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Abstract. The purpose of this paper is to expose some relevant theo-
retical results about the asymptotic behaviour of finite neural networks
(on lattices) with fixed boundary conditions. This work focus on two
different topics that seem to be of interest from the biological point of
view. First, it intents to exhibit the links existing between synchronous
and asynchronous updating iteration modes in these networks, whatever
the number of dimensions is. We will prove that the effects of boundary
conditions on a whole neural network do no depend on the updating it-
eration mode, i.e., if the asymptotic behaviour admits phase transitions,
these phase transitions are observable in synchronous and asynchronous
networks. Then, we more precisely focus on the one-dimensional case
and we show that boundaries have no significant impact on such net-
works. So, we will present a new mathematical approach that permits
the theoretical study of the asymptotic dynamics and of boundary in-
fluence characterisation in neural networks. We will also introduce the
tools generalising the method to study phase transitions in more complex
cases.

Keywords: Stochastic neural networks; Hopfield model extension; Phase
transitions.

1 Introduction

In this paper, we focus on the asymptotic behaviour of large scale neural
networks when they are regulated by their own components (i.e., the neurons)
and also by fixed boundary conditions which correspond to neurons whose state
cannot change during the dynamical evolution of the system. Our aim is to show
that the influence exerted by boundary conditions does not depend in certain
cases on the state values on boundaries. Before going further, it seems to be
important to present why we interest in finite networks. From the point of view of
biologists, it seems to be too artificial to use periodic or free boundaries because
of the nature of living systems. Let us give an example to illustrate this remark:
the cytoplasm of a cell of an eukaryotic organism is separated from other cells
by the cell membrane, which plays the role of boundary conditions for the inner
cell. Furthermore, as flows between cells exist, the membranes have to respect



some biological constraints. So, to respect as well as possible the lifelikeness, it
is judicious to interest in finite neural networks with fixed boundaries.

This work is encouraged by the increasing interest researchers get in the
questions of dynamical behaviour, structural stability and robustness in complex
systems, specifically in biological complex systems. Hence, the comprehension
of the common behaviours among synchronous and asynchronous dynamics as
well as the impact of boundaries on such dynamical systems are relevant to
understand how they reach to adapt to this kind of dynamical and topological
variations. Consequently, the first part of this paper deals with the link existing
between two kinds of updating iteration modes: we will prove that, whatever the
dimension of the underlying lattice is, there is a proportionality relation between
the synchronous and the asynchronous modes, i.e., if a phase transition occurs
in the synchronous mode, it is also observable in the asynchronous one.

Furthermore, this paper will point out the result that, in one-dimensional
neural networks, the influence of boundary conditions is not significant, what
brings us to prove that phase transition phenomena cannot emerge from the
asymptotic behaviour of one-dimensional neural networks. Thanks to this math-
ematical study, we give a new theoretical approach which would be useful to
develop this work to more complex neural networks. Indeed, we will see that
this method is obviously appropriate to permit to exhibit phase transitions phe-
nomena in two-dimensional (or more) networks with more complicated properties
that we will discuss.

The case of influence of boundaries was studied in the past in physics for
ferromagnetic particles networks following the Ising law. The Ising model [1] was
created in order to represent how a particle of a system can modify its behaviour
in function of its neighbours. In the one-dimensional case, Ising proved that the
dynamics of such networks does not bring to sudden and important change of
behaviours. More formally, the behaviour of ferromagnetic particles networks
does not admit phase transition. We will see in this paper that these past results
can be deployed to neural networks following a stochastic version of an extended
Hopfield law.

In Section 2, we give preliminary definitions, describe the model of random
neural network considered and present some explicit invariant measure expres-
sions, depending on the updating modes and on the boundary conditions. In
Section 3, we give indications about parametric conditions of phase transitions
and study the asymptotic behaviour of such networks. In Section 4, we open the
discussion to more complicated cases of phase transitions in two-dimensional
neural networks (the anisotropic case, the not translation invariant case...) and
introduce a simulation method to study them.



2 Hopfield-like neural networks

2.1 Definitions

We consider in the following a random version of the Hopfield neural net-
works [2], whose evolution is defined by a stochastic updating rule. More pre-
cisely, we will denote by R a set of N ×M neurons, which are located at vertices
of Z2, each of them having two possible states of activity, defined, if we call
σ(t) = (σi(t))i∈R ∈ Ω = {0, 1}N×M the current configuration of the network at
time t, by the following rule:

σi(t) =

{
0 if the neuron i is inactive at time t,

1 if the neuron i is firing at time t.

In the present study, we will fix the boundary conditions of R instead us-
ing classical periodic (toric) or free boundaries; in the following, σ will denote
boundary configuration on the complementary of R in Z2 (Z2\R = Rc) and we
will suppose that the origin O of Z2 belongs to R.

As in [3], we define the boundaries of the networks by means of the following
notations where Ni is the neighbourhood of the neuron i in which the synaptic
weight between i and j, denoted wij , does not vanish (j ∈ Ni ⇔ wij 6= 0):
∂intR = {i ∈ R; ∃j ∈ Rc, j ∈ Ni},
∂extR = {i /∈ R; ∃j ∈ R, j ∈ Ni},
∂R = {(i, j), i ∈ ∂intR, j ∈ ∂extR; j ∈ Ni}.

The temporal evolution of the network R is defined by the probability that
a neuron i evolves from state σi(t) to state σi(t+ 1) knowing σ(t) on Ni (local
updating rule). In our case, we choose the following rule [4]:

P (σi(t+ 1) = α|σj(t), j ∈ Ni ∪ {i}) =
eα.Hi(σ(t))/T

1 + eα.Hi(σ(t))/T

where:
◦ α ∈ {0, 1},
◦ Hi(σ(t)) =

∑
j∈(Ni∪{i})∩R wijσj(t) +

∑
j∈(Ni∪{i})∩∂extR wijσj(t) is the inter-

action potential of the neuron i with its neighbours in Ni and
◦ T is the temperature of the network R.

If T = 0, we recover the deterministic version of the Hopfield model; on
the contrary, if T tends to infinity, we have probability 1

2 to have state 1 or
state 0 in neuron i, whatever the states are in Ni. T increases the random-
ness (until the uniformity) in the network. The interaction potential H(σ(t))
of the configuration σ(t) at time t is given by: H(σ(t)) =

∑
i∈RHi(σ(t)) =∑

i∈R[
∑
j∈(Ni∪{i})∩R wijσj(t) +

∑
j∈(Ni∪{i})∩∂extR wijσj(t)]. Next we will sup-

pose that the weights are symmetrical: wij = wji.

With such local updating rules, when the size of the network is finite (which
is always the case when working with computer simulations), the asymptotic



behaviour of the system when time tends to infinity is characterised by a prob-
ability measure which is uniquely determined, and remains unique in absence of
phase transition, when the network size is tending to infinity. Let us now explicit
this measure, taking into account the updating modes and the boundaries.

2.2 Invariant measures

It has already been shown that the invariant measure of the network depends
on the updating modes: sequential, parallel, or block sequential [4,5]. The in-
teresting result is that in every case, when the size of the network is finite, the
stationary measure is unique (thanks to strictly positive terms in the Markovian
matrix, whose general term M(σ, ξ) is the probability to move from a configura-
tion σ to a configuration ξ in R). We will give now the general expressions for the
invariant measures obtained in each case, depending on boundary conditions:

• Sequential (asynchronous) case:

The updating is made successively for each neuron. This leads to the following
invariant measure expression:

µas(σ) = Z−1as e
∑
i,j∈R

wijσiσj
2T +

∑
(i,j)∈∂R

wijσiσj
T

where Z−1as is a normalising constant.

• Parallel (synchronous) case:

The updating is made simultaneously for each neuron in the whole network.
This leads to the following invariant measure expression:

µs(σ) = Z−1s
∑
ξ∈Ω

e

∑
(i,j)∈∂R wij(σi+ξj)σj+

∑
i,j∈R wijσiξj

T

where Z−1s is a normalising constant.

• Block sequential (partially synchronous) case:

More generally, we can consider n sub-networks Rk(k = 1, ...n) of the neural
network R and the updating is made synchronously into a sub-network, and
successively for the sub-networks. This leads to the following invariant measure
expression:

µps(σ) = Z−1ps
∑
ξ∈Ω

e
<σ>+σ(σ)+<ξ>+ξ(ξ)+�σ,ξ�

T

where Z−1ps is a normalising constant and:
< σ >=

∑
i=1,...,n

∑
j∈Ri

∑
k∈∪j<iRj wjkσjσk,

σ(σ) =
∑
j∈R

∑
k∈Rc wjkσjσk,

� σ, ξ �=
∑
i=1,...,n

∑
j∈Ri

∑
k∈∪j≤iRj wjkσjξk.
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Fig. 1. Parametric conditions on u0 and u1 of phase transitions for the Ising
model in Zd in the isotropic and translation invariant attractive and repulsive
cases. They illustrate the results obtained by Dobrushin and Ruelle. The bottom
right corner, that corresponds to the attractive case, shows that the phase tran-
sition (in bold) can take place on a part of the straight line u0 + du1 = 0. The
upper left corner, relative to the repulsive case, shows that the phase transition
(the striped space) can occur on a neighbourhood of this straight line.

This expression holds when � σ, ξ � = � ξ, σ �, which is equivalent
to the detailed balance condition (reversibility condition). It is the case for
the synchronous (n = 1) and asynchronous cases (n = N ×M), and for the
feed-forward modular case, which is a particular mode defined by the synaptic
weights: wij = 0, ∀(i, j); i ∈ Rk, j ∈ Rk′ , k < k′. This last mode is of interest
because of its biologic relevance in hierarchical systems, with inter-neural con-
nections stabilised in a pyramidal architecture from a master sub-system, with
feedback loops present only into the sub-systems, like in the cardio-respiratory
regulation [6].

The general term of the Markovian matrix giving the probabilities to move
from a configuration σ to a configuration ξ in R after synchronously updating the
neurons of a sub-network and successively for the sub-networks Rk(k = 1, ...n),
is given by:

M(σ, ξ) =
e(<ξ>+ξ(σ)+�σ,ξ�)/T∑
ξ∈Ω e

(<ξ>+ξ(σ)+�σ,ξ�)/T

The proof of the results above can be found in [7,8].

In a case more general than the feed-forward one, we are obliged to calculate
the invariant measure by using numerical computations. Note therefore that,
in any case above, the number of terms involved in the sums appearing in the
formulae is in general too big (if N×M is large) to calculate exactly the invariant
measure probabilities, and hence we must evaluate them by using Monte Carlo
methods.



3 Boundaries influence in the Hopfield model

3.1 The problem of the thermodynamic phase transitions and the
Ising model

Phase transitions we are concerned with in this paper are thermodynamic
phase transitions: these phenomena are observed when the size of the network
R tends to infinity (thermodynamic limit). Near parametric conditions of phase
transitions, little changes in the parameters lead to great changes in the be-
haviour of the network, like changes of the asymptotic (when time tends to
infinity) characterisation of the system in terms of invariant measure, which re-
mains unique (as given in the previous Section) for fixed boudary conditions,
but which can change when these boundary conditions change, e.g., when we
make a flip-flop of state 1 to state 0 on the frontier of R. As far as we are
concerned, we will see that changing the boundaries will affect the evolution
of the network, as in the case of the classical two-dimensional Ising model. In
Figure 1, we summarise the results about the Ising model of [9,10,11] by giving
conditions of phase transition and, on the contrary, conditions under which no
phase transition is observed. These results hold for the isotropic Ising model on
Zd, defined by the synaptic weights: wii = Tu0, wij = Tu1 if d(i, j) = 1 and
wij = 0 if d(i, j) > 1, where d is the L1 distance on Zd. In the attractive case
(u1 < 0), phase transitions can occur only when u0 + du1 = 0. In the repulsive
case (u1 > 0), phase transitions are observed in the region of the parametric
space (u0, u1) delimited by a neighbourhood of the phase transition line of the
attractive case. But there is no particular result concerning the frontier between
this region, where phase transitions are observed, and the rest of the parametric
space.

The parametric conditions of phase transition were proved for a sequential
updating mode. But, thanks to a proportionality relation between partition func-
tions of the invariant measures corresponding to the two updating modes, mas-
sively parallel and sequential [12,4,13], these results still hold in the case of the
massively parallel (synchronous) updating mode, with fixed boundaries. This
assertion will be proved in the next paragraph in the context of our model.

3.2 Parametric conditions of phase transitions in dependence on
the updating mode

Parametric conditions of phase transitions are generally obtained for the
sequential updating mode, but it is possible to show that for some constraints
on the synaptic weights (i.e., weights should simply be symmetrical), these phase
transition conditions still hold in the synchronous case. Let us first remember
some usual definitions of statistical mechanics. We call:
Ψ(R, T,W ) = −T.log(Z(R, T,W )) the free energy of R and
ψ(T,W ) = limR→ZdΨ(R, T,W )/|R| the specific free energy of R,
where T is the temperature and W is the matrix of the synaptic weights.



We can observe phase transitions when ψ is not differentiable. We will not
discuss here about the existence or differentiability of ψ, but just see if there ex-
ists, in certain cases, a proportionality relation between ψs and ψas, respectively
the specific free energies in the synchronous and asynchronous updating modes.
So the phase transition points are the same in both cases (the result has been
confirmed by simulation).

Lemma 1. Let us suppose that there exist two independent subsets of R, R1

and R2, the independence being defined by: ∀i ∈ R1, j ∈ R2, wij = 0. We have:
∀σ, η ∈ {0, 1}R, if R = R1 ∪R2, Hs(σ, η) = Has(σ1η2) +Has(σ2η1), where σ1η2
is the configuration defined by: (σ1η2)i = σi if i ∈ R1, and (σ1η2)i = ηi if i ∈ R2,
and where the potentials Hs and Has are defined by Hs(σ, η) =

∑
i,j∈R wijηiσj+∑

i∈R,j∈Rc wij(σi + ηi)σj and Has(σ) =
∑
i,j∈R wijσiσj

2 +
∑
i∈R,j∈Rc wijσiσj.

Proof. We have:

Has(σ1η2) =
∑
i∈R1,j∈R2

wijσiηj+
∑
i∈R2,j∈R1

wijηiσj

2
+
∑
i∈R1,j∈Rc wijσiσj

+
∑
i∈R2,j∈Rc wijηiσj

So, since R1 and R2 are independent:

Has(σ1η2) =
∑
i∈R1,j∈R2

(wij+wji)σiηj

2
+
∑
i∈R1,j∈Rc wijσiσj

+
∑
i∈R2,j∈Rc wijηiσj

We have supposed above that the weights were symmetrical: wij = wji. Thus:
Has(σ1η2) + Has(σ2η1) =

∑
i∈R1,j∈R2

wijσiηj +
∑
i∈R,j∈Rc wij(σi + ηi)σj =

Hs(σ, η) and we get the expected result. �

Proposition 1. For a nearest neighbours model in Zd, we have Zs = (Zas)
2.

Proof. For a nearest neighbours model on Zd, it is easy to construct two inde-
pendent subsets R1 and R2 (it suffices to consider that R is made of two subsets
R1 and R2 separated by a border of neurons disconnecting them). Then we have:
Zs =

∑
σ,η∈Ω e

Hs(σ,η)/T and Zas =
∑
σ∈Ω e

Has(σ)/T . Using the lemma 1 above,
we have:

Zs =
∑
σ∈Ω

∑
η∈Ω e

(Has(σ1η2)+Has(σ2η1))/T

=
∑
ξ∈Ω

∑
ξ′∈Ω e

(Has(ξ)+Has(ξ
′))/T

=
∑
ξ∈Ω e

Has(ξ)/T
∑
ξ′∈Ω e

Has(ξ
′)/T

which is the expected result. �

As a consequence of the lemma 1 and the proposition 1, for a nearest neigh-
bours model on Zd, we have ψs = 2ψas. And we have hence the following theorem
directly from this proportionality relation between ψs and ψas.

Theorem 1. Phase transitions are identically observed for sequential and par-
allel updating modes in Hopfield-like neural networks on Zd with fixed boundary
conditions.



This result was already obtained without considering boundaries, in the fol-
lowing cases [12,14,13]:
− Curie-Weiss model on Zd,
− ferromagnetic Ising model on Zd,
− Hopfield neural network where synaptic weights are defined via a Hebbian
learning rule, and where the two possible states of each neuron are −1 and +1.

3.3 A method to exhibit parametric phase transitions conditions

We can define thermodynamic phase transition phenomena by many different
ways. A possible approach [9] is to characterise such phenomena by a loss of
ergodicity: the invariant measures of the system defined above, depending on
updating mode, are not unique, when the size of the network tends to infinity.
We apply this definition to exhibit a possible criterion of phase transition.

If µ is the invariant measure of the infinite system, then we can easily obtain
the following relations, where the cylinder [A,B] = {σ | σi = 1, i ∈ A;σi = 0, i ∈
B}:

(i) projective equations:
∀A,B ⊂ R | A ∩B = ∅,∀i ∈ A,µ([A,B]) + µ([A\{i}, B ∪ {i}]) = µ([A\{i}, B])

(ii) conditional equations:
∀i ∈ R,µ([{i}, ∅]) =

∑
A,B⊂R | i/∈A,B Φi(A,B)µ([A,B]) (Bayes equation)

where conditional probability µ(σi = 1 | [A,B]) = eH(σi)/T

1+eH(σi)/T
= Φi(A,B).

We note L = R\{i} and we order the neurons i’s of L from 1 to |L|; for
every subset K of L, jK denotes the smallest index of the neurons of K. Then
we can define the matrix of order 2|L| × 2|L|, denoted by M , corresponding to
the coefficients of the former equations, in which Φ(A,B) is just ΦO(A,B), O
being the origin of Zd. Let us consider the following matrices M1 and M2 as
blocks of the matrix M :

M1 =


1 1 . . . 0
1 0 . . . 0
...

...
...

...
0 0 . . . 0

Φ(L, ∅) Φ(L\{1}, {1}) . . . Φ(K,L\K)



M2 =


0 . . . 0
0 . . . 0
...

...
...

0 . . . 1
Φ(K\{jK}, L\K ∪ {jK}) . . . Φ(∅, L)


We finally have:



M =
(
M1 M2

)
First lines of M are the coefficients of the projective equations and the last

line corresponds to the coefficients of the conditional equation. Let us denote by
Ξ the general cylinder [K\{jK}, (L\K) ∪ {jK}]. We can then write the system
obtained by the equations of type (i) and (ii) in the following form:

M.



µ([L, ∅])
µ([L\{1}, {1}])
µ([L\{2}, {2}])

...
µ([K,L\K])

µ(Ξ)
...

µ([{1}, L\{1}])
µ([∅, L])


=



µ([L\{1}, ∅])
µ([L\{2}, ∅])

. . .
...

µ([K\{jK}, L\K])
. . .
...

µ([∅, L\{1}])
µ([{0}, ∅])


Equations of types (i) and (ii) are generally linearly independent; but, under

certain parametric conditions, they are linearly dependent and it is the case
under phase transitions conditions (when µ is non unique). When detM 6= 0, we
can express the matricial equation above with a new matrix of order 2|L

′|× 2|L
′|

and new vectors of dimension 2|L
′|, corresponding to 2|L

′| new subsets, L′ having
one element less than L, until we reach the subset of R equal to L(|L|−2d) = Ni.

Lemma 2. [15] We have:
detM = 0⇔

∑
K⊂L(−1)|L\K|Φ(K,L\K) = 0.

In the case of our model in its isotropic form in Zd defined by wii = Tu0, and
wij = Tu1, if d(i, j) = 1, we can replace L by Ni, and we get from Lemma 2 that
detM = 0 admits a finite set of solutions among which appears the following
one: u0 + du1 = 0. So we retrieve the classical equation of phase transition
(see Subsection 3.1 and the following example). The pertinence of this specific
solution is proven thanks to all the simulation results obtained on isotropic and
translation invariant neural networks whatever the initial condition is.

Example 1. Let us consider the one-dimensional Hopfield model and define cylin-
der subsets: [Λ, ∅] = {• × •}, [Λ\{1}, {1}] = {◦ × •},[Λ\{2}, {2}] = {• × ◦},
[∅, Λ] = {◦ × ◦}, where the symbol • (resp. ◦) denotes a fired neuron (resp. an
inhibited neuron), and × denotes the site origin O. Then, M is equal to:

M =


1 1 0 0
1 0 1 0
0 1 0 1

eu0+2u1

1+eu0+2u1

eu0+u1

1+eu0+u1

eu0+u1

1+eu0+u1

eu0

1+eu0





The matrix equation of the dynamics becomes:

M.


µ([Λ, ∅])

µ([Λ\{1}, {1}])
µ([Λ\{2}, {2}])

µ([∅, Λ])

 =


µ([Λ\{1}, ∅])
µ([Λ\{2}, ∅])
µ([∅, {2}])
µ([{0}, ∅])


Vanishing the determinant of M leads to the following equation:

DetM = 0⇔ −(eu0 +2e2u0+2u1 −2eu0+u1 −e2u0+3u1 −e2u0+u1 +eu0+2u1)/((1+
eu0)(1 + eu0+u1)(1 + eu0+2u1)) = 0

which admits a set of two solutions: {u1 = 0;u0 + u1 = 0}. So, we obtain the
following relation:

u0 + u1 = 0⇒ DetM = 0

that exactly corresponds to the results obtained by Ruelle in the context of
ferromagnetic networks.

Definition 1. [16,17] Let us consider an interaction potential H on R and iden-
tify a configuration σ ∈ {0, 1}R with the subset S of R on which the value of σi
is 1.
Then H is called strongly super-modular potential if ∀Ai ⊂ R, i = 1, . . . , n then
the Poincaré’s inequality 3holds;
H is called super-modular, if the Poincaré’s inequality holds for n = 2;
H is called attractive, if we have: ∀A ⊂ R, |A| ≥ 2⇒

∑
B⊂A(−1)|A\B|H(B) =

0.

Proposition 2. [16] H is strongly super-modular if and only if it is attractive.

Proposition 3. [17] If a potential H on R is super-modular, then phase transi-
tion occurs if and only if there exists i in R, such that µ−([{i}, ∅]) 6= µ+([{i}, ∅]),
where µ− (resp. µ+) is the limit (when R tends to Zd) of the measure observed
when all states are fixed at 0 (resp. 1) on the boundary of R.

Note that the proposition 3 holds if H is attractive, in particular in the case
of neural networks with positive weights.

Proposition 4. In the one-dimensional case of the stochastic version of the
Hopfield model with isotropy and translation invariance underlying properties,
µ−([{i}, ∅]) = µ+([{i}, ∅]) for any i in R, when detM = 0.

Proof. Let us suppose that R = [−r,+r] and denote:
∀A,B ⊂ R | A ∩B = ∅, µ+([A,B]) = limR→Zµ([A,B] | [{−(r + 1), r + 1}, ∅]),
a+ = µ+([{−1, 1}, ∅]),
3 The Poincaré’s inequality is defined by: H(∪i=1,...,nAi) ≥

∑
i=1,...,n H(Ai) −∑

i<j H(Ai∩Aj)+. . .+(−1)k
∑

i1<...<ik
H(∩j=1,...,kAij )+. . .+(−1)nH(∩i=1,...,kAi)



b+ = µ+([{−1}, {1}]) = µ+([{1}, {−1}]) (for symmetry reasons) and
x+ = µ+([{0}, ∅]) where 0 /∈ A ∪B.

With these previous notations, the equations (i) and (ii) above reduce here to:
• a+ + b+ = µ+([{−1}, ∅]) = x+ because of the hypothesis of translation invari-
ance and
• x+ = Φ({−1, 1}, ∅).a+ + 2Φ({−1}, {1}).b+ + Φ(∅, {−1, 1}).(1− a+ − 2b+)

We consequently get:

∀A,B ⊂ R | A ∩B = ∅, 0 /∈ A ∪B,µ+(σ0 = 1 | [A,B]) = eH(σ)/T

1+eH(σ)/T = Φ(A,B),

where σi = 1, for i ∈ A ∪ {0} and σi = 0, for i ∈ B, and where Φ(A,B) denotes
Φ0(A,B).

When detM = 0, there exists a link between two lines of M , hence we have an
equation determining the value of x+:
detM = 0⇔ (Φ({−1, 1}, ∅)− Φ(∅, {−1, 1})).x+ + Φ(∅, {−1, 1}) = x+, hence:

x+ = Φ(∅,{−1,1})
1−Φ({−1,1},∅)+Φ(∅,{−1,1})

Because x+ = x− (we have: µ−(σ0 = 1 | [A,B]) = Φ(A,B) and the same equa-
tions as above by replacing + by − lead to the same final value for x+ and x−),
we get:
µ+([{0}, ∅]) = µ−([{0}, ∅]) and the results follows from the translation invari-
ance. �

Proposition 5. In the one-dimensional case of the stochastic version of the
isotropic and translation invariant Hopfield model, µ+([{−r, r}, ∅])
(resp. µ−([{−r, r}, ∅])) has the same limit than (µ+([{−r}, ∅]))2
(resp. ((µ−([{−r}, ∅]))2), when R = [−r, r] tends to Z.

Proof. Let us note:
• α+

R = µ([{−r, r}, ∅]|[{−(r + 1), r + 1}, ∅]),
• α+ = limR→ZαR = µ+([{−r, r}, ∅]),
• β+

R = µ([{−r}, {r}]|[{−(r + 1), r + 1}, ∅]),
• β+ = limR→ZβR = µ+([{−r}, {r}]) = µ+([{r}, {−r}]) (for symmetry reason),
• y+R = µ([{−r}, ∅]|[{−(r + 1), r + 1}, ∅]),
• y+ = limR→ZyR = µ+([{−r}, ∅]) = µ+([{r}, ∅]) (for symmetry reason).

We will in the following develop the numerator and the denominator of the frac-
tions α+

R, β+
R and y+R , in order to make explicit their common parts (the Λ’s

below) and also the differences for being able to give a majoration of α+
R − y

+2
R .

The proof will be done, if |α+
R− y

+2
R | tends to 0, when R tends to Z. We denote:

◦ Λr,1 =
∑
σ∈{0,1}R|σ(−(r−1))=1,σ((r−1))=1 eH(σ(t)),

◦ Λr,2 =
∑
σ∈{0,1}R|σ(−(r−1))=1,σ((r−1))=0 eH(σ(t)) (and we have, for symmetry rea-

son,
◦ Λr,2 =

∑
σ∈{0,1}R|σ(−(r−1))=0,σ((r−1))=1 eH(σ(t))),

◦ Λr,3 =
∑
σ∈{0,1}R|σ(−(r−1))=0,σ((r−1))=0 eH(σ(t))),

◦ Υα = e2u0+2u1 .(e2u1 .Λr,1 + 2eu1 .Λr,2 + Λr,3),



◦ Υβ = eu0+u1 .[eu1 .(Λr,1 + Λr,2) + Λr,2 + Λr,3] and
◦ ZR = e2u0+2u1 .(e2u1 .Λr,1+2eu1 .Λr,2+Λr,3)+2eu0+u1 .[eu1 .(Λr,1+Λr,2)+Λr,2+
Λr,3] + Λr,1 + 2Λr,2 + Λr,3.

We have then:
Λr,1Λr,3 − Λ2

r,2 = ((1− eu1).eu0+u1)2

×(Λr−1,1Λr−1,3 − Λ2
r−1,2)

= . . .
= ((1− eu1).eu0+u1)2(r−1)

×(Λ2
1,2 − Λ1,1Λ1,3)

= ((1− eu1).eu0+u1)2r.eu0

α+
R = Υα

ZR

β+
R =

Υβ
ZR

y+R = α+
R + β+

R

Hence:

α+
R − y

+2
R =

(1−eu1 )2.(Λr,1Λr,3−Λ2
r,2)

Z2
R

= ((1−eu1 ).eu0+u1 )2r.eu0 )
Z2
R

We have also:
ZR ≤ (1 + eu0+u1)2.(Λr,1 + 2Λr,2 + Λr,3) ≤ . . . ≤ (1 + eu0+u1)2r.(Λ1,1 + 2Λ1,2 +
Λ1,3) = K.(1 + eu0+u1)2r, and Z2

R ≤ K2.(1 + eu0+u1)4r.

We have the expected result by remarking that: |eu0+2u1−eu0+u1 |
(e2u0+2u1+2eu0+u1+1)

< 1. The

same proof can be used for showing that |α−R − y
−2
R | tends to 0, when R tends

to Z. �

Proposition 6. We have: limr→+∞µ
+([{r}, ∅]) = limr→+∞µ

−([{r}, ∅]) in the
one-dimensional case of the stochastic version of the isotropic and translation
invariant Hopfield model, when detM 6= 0.

Proof. From the equations (i) and (ii) above, we have:
∀R ⊂ Z, α+

R + β+
R = y+R , thus α+ + β+ = x+

and
x+ = Φ+({−r, r}, ∅).a+ + 2Φ+({−r}, {r}).b+ + Φ+(∅, {−r, r}).(1− a+ − 2b+),
where
∀A,B ⊂ R | A ∩B = ∅, Φ+

R(A,B) = µ+([A,B] | [{−(r + 1), r + 1}, ∅])
and
Φ+(A,B) = limR→ZΦR(A,B).

Finally, we have the three following equations:
(1) Projection equation
α+ + β+ = x+,



(2) Conditional equation
x+ = Φ+({−r, r}, ∅).a+ + 2Φ+({−r}, {r}).b+ + Φ+(∅, {−r, r}).(1− a+ − 2b+),
(3) Independence equation
α+ = x+2,
from which we deduce the value of x+. We can do the same for x−, and we get
the same value than for x+, because Φ−(A,B) = Φ+(A,B) due to the spatial
Markovian character of the measures µ+ and µ−. �

From the propositions above, we obtain the following theorem:

Theorem 2. One-dimensional extended stochastic Hopfield networks does not
admit phase transition in respect to the influence of fixed boundary conditions.

Note that the same type of reasoning could be used for the Hopfield model
in two dimensions or even in n dimensions, in which we observe an occurrence of
phase transition inside the domain of vanishing of detM , if the absolute values
of the synaptic weights are sufficiently far from 0. Unfortunately, the equations
of type (1), (2) and (3) above are becoming rapidly numerous (we need for
example five equations in two dimensions) to be used for proving the uniqueness
of µ([{0}, ∅]) and we will use only simulations in a further paper for studying
the influence of boundaries on the asymptotic behaviour of the neural network.

4 Conclusion

After having explicated the links existing between some updating modes,
what seems to be of great interest when the studied object is a dynamical sys-
tem, this paper has given some results emphasizing the links existing between
physical and biological systems, namely ferromagnetic particles networks and
neural networks. Indeed, it has been shown that the studied random version of
the Hopfield model, that is relevant to study neural networks, admits a good
closeness with the Ising model, that has been well studied in the past in statisti-
cal physics. We have so proven that the asymptotic behaviour of one-dimensional
neural networks face to fixed boundary conditions cannot be associated to phase
transition phenomena, what is a first step to characterise the general influence
of fixed boundaries in such networks. Besides, it is interesting to see the effect
of different boundaries on the evolution of the network. Usually, authors do not
consider fixed boundaries but prefer periodic boundaries, which is often not rele-
vant in biological applications. Fixed boundaries permit us to consider biological
and physical applications for a large scale of finite neural networks, in which the
boundary conditions can be considered as an external magnetic field, or as a
chemical potential, or as an external synaptic activity exerted on the considered
neuronal population.

The problem is now to see if we can show the existence of phase transi-
tions for more general models of neural networks. In the general n-dimensional
Ising model, we know that the phase transition conditions in the attractive case



still occurs for parametric conditions on synaptic weights [18] where detM van-
ishes. The question is thus to know if neural networks following the rules of the
generalised version of the Hopfield model admit the same properties (or close
properties). So, we will first focus on simple two-dimensional neural networks,
i.e., with isotropy and translation invariance underlying features, before interest-
ing in more complicated cases by breaking these underlying features and, so, by
making anisotropic and not translation invariant networks. We could go further
by breaking the locality property off and consequently studying networks where
the interaction potentials received by a neuron are not only depending on the
state of its nearest neighbours.

In order to study this kind of two-dimensional neural networks, it seems
important to introduce simulation tools permitting to bypass the theoretical
method presented here because of its rapidly increasing complexity and the
difficulties to integrate in this method the notions of anisotropy, non transla-
tion invariance and globality. In a next article, we will give details about the
chosen simulation method based on the computation of the absolute difference
|µ+([{0}, ∅])−µ−([{0}, ∅])| when the size of the network R is tending to infinity.
If this limit does not vanish, we will say that phase transition occurs. We will
then give the obtained phase diagram representing the value of this measure
in function of the two parameters u0 and u1. When it will be possible, we will
compute the value of the determinant of the matrix M , in order to evaluate the
domain of validity of the co-occurrence of phase transition and of vanishing for
detM .
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