology perturbation [12] have already been studied to achieve a better under-
standing of specific discrete dynamical systems. The idea to focus also on state
perturbations comes from previous studies about the influence of fixed boundary
conditions on which we are going to say some words in the next section.

However, although the interest of such a protocol is obvious, it is necessary
to speak about a negative underlying point, its complexity. The algorithm imple-
menting this protocol is indeed of time complexity O(23|V |), which consequently
avoids its use on threshold Boolean networks composed by more than about
twenty nodes. Nevertheless, we think that its implementation by a Monte Carlo
method could be a good approximation in the context of large discrete dynamical
systems and could even give optimal results in the computation of characteristic
polynomials depending on the state perturbation rate α.

4 Application to the flower’s morphogenesis of
Ara-bidopsis thaliana

The objective of this section is to present some new results about the influence
of a hormone exerting a constant exogenous inhibiting control on a particular
boundary condition of the dynamical system modelling flower’s morphogenesis of
the plant Arabidopsis thaliana. To do that, we are going to briefly expose general
information on the model of this biological process and the results obtained
in previous studies. After this brief introduction, we will present new results
emphasising and characterising the impact of the hormone at stake.



W =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 −2 −1 0 0 0 0 0 0 0 0
0 −2 −1 0 2 1 0 0 0 0 0 0 0
0 −1 −1 5 0 0 0 0 0 −1 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
−1 0 −2 1 −2 0 −1 0 0 0 0 0 0
−1 0 0 3 0 0 0 2 1 0 0 0 −2
−1 0 0 4 0 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0



θ =



0
0
0
3
−1
1
0
0
1
−1
0
0
0


Fig. 2. Interaction matrix and threshold vector of the flower’s morphogenesis
network where lines and columns are ordered by the following sequence of nodes:
rga, emf1, tfl1, lfy, ap1, cal, lug, ufo, bfu, ag, ap3, pi, sup.

4.1 Network and previous results

In [7], we have presented a variation around the Mendoza network [13], com-
posed by thirteen nodes and thirty-three bonds, that points out the new relations
between the genes revealed by experimental biological researches since 1998 (cf.
Figures 2). The values given to the added interactions weights are minimal (i.e.,
their absolute value are equal to 1). That is the result of our wish to focus on
the structure of the network rather than on specific values that would have few
chances to be realistic whatever they would be. The diameter (resp. the radius)
of this network is 4 (resp. 1). Its boundary (resp. centre) is {lug, rga} (resp.
{lfy}). Let us note that the results exposed in the sequel are based on the study
of one of these two boundary nodes: rga. Moreover, ap3, pi and bfu are not
considered as boundary nodes as a consequence of the particular nature of their
inter-connections (bfu is a “virtual” node allowing to model the real interactions
occurring between ap3 and pi).

Thanks to the exact knowledge about the dynamics of this network, we have
shown that the fixed inactive state of the node rga has a direct influence on the
relative size of the basins of attraction and also on the distance separating them
from each others. Indeed, the effect of this fixed boundary node strongly affects
the absolute size of two attraction basins (the one corresponding to configura-
tions of sepal lineage and the other to configurations of inflorescence lineage),
significantly enlarges the relative size of three floral basins (petal, carpel and
stamen lineage) and thus causes an increase of the probabilities to choose an
initial configuration in one of these three basins (cf. [7]). This corresponds to a
first mathematical interpretation of the necessity of the rga inactivation for the
plant to develop normally.

To go further in studying the influence of this fixed boundary condition on
the development of the Arabidopsis flower, we are now going to characterise the
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Fig. 3. Graphic representations of the characteristic polynomials of the proba-
bilities, depending on the state perturbation rate α (indicated in percentage), to
fall over from the sepal (resp. inflorescence) lineage basin to the others on the top
(resp. the bottom) of the figure. The graphics on the left (resp. right) illustrate
the results obtained in the case of not fixed boundary (resp. fixed boundary).
In these representations, the name of the sepal (resp. petal, carpel, stamen, in-
florescence, new) lineage basin is abbreviated by Sep (resp. Pet, Car, Sta, Inf,
New).

robustness against state perturbations in two different cases (case 1: with not
fixed boundary; case 2: with fixed boundary) thanks to the proposed protocol.



4.2 New results

The results of [7], briefly exposed above, have shown that the global behaviour
of the floral morphogenesis of Arabidopsis thaliana is strongly affected by the
fixed inactive state of the considered boundary which even so locally changes
only two of the six attraction basins. Consequently, the sequel will particularly
present the results (illustrated in Figure 3) obtained on the probabilities to go
across the basins frontiers when the origin of the changeover is either the sepal
lineage basin or the inflorescence lineage basin.

The validation of the proposed protocol is composed by two properties:

– the sum of the conditional probabilities to change from an attraction basin
Bi to all the others (including itself) is equal to 1 and

– the one unit decreasing of the degree of the characteristic polynomials with
the forced inactivation of rga.

These two properies have been verified and the protocol has been conse-
quently validated. For instance, let us present two polynomials representing the
same probability but in the two different cases. In the case 1, the probabil-
ity to go from the sepal lineage basin to the carpel lineage basin is given by:

P
(1)
α (Sep → Car) = 1

69α
7− 2

23α
6+ 17

69α
5− 34

69α
4+ 52

69α
3− 58

69α
2+ 14

23α whereas it is

in the case 2 equal to: P
(2)
α (Sep → Car) = − 1

21α
6+ 5

21α
5− 4

7α
4+ 22

21α
3− 23

21α
2+α.

Let us consider now the chances, depending on the state perturbation rate,
to pass through the frontier of the sepal lineage basin when coming from this
basin. One can remark that the increase of the state perturbation rate brings
to significant changes (of different orders of magnitude) in the behaviour of the
system. Indeed, in the case 1, even with a state perturbation rate equal to 1,
some components (≈ 40%) of the sepal lineage basin conserve their property to
evolve towards configurations corresponding to the sepal tissue, which is not the
case with the fixed boundary. Indeed, in the case 2, these components tend to
reach the carpel lineage basin. The highlighting of this phenomenon is a first
step that emphasises a strong link existing between the sepal and carpel lineage
basins. Moreover, one can also remark that the polynomial characterising the
changeover into the inflorescence lineage basin is inferior in the case 2 than in
the case 1 and that, globally, the state perturbations balance the chances for the
system to evolve towards floral attractors (sepal, petal, carpel and stamen) in
the case 2.

Before focusing on the results obtained for the inflorescence lineage basin, let
us note that, in the bottom right graphical representation of the figure 3, the red
curve for the sepal destination is hidden by the blue one representing the results
obtained for the carpel destination.

When the origin is the inflorescence lineage basin, the first interesting point to
be underlined is that, despite the difference between their degree, the polynomials
characterising the probability to not leave the origin basin are very close contrary
to the ones that have been observed when the considered origin was the sepal
lineage basin. One of the most interesting element here is that the influence



introduced by the inactive fixed boundary is expressed by a re-equilibrium of
the high probability to go on the sepal lineage basin in the case 1 between the
lineage basins corresponding to floral tissues in the case 2.

To finish, if we consider the obtained results on the other attraction basins
that could not have been presented in this paper, we have noticed that, globally,
the initial configurations tend to disperse more in the space of configurations,
and specifically in the attraction basins corresponding to floral tissues, when the
boundary is fixed. Consequently, we think that what should be retained in the
context of the floral morphogenesis of the plant Arabidopsis thaliana is that the
presence of the fixed inactive boundary condition is a necessary condition for the
plant to develop normally. In other terms, the robustness of the flower’s mor-
phogenesis process against state perturbations is consolidated by the presence
of the fixed boundary.

5 Conclusion and Perspectives

After having emphasised in a previous paper that it was relevant to focus
on the links existing between boundary conditions and basins of attraction in
discrete dynamical systems, we have proposed in this paper a complex stochastic
protocol evaluating the probabilities to go through the attraction basins when
their initial configurations are subjected to state perturbations. This protocol has
allowed to demonstrate that the presence of an inactive boundary condition in
the network of the flower’s morphogenesis of Arabidopsis thaliana was a necessary
condition for the plant to develop normally and to be robust to some kinds of
perturbations.

So, because we think that the boundary of a system is the principal target of
exogenous controls, such as flows of morphogenes in biology or magnetic fields
in physics, this study has confirmed that their consideration was a fundamental
point for the comprehension of the robustness of dynamical systems. This is
particularly true in biological frameworks. As we know, from the biological point
of view, the relevance of this kind of study is obvious because of the not infinitely
expandable nature of vegetal or animal beings.

However, as we have discussed, the exponential complexity of the proposed
protocol make it unusable to study large dynamical systems. Consequently, the
major perspective of this work is to implement this protocol with a Monte Carlo
method in order to launch new researches in the context of robustness and the
importance to take into account the potential influence of boundary conditions
in larger systems such as large grids on Zd or other regulatory networks. Next
papers will focus on these perspectives, in a theoretical way as well as in more
applied contexts.
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