
Impact of Fixed Boundary Conditions on the
Basins of Attraction in the Flower’s

Morphogenesis of Arabidopsis Thaliana

Jacques Demongeot1, Michel Morvan2,3, and Sylvain Sené1,3
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Abstract. Variations of fixed boundary conditions have been proven to
have a significant influence in dynamical biological systems following a
Hop-field-like rule such as genetic regulatory and neural networks. Clas-
sically, theoretical studies focusing on biological systems are based on
toric networks, which does not seem to be coherent with the biological
reality. We think that the dynamics of biological networks is also regu-
lated by fixed boundaries, illustrated for instance by external magnetic
fields, chemical potentials or environmental constraints. The aim of this
paper is to go further in the study of the impact of fixed boundary condi-
tions by showing that they significantly affect the relative size of certain
basins of attraction. We argue that this is a critical point in real biolog-
ical networks by giving an example of boundary influence in the genetic
regulatory network of the flower’s morphogenesis of the plant Arabidopsis
thaliana.

Keywords: Complex systems, biological networks, boundary conditions,
basins of attraction.

1 Introduction

The robustness of complex systems tends to become a central question in
many disciplines to achieve a good understanding of some phenomena happening
in complex systems such as their ability to adapt to natural constraints. Besides,
the literature on this subject is numerous and presents a lot of relevant studies
(see [1,2] for studies in the context of theoretical biology). In a context at the
frontier between theoretical computer science and biology, the purpose of this
paper is to present a study about the influence of boundary conditions in a
specific network in order to give indications about what more generally can
happen in the underlying dynamical system.

More precisely, this paper gives indications about what happens in finite
threshold Boolean networks when they are not only regulated by the actions
of nodes able to change their state but also by the actions of fixed boundaries
which correspond to nodes whose state is fixed by their environment during all



time steps of the evolution of the system. The interest of this approach is that
such networks are closer to the reality of biological systems than infinite toric
networks. For instance, an eukaryotic cell is separated from its neighbours by the
cytoplasmic membrane. This membrane, composed by two layers of lipids, plays
the role of a boundary. However, that does not mean that interactions between
cells do not exist. Indeed, if we consider the case of a plant, it has been shown that
flows of hormones, such as auxin, propagate from cell to cell by going through
the cellular membrane in order to accelerate the cell proliferation and improve
the metabolic pathways transforming the nutrients necessary for the plant to
develop. Consequently, studying the impact of stable boundaries in biological
systems such as Hopfield-like networks seems to be relevant to understand what
happens in real systems.

In previous papers [3,4], we focused on the influence of fixed boundary condi-
tions in neural networks defined on lattices on Zd following a stochastic transition
rule, where d corresponds to the dimension of the lattices. In such a theoretical
framework, we have shown that the impact of different fixed boundary condi-
tions could not be made explicit in one dimension whereas it was the case in two
dimensions. Indeed, we have emphasised that the influence of boundary condi-
tions in square grids on Z2 was characterised by phase transitions for specific
values of parameters.

The purpose of this paper is to realise a step in the direction of biologists by
proposing an exhaustive study of the impact of a specific fixed boundary in a real
biological network whose evolution follows a deterministic transition rule. This
network models the flower’s development of a highly studied plant: Arabidopsis
thaliana. The results obtained in this case show that boundary conditions have
a significant influence as well as on the relative sizes of the basins of attraction
of this discrete dynamical system as on the relative distances between them.

In this paper, Section 2 gives the main preliminary definitions that are used
in this work. It specifically focuses on two notions: the attractors and the attrac-
tion basins of discrete dynamical systems, and also the centre and the boundary
of networks. Then, it details the properties of the model on which this study is
based on. Section 3 presents the network of our study and exposes the measures
which seemed to be relevant in order to point out the links existing between
the boundary conditions and the basins of attraction. Section 4 gives the results
emphasising that fixed boundary conditions can significantly affect the relative
sizes of the attraction basins of the dynamical system describing the develop-
mental process of the Arabidopsis thaliana’s flower. This paper will be finally
concluded by a discussion about the main perspectives of this work.

2 Definitions

The objective of this section is to give some basic definitions from the dy-
namical systems and graphs theories before detailing the model of networks on
which we decided to base our study.



2.1 Discrete dynamical system, attractor and basin of attraction

A discrete dynamical system is a system composed by elements that interact
with each others over time. More formally, a discrete dynamical system is defined
by a triple (X,T, f), where:

– X is a finite set, called the space of configurations.

– T equals Z and is called the time space.

– f is the flow generated by a map F : X × T 7→ X and satisfies f(x, 0) = x
and f(f(x, t1), t2) = f(x, t1 + t2).

Let us consider a subset A of X and denote by B(A) the basin of attraction
of A. B(A) is the subset of X such as all its elements have their limit set of
f(x, T ) in A, this limit set being the subset of X whose elements evolve towards
a configuration of A after a succession of applications of the flow f .

Furthermore, let us consider a configuration x of X and apply successively to
it a flow f . Since the space of configurations is a finite set, whatever the flow f
is, it is trivial that x evolves in a finite time towards either a configuration which
cannot evolve anymore, i.e. a fixed point, or a sequence of configurations which
repeat themselves indefinitely, i.e., a limit cycle (in the Poincaré’s definition, a
limit cycle has a non empty basin of attraction but, here, we do not impose this
restriction [5,6]). These configurations, resulting from successive applications of
the flow f on a discrete dynamical system are called the attractors of the system
(see Figure 1).

A1

A2

B(A1)

B(A2)

Fig. 1. Representation of the transitions in the space of configurations of a dis-
crete dynamical system admitting two different attractors A1 and A2, respec-
tively a limit cycle and fixed point. The black dots represent the different con-
figurations belonging to the space of configurations and the arrows illustrate the
transitions between the configurations resulting from the applications of f .



2.2 Oriented graph, centre and boundary

Biological regulatory networks are particular cases of discrete dynamical sys-
tems that have been developed to model interactions dynamics occurring between
genes, proteins or cells. One denotes by N a regulatory network made of n nodes.
Such a network can be represented by an oriented graph G = (V,E), where V is
the set of vertices (nodes) and E is the set of edges (interactions). Let us recall
the useful definitions of the graph theory in our context [7].

Let vi and vj be two distinct nodes of N and P be a subset of E defined by
P = {e1, e2, . . . , el}. P is a path from vi to vj if the beginning of the edge e1
is the vertex vi, the end of the edge el is the vertex vj and the final vertex of
each edge of P is the beginning vertex of the next edge of P . The length of a
path equals the number of edges that compose it. The L1-distance between two
vertices vi and vj is the length of the shortest path from vi to vj .

The eccentricity of a vertex vi is the maximum L1-distance between vi and
any other vertex of the graph G. The minimum and not null eccentricity of the
graph is called the graph radius and the maximum eccentricity of G is called the
diameter of the graph.

The centre of a graph G is the set of vertices whose eccentricity equals the
graph radius. We will say that such vertices are central. In the same way, the
boundary of a graph G is the set of vertices whose eccentricity equals the graph
diameter. We will say that such vertices are peripheral (see Figure 2).
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Fig. 2. Two representations of the same oriented graphG = (V,E) where |V | = 6
and |E| = 9. Its diameter equals 4, its radius is 2. The centre (in light grey) of
G is {2} and its boundary (in dark grey) is {3, 4, 5}. Let us remark that the first
representation is arbitrary whereas the second is created by placing successively
the vertices by increasing order of eccentricity.

Let us add that the computation of the centre (and consequently of the
boundary) of an arbitrary graph corresponds to the computation of all the short-
est paths for all the couples of vertices. So, in the general case, it needs a time
complexity of O(|V |3) by using the algorithm of Dijkstra [8] for each vertex.
However, in the case of sparse graphs, i.e., where |E| is significantly less than



|V |2, the algorithm of Johnson [9] is more appropriate thanks to its complexity
in O(|V |2 · log|V |+ |V | · |E|).

2.3 The model of regulatory networks

In [10], Hopfield proposed a deterministic model with collective computa-
tional abilities which seemed to show a good correspondence with real neural
networks. Lots of researches have then been deployed on Boolean networks fol-
lowing the Hopfield law in different fields of Science, from theoretical mathemat-
ical studies (e.g., about the computational power of artificial neural networks
in [11]) to applications in biology (see [12]). This section aims at presenting the
definitions of a model of genetic regulation based on the Hopfield approach.

We have decided to focus on threshold Boolean networks following the Hop-
field law, i.e., on networks whose evolution is governed by a deterministic up-
dating rule.

More precisely, the studied network N is a set of n nodes. Each node has two
possible states named activity states. If we call σ(t) = (σi(t))i∈N ∈ Ω = {0, 1}n
the current configuration of the network N at time t, the states of the nodes of
this configuration are defined by :

∀i ∈ N, σi(t) =

{
0 if i is inactive

1 else

We define Wn×n as the interaction matrix (also called the synaptic weights
matrix in the context of neural networks) giving the interaction structure be-
tween the nodes of N in which the coefficient wij ∈ R gives the interaction
weight that the node j has on the node i. When this coefficient is negative (resp.
positive), the node j is called an inhibitor (resp. activator) of the node i and
when it is null, the node j does not act on the node i. Let us also note that Ni

represents the neighbourhood of the node i in which the interaction weight that
the node j has on the node i does not vanish. More formally, we have for given
i ∈ N, j ∈ N : j ∈ Ni ⇔ wij 6= 0.

We can now define the temporal evolution of such a network. The determin-
istic version of the Hopfield law is defined by:

σi(t+ 1) = H(Hi(σ(t))− θi)

where H is the Heaviside step function (H(x) = 1 if x > 0 and H(x) = 0 if
x ≤ 0), Hi(σ(t)) =

∑
j∈Ni

wij · σj(t) is the activation potential of the node i
such that i ∈ N and θi ∈ R is the activation threshold of the node i.

Finally, let us note that there exist three different kinds of nodes updating
over time:



– The nodes of a network can be updated simultaneously at each step of time.
We then speak about the parallel updating iteration mode.

– An arbitrary sequence of nodes is fixed in advance. At each time step, de-
pending on the chosen sequence, the state of only one node is updated. This
updating iteration mode is called sequential.

– The nodes are grouped in blocks. The inter-block updating is sequential and
the intra-block updating is parallel. This corresponds to the block-sequential
case.

Let be Un the number of updating iteration modes for a network composed of n
nodes. In [13], Un is defined by:

Un =

n−1∑
i=0

(
n
i

)
· Ui where U0 = 1

3 The network and the study protocol

The purpose of this section is to present the network of the flower’s morpho-
genesis of the plant Arabidopsis thaliana on which we focus and to present the
method that we used and the parameter that we decided to study in order to
emphasise the impact of boundary conditions on the basins of attraction.

3.1 Variations around the “Mendoza network”

In 1998, Mendoza and Alvarez-Buylla isolated eleven genes of the plant Ara-
bidopsis thaliana involved in its flower’s morphogenesis: embryonic flower
1 (emf1), terminal flower 1 (tfl1), leafy (lfy), apetalata 1 (ap1),
cauliflower 1 (cal), leunig (lug), unusual floral organs (ufo), aga-
mous (ag), apetalata 3 (ap3), pistillata (pi), superman (sup). By using
a genetic algorithm in order to obtain the interactions between these genes with
their potential, they proposed a genetic regulatory network whose the mathe-
matical study of the dynamics presents a strong closeness with the reality of its
flower’s morphogenesis.

Indeed, by considering that this network follows the deterministic version of
the Hopfield law defined in Section 2 with a specific updating iteration mode, the
authors show the existence of only six basins of attraction, all leading to fixed
points. One of the most interesting points in this study is that among these six
fixed points, four exactly correspond to the four specific tissues of the flower of
this plant (sepals, petals, carpels and stamens), one corresponds to inflorescence
meristematic cells and the last one corresponds to cells that have not already
been seen in the nature but that are said to be experimentally induced (see [14]
for more details). Let us note that, in the following tables and figures, we will
speak about these six types of cells by abbreviating sepals by Sep, petals by Pet,
carpels by Car, stamen by Sta, inflorescence by Inf and the not already seen in
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Fig. 3. A new genetic regulatory network representing the flower’s morphogen-
esis of the plant Arabidopsis thaliana exhibiting the repressing power of rga on
floral genes. The repressions (resp. activations) are represented by empty arrows
(resp. full arrows) and all the nodes and interactions added to the Mendoza
network are indicated in dashed grey.

nature “cell” by New. The index 1 (resp. 2) will be associated to the not fixed
(resp. fixed) boundary case.

The network on which this study is based corresponds to the one described
in [14] in which we added all the non hypothetical interactions presented in [15]
without adding any vertex. Thus, we have added the three following inhibitions

by assuming that their potential is minimal: lfy
−1−→ emf1, ap1

−1−→ tfl1 and

tfl1
−1−→ ap1.

Furthermore, in [16], the authors emphasise that the genes ag, ap3 and pi are
the targets of an inhibition by a gene called recombination activating gene
(rga). Hence, we add one node representing rga whose activation threshold
equals 0. By assuming that rga self-activates, we add also four interactions:

rga
−1−→ ag, rga

−1−→ ap3, rga
−1−→ pi and rga

+1−→ rga. An illustration of
this new network is given in Figure 3.

Let us note that the values given to the interaction potentials are minimal
(i.e., their absolute value are equal to 1) because of our wish to focus more on
the structure of the network than on the specific values that have few chances
to be realistic whatever they are.

The diameter (resp. the radius) of this network is 4 (resp. 1) (cf. [13]). Its
boundary (resp. centre) is {lug, rga} (resp. {lfy}). Let us remark that the



particular nature of the interactions between ap3 and pi prevents their consid-
eration as central genes of the network. Since the two interactions between them
are both dependent on their states of these two genes, we decided to consider
that their eccentricity is not equal to 1 but to 1 + ε, where 0 < ε < 1 represents
the expression of the dual dependence of these two genes.

AP3

PI

AP3

PI

BFU

Fig. 4. Interpretation of the interactions between ap3 and pi for the model.

On this point, like in [14], in order to fix the impossibility for this kind
of interaction to be directly captured by the model proposed in Section 2, we
implement a “virtual” heterodimer gene named burst forming unit (bfu)
composed by the two genes ap3 and pi, that plays the role of an activating
transcription factor for them (see Figure 4).

Let us now give the threshold vector θ and the interaction matrix W where
the columns are ordered with the following sequence: rga, emf1, tfl1, lfy,
ap1, cal, lug, ufo, bfu, ag, ap3, pi, sup.

W =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 −2 −1 0 0 0 0 0 0 0 0
0 −2 −1 0 2 1 0 0 0 0 0 0 0
0 −1 −1 5 0 0 0 0 0 −1 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
−1 0 −2 1 −2 0 −1 0 0 0 0 0 0
−1 0 0 3 0 0 0 2 1 0 0 0 −2
−1 0 0 4 0 0 0 1 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0



θ =



0
0
0
3
−1
1
0
0
1
−1
0
0
0



3.2 Protocol of study

As we mentioned in the introduction of the paper, we wish to show the
influence of fixed boundary conditions in the network defined in the previous
paragraph. In this study, we essentially focus on the impact of one of the two
boundary genes, namely rga.



rga is a good candidate to be studied as a boundary of the network because
it is not only mathematically defined as a peripheral node but is also shown to
be highly regulated by a hormone named ga (for Gibberellin). So, if we consider
an arbitrary cell from which such an interaction network is isolated, the graph
distance between rga and the cell membrane from whichcomes ga is taken equal
to 1. Indeed, the distance between rga and the flow of ga is 1 and the flow go
through the cellular membrane.

To show the influence of boundary conditions in such a network, we decided
to emphasise the links existing between its boundary and its basins of attrac-
tion. To do that, we have chosen to show the differences between results obtained
when the boundary rga can change its state and when it is fixed to 0 on two
kinds of measures. The first measure that seemed to be of interest is the rela-
tive size of each basin of attraction which, for a given basin, correspond to the
probability to choose uniformly an initial configuration in this basin. The second
measure corresponds to the relative distance between the basins of attraction.
The relevance of this measure comes from the fact that it gives indications about
the probabilities for an initial configuration belonging to a basin B(i) to fall over
in a basin B(j) after perturbations. Let us consider three basins of attraction
B(i), B(j) and B(k). If the distance between B(i) and B(j) is smaller than the
distance between B(i) and B(k), small perturbations on a configuration belong-
ing to B(i) have indeed more chances to send it into the basin B(j) than to the
basin B(k).

Consequently, the protocol of our study is composed by three steps for the
two different exposed cases:

– the study of the dynamics of the network for all the 213 (resp. 212) possible
initial configurations when the boundary can evolve (resp. is fixed to 0),
i.e, the computation of the attractors and the extraction of their basins of
attraction;

– the computation of the relative sizes of these basins of attraction in terms
of number of elements and proportion;

– the computation of the distribution of the minimal Hamming distances be-
tween the basins of attraction, for all couples of attraction basins (B1, B2)
and all couples of configurations (c1, c2) respectively belonging to B1 and
B2.

Finally, as it is said in Section 2, the dynamics of a network can be studied
by using different updating iteration modes. Depending on the updating itera-
tion mode chosen to let evolve the network of Section 3, we know that we can
obtain different attractors. Indeed, by using the parallel iteration mode, the set
of attractors contains limit cycles, which is not the case by choosing sequential
iteration mode that results in the obtention of fixed points only. Let us note
that these fixed points exactly correspond to those pointed out in [14] by using
a block-sequential updating iteration mode. Consequently, as we want here to
conserve only the fixed points and since we have no experimental data about the
hierarchical place of rga in the block-sequential updating iteration mode given



in [14], we choose a simple sequential iteration mode defined by the following
ordered partition of the set of genes:
(rga)(emf1)(tfl1)(lfy)(ap1)(cal)(lug)(ufo)(bfu)(ag)(ap3)(pi)(sup)

4 Results on the basins of attraction

This section aims at detailing the three steps of our study presented in the
previous section. So, we give the dynamics of the network such that is has been
updated and we expose the significant results obtained about the relative sizesof
its basins of attraction and their relative distances when the network is subjected
to a specific boundary condition or not.

4.1 Dynamics of the network and relative sizes

With the chosen sequential updating iteration mode, in the case where rga
can change its state, the network can evolve towards the eight following distinct
fixed points whose correspondance with the cell lineages of Arabidopsis thaliana
is indicated:

(0000100000000)←→ Sep
(0000100010110)←→ Pet
(0000000001000)←→ Car
(0000000011110)←→ Sta
(0110000000000)←→ Inf
(0110000010110)←→ New
(1000100000000)←→ Sep
(1110000000000)←→ Inf

Of course, as in the work of Mendoza and Alvarez-Buylla, when we fix the
boundary rga to 0, we obtain the six first attractors above. Since only the notion
of cell lineage is relevant from the biological point of view, we choose to merge
the basins of attraction corresponding to identical lineages. So, in the sequel, in
the case of not fixed boundary, we will assume that the basin of attraction of the
sepals is the union of the basins of attraction of the fixed points (0000100000000)
and (1000100000000) and that the one of the inflorescence cells is the union of the
basins of attraction of the fixed points (0110000000000) and (1110000000000).
Thus, we exactly retrieve the number of six attraction basins in the two cases,
which allows us to realise comparisons between the results obtained in these
different cases.

Figure 5 (left) illustrates with an histogram the relative sizes in number of
configurations of the six different basins of attraction. It shows that, in the case
of the boundary fixed to 0 compared to the one of not fixed boundary, all the 212

removed configurations are parts of the two basins corresponding to the sepal
cells and the inflorescence cells. So, only the sizes of the sepal and inflorescence
basins are affected. Let us also remark that three quarters (resp. one quarter) of
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Fig. 5. Relative sizes of the six basins of attraction in (left) number of configu-
rations and in (right) proportion. For the case of not fixed boundary, the results
are presented with red boxes. For the other case, the results are presented with
green steps.

the 212 supplementary configurations in the case of not fixed boundary are parts
of sepal (resp. inflorescence) basin.

Another representation of these relative sizes gives us more information. This
representation is given in Figure 5 (right) and presents the probabilities for any
basin to choose uniformly a configuration into it. When the boundary can change
its state, we can remark a significant disequilibrium between the relative sizes of
basins of attraction. 54.91 (resp. 23.44) percent of the initial configurations leads
to sepal (resp. inflorescence) cells whereas only almost 21.09 percent of them



leads to petal, carpel and stamen cells. The forced inhibition of the boundary
highly reduces this disequilibrium since the probability for an initial configura-
tion to belong to one of the three latter cell types is multiplied by 2. Biologically,
that means that the forced inhibition of rga thanks to the repressive flow of Gib-
berellin (ga) significantly improves the chances that the plant has to develop
normally, which was experimentally proven in [16].

Consequently, these first results confirm that the dynamics of the flower’s
morphogenesis of the plant Arabidopsis thaliana is highly dependent on the state
of the boundary played in this case by rga. Now let us go further in the study
of the impact of the boundary on the basins of attraction by focusing on the
distances separating them.

4.2 Relative distances

Sep1 Sep2 Pet1 Pet2 Car1 Car2 Sta1 Sta2 Inf1 Inf2 New1 New2

Sep1/2 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.23 1.50 2.00 2.50
Pet1/2 2.61 1.71 0.00 0.00 2.71 2.71 1.00 1.00 3.63 3.21 1.50 1.50
Car1/2 1.44 1.00 2.00 2.00 0.00 0.00 1.00 1.00 2.10 1.50 2.50 2.50
Sta1/2 2.91 2.71 1.00 1.00 1.71 1.71 0.00 0.00 3.63 3.21 1.50 1.50
Inf1/2 1.33 1.33 2.33 2.33 1.33 1.33 2.33 2.33 0.00 0.00 1.00 1.00
New1/2 3.59 3.05 1.33 1.33 3.05 3.05 1.33 1.33 2.13 1.71 0.00 0.00

Table 1. Average distances between attraction basins for not fixed (resp. fixed)
boundary condition, given at the intersection of columns and rows which repre-
sent respectively the initial and the final basin. For example, the average distance
from sepal to petal basins is 2.61 (resp. 1.71).

First of all, let us give the formal definition of distance used in this pa-
per. We define the distance from a set S1 to another set S2 by d(S1, S2) =
Mini∈S1,j∈S2

(dH(i, j)) where dH(i, j) is the Hamming distance between the ele-
ments i and j.

In this subsection, we are going to analyse the relative distances between
basins of attraction, by comparing the results obtained on the not fixed boundary
case and on the fixed boundary case.

Let us focus on the average distances between basins (cf. Table 1). We remark
that we have no difference on the not fixed boundary case (case 1) and on the
fixed boundary case (case 2) for small size basins (petal, carpel, stamen and
new). Moreover, a coarse to fine study of these basins has confirmed the absence
of difference between these two cases. That is why we restreint in the sequel
our study to large size basins (sepal and inflorescence). Indeed, these two basins



show significant differences. In the case 1, the arithmetic average of the computed
distances, when the initial basin is the sepal (resp. inflorescence) one and the
final is any of the others, is equal to 2.38 (resp. 2.54) whereas, in the case 2, this
arithmetic average equals 1.96 (resp. 2.26). So, for these two basins, finer studies
on the distances are relevant.
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Fig. 6. Differences of probabilities of having a given distance (from 0 to 13) for
not fixed minus fixed boundary condition. On the left (resp. right), the initial
basin corresponds to the sepal (resp. inflorescence) cells. On the two graphics,
when, for instance, the green curve disappears, it is confounded with the violet
curve



To go further, we have focused on the differences between the probabilities
distributions of the distances. As well as for the sepal basin as for the inflores-
cence basin, the two graphics given in Figure 6 illustrate the fact that the fixed
boundary allows to highly reduce the probability to choose an initial configura-
tion far from the other basins. Let us note that, for the two large size basins and
for almost all the small distances, the differences between the probabilities distri-
butions in the case 1 minus the ones of the case 2 are negative. A first conclusion
on this point is that the fixed boundary decreases the distances between these
two attraction basins and the others and, more, increases thus the probability
for an arbitrary configuration of one of these two basins to be sensible to small
perturbations changing so its attractor.

Let us now give more details about the probabilities distributions of distances
for these two basins (see Tables 2 and 3). These tables give precise indications
about the impact of the fixed boundary condition on the dynamics of the net-
work. To illustrate this high influence, let one consider for the sepal basin the
distances separating it from the petal (i) and the carpel (ii) ones. For the inflo-
rescence basin, let we focus on the distance between it and the carpel one (iii):
(i) the forced inhibition of the boundary brings to a two units reduction of the
maximum of computed distances. In this case, 85.71 percent of the sepal configu-
rations are at distance 1 and 2 to the petal basin whereas this measure represents
only 47.83 percent of the configurations in the other case;
(ii) there too, the fixed boundary brings to a two units reduction of the maximum
of computed distances. Furthermore, in this case, all the sepal configurations are
at distance 1 to the carpel basin. In the other case, this proportion equals 60.87
percent;
(iii) the forced inhibition of the boundary gene allows a reduction of two units
of the distance. The proportion of inflorescence configurations at distance 1 to
the carpel basin is 23.33 percent in the case 1 and 50.00 percent in case 2.

Hence, globally, the fixed boundary significantly reduces some distances be-
tween the basins of attraction. The relations between basins concerned by this
general statement are: sepal towards petal, sepal towards carpel and inflores-
cence towards carpel. As we could expect, the significant changes occurring on
the distributions of distances between basins take place on basins whose relative
size in number of configurations significantly changes too. Consequently, we can
expect from this study that boundary conditions may have an impact in an ar-
bitrary network, not only on the relative sizes of their basins of attraction but
also on the distances between them.

5 Conclusion and perspectives

After having studied the influence of boundary conditions on stochastic neu-
ral networks in previous papers, we have presented here some results about the
important impact that these conditions may have on the dynamics of real bi-
ological networks. More precisely, we have presented some elements about the



dH = 1 dH = 2 dH = 3 dH = 4 dH = 5 dH = 6

Pet1 17.39 30.43 30.43 17.39 4.36 0.00
Pet2 42.86 42.86 14.28 0.00 0.00 0.00
Car1 60.87 34.78 4.35 0.00 0.00 0.00
Car2 100.00 0.00 0.00 0.00 0.00 0.00
Sta1 4.35 30.43 39.13 21.74 4.35 0.00
Sta2 0.00 42.86 42.86 14.28 0.00 0.00
Inf1 66.66 33.33 0.00 0.00 0.00 0.00
Inf2 66.66 33.33 0.00 0.00 0.00 0.00
New1 0.00 14.49 33.33 33.33 15.94 2.90
New2 0.00 28.57 42.86 23.81 4.76 0.00

Table 2. Probabilities (in percentage) distribution of the distances between the
sepal basin to the other basins of attraction. The index 1 (resp. 2) corresponds
to the not fixed (resp. fixed) boundary case.

dH = 1 dH = 2 dH = 3 dH = 4 dH = 5 dH = 6

Sep1 76.67 23.33 0.00 0.00 0.00 0.00
Sep2 50.00 50.00 0.00 0.00 0.00 0.00
Pet1 0.00 13.33 33.33 33.33 16.67 3.33
Pet2 0.00 21.43 42.86 28.57 7.14 0.00
Car1 23.33 46.67 26.67 3.33 0.00 0.00
Car2 50.00 50.00 0.00 0.00 0.00 0.00
Sta1 0.00 13.33 33.33 33.33 16.67 3.33
Sta2 0.00 21.43 42.86 28.57 7.14 0.00
New1 26.67 40.00 26.67 6.66 0.00 0.00
New2 42.86 42.86 14.28 0.00 0.00 0.00

Table 3. Probabilities (in percentage) distribution of the distances between
the inflorescence basin to the other basins of attraction. The index 1 (resp. 2)
corresponds to the not fixed (resp. fixed) boundary case.

links existing between boundary conditions and the basins of attraction of a spe-
cific genetic regulatory network. Indeed, we have not only emphasised that fixed
boundary conditions can highly change the relative sizes of basins of attraction
but also that they get some reduction properties which have been highlighted
with the notion of distance between basins.

So, this study has shown that it seems judicious to generalise this approach
to wider studies on discrete dynamical systems in order to go further in the
comprehension of their robustness face to environmental constraints and to find
generic rules available for a large class of such systems. According to us, the
boundary of a network is the principal target of exogeneous controls, such as
flows of morphogenes in biology or magnetic fields in physics.



The perspectives of this work are numerous and we are thus only going to
expose two of them which seem to be among the most interesting from our point
of view.

In order to realise a link between our theoretical studies on stochastic neural
networks and this study showing both of them an important impact of boundary
conditions, it would be relevant to choose a standard theoretical framework such
as lattices on Zd and to apply to them the deterministic transition rule presented
in this paper. The objective would evidently be to compare the results obtained
with this deterministic rule to a stochastic one parameterised to be close to the
latter (the reaching of a limit value of this parameter allowing for example to
get the deterministic rule from the stochastic one).

Another perspective has been slightly introduced in the Section 3 of this
paper. It would consist in the creation and the application of an exhaustive
protocol computing the probabilities to go from basins to others in function of
a parameter α representing the probability for a node of the network to change
its state. Next papers will focus on these perspectives.
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3. Demongeot, J., Jézéquel, C., Sené, S.: Boundary Conditions and Phase Transitions

in Neural Networks. Theoretical Results. Neural Networks (Submitted in 2007)
4. Demongeot, J., Sené, S.: Boundary Conditions and Phase Transitions in Neural

Networks. Simulation Results. Neural Networks (Submitted in 2007)
5. Cosnard, M., Demongeot, J.: Attracteurs : une approche déterministe. C.R. Acad.
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