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Abstract

In this paper, we study the e↵ect of (a)synchronism on the dynamics of el-
ementary cellular automata. Within the framework of our study, we choose
five distinct update schemes, selected from the family of periodic update
modes: parallel, sequential, block sequential, block parallel, and local clocks.
Our main measure of complexity is the maximum period of the limit cycles in
the dynamics of each rule. In this context, we present a classification of the
ECA rule landscape. We classified most elementary rules into three distinct
regimes: constant, linear, and superpolynomial. Surprisingly, while some
rules exhibit more complex behavior under a broader class of update schemes,
others show similar behavior across all the considered update schemes. Al-
though we are able to derive upper and lower bounds for the maximum period
of the limit cycles in most cases, the analysis of some rules remains open.
To complement the study of the 88 elementary rules, we introduce a numeri-
cal simulation framework based on two main measurements: the energy and
density of the configurations. In this context, we observe that some rules
exhibit significant variability depending on the update scheme, while others
remain stable, confirming what was observed as a result of the classification
obtained in the theoretical analysis.
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Asymptotic Complexity

1Partial results of this work were presented at the international conference LATIN 2024
(Latin American Theoretical Informatics) [1]

Preprint submitted to Chaos, Solitons and Fractals January 4, 2025



1. Introduction

Cellular automata are collections of discrete state entities (the cells) ar-
ranged over a grid that interact with each other according to a local rule over
discrete time. They were first introduced by Ulam and Von Neumann in the
1940s [2] following from automata networks which were defined by McCulloch
and Pitts in the same decade [3]. From there, fundamental results have been
obtained such as the introduction of the retroaction cycle theorem [4], the self
organizing behavior [5], the Turing universality of the model itself [6, 7], the
structure of the space of elementary cellular automata [8], the undecidability
of all nontrivial properties of limit sets of cellular automata [9], hierarchy of
certain cellular automata [10]. While CA are simple models, they are able
to exhibit great complexity which ranges from biology and health sciences,
as a representational model of disease spreading [11] and its impact[12], to
social models [13, 14], to parallel and distributed computation [15, 16], to
physics [17].

Despite major theoretical contributions having provided since the 1980s a
better comprehension of these objects [18, 7] from computational and behav-
ioral standpoints, understanding their sensitivity to (a)synchronism remains
an open question on which any advance could have deep implications in
computer science (around the themes of synchronous versus asynchronous
computation and processing [19, 20]) and in systems biology (around the
temporal organization of genetic expression [21, 22]). In this context, nu-
merous studies have been published by considering distinct settings of the
concept of synchronism/asynchronism, i.e. by defining update modes which
govern the way automata update their state over time. For instance, Kau↵-
man [23] and Thomas [24] modeled biological regulation networks with au-
tomata networks, while (a)synchronism sensitivity has been studied per se

according to deterministic and non-deterministic semantics in [25, 26, 27, 28]
for a family of automata networks and in [29, 30, 31] for cellular automata
subject to stochastic semantics. In particular, Fatès proposed a classification
of elementary cellular automata under stochastic fully asynchronous update
modes [30].

Our Contribution

Since the aim of this paper is to increase the knowledge on asynchro-
nism sensitivity, elementary cellular automata were chosen because they are
a family of restricted and “simple” cellular automata, which has been well
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studied [32, 33, 34]. By studying ECA we can put the focus on the periodic
update modes (from the classical parallel update mode to a family of more
general ones known as local clocks [35]) and their impact over the dynamics.
Here, we approach the subject with ideas derived from [36, 37] and pay atten-
tion to the influence of update modes on the resulting asymptotic dynamical
behavior, in particular in terms of the maximal period of limit cycles. Addi-
tionally, for rules whose behavior is too complex to analyze directly, we have
ran computational experiments that used measures of density and energy to
study their asymptotic dynamical behavior. For these experiments we have
implemented a number of update modes per family, for three di↵erent orders
of magnitude of ring sizes.

In this paper, we highlight formally that the choice of the update mode
can have a deep influence on the dynamics of systems. In particular, two
specific elementary cellular automata rules, namely rules 2 and 184 (the
tra�c rule) as defined by Wolfram’s codification, are studied here. These
rules were chosen because the results obtained require proofs which serve as
example of how to obtain similar results for other rules that are mentioned
in their respective section. In particular, the tra�c rule also emphasizes
sensitivity to (a)synchronism.

Note that both rules belong to the Wolfram’s class II [32], which means
that, according to computational observations, these cellular automata evolve
asymptotically towards a “set of separated simple stable or periodic struc-
tures”. Since our (a)synchronism sensitivity measure consists in limit cycles
maximal periods, Wolfram’s class II is naturally the most pertinent one in
this context.

Secondly, we have run computational experiments over rules 90 and 150
(of Wolfram’s class III) and rules 54 and 110 (of Wolfram’s class IV) to discuss
the influence of di↵erent update modes over rules whose dynamics is already
known to be too chaotic (class III) or too complex (class IV) to show jumps
in asymptotic complexity as a result of the influence of the di↵erent update
modes. Instead, we show the changes (or lack thereof) in their dynamics by
way of showing whether there are changes in the evolution of density and
energy.

Structure of the Paper

In Section 2, the main definitions and notations are formalized. The
emphasizing of elementary cellular automata (a)synchronism sensitivity is
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presented in the first part of Section 3 through demonstrations that set an
upper-bound for the limit cycle periods of rules 2 and 184 depending on dis-
tinct families of periodic update modes. In the second part, experimental
results for rules 90, 150, 54 and 110 under di↵erent update modes are pre-
sented, using measures of density and energy. The paper ends with Section 4
in which we discuss some perspectives of this work.

2. Preliminaries

General notations. Let JnK = {0, . . . , n�1}, let B = {0, 1}, and let xi denote
the i-th component of vector x 2 Bn. Given a vector x 2 Bn, we can denote it
classically as (x0, . . . , xn�1) or as the word x0 . . . xn�1 if it eases the reading.

2.1. Cellular automata and elementary cellular automata

In broad terms, a cellular automata (CA) of size n is a collection of n
cells that we will represent by the set JnK, each of which will have a state
within the alphabet Q. The cells interact with each other over discrete time
according to a rule which is defined by the state of the cells in their respective
neighborhood. A configuration x is an element of Qn. Formally, a CA is a
tuple (Zd, Q,N, F ) composed of

Zd the d�dimensional cellular space, also known as grid, which can be
finite or infinite,

Q the finite set of states that a cell can have, called the alphabet,

N the neighborhood, which associates a cell of the grid with its neigh-
bors,

F the global rule, which is defined by local functions fNi
i ! Q, where

fi is the i�th component of F and Ni is the neighborhood of cell i.

An elementary cellular automata (ECA) is a kind of CA such that the
grid is 1�dimensional, the alphabet is B, the local function fi is the same
for the entire grid and it depends on the state of the cells i� 1, i itself, and
i+ 1. From where it follows that there are 22

3
= 256 distinct ECA, of which

there are 88 that are not equivalent through symmetry [8].
As previously stated, the grid can be either infinite or finite. In this paper

we have chosen to work with finite ECA, which e↵ectively mean that the grid
will be viewed as a 1�dimensional torus, that is, a ring of integers modulo
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Figure 1: Illustration of the execution over time of local transition functions for a CA
of size 4 according to (left) µbs = ({1}, {0, 2}, {3}), (center) µbp = {(2), (1, 0, 3)}, and
(right) µlc = ((3, 2, 1, 2), (1, 0, 0, 1)). The X symbols indicate the moments at which the
automata update their states; the vertical dashed lines separate periodical time steps from
each other.

n: Z/nZ. As such, the neighborhood of cell 0 will be {n � 1, 0, 1} and that
of cell n� 1 will be {n� 2, n� 1, 0}.

Having defined ECA, we will now define the functions that govern the
order in which we will execute the local functions on each cell, and the
families in which we can group them.

2.2. Update modes

When we determine the order in which the cells of a CA are updated,
we are defining an update mode (also called update schedule or scheme).
We will work with deterministic and periodic update modes, because their
structure allow for a kind analysis that stochastic update modes. In broad
terms, given a CA over a grid of size n, we can define a deterministic (resp.
periodic) update mode as an infinite (resp. finite) sequence µ = (Bk)k2N
(resp. µ = (B0, . . . , Bp�1)), where Bi is a subset of JnK for all i 2 N (resp.
for all i 2 JpK). An update mode µ can also be defined as a function µ? :
N ! P(JnK), which associates each time to a subset of JnK such that µ?(t)
corresponds to the cells that are updated at each time t. Furthermore, when
µ is periodic, there exists p 2 N such that for all t 2 N, µ?(t+ p) = µ?(t).

We will consider three families of update modes: the block-sequential
ones [18], the block-parallel ones [38, 39] and the local clocks ones [40]. Up-
dates induced by each of them over time are depicted in Figure 1.

A block-sequential update mode µbs = (B0, . . . , Bp�1) is an ordered par-
tition of JnK, with Bi a subset of JnK for all i in JpK. Informally, µbs

defines an update mode of period p separating JnK into p disjoint blocks
so that all cells of a same block update their state in at the same time
while the blocks are iterated in series. The other way of considering µbs is:
8t 2 N, µ?

bs(t) = Bt mod p.
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Figure 2: Order of inclusion of the defined families of periodic update modes, where per
stands for “periodic”. Note that par is not included since it has cardinal one.

A block-parallel update mode µbp = {S0, . . . , Ss�1} is a partitioned order
of JnK, with Sj = (ij,k)0k|Sj |�1 a sequence of JnK for all j in JsK. Informally,
µbp separates JnK into s disjoint subsequences so that all cells of a same
subsequence update their state in series while the subsequences are iterated
in parallel. Note that there exists a natural way to convert µbp into a sequence
of blocks of period p = lcm(|S0|, . . . , |Ss�1|). It su�ces to define function '
as: '(µbp) = (B`)`2JpK with B` = {ij,` mod |Sj | | j 2 JsK}. The other way of
considering µbp is: 8j 2 JsK, 8k 2 J|Sj|K, ij,k 2 µ?

bp(t) () k = t mod |Sj|.

A local clocks update mode µlc = (P,�), with P = (p0, . . . , pn�1) and� =
(�0, . . . , �n�1), is an update mode such that each cell i of JnK is associated with
a period pi 2 N and an initial shift �i 2 JpiK such that i 2 µ?

lc(t) () t = �i
mod pi, with t 2 N.

We will now introduce three particular cases or subfamilies of these three
latter update mode families. The parallel update mode µpar = (JnK) in which
every cell updates its state at each time step, such that 8t 2 N, µ?

par(t) = JnK.
A bipartite update mode µbip = (B0, B1) is a block-sequential update mode
composed of two blocks such that the cells in a same block do not act on each
other (notice that if the grid is finite and the boundary condition is periodic,
then this definition induces that such update modes are necessarily associated
with grids of even size, and that there are exactly two bipartite update modes,
depending on if the even numbered cells are updated first or second.) A
sequential update mode µseq = (�(JnK)), where �(JnK) = {i0}, . . . , {in�1} is a
permutation of JnK, makes one and only one cell updates its state at each time
step so that all cells have updated their state after n time steps depending on
the order induced by �. All these update modes follow the order of inclusion
pictured in Figure 2.

Since we are focusing on periodic update modes, we need to di↵erentiate
two kinds of time steps. A substep is a time step at which a subset of cells
change their states. A step is the composition of substeps having occurred
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over a period p, that is, when all blocks have been updated.

2.3. Dynamical systems

An ECA A, with f 2 J256K, along with an update mode µ, denoted
by the pair (f, µ), define a discrete dynamical system. (f,M) denotes by
extension any dynamical system related to A under the considered update
mode families, with M 2 {par,bip, seq,bp,bs, lc, per}.

Let f be an ECA which is applied over a grid of size n and let µ be a
periodic update mode represented as a periodical sequence of subsets of JnK
such that µ = (B0, ..., Bp�1). Let F = (f, µ) be a tuple composed of the
global function f that goes from Bn to itself defining the dynamical system
related to ECA f applied over a grid of size n and update mode µ. Let
x 2 Bn a configuration of F .

The trajectory of x is the infinite path T (x)
�
= x0 = x ! x1 = F (x) !

· · · ! xt = F t(x) ! · · · , where t 2 N and

F (x) =fBp�1 � · · · � fB0 ,

with fBk
(x)i =

(
fi(x) if i 2 Bk,

xi otherwise
, 8k 2 JpK, 8i 2 JnK, and

F t(x) =F � · · · � F| {z }
t times

(x).

The orbit of x is the set O(x) composed of all the configurations which
belongs to T (x). Since f is defined over a grid of finite size and the boundary
condition is periodic, the temporal evolution of x governed by the successive
applications of F leads it to eventually enter into a limit phase, i.e. a cyclic
subpath C (x) of T (x) such that 8y = F k(x) 2 C (x), 9t 2 N, F t(y) = y,
with k 2 N. T (x) is then separated into two phases, the limit phase and
the transient phase which corresponds to the finite subpath x ! · · · ! x` of
length ` such that 8i 2 J`+1K, @t 2 N, xi+t = xi. The limit set of x is the set
of configurations belonging to C (x). In the context of ECA, it is convenient
to represent trajectories by space-time diagrams which give a visual aspect
of the latter, as illustrated in Figure 3.

From these definitions, we derive that F can be represented as a graph
GF = (Bn, T ), where (x, y) 2 T ✓ Bn

⇥ Bn
() y = F (x). In this graph,

which is classically called a transition graph, the non-cyclic (resp. cyclic)
paths represent the transient (resp. limit) phases of F . More precisely, the
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Figure 3: Space-time diagrams (time going downward) representing the 3 first (period-
ical) steps of the evolution of configuration x = (0, 0, 0, 0, 0, 0, 0, 1) of dynamical sys-
tems (left) (2, µbs), and (right) (184, µbp), where µbs = ({0, 4}, {1, 6}, {2, 3, 5, 7}), and
µbp = {(0), (3), (2, 1, 6), (5, 4, 7)}, The configurations obtained at each step are depicted
by lines with cells at state 1 in black. Lines with cells at state 1 in gray represent the
configurations obtained at substeps.

cycles of GF are the limit cycles of F . When a limit cycle is of length 1, we
call it a fixed point. Furthermore, if the fixed point is such that all the cells
of the configuration has the same state, then we call it an homogeneous fixed

point.

For some of the proofs, we will need to use the following specific notations.
Let x 2 Bn be a configuration and [i, j] ✓ JnK be a subset of cells. We denote
by x[i,j] the projection of x on [i, j]. Since we work on ECA, such a projection
defines a sub-configuration and can be of three kinds:

i < j and x[i,j] = (xi, xi+1, . . . , xj�1, xj),

or i = j and x[i,j] = (xi),

or i > j and x[i,j] = (xi, xi+1, . . . , xn, x0, . . . , xj�1, xj).

Thus, given x 2 Bn and i 2 JnK, an ECA f can be rewritten as

f(x) = (f(x[n�1,1]), f(x[0,2]), . . . , f(x[i,i+2]), . . . , f(x[n�3,n�1]), f(x[n�2,0]).

Abusing notations, the word u 2 Bk is called a wall for a given dynamical
system if for all a, b 2 B, f(aub) = u, and in this work we will assume that
walls are of size 2, i.e. k = 2, unless otherwise stated. Moreover, a word u is
an absolute wall (resp. a relative wall) for an ECA rule if it is a wall for all
update modes (resp. a strict subset of update modes). We say that a rule F
can dynamically create new walls if there exits a time t 2 N and an initial
configuration x0

2 Bn such that xt(= F t(x0)) has a higher number of walls
than x0. Finally, we say that a configuration x is an isle of 10s (resp. an
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isle of 00s) if there exists an interval I = [a, b] ✓ JnK such that xi = 1 (resp.
xi = 0) for all i 2 I and xi = 0 (resp. xi = 1) otherwise.

3. Results

In this section we will present the results of our research. In the first
part we show the theoretical results, where we work towards a theoretical
classification for ECA. And in the second part we o↵er some experimental
results where we compare the dynamics of energy and density under di↵erent
update modes for some of the rules whose dynamics we have not yet been
able to classify.

3.1. Theoretical Results

The theoretical results are based on the study of complexity through the
length of the maximal limit cycle that can be reached for each pair of rule and
update mode. We have named it the asymptotic complexity of the dynamics.

We have theoretical results for 67 of the 88 non-equivalent ECA. While
we have been able to classify all rules belonging to class I, there are rules in
class II (25, 37, 57, 58, 62, 74, 154) whose limit cycles are still unbounded.
Note that while most rules belonging to class III have behaviors too chaotic
to describe theoretically, we have found one, rule 18, whose limit cycles are
bounded for all bs update modes.

3.1.1. ⇥(1)
There are 25 ECA that always reach limit cycles whose length does not

depend on the length of the ring. These are divided into two groups:

Rules that always reach fixed points, regardless of the length of the ring
or the update mode under which they are applied. These rules are: 0,
4, 8, 12, 44, 72, 76, 78, 128, 132, 136, 140, 164, 200 and 204.

Rules that can reach limit cycles of length 2, 3 or 6. The length of
the cycle does not depend on the length of the ring, and changing the
update mode cannot increase the maximum length of the cycle. These
rules are: 5, 13, 28, 29, 32, 36, 51, 77, 160 and 232.

We have omitted most proofs for these claims, since they are the result
of simple analyses of the underlying rules. Nevertheless, we will now include
two of the theorems to give an idea of how the results are obtained.
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Rule 111 110 101 100 011 010 001 000
72 0 1 0 0 1 0 0 0
76 0 1 0 0 1 1 0 0

Table 1: Definition of rules 72 and 76

Theorem 1. Rules 72 and 76 always reach fixed points.

Proof. We know that x = 0n is a fixed point, so let x = 0a11b1 . . . 0ak1bk ,
since fr(111) = 0 for r 2 {72, 76}, meaning that the configuration y = 1n

will become f(y) = 0a11b1 . . . 0ak1bk .
Since fr(011) = fr(110) = 1 and fr(001) = fr(100) = 0, for all r 2 {72, 76},
groups composed of exactly two 1’s are walls, meaning that once the word
0110 appears it will not change.
This also means that groups of ones larger than two cannot increase in size.
In any other case, groups of 1’s of size at least three will decrease in size in
each iteration until:

case 1: the group is left with exactly two ones, in which case it becomes
a wall and remains unchanging.

case 2: for rule 72, f72(010) = 0, isolated 1’s will disappear, with which
the resulting fixed points can be written as 0a

0
1110a

0
2 . . . 110a

0
k011.

case 3: for rule 76, f76(010) = 1, isolated 1’s will be preserved, meaning
that the resulting fixed points can be written as 0a

0
11b

0
10a

0
21b

0
2 . . . 0a

0
k01b

0
k0 ,

with bi 2 {1, 2}, i 2 {1, . . . , k0
}.

Theorem 2. Rule 232 always reaches limit cycles of length at most 2.

Proof. We know that x = 0n and x = 1n are fixed points, so let x =
0a11b1 . . . 0ak1bk , with a1 + b1 + · · ·+ ak + bk = n.
Since f232(010) = 0 and f232(101) = 1, if there are isolated 0’s or 1’s, then
they will disappear.
If bi > 1 with i 2 {1, . . . , k}, those groups of ones will not decrease in
size, since f232(111) = f232(011) = f232(110) = 1. Similarly, if ai > 1
with i 2 {1, . . . , k}, those groups of zeros will not decrease in size, since
f232(000) = f232(001) = f232(100) = 0. This leads to a configuration that can
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Rule 111 110 101 100 011 010 001 000
232 1 1 1 0 1 0 0 0

Table 2: Definition of rule 232

be written as x0 = 0a
0
11b

0
1 . . . 0a

0
k1b

0
k , with ai, bi > 1 for all i 2 {1, . . . , k}.

There is a special case for the parallel update schedule, where if x = (01)
n
2

and y = (10)
n
2 , then f232(x) = y and f232(y) = x, which is when we find limit

cycles of length 2.
However, even if the initial configuration is x = (01)

n
2 , we only need one cell

to be updated before or after its neighbors to give rise to a domino e↵ect
where we eventually reach a fixed point.
Indeed, if x = (01)

n
2�111, this means that the wall 111 has appeared, and

note that one of the cells on either side of the wall must be equal to 0, and
once that cell is updated, the number of consecutive 1’s will increase. So af-
ter less than n iterations, the configuration will have reached the fixed point
1n. Analogous for x = (01)

n
2�100, where the configuration reaches the fixed

point 0n.
If there is more than one cell that updates before or after its neighbors, then
the configuration x = (01)

n
2 is destroyed faster and it reaches fixed points

that can be written as x0 = 0a
0
11b

0
1 . . . 0a

0
k1b

0
k , same as before.

3.1.2. O(n)
We have found 33 ECA such that the longest cycle we can reach is directly

proportional to the length of the ring, regardless of the update mode. These
rules are: 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 23, 24, 26, 27, 33, 34, 35, 38, 40,
42, 43, 46, 50, 94, 104, 130, 134, 138, 142, 162, 168, 170 and 172.

There are three rules that behave di↵erently to the rest. These rules are
40, 168 and 172, and they are only able to reach limit cycles of length O(n)
when all cells are updated simultaneously, that is, with the parallel update
mode. If there is just one cell that is updated before or after the rest, or that
is updated more than once per iteration, the rule is no longer able to reach
these limit cycles and instead reaches fixed points for all update modes. In
simpler terms, rules 40, 168 and 172 always reach fixed points for all update
modes except the parallel one.

We have chosen to show the proof for Rule 2, since most of them follow
a similar logic.
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Rule 111 110 101 100 011 010 001 000
2 0 0 0 0 0 0 1 0

Theorem 3. (2,bs) of size n can reach limit cycles of size O(n).

Proof. Since the update mode is block-sequential, we can distinguish two
sets of cells depending on the order in which a cell is updated with regard
to its right-hand neighbor: one where µi  µi+1 and one where µi > µi+1.
Let L = {`j}Nj=1 = {i 2 {0, . . . , n� 1} | µ`i  µ`i+1} the set of cells that are
updated before or at the same time as their right-hand neighbor.

Let x = 1k0n�k be an initial configuration that has an isle of 1’s and all
the state of all other cells is equal to 0.

We can find four cases:
Case 1: The first cell of the isle updates after the one to its left the isle,
and the last cell updates before the one to its right, denoted µp�1  µp and
µq  µq+1. This means that p � 1, q 2 L. Let p � 1 = `j and q = `k, with
k = j + s (the reasoning is the same if k = j + 1).

`j�1 `j p . . . `k�1 . . . `k `k+1

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0

Since all cells between `j�1 and `j must be updated from right to left,
and f2(001) = 1, we will gain 1’s to the left until we reach `j�1. Analogously,
because f2(110) = 0 and f2(111) = 0, on the right side of the isle we will lose
1’s until we reach `j.

`j�1 `j p . . . `k�1 . . . `k `k+1

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

After the first iteration is completed, the isle is again delimited by cells
that belong to L, so the process repeats. It is easy to see that after N < n
iterations the isle will return to its position from `j�1 to `j.

Case 2: First and last cell of the isle update after the cells outside the
isle, denoted µp�1  µp and µq > µq+1. This means that p� 1 2 L.

12



`j�1 `j p . . . q q + 1 . . . `j+1

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0

Since cell lj must update before p does, and f2(001) = 1,then we gains
ones to the left, and since all cells between `j�1 and `j update from right to
left, we continue to gain ones until we reach `j�1. On the other hand, since
all cells between a `j and q also update from right to left, we will lose ones
at the right side of the isle, until we reach `j. En e↵ect, the isle moves.

`j�1 `j p . . . q q + 1 . . . `j+1

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0

Note that if there are one or more cells that belong to L inside the aisle,
then we will only lose ones starting from q until the first cell in L that it
reaches.

From here it develops following the analysis from Case 1.
Case 3: The first and last cells of the isle are updated before the one to its

left and right, respectively, denoted µp�1 > µp and µq < µq+1. This means
that q 2 L, let q = `k.

p� 1 p p+ 1 . . . `k�1 . . . `k q + 1
0 . . . 0 0 . . . 0 1 1 . . . 1 1 . . . 1 0 . . . 0

We know from Case 2 that after the first iteration we will lose 1’s from
lk to lk�1. On the other hand, since there could be a cell between p and `k
that is in L, that cell would update before its left side neighbor, meaning
that it would change its state. But we know that the first cell of the isle of
ones has to update before the one outside, so the neighborhood will be 011
and f2(011) = 0, so we also lose 1’s to both sides of the isle.

p� 1 p p+ 1 . . . `k�1 . . . `k q + 1
0 . . . 0 0 . . . 0 1 1 . . . 1 1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0

This case always leads to a fixed point.
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(a) (b) (c) (d) (e)

Figure 4: Space-time diagrams (time going downward) of configuration 0101111101010110
following rule 2 depending on: (a) the parallel update mode µpar = (J16K),
(b) the bipartite update mode µbip = ({i 2 J16K | i mod 2 ⌘ 0}, {i 2

J16K | i mod 2 ⌘ 1}), (c) the block-sequential update mode µbs =
({3, 9, 15}, {2, 4, 8, 10, 14}, {1, 5, 7, 11, 13}, {0, 6, 12}), (d) the block-parallel update mode
µbp = {(0, 1), (2, 3), (5), (6, 7), (8, 9), (10), (4, 11), (12, 13), (14, 15)}, and (e) the lo-
cal clocks update mode µlc = (P = (4, 4, 2, 4, 4, 2, 4, 4, 2, 4, 4, 2, 4, 4, 2, 4),� =
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)).

Case 4: First cell of the isle updates before the one outside and last cell of
the isle updates after the one outside of it, denoted µp�1 > µp and µq > µq+1.
This means that p, q 62 L.

p� 1 p p+ 1 . . . `j . . . `k . . . q q + 1
. . . 0 1 1 . . . 1 1 . . . 1 1 . . . 1 0 . . . 0

We know from Case 2 that we will 1’s to the left because µp�1 > µp, which
means that this case always leads to Case 3 (which leads to fixed points):

p� 1 p p+ 1 . . . `j . . . `k . . . q q + 1
. . . 0 1 1 . . . 1 1 . . . 1 1 . . . 1 0 . . . 0
. . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

Note that if there are more than one isle of 1’s in the initial configuration,
and since isles always move from right to left (going from `j to `j�1), they
cannot interact with each other under Rule 2, from where we have the result.

Corollary 1. (2, par) and (2,bip) of size n always reach limit cycles of size

at most O(n).
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Rule Parallel Sequential
Block-

Sequential
Block-
Parallel

Local
Clocks

1 ⇥(1) O(n) O(n) ⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

9 O(n) O(n) O(n) ⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

56 O(n) 1 O(n) ⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

73 ? ⇥
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

108 ⇥(1) ⇥
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

152 O(n) 1 O(n) ⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

156 ⇥(1) ⇥
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

178 ⇥(1) O(n) O(n) ⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

184 O(n) 1 O(n) ⌦
⇣
2(
p

n log(n))
⌘

⌦
⇣
2(
p

n log(n))
⌘

Table 3: Longest cycle for each rule and update mode

Proof. Parallel and Bipartite update modes are special cases of block-sequen-
tial update modes, meaning that they inherit the result.

Corollary 2. (2,bp) and (2, lc) of size n can reach limit cycles of size ⌦(n).

Proof. From Theorem 3. We have shown that we can find update modes in bs
that reach limit cycles of size O(n), and these update modes also correspond
to bp and lc. But that does not mean that it is the longest limit cycle that
can be reached.

3.1.3. ⌦
⇣
2(
p

n log(n))
⌘

In this section we will show rules for which we have found update modes
such that limit cycles of superpolynomial length can be reached. Table 3
shows the order of longest cycle one can reach for each combination of rule
and update mode, except for rule (73, par) that has limit cycles whose length
we cannot describe.
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Rule 111 110 101 100 011 010 001 000
56 0 0 1 1 1 0 0 0
152 1 0 0 1 1 0 0 0
184 1 0 1 1 1 0 0 0

Note that rules 108 and 156 have the earliest jump, going from limit cycles
of constant length with parallel update mode to superpolynomial limit cycles
with sequential update modes, unlike the rest of the rules on this list that
are only able to reach superpolynomial limit cycles under bp update modes.

Rules 1 and 178 for which the increase is more gradual, going from con-

stant, to O(n) to ⌦
⇣
2(
p

n log(n))
⌘
. Then we have rule 9, that starts with limit

cycles O(n) and then increases to ⌦
⇣
2(
p

n log(n))
⌘
.

Finally, we have rules 56, 152 and 184 which are the only ones whose com-
plexity decreases for sequential update modes and then increases for block-
sequential and then increases again for block-parallel.

To show how we have proven the results displayed on Table 3, we have
selected rule 184 (also known as the tra�c rule) to serve as an example. This
choice was made because of its particular behavior (along with the one for
rules 56 and 152, that follow the same proof), where the complexity decreases
from par to seq before increasing twice; once for bs and then again for bp.
Each of these complexities is proven in a di↵erent way and the rest of the
proofs for the rest of the rules follow similar lines of reasoning.

Theorem 4. (184, seq) can only reach homogeneous fixed points.

Proof. By definition, with sequential update mode, it is not possible for two
consecutive cells to be updated simultaneously. Let us consider an initial
configuration such that it consist of an isle of ones surrounded by zeros:
y = 1k0n�k. Since f184(000) = 0 and f184(111) = 1, we can focus on what
happens where zeros and ones meet. Without loss of generality, let us assume
that the first one is on cell 0 and the last one is on cell k�1. We will proceed
with a case-by-case analysis.

1. Case 1. The cells inside the isle update before the ones outside: µ0 > µ1

and µk�1 < µk: since f184(011) = 1 and f184(110) = 0 we have that
y1 = (1)k�`(0)n�k+`, where ` will depend on the update mode. It will
be given by the first cell going from right to left that updates before
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0 1 . . . k � ` k � `+ 1 . . . k � 2 k � 1 k k + 1 . . . n-1
1 1 . . . 1 1 . . . 1 1 0 0 . . . 0
1 1 . . . 1 0 . . . 0 0 0 0 . . . 0
...
0 0 . . . 0 0 . . . 0 0 0 0 . . . 0

Table 4: Representation of Cases 1 and 3: µ0 > µ1 or µ0 < µ1 and µk�1 < µk.

0 1 . . . k k + 1 . . . k + r k + r + 1 . . . n-1
1 1 . . . 1 1 . . . 0 0 . . . 0
1 1 . . . 1 1 . . . 1 0 . . . 0
...
1 1 . . . 1 1 . . . 1 1 . . . 1

Table 5: Representation of Cases 2 and 4: µ0 > µ1 or µ0 < µ1 and µk�1 > µk.

the one on the right, meaning that µk�` < µk�`+1.
It is easy to see that on the second iteration the isle is still on the same
case, from where we can conclude that the process repeats and the
number of ones decreases until we reach the homogeneous fixed point
0n.

2. Case 2. The cells inside the isle update before the ones outside: µ0 < µ1

and µk�1 > µk. Since f184(001) = 0, the state of the cells to the left of
the isle remain unchanged. But, since f184(100) = 1 the number of ones
can increase to the right: y1 = 1k+r0n�k�r, where r will be given by the
first cell going from left to right that updates after the one to its right,
meaning µk+r > µk+r+1. Its easy to see that for the next iteration the
ends of the isle follow the same order of updating as it had to begin
with, from where we can conclude that the isle will continue to increase
its size until it reaches the homogeneous fixed point 1n.

3. Case 3. µ0 < µ1 and µk�1 < µk. Follows the same analysis as case 1.
As it has been shown, there is no increasing or decreasing the number of
ones at the left side of the isle, because f184(011) = 1 and f184(001) = 0.
Which means that it will lose ones until it reaches the homogeneous

17



(a) (b) (c) (d) (e)

Figure 5: Space-time diagrams of configuration 0011000000011000 following rule 184 de-
pending on: (a) the parallel update mode µpar = (J16K), (b) the bipartite update mode
µbip = ({i 2 J16K | i ⌘ 0 mod 2}, {i 2 J16K | i ⌘ 1 mod 2}), (c) the block-
sequential update mode µbs = ({0, 1, 2, 5, 6, 7, 10, 11, 12, 15}, {3, 4, 8, 9, 13, 14}), (d) the
block-parallel update mode µbp = {(0, 3), (4, 5, 6, 7), (1, 8, 9, 10), (2, 14, 13, 15), (11, 12)},
(e) the local clocks update mode µlc = (P = (2, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4),� =
(0, 0, 0, 1, 0, 1, 2, 1, 3, 0, 0, 0, 1, 0, 1, 3)).

fixed point 0n.

4. Case 4. µ0 > µ1 and µk�1 > µk. The analysis is identical to case 2,
because the left side of the isle doesn’t change its behavior regardless
of if the cell inside the isle updates before or after the one outside.
Meaning that it will gain ones until it reaches the homogeneous fixed
point 1n.

Now, if we generalize this by considering any initial configuration as isles of
ones separated by zeros, we can see that every isle has to follow one of the
four previous cases, from where we can conclude that isles that follow cases
1 and 3 will disappear, while the ones that follow cases 2 and 4 will grow in
size.

Note that if an isle of type 2 reaches one of type 1 or 3 as it grows they
will combine which will result in an isle of case 3. Similarly, if an isle of case
4 reaches one of types 1 or 3, the combination of them results in an isle of
case 1.

From the previous analysis we can conclude that sequential update modes
always lead to homogeneous fixed points.

Theorem 5. (184,bs) of size n has largest limit cycles of size O(n).
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Proof. Doing a similar analysis as the one done for theorem 4, is easy to see
that (184,bs) can only reach (homogeneous) fixed points if there exist only
one group of two consecutive cells that update on the same substep.

Let µ be a bs update mode such that there is one group of (at least) three
consecutive cells that are updated simultaneously.
Let us consider an initial configuration x = 10n�1, such that the only one is
on one of the three cells that update on the same substep.
We will denote by e1, e2 the cells that update at the same substep than their
right hand neighbor (µe1 = µe2 = µe2+1), the set {ri}

j
i=1 will be the cells

that are updated after their right hand neighbor (µri > µri+1) and the set
{`i}ki=1 will be the cells that are updated before their right hand neighbor
(µ`k < µ`k+1).

We will proceed by cases, considering the order in which cells are updated
outside our group.

First case: rje1e2`k.
t = 1 the only 1 moves once cell to the right because f184(100) = 1 and
f184(010) = 0.
t = 2 the 1 advances again, but since the next cell to the right is updated
before the one on the right, we gain ones until the first cell such that µi >
µi+1, which means that it is a cell in {ri}

j
i=1. Let us call that cell r1.

t = 3 We continue to gain ones until the next cell to the right that belongs
to {ri}

j
i=1, which will be r2. In this instance, we do not lose ones to the left,

because f184(001) = 0 and f184(011) = 1.

rj e1 e2 `k . . . r1 r2
0 . . . 0 1 0 0 0 . . . 0 0 . . . 0
0 . . . 0 0 1 0 0 . . . 0 0 . . . 0
0 . . . 0 0 0 1 1 . . . 1 0 . . . 0
0 . . . 0 0 0 1 1 . . . 1 1 . . . 1
...
1 . . . 1 0 0 1 1 . . . 1 1 . . . 1
1 . . . 1 1 0 1 1 . . . 1 1 . . . 1

t 2 {4, . . . , j} Similar as to what occurs on t = 3, and because we are on
this first case, the cell to the left of e1 will have to be rj.
t = j + 1 s1 changes its state to 1, and it is the only cell whose state can
change.
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Now, let us see what happens with one 0 surrounded by ones.

t = 1 the only 0 moves once cell to the left.
t = 2 the 0 advances again, but this time we gain 0’s to the left until just
before the first cell marked with an `. Note that the cell marked with the `
has not changed yet.
t = {3, . . . , k} Analogously, the number of zeros keeps increasing until it fi-
nally reaches `k, which leaves us with two surviving 1’s.

`1 . . . rj s1 s2 `k
1 . . . 1 1 . . . 1 1 1 0 1 . . . 1
1 . . . 1 1 . . . 1 1 0 1 1 . . . 1
1 . . . 1 0 . . . 0 0 1 1 1 . . . 1
...
0 . . . 0 0 . . . 0 0 1 1 0 . . . 0
0 . . . 0 0 . . . 0 0 1 0 0 . . . 0

t = k + 1 `k becomes 0, since f110 = 0, with which the only surviving 1
is on cell s2, and we already know from the previous analysis what happens
next.

It takes j steps to go from one 1 surrounded by zeros on the position s2
to one 0 surrounded by ones, on that same position, and it takes j steps to
return to the configuration we had on t = 1 on the first analysis, and because
j + k < n, we have found limit cycles O(n).

Using the same reasoning, we can prove that a second case with `1s1s2r1
follows the same behavior and it produces limit cycles of length (j + 1) +
(k+1)  n. Similarly, cases 3 (rjs1s2r1) and 4 (`1s1s2`k) lead to limit cycles
of length (j + 1) + k < n and j + (k + 1) < n, resp.

Remark 1. Note that limit cycles in O(n) can also be found with block-se-

quential configurations with (at least) two groups of size two or more consec-

utive cells that update on the same substep.

Lemma 6 is a fundamental part of all rules that reach limit cycles of length

⌦
⇣
2
p
n logn

⌘
: we need to be able to prove that there are walls. Once we find

the walls, if we can prove that the behavior between walls is proportional to
the distance between the walls, then we have proven that the length of the

limit cycles is indeed ⌦
⇣
2
p
n logn

⌘
.
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0 0 0 1 1 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 1 1 0 0 0 0 1 1 1
0 0 0 1 1 0 0 0 0 1 1 1
1 0 0 1 1 0 1 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 1 1
1 1 0 1 0 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1 0 1 1 1
1 0 0 1 1 0 1 0 0 1 1 1

Figure 6: The four possible cases for the relative wall w = 0011.

Lemma 6. w = 0011 is a relative wall for ECA rule 184.

Proof. We proceed case by case as shown in Figure 6.
As long as the cells at the border of the w update twice before the ones

around them are updated, this order of updating preserves the word w =
0011.

Theorem 7. (184,bp) of size n can reach limit cycles of size ⌦
⇣
2
p
n logn

⌘
.

Proof. We need to start with an initial configuration that contains a wall
w = 0011, and we need to prove that we can find an update mode in bp that
preserves the relative wall.

The idea is to focus in what can happen between two walls, since by
definition of wall the dynamics of two subconfigurations separated by a wall
are independent from each other.

Let y be a subconfiguration of size k + 8 such that

y = w1y4y5 . . . yk+3w2

such that for all i 2 {i, . . . , k}, yi = 0 (resp. y0i = 1). And the block-parallel
update mode

µbp ={(y3, y0), (y1, y5, y6, y4), (y2, y7, y8, y9), (yk+5, y10, y11, y12),

(y13, y14, y15, y16), . . . , (yk+6, yk+1, yk+2, yk+3), (yk+4, yk+7)}
(1)

if k mod 4 ⌘ 0,

µbp ={(y3, y0), (y1, y5, y6, y4), (y2, y7, y8, y9), (yk+5, y10, y11, y12),

(y13, y14, y15, y16), . . . , (yk+6, yk+1, yk, yk+3), (yk+2), (yk+4, yk+7)}
(2)
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if k mod 4 ⌘ 1,

µbp ={(y3, y0), (y1, y5, y6, y4), (y2, y7, y8, y9), (yk+5, y10, y11, y12),

(y13, y14, y15, y16), . . . , (yk+6, yk�1, yk, yk+3), (yk+2, yk+1), (yk+4, yk+7)}
(3)

if k mod 4 ⌘ 2,

µbp ={(y3, y0), (y1, y5, y6, y4), (y2, y7, y8, y9), (yk+5, y10, y11, y12),

(y13, y14, y15, y16), . . . , (yk+6, yk�1, yk, yk+3),

(yk�2), (yk+2, yk+1), (yk+4, yk+7)}

(4)

if k mod 4 ⌘ 3.
We will calculate each case. If k mod 4 ⌘ 0:
— for y0, we have

y0 = (0011)(1)k (0011)

y01 = (0011)(1)k�1(0)1 (0011)

y02 = (0011)(1)k�2(0)2 (0011)

y03 = (0011)(1)k�4(0)4 (0011)

y04 = (0011)(1)k�5(0)5 (0011)

y05 = (0011)(1)k�6(0)6 (0011)

y06 = (0011)(1)k�8(0)8 (0011)
...

y0t = (0011)(1)k�t�b t
3 c(0)t+b t

3 c (0011)
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we need to use t⇤ = 3(k�8)
4

y0t
⇤
= (0011)(1)8(0)k�8 (0011)

y0t
⇤+1 = (0011)(1)7(0)k�7 (0011)

y0t
⇤+2 = (0011)(1)5(0)k�5 (0011)

y0t
⇤+3 = (0011)(1)4(0)k�4 (0011)

y0t
⇤+4 = (0011)(1)2(0)k�2 (0011)

y0t
⇤+5 = (0011)(0)k (0011)

= y

— for y, we have

y = (0011)(0)k (0011)

y1 = (0011)(1)1(0)k�1 (0011)

y2 = (0011)(1)3(0)k�3 (0011)

y3 = (0011)(1)6(0)k�6 (0011)

y4 = (0011)(1)9(0)k�9 (0011)
...

y4+⌧ = (0011)(1)9+4⌧ (0)k�(9+4⌧) (0011)

we need to consider ⌧ ⇤ = k
4 � 3

y4+⌧⇤ = (0011)(1)k�3(0)3 (0011)

y4+⌧⇤+1 = (0011)(1)k (0011)

= y0

From where T = (t⇤ + 4) + (4 + ⌧ ⇤ + 1) = k. And we can conclude that the
cycle within the two walls separated by k mod 4 ⌘ 0 is O(k).

If k mod 4 ⌘ 1, since the first cells of the configuration update in the
same order in this update mode we start with the same configurations. For
y, we have
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y = (0011)(0)k(0011)

y1 = (0011)(1)1(0)k�1(0011)

y2 = (0011)(1)3(0)k�3(0011)

y3 = (0011)(1)6(0)k�6(0011)

y4 = (0011)(1)9(0)k�9(0011)
...

y4+⌧ = (0011)(1)9+4⌧ (0)k�(9+4⌧)(0011)

Now, we need to consider ⌧ ⇤ = k�13
4 because there is a small change in the

order in which we update the cells closer to w2 (and because k is no longer
divisible by 4).

y⌧
⇤
= (0011)(1)k�4(0)4(0011)

y⌧
⇤+1 = (0011)(1)k�3(0)3(0011)

y⌧
⇤+2 = (0011)(1)k�2(01)(0011)

y⌧
⇤+3 = (0011)(1)k�1(0)1(0011)

Which proceeds exactly as the previous case, calculating from y01. This
means we can conclude that for k mod 4 ⌘ 1 the the cycle will have a length
of O(k).

If k mod 4 ⌘ 2
— for y0, we have

y0 = (0011)(1)k (0011)

y01 = (0011)(1)k�1(0)1 (0011)

y02 = (0011)(1)k�4(0)4 (0011)

y03 = (0011)(1)k�6(0)6 (0011)

y04 = (0011)(1)k�7(0)7 (0011)

y05 = (0011)(1)k�8(0)8 (0011)

y06 = (0011)(1)k�10(0)10 (0011)

y0t = (0011)(1)k�t�b t
3 c�2(0)t+b t

3 c+2(0011)
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we need to use t⇤ = 3(k�10)
4 , and it takes 5 more

iterations to return to y.
— for y, we have

y4+⌧ = (0011)(1)9+4⌧ (0)k�(9+4⌧) (0011)

and we need to consider ⌧ ⇤ = k�14
4

y4+⌧⇤ = (0011)(1)k�5(0)5 (0011)

y4+⌧⇤+1 = (0011)(1)k�2(0)2 (0011)

y4+⌧⇤+2 = (0011)(1)k�3(0)3 (0011)

y4+⌧⇤+3 = (0011)(1)k (0011)

= y0

From where T = (t⇤ + 4) + (4 + ⌧ ⇤ + 3) = k. And we can conclude that the
cycle within the two walls separated by k mod 4 ⌘ 2 is O(k).

If k mod 4 ⌘ 3
— for y0, we have

y0 = (0011)(1)k (0011)

y01 = (0011)(1)k�1(0)1 (0011)

y02 = (0011)(1)k�4(0)4 (0011)

y03 = (0011)(1)k�7(01)(0)5 (0011)

y04 = (0011)(1)k�8(0)8 (0011)

y05 = (0011)(1)k�9(0)9 (0011)

y06 = (0011)(1)k�11(0)11 (0011)

y0t = (0011)(1)k�t�b t
3 c�3(0)t+b t

3 c+3 (0011)

we need to use t⇤ = 3(k�11)
4 , and it takes 5 more

iterations to return to y. — for y, we have

y4+⌧ = (0011)(1)9+4⌧ (0)k�(9+4⌧) (0011)
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and we need to consider ⌧ ⇤ = k�11
4

y4+⌧⇤ = (0011)(1)k�2(0)2 (0011)

y4+⌧⇤+1 = (0011)(1)k�3(0)3 (0011)

y4+⌧⇤+2 = (0011)(1)k (0011)

= y0

From where T = (t⇤ + 4) + (4 + ⌧ ⇤ + 3) = k. And we can conclude that the
cycle within the two walls separated by k mod 4 ⌘ 3 is O(k).

Thus, we have proven that the behavior between walls that are at a
distance k has limit cycles of length O(k).
And because of the independence of the dynamics between two pairs of walls,
the asymptotic dynamics of a global configuration x is a limit cycle whose
length is given by the least common multiple of the lengths of all limit cycles
of the subconfigurations.

We can consider a configuration and block-parallel update mode such
that the limit cycles are distinct primes whose sum is equal to n� 4m, with
m the number of walls. Then, thanks to Theorem 18 from [41] we know that
the maximal product of distinct primes whose sum is less than n, when n
tends to infinity, can be approached by

p
n log n.

Hence, we can conclude that the largest limit cycle of the family (184,bp)

applied over a ring of size n is ⌦
⇣
2
p
n logn

⌘
.

Corollary 3. (184, lc) of size n can reach limit cycles of size ⌦
⇣
2
p
n logn

⌘
.

Proof. From Theorem 7, since we know that bp update modes are also lc
update modes, we know that we can find a lc that can reach limit cycles of
superpolynomial length.

Corollary 4. (152, seq) and (56, seq) can only reach homogeneous fixed

points.

Proof. Follows the same proof as Theorem 4.

Corollary 5. (152,bs) and (56,bs) of size n has longest limit cycles of length

O(n).
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Proof. Follows the same proof as Theorem 5.

Corollary 6. (152,bp), (152, lc), (56,bp) and (54, lc) can reach limit cy-

cles of size ⌦
⇣
2
p
n logn

⌘
.

Proof. Follows the same reasoning as Theorem 7.

Corollary 7. (184, par), (152, par) and (56, par) of size n has longest limit

cycles of length O(n).

Proof. As a consequence of Theorem 5 and Corollary 5.

Corollary 8. (184,bip), (152,bip) and (56,bip) can only reach homoge-

neous fixed points.

Proof. As a consequence of Theorem 4 and Corollary 4.

3.2. Experimental Results

There are around twenty rules that are too complex or too chaotic to
obtain clear mathematical proofs. So in order to study them we devised
experiments where we calculated the dynamics of the density and energy.
This allows us to observe what happens when we change the update modes
to seq, bs, bp and lc. Indeed, we would like to understand how these
properties are a↵ected by the di↵erent update modes. With this goal in
mind we have chosen rules 90, 150, 54 and 110. These rules are well known
and famous for their complexity, with the first two belonging to class III [42]
and the other two to class IV of Wolfram’s complexity classification [8].

Definition 8 (Density). The density is defined as the average number of

ones in a configuration x 2 Bn
(introduced as magnetization in [43]), that is:

d(x) =
1

n

n�1X

i=0

xi,

with xi the state of cell i for all i 2 {0, . . . , n� 1}.

Definition 9 (Energy). The energy of a configuration is defined as

e(x) =
n�1X

i=0

1� 2xi

2
((2xi�1 � 1) + (2xi+1 � 1)) ,

with xi the state of cell i for all i 2 {0, . . . , n� 1}.
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n s m seq m bs m bp m lc
8 32,128 32 32 32 32
38 32,128 32 32 32 32
138 32,128 32 32 32 32

Table 6: Summary of configuration (s) and update mode (m) sample sizes for rings of
sizes n = 8, n = 38 and n = 138.

Informally, the energy of a configuration x is a measure of the total num-
ber of cells in a configuration that have a di↵erent state to that of their
neighbors. Note that the energy can have values between �n and n. For
example, a homogeneous configuration will have maximum energy i.e. �n,
and in a configuration with alternating states 1010 . . . the energy will be
maximum, i.e. n. This concept was used in the context of the study of
discrete dynamical systems for threshold networks [44, 45] and icing mod-
els [46]. In order to compare di↵erent ring sizes, we can define normalized

energy as

ē(x) =
1

n

n�1X

i=0

1� 2xi

2
((2xi�1 � 1) + (2xi+1 � 1)) .

Protocol

We considered three parameters to start: the size of the ring (n), the size of
the sample of configurations (s) and the size of the sample of update modes
(m). We decided to perform the experiments through a number of samples
of configurations, instead of calculating for all possible initial configurations
for rings of size 20 and higher because the computational time grew too large
which would not allow to experiment with di↵erent update modes.

We chose rings of sizes 8, 38 and 138, with sample sizes of 32 and 128
configurations. The configuration samples were created such that each cell
had the same probability to hold state 0 or 1, thus each sample has average
density equal to 0.5 and average energy equal to 0. Furthermore, we ran both
configuration sample sizes for each ring size under 32 di↵erent update mode
from each family. We calculated the dynamics over 1000 time steps of the
average density and energy (averaging over both the configuration sample
sizes and the update mode sample size). Table 6 shows a summary of the
considered sample sizes.
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m seq m bs m bp m lc
32 96 32 96

Table 7: Update mode (m) sample sizes for n = 16

After performing these simulations, we realized that higher orders of mag-
nitude for the size of the ring were not needed because the experiments hinted
that the overall behavior for each rule with its respective update modes re-
sulted in similar graphs for rings of sizes n = 8, n = 38 and n = 138. This
meant that we could experiment on smaller rings in which every possible
initial configuration could be tested, which lets us pay particular attention
to update modes.

We chose a ring of size 16, which allowed us to perform 1000 time steps
of the rule under di↵erent update modes for all possible configurations in
a reasonable amount of time. As a result, we were able to perform the
experiments with di↵erent number of blocks for bs and di↵erent length of
period for lc. Table 7 shows a summary of the considered sample sizes.

3.2.1. Di↵erent ring and sample sizes

In this section we will show that the behaviors of density and energy for
rule 110 (rules 54, 90 and 150 will be discussed in the appendix) are very
similar when comparing rings of sizes 8, 38 and 138, which gives us examples
in three di↵erent orders of magnitude.

Examples of the update modes for n = 8 are defined on Table 8.
As seen on Fig. 7, we have that for all three ring sizes with sequential

update modes the average density increases until it stabilizes at around .74,
while the energy increases slightly for all three. Similarly, for block-sequential
update modes, on Fig. 8 we can see that kind of behavior for the density,
while the energy averages close to 0 for all three ring sizes.

For the block-parallel update modes we can see on Fig. 9 that while
the density always increases to very similar amounts, the energy does show
di↵erent behaviors for each ring size, while for the local clocks update modes
we have that the energy always decreases (Fig. 10). Note that these two
families of update modes allow for single cells to be updated more than
once per time step, which could be the reason for their behavior to be less
predictable than that of seq and bs.
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Update
Mode

Definition

Sequential (2, 3, 4, 5, 7, 6, 1, 0)
Block

Sequential
({1}, {2, 7}, {6, 4}, {5, 0, 3})

Block
Parallel

{(1, 2), (5, 3), (7), (6), (4, 0)}

Local
Clocks

{P = (2, 3, 3, 1, 1, 2, 3, 3),� = (1, 0, 2, 0, 0, 0, 1, 0)}

Table 8: Update modes used for n = 8.
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Figure 7: Density (left) and normalized energy (right) for a ring of size n = 8 (top), n = 38
(middle) and n = 138 (bottom) under rule 110 with sequential update mode with sample
sizes of s = 32 and s = 128 initial configurations, over 1000 time steps.
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Figure 8: Density (left) and normalized energy (right) for a ring of size n = 8 (top), n = 38
(middle) and n = 138 (bottom) under rule 110 with block-sequential update mode with
sample sizes of s = 32 and s = 128 initial configurations, over 1000 time steps.
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Figure 9: Density (left) and normalized energy (right) for a ring of size n = 8 (top),
n = 38 (middle) and n = 138 (bottom) under rule 110 with block-parallel update mode
with sample sizes of s = 32 and s = 128 initial configurations, over 1000 time steps.
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Figure 10: Density (left) and normalized energy (right) for a ring of size n = 8 (top),
n = 38 (middle) and n = 138 (bottom) under rule 110 with local clocks update mode with
sample sizes of s = 32 and s = 128 initial configurations, over 1000 time steps.

34



3.2.2. All configurations

In this section we will show the results for the average density and energy
for all possible configurations of a ring of size n = 16. After the experiments
from the previous section, we decided to use a ring of size n = 16, because
it was the order of magnitude in-between, and the experiments were able to
be completed for all initial configuration in a reasonable amount of time.

We calculated the dynamics for m = 32 block-sequential update modes
with 3, 4 and 5 blocks; m = 32 local clocks update modes with periods 2,
4 and 5. As well as m = 32 sequential and m = 32 block-parallel update
modes.

As expected, block-parallel and local clocks showed the biggest variation
for all rules, which agrees with our hypothesis that bp and lc are the update
modes that induce the greatest di↵erences within the rules.

Rule 110

This rule shows a variety of behaviors depending on the update modes.
First of all, note that for (110, seq) (Fig. 11) we see all update modes clus-
tered together both for density and energy. Similarly, for (110,bs) (Fig. 13),
the density stays close together for the di↵erent update modes belonging to
this category for the di↵erent number of blocks. Note that the energy can
decrease a noticeable amount before going back to hovering around values
close to zero.

This is very di↵erent from what we can observe for (110,bp) and (110, lc)
(Figs. 12 and 14, resp.), where the values are more spread out. We can see
that the value of the density does not decrease from .5, but for the energy it
can vary as much towards the positive as towards the negative.

Note that in all cases, the values of density and energy “stabilize” very
quickly, which is backed by the values of variance shown on Figures A.45
through to A.48. Furthermore, Fig. A.49 shows that indeed there is a slight
increase of variance between update modes of the same class for local clocks
and block-parallel when compared to sequential and block-sequential.
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Figure 11: Density (left) and normalized energy (right) for a ring of size 16 under rule 110
average over all configurations, with di↵erent sequential update modes, over 1000 time
steps.

Figure 12: Density (left) and normalized energy (right) for a ring of size 16 under rule 110
average over all configurations, with di↵erent block-parallel update modes, over 1000 time
steps.
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Figure 13: Density (left) and normalized energy (right) for n = 16 under (110,bs) with 3
(top), 4 (middle) and 5 (bottom) blocks, over 1000 time steps.
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Figure 14: Density (left) and normalized energy (right) for n = 16 under (110, lc) with
period 2 (top), 4 (middle) and 5 (bottom), over 1000 time steps.

38



Rule 150

Rule 150 is very stable for all update modes, unlike rule 110 the average
density and energy change very little regardless of the update mode, which
is shown on Figs. 15 and 16. More examples of this behavior are displayed in
the appendix on Figs. A.40 through to A.43. Additionally, Fig. A.44 presents
the variance which shows that that the variance is indeed 0 for all update
modes in each class.

Similarly, rule 90 (which also belongs to class III) produces the same
type of graphs, which can be found on the Appendix on Figs. A.31 through
to A.34.

The fact that both rules that belong to class III, especially rule 150, have
such stable average density and energy can be explained by the fact that
there is no clear pattern that emerges from this rule. As a consequence we
have a larger variety of possible configurations at each time step; thus the
values of density and energy tend to be to 0.5 and 0, respectively.
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Figure 15: Density (left) and normalized energy (right) for a ring of size 16 under rule
150 average over all configurations, with di↵erent sequential (top) and block-sequential
(bottom) update modes, over 1000 time steps.

40



Figure 16: Density (left) and normalized energy (right) for a ring of size 16 under rule
150 average over all configurations, with di↵erent block-parallel (top) and local clocks
(bottom) update modes, over 1000 time steps.
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Rule 54

Rule (54, seq) shows a very stable behavior, identical to (150, seq), but
for update modes under all other categories its behavior is more similar to
ones seen under rule 110, as we can see on Fig. 17 using (54, lc) as an
example. More examples with the rest of the update modes can be found in
the Appendix.

Figure 17: Density (left) and normalized energy (right) for a ring of size 16 under rule
54 average over all configurations, with di↵erent sequential (top) and local clocks with
maximum period 5 (bottom) update modes, over 1000 time steps.
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4. Discussion

Theoretical Results

In this paper, we have studied 67 of the 88 ECA under di↵erent update
modes, proving that there is a set of rules whose longest limit cycles remain
of the same length regardless of the update mode, which shows that some
ECA are robust to (a)synchronism.

We have shown that there are three other behaviors, summarized in Ta-
ble 3. Firstly, we have rules 108 and 156 with a notorious change in com-
plexity, going from constant (par) to superpolynomial (seq). Secondly, we
have rules 1 and 178 in which the increase of the maximum period is more
“gradual”. And thirdly, we have rules 56, 152 and 174, where the length of
the longest limit cycle decreases from linear (par) to constant (seq), but
then returns to linear (bs) and increasing again to superpolynomial (bp).

We have found that all rules capable of reaching superpolynomial cycles,
are able to achieve them under block-parallel and local clocks update modes.
This emphasizes that if we were able to prove that there exists a hierarchy
between periodic update modes, bp and lc would be higher than the others
studied in this paper. However, note that there are rules whose complexity
remains constant under block-parallel and local clocks update modes.

Experimental Results

We have studied through measures of density and energy two chaotic rules
(90 and 150), which appear to have little to no change in the average of these
measures when the update mode is modified.

Under the light of the experiments we can see that there are no favored
patterns for rule 150 under any of the analyzed update modes. Which would
be coherent the chaotic nature of the rule.

On the other hand, we saw that the values of density and energy for
rules 54 (except under sequential update mode) and 110 find di↵erent points
of stability for each update mode, and that once those values are reached,
the values of density and energy show little variation from one time step to
another. Furthermore, local clocks and block-parallel present greater variety
of values of stability, which could be attributed to the fact that those update
modes allow cells to be updated more than once per step.
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Future Work

The results that we have obtained at this point do not allow us to di↵eren-
tiate between block-parallel and local clocks in terms of complexity. Thus, we
would like to establish a hierarchy between them eventually, and we suspect
that local clocks should be at the highest rung.

Naturally, it is of interest to continue the theoretical analysis for rules 25,
37, 57, 58, 62, 74, 154 (class II), and research what properties (if any) do
these rules have that made them incompatible with the strategies developed
for other rules in the same class. Conversely, what properties does rule 18
have that allowed us to use methods that did not work for the rest of the
rules in class III? Furthermore, can we prove the existence of limit cycles of
exponential length for some combination of rule and update mode.

Another question is about if we can expand the research about sensitiv-
ity under di↵erent update modes to one-dimensional cellular automata with
di↵erent radii, whether some of the approaches found for radius 1 can be of
use in those cases.

We need further experiments to check the behavior of the rest of the rules
in classes III and IV, and whether their behavior resembles what we have
found for the rules we have presented as examples in this paper. Similarly,
for the ones that we were unable to classify belonging to class II: can we
expect to find patterns in rules belonging to class II that we did not find for
the other two classes?

For the most part, we know that rule 90 has similar types of graph to
rule 150. However, it is worth studying the specific update modes whose
density and energy become stable around values di↵erent from 0.5 and 0,
respectively.

Additionally, is it possible to do a similar study of energy and density
that tells us something about ECA under non-deterministic and/or stochastic
update modes?
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Appendix A. Figures

Appendix A.1. Rule 54

Di↵erent sized rings

We can see on Fig. A.18 that with bigger sample size both density and
energy stabilize at around .5 and 0 resp. for sequential update modes, unlike
with block-sequential, block-parallel and local clock where the average value
of the density and energy decrease, as seen on Figs. A.19, A.19 and A.21.
Note that for each update modes both density and energy reach similar val-
ues, especially for rings of size 38 and 138, which agrees with our assessment
that the size of the ring is not as important.
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Figure A.18: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 54 with sequential update mode with sample sizes
of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.19: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 54 with block-sequential update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.20: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 54 with block-parallel update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.21: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule (54, lc) with sample sizes of 32 and 128 initial
configurations, over 1000 time steps.
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All configurations of ring size 16

Figure A.22: Density (left) and normalized energy (right) for a ring of size 16 under rule
(54, seq) average over all configurations, with di↵erent update modes, over 1000 time
steps.

As mentioned in the Results, Figs. A.23, A.24 and A.25 show that indeed
these rule 54 under these update modes behaves similarly to how rule 110
did. Furthermore, note that local clocks with maximum period 5 and block-
parallel have the highest variance when comparing di↵erent update modes of
that class, as seen of Fig A.26
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Figure A.23: Density (left) and normalized energy (right) for a ring of size 16 under rule
(54,bp) average over all configurations, with di↵erent update modes, over 1000 time steps.
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Figure A.24: Average over all configurations of Density (left) and normalized energy (right)
for n = 16 under (54,bs) with 3 (top), 4 (middle) and 5 (bottom) blocks, over 1000 time
steps.
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Figure A.25: Density (left) and normalized energy (right) for n = 16 under (54, lc) with
period 2 (top), 4 (middle) and 5 (bottom), over 1000 time steps.
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Figure A.26: Variance of Density (left) and normalized energy (right) for n = 16 for rule
54.
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Appendix A.2. Rule 90

Di↵erent sized rings

In the case of Rule 90, it appears that the density and energy are not
a↵ected, regardless of the update mode, with the density averaging at around
.5 and the energy around 0.

59



Figure A.27: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 90 with sequential update mode with sample sizes
of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.28: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 90 with block-sequential update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.29: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 90 with block-parallel update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.30: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 90 with local clocks update mode with sample sizes
of 32 and 128 initial configurations, over 1000 time steps.
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All configurations of ring size 16

Figure A.31: Density (left) and normalized energy (right) for a ring of size 16 under rule
(90, seq) average over all configurations, with di↵erent update modes, over 1000 time
steps.

Figure A.32: Density (left) and normalized energy (right) for a ring of size 16 under rule
(90,bp) average over all configurations, with di↵erent update modes, over 1000 time steps.

Appendix A.3. Rule 150

Di↵erent sized rings

In the case of Rule 150, even more notably than with rule 90, we can see
that the energy and density are very stable, regardless of the update mode.
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Figure A.33: Density (left) and normalized energy (right) for n = 16 under (90,bs) with
3 (top), 4 (middle) and 5 (bottom) blocks, over 1000 time steps.
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Figure A.34: Density (left) and normalized energy (right) for n = 16 under (90, lc) with
period 2 (top), 4 (middle) and 5 (bottom), over 1000 time steps.

66



Figure A.35: Variance of Density (left) and normalized energy (right) for n = 16 for rule
90.
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Figure A.36: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 150 with sequential update mode with sample sizes
of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.37: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 150 with block-sequential update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.38: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 150 with block-parallel update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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Figure A.39: Density (left) and normalized energy (right) for a ring of size 8 (top), 38
(middle) and 138 (bottom) under rule 150 with local clocks update mode with sample
sizes of 32 and 128 initial configurations, over 1000 time steps.
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All configurations of ring size 16

Figure A.40: Density (left) and normalized energy (right) for a ring of size 16 under rule
(150, seq) average over all configurations, with di↵erent update modes, over 1000 time
steps.

Figure A.41: Density (left) and normalized energy (right) for a ring of size 16 under rule
(150,bp) average over all configurations, with di↵erent update modes, over 1000 time
steps.
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Figure A.42: Density (left) and normalized energy (right) for n = 16 under (150,bs) with
3 (top), 4 (middle) and 5 (bottom) blocks, over 1000 time steps.
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Figure A.43: Density (left) and normalized energy (right) for n = 16 under (150, lc) with
period 2 (top), 4 (middle) and 5 (bottom), over 1000 time steps.
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Figure A.44: Variance of Density (left) and normalized energy (right) for n = 16 for rule
150.
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Rule 110

Figure A.45: Histogram of variance of Density (left) and normalized energy (right) for
n = 16 under (110, seq)

Figure A.46: Histogram of variance of Density (left) and normalized energy (right) for
n = 16 under (110,bp)
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Figure A.47: Histogram of variance of Density (left) and normalized energy (right) for
n = 16 under (110,bs) with 3 (top), 4 (middle) and 5 (bottom) blocks.
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Figure A.48: Histogram of variance of Density (left) and normalized energy (right) for
n = 16 under (110, lc) with period 2 (top), 4 (middle) and 5 (bottom).
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Figure A.49: Variance of Density (left) and normalized energy (right) for n = 16 for rule
110.
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