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1 UJF-Grenoble, TIMC-IMAG, Faculté de Médecine, 38706 La Tronche cedex, France
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Abstract. We give in this paper indications about the dynamical im-
pact (as phenotypic changes) coming from the main sources of pertur-
bation in biological regulatory networks. First, we define the boundary
of the interaction graph expressing the regulations between the main el-
ements of the network (genes, proteins, metabolites,...). Then, we search
what changes in the state values on the boundary could cause some
changes of states in the core of the system (robustness to boundary con-
ditions). After, we analyse the role of the mode of updating (sequential,
block sequential or parallel) on the asymptotics of the network, essen-
tially on the occurrence of limit cycles (robustness to updating methods).
Finally, we show the influence of some topological changes (e.g. suppres-
sion or addition of interactions) on the dynamical behaviour of the system
(robustness to topology perturbations).
Keywords: discrete dynamical systems, regulatory networks, cellular au-
tomata, robustness.

1 Introduction

The robustness of a regulatory biological (e.g. genetic) network is its ability
to present no phenotypic change after any perturbation exerted on its elements
(e.g. genes) or on their interactions. This property can be provided by an in-
ternal redundancy, but, according to Wolfe [1], only about 3% of yeast genes
with “essential” phenotypes (i.e. whose ablation is lethal), compared with about
17% of non-essential yeast genes, are homologues (i.e. formed by genome du-
plication). This suggests that the built-in reliability of genetic networks is not
necessarily due to the physical duplication of their components. Many recent
works (see [2,3,4]) are for example in favour of a regulation exerted by well
conserved RNA “relics” during the evolution, the microRNAs, able to modulate
interaction weights of genetic or metabolic regulatory networks. These microR-
NAs can either keep invariant or, conversely, dramatically change the functional
properties of these networks depending on the fact that they are active on robust
or sensitive parts of their architecture. Because of the more and more important
use of the term of robustness in the literature, we think that it is of great inter-
est to make more precise this notion. With this paper, our wish is to present a
panorama of what we think to be relevant when we speak about robustness in



biological systems. For that purpose, we first give some definitions about what
is a regulatory network and its associated interaction graph and what we can
define as centre and boundary of such a graph. We give then a background infor-
mation about three main multi-disciplinary views (dependency on boundaries,
on updating and on architecture) that we can have about robustness in regula-
tory networks and we finish by a discussion about the ways chosen by real living
systems to ensure this robustness.

2 Preliminaries

2.1 Regulatory networks

[5] A regulatory network N is made of n elements (genes, proteins, cells...)
and of their interactions. The m (≤ n2) interactions between these elements are
described by an interaction matrix W similar to the synaptic weights matrix
which rules the relationships between neurons in a neural network. We denote
by G the interaction graph associated to W , called the incident matrix of G: G
has a directed edge (or arrow) from the kth element (or vertex) of the set V of
vertices of N to its ith element, whose weight (or label) equals the coefficient wik
of W . If the regulatory network is genetic (we will suppose that it is the case
in the following unless an explicit mention), the coefficient wik of W is positive
(resp. negative, null) if the gene Gk activates (resp. inhibits, does not influence)
the gene Gi. If the network is boolean, the state xi of the gene Gi is equal to +1
(resp. −1) if it is (resp. is not) expressed. The absolute value of wik can be any
positive real number, but, if the interaction mechanism is unknown or difficult
to evaluate quantitatively, we choose only the values 1 (if there is an interaction)
and 0 (if not).

In order to calculate the wik values, we can:

– either determine the s-directional correlation ρik(s) between the state vector
{xk(t− s)}t∈C of the gene Gk at time (t− s) and the state vector {xi(t)}t∈C
of the gene Gi at time t, t varying during the cell cycle C of length M = |C|
and corresponding to observation times of bio-arrays images:

ρik(s) =

∑
t∈C xk(t− s) · xi(t)−

∑
t∈C xk(t−s)·

∑
t∈C xi(t)

M

M · σk(s) · σi(0)

where σk(s) = (
M ·

∑
t∈C xk(t−s)2−(

∑
t∈C xk(t−s))2

M2 )
1
2 and then take:

wik = sign(
∑M

s=1 ρik(s)

M ) if |wik| > η, and wik = 0 if |wik| ≤ η where η is a
de-correlation threshold ;

– or identify the system with a boolean network.

When it is impossible to obtain all the coefficients of W (neither from the
literature nor from such calculations), it is possible to estimate W by using



inverse problem techniques [6] or to complete W if it is partially known: we
choose randomly the missing coefficients by respecting the connectivity coefficient
K(W ) = I

n , the ratio between the number I of interactions and the number n

of genes, and the mean inhibition index I(W ) = R
I , where R is the number of

inhibitions. K(W ) is in general between 3
2 and 3 and I(W ) between 1

3 and 2
3 ,

for many known genetic networks as lactose operon, Cro operon for the phage λ,
lysogenic/lytic operon for the phage µ [5], gastrulation network, and Arabidopsis
thaliana flower morphogenesis network [7]...

2.2 Dynamical behaviour of a regulatory network

The regulatory network evolves over time. For example, by basing on the
Hopfield model [8], the state change of the gene Gi between times t and t + 1
can obey a deterministic threshold rule. Let us define the Hopfield Hamiltonian:
HHopfield(xi(t)) =

∑
k∈N (i) wik · xk(t) − θi where N (i) is the neighbourhood

of i in G and the θi are threshold values. The deterministic threshold rule is
then given by xi(t+ 1) = H(HHopfield(xi(t))) where H is the sign step function
(H(y) = 1 if y ≥ 0 and H(y) = −1 if y < 0). When the time t increases, the
genes’ states reach a stable set of configurations (fixed configuration or cycle of
configurations) called attractors of the network dynamics.

The rule can be more generally a stochastic threshold rule (we will then speak
of stochastic Hopfield model):

P (xi(t+ 1) = 1 | xk(t), k = 1, . . . , n) =
eHHopfield(xi(t))/T

1 + eHHopfield(xi(t))/T

We can notice that the stochastic rule becomes the deterministic one when the
temperature T is tending to 0, except for the case where HHopfield(xi(t)) = 0
where the probability to have xi(t + 1) = 1 is 1

2 . Furthermore, it becomes an
equiprobability rule when the temperature is tending to +∞.

Let us denote by Γ−(i) (resp. Γ+(i)) the subset of vertices {i1, i2, . . . , ik(i)}
of V such that (ij , i) (resp. (i, ij)) belongs to the set E of edges of the graph
G, for each j = 1, . . . , k(i). We will say that a subset of E, denoted by C =
{e1, e2, . . . , er} is a chain if each ek in C has a vertex belonging to ek−1 and an-
other one belonging to ek+1. We will say that C is a simple (resp. an elementary)
chain if the edges (resp. vertices) are different. In the sequel, we will understand
by chain a simple and elementary chain. In the same way, we will call C a path if
ek = (ik, ik+1) implies ek+1 = (ik+1, ik+2), for all k = 1, . . . , r, that is to say that
the final vertex of each edge is the beginning vertex of the next edge in C. The
sign of a path or a chain C is positive (equal to +1) if the number of negative
edges (i.e. edges having a negative label) of C is even and negative (equal to −1)
if this number is odd. A circuit (or loop) is defined as a chain (resp. path) where
each of the two extremities of any edge belongs to two and only two edges. For
simplicity of notation, we will say that a vertex i belongs to a circuit C if there
exists a node j such that (i, j) or (j, i) belongs to C. We will call a circuit or



loop C positive (resp. negative) if its sign is positive (resp. negative). We will
call connected component of G each set of vertices such that there exists a path
between every couple of vertices of it along a sequence of edges of G. A garden
of Eden is a vertex receiving no edge, but influencing at least one other vertex.

We shall say that x is a fixed configuration if x is invariant under the appli-
cation of the complete sequence of updates. If the dynamics of updating leads
to the iteration of a finite number of states xi, i = 1, . . . , k, then we speak of
the cycle (x1, . . . , xk). The updating iteration mode can be parallel, sequential
or block sequential (see Section 4 for further details). Let us observe that a
change in the updating iteration mode does not change the set of fixed configu-
rations, but only changes their attraction basins and may cause the appearance
(or the disappearance) of cycles of configurations. In the following, we will use
systematically the parallel iteration, unless it is specified.

In the sequel, we will recall some important dynamical properties concerning
the boolean networks with a deterministic threshold rule [5]. We assume that
G is connected since, otherwise, one can apply the results to each of connected
components of G. In addition, we will suppose with no loss of generality that
|Γ−(i)| > 0 for all i in V since otherwise, if there exists a vertex i in V such
that Γ−(i) is empty, then we can assume that the arc (i, i) exists in E. In this
way, the dynamics of both networks are the same. It evidently follows from this
property that there exists at least one circuit C in G (or a circuit of the form
(i, i)). Finally, we suppose that G and W have a quasi-minimal structure, that
is to say: (j, i), such as i 6= j, belongs to E (or equivalently wij 6= 0), if and only
if there exists x in the state space {−1, 1}n, such that:

sign(HHopfield(xi(t))) 6= sign(
∑

k∈N (i),k 6=j

wik · xk − θi)

Hence, we have the following necessary condition to have a quasi-minimal struc-
ture:

∀i = 1, . . . , n,−
n∑
k=1

|wik| < θi ≤
n∑
k=1

|wik|

The next property will be very useful in the following for characterising a posi-
tive cycle.

Proposition 1. A cycle C is positive if and only if there exists a vector x ∈
{−1, 1}n such that for all k, i ∈ C, sign(wik) = xi · xk or, equivalently, for all
k, i ∈ C, xi = sign(wik) · xk.

Then we have the following results relating the existence of fixed configura-
tions for N to the presence of positive or negative circuits (or loops).

Theorem 1. Given N , if all circuits of G are positive, then there exists a vector
x = (x1, . . . , xn) ∈ {−1, 1}n such that x and −x = (−x1, . . . ,−xn) are fixed
configurations of N .



Theorem 2. If all circuits of the interaction graph G are negative, then N has
no fixed point.

The previous results allow us to characterise some minimal regulatory net-
works. The following propositions constitute examples of minimal regulatory
networks. They solve in part the inverse problem consisting in the description of
W only from the knowledge of a phenotypic x observed from bio-array images.

Proposition 2. Let N be a network composed by n nodes and n connections, a
necessary and sufficient condition for the existence of a fixed configuration x is
the existence of a positive circuit. In this case, x and −x are both fixed points.
Hence we can characterise the set of minimal N having x as fixed point.

Proposition 3. Given a state vector x, the set of minimal networks N having
an interaction graph G, an incident matrix W and a threshold vector θ and
having x as fixed point is given by the following conditions: wik = αik · xi · xk,
where αik ≥ 0 and, for all i, there exists k(i) such that αik(i) 6= 0,−|αik(i)| <
θi ≤ |αik(i)|.
Proposition 4. Let N be a network composed by n vertices and n+ 1 interac-
tions, a necessary and sufficient condition for the existence of an attractor of all
points parallely iterated is a negative circuit and a positive circuit intersecting.

Let C be a positive circuit of N , then by Proposition 1 above, there exists x
in {−1, 1}n, such that x and −x satisfy the equation: k, i ∈ C, sign(wik) = xi ·xk.
If we denote by u(C) ∈ {−1, 1}n the vector defined by u(C) = x (resp −x) if
xi(0) = 1 (resp −1), where i(0) = min({i | i ∈ C}), then we have the following
property:

Lemma 1. Given a regulatory network N and y a fixed configuration of N ,
then, for all i ∈ V , there exists a positive circuit C(i) in G such that for all k in
C(i), yk = u(C(i))k or for all k in C(i), yk = −u(C(i))k.

Theorem 3. If m is the total number of positive circuits of N , then the number
of fixed points of N is less than or equal to 2m, and this upper bound is reached
if and only if for all circuits C of N there does not exist an edge (k, i) with k in
CC ending in C (there is no garden of Eden k pending to C).

Let us consider finally a regulatory network N having n vertices and 2n
interactions such as K(W ) = 2. We search for a mean value of the number of
fixed configurations, when n is growing to infinity.

Lemma 2. For any graph G having m non oriented edges, the mean number of
oriented edges which can be defined on G from the non oriented topology is equal
to 4m/3.

Theorem 4. If the regulatory network N has n vertices and K(W )n interac-
tions, with K(W ) = 2, then the expectation of the number of fixed configurations

of N has the same order of magnitude than n
1
2 , if n is sufficiently large.

We will define now the main features that we can associate to the interaction
graph G such as the equivalent of a centre (or a core) and the equivalent of a
boundary.



2.3 Graphs: centre and boundary

[9,10] A directed graph G is regular if each vertex is the end of the same
number of directed edges, i.e. every vertex has the same degree or valency. A
regular graph with vertices of degree k is called a k-regular graph or regular
graph of degree k. A graph is planar if it can be redrawn without intersecting
edges. The graph distance between x and y, distinct vertices of a directed edge-
labelled graph, is the minimal sum of the absolute value of the directed edge (or
arrow) labels (or weights) among all possible paths between x and y (which never
repeat a vertex), this sum being called the length of the path. The eccentricity of
a vertex x is the maximum graph distance between x and any other vertex of G.
The maximum (resp. minimum not zero) eccentricity is the graph diameter (resp.
radius). A vertex is central if its eccentricity equals the graph radius. The set of
all central points is called the graph centre (see Figure 1). A vertex is peripheral
if its eccentricity equals the graph diameter. The set of all peripheral points is
called the graph boundary. A graph geodesic between two vertices x and y is any
shortest (i.e. whose length is the distance between x and y) path between them.
The graph circumference is the length of any longest circuit (called perimeter)
of the graph. The graph girth is the length of any shortest circuit.

1 2

3

4

5

6 7

8

9

Fig. 1. If the label of each arrow of this interaction graph is 1, the diameter is 5,
the radius is 3, the centre is the set {4, 6} and the boundary is the set {1, 8, 9}.

If the graph is only undirected and not signed, e.g. coming from a non di-
rectional (or 0-directional) correlation network, we consider that an edge is bidi-
rected and that it is labelled by the value 1 on each direction. If the graph is
directed and signed, i.e. if the non zero values of labels are +1 or −1, depending
respectively on the attractive (activator) or repulsive (inhibitor) character of the
interactions, then the distance between x and y is just the number of arrows of
the shortest path going from x to y.

In the network which regulates the Arabidopsis thaliana flower morphogene-
sis [7], the interaction matrix W is a (12, 12)-matrix with only 25 non zero labels
whose signs are indicated on Figure 2. In this network, if we consider that the
absolute value of all the label is 1, it is easy to calculate the diameter, which
is equal to 4, as well as the radius, equal to 1. Thus, this network has only a
peripheral vertex and four central vertices (see Figure 2).
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Fig. 2. Arabidopsis thaliana flower morphogenesis network. If the absolute value
of the label of each arrow of this graph is 1, the boundary is delimited by the
dotted box and the centre is delimited by the plain box.

3 Robustness to boundary conditions

The dependency on boundary conditions can be expressed in terms of influ-
ence exerted on the state values of the centre vertices by the state values of the
boundary vertices in an interaction graph.

3.1 Regular planar interaction graph

Let us consider a regular planar interaction graph (i.e. whose corresponding
undirected graph is planar ): the prototype of such a graph has its vertices
located on a square in Z2 (e.g. the square of side n centred at the origin of Z2),
see Figure 3. An example is the Ising graph [11] which represents a network of
magnetic particles. These particles have two possible states, either up-oriented
or down-oriented. The state of a particle is denoted by +1 if it is up-oriented
and −1 if it is down-oriented. Furthermore, each vertex of the network (except
those of the boundary) is of degree 4, i.e. for any i in V , there are only four
neighbours j1, j2, j3, j4 influencing i through four directed edges starting in jk
and ending in i.

Let us consider the Hamiltonian of the Ising deterministic law:

HIsing(xi(t)) = −(
∑

k∈N (i)

wik · xi(t) · xk(t)− h · xi(t))

The Ising law used to understand the influence of boundaries is the stochas-
tic version (see Section 2) of the threshold rule which is obtained by replacing
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Fig. 3. The Ising regular planar interaction graph.

HHopfield by HIsing where xi(t) = 1. So, the studied Ising dynamics is quasi-
identical to the one presented in subsection 2.2, with same non zero weights
wik = T ·u1 only for the k belonging to the nearest neighbours of i (i excluded),
where u1 is the action potential of a vertex on its nearest neighbours. In the
threshold wii−h = T ·u0, h is called external field and the stochastic parameter
T is called temperature (by considering the spin as state of the atom i: σi = xi
and the real physical parameters used in [11], we have the correspondence:

wij =
4 · Jij
kB

and h =
µB
kB

where Jij is the interaction energy between nearest neighbours spins, µB the
magnetic susceptibility and kB the Boltzmann constant). The principle is that
the state of a vertex has more chance to change if the majority of its neighbours
are in the opposite state.

The Ising model has been initially developed for interpreting the ferromag-
netism and, further, direct generalisations have been proposed as model for many
applications including neural (and more generally regulatory) networks such as
the Hopfield model. In the following, we will particularly focus on the stochastic
version of the latter.

Let us observe that, in the stochastic case, the analogue of a fixed config-
uration is an invariant measure, i.e. a probability distribution invariant during
the updating process, called the Boltzmann distribution in the classical isotropic
Ising model. This invariant measure is concentrated on fixed configurations, when
T tends to 0.



The known regulatory networks (as the Arabidopsis network shown on Fig-
ure 2) are in general planar, but not regular. When many relationships between
genes of a same functional cluster remain unknown, we can suppose that, in
presence of uncertainty, the graph is complete (i.e. each ordered pair of graph
vertices is connected by a directed edge), all the weights being non zero, but
certain having very small absolute value, expressing the probable absence of in-
teraction. These uncertain weights wik, if their absolute value belongs to [0, 1],
can be considered as probabilities of having an interaction between genes k and i.
If the uncertainty progressively disappears, some weights can vanish and others
tend to 1 or −1. Such graphs can be considered as sub-graphs of an interaction
graph, whose they represent the uncertain part.

3.2 Phase transition and emergent behaviours

The phase transition phenomenon we focus on, i.e. the dependency of central
state values on the boundary state values, has been studied in the attractive case
(u1 > 0) of the Ising model by Onsager [12]. He has proved for the planar two-
dimensional Ising interaction graph that for certain values of the pair (u0, u1),
located below a certain critical temperature Tc, precisely on the line u0+2·u1 = 0
(see [13] and Figure 4), the state value on the centre i of the graph was highly
dependent on the state values on the boundary, when the number of vertices
(equal to n2, when the side of the Ising square is of length n) was tending
to infinity. In the repulsive case (u1 < 0), according to Dobrushin [14], phase
transitions in the two-dimensional Ising model can be observed in the region of
the space (u0, u1) delimited by the two following lines: u0 + 4 · u1 = − 1

4 and
u0 = 2.

Let suppose now that the lower-left vertex of the interaction graph G of the
Figure 2, the only peripheral vertex belonging to the boundary of G, is itself
regulated by a regular interaction Ising sub-graph, whose it is the centre. If this
sub-graph has the number of its vertices tending to infinity, let suppose that the
weights are chosen such that a transition phase behaviour occurs. In this case,
we can simulate (see Figure 5) the situation of an irregular non planar regulatory
network having an uncertain interaction subgraph of size n2 controlling a vertex
of its boundary, for which if n is large, we have a strong dependency of the
centre state values on the boundary values of the sub-graph. We have in a certain
sense transferred the dependency on the boundary state value to the sub-graph
boundary.

We will now study some conditions of existence of emergent behaviours in an
inhomogeneous Hopfield-like graph, which could better represent the uncertain
part of a regulatory network. The results presented in the following come from
simulations of the dynamics of a regular network placed in a squared grid. The
size of a side of the square is 64. At the beginning of a simulation, the initial con-
figuration states are randomly and independently chosen. The objective is then to
compare the influence of different valued boundaries on the network and find the
parametric conditions (u0, u1) for which the centre (made of four vertices) of the
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Fig. 4. Existence of regions in the parametric plane (u0, u1) in which the tran-
sition phase phenomenon occurs, e.g. in the attractive case (u1 > 0) at a critical
temperature Tc.

network is highly dependent on the boundary conditions. We used the stochas-
tic Hopfield-like rule (see Section 2) with: i ∈ N, i ∈ N (〉), T = 1 and wii = h,
which corresponds to an external influence of microRNAs and gives the same
minimal energies as the Boltzmann machine for same fixed configurations.

First of all, let us note that we consider the homogeneous (rotation and
translation invariant) stochastic Hopfield model. For the attractive case u1 ≥ 0,
we look at the difference between the probability P1 to have the state value 1 in
the central vertices of the graph knowing that all state values on the boundary
are fixed to the value 1, and the probability P−1 to have 1 at the central vertices,
knowing that boundary is fixed at −1. A value significantly different of 0 (at the
level 1%) for p = |P1−P−1| is obtained in a neighbourhood of the line u0+2·u1 =
0, for |u0| and u1 more than a strictly positive value, which corresponds to the
phase transition phenomenon observed by Ruelle (see Figure 6).

For the repulsive case (u1 ≤ 0) (see Figure 7 (left)), we observed a significant
space of parametric conditions where the boundaries highly influence the centre
for |P1/−1 − P−1/1|, where P1/−1 (resp. P−1/1) is the probability to have 1 at
the central vertices knowing the left (resp. right) half part of the boundary is
fixed at state 1, the other half part being fixed at state −1. What seems to be
relevant is that, despite the neighbourhood of the line u1 ' 1 where an emergent
phenomenon occurs, this domain of (u0, u1) is close to the one proposed by
Dobrushin delimited by the lines u0 + 4 · u1 = −1/4 and u0 = 2 and describing
the space of phase transition in a repulsive and homogeneous 2D Ising Model.



Fig. 5. Simulation for n = 80 (using http://www.ibiblio.org/e-
notes/Perc/ising.htm) of a regular sub-graph in the case of the classical
Ising model: vertices in black (resp. white) are in state −1 (resp. +1). Different
asymptotic behaviours can be observed: dependency on the boundary values
at low temperature (T = 1), with free boundary (top left) and boundary
fixed at +1 (top right); dependency on the boundary values near the critical
temperature (T = 2.269), with free boundary (middle left) and boundary fixed
at +1 (middle right); independency on the boundary values at high temperature
(T = 3.5), with free boundary (bottom left) and boundary fixed at +1 (bottom
right). The black curve on the right of the images corresponds to the evolution
of the mean magnetisation M (mean number of white states +1).

In the case of an inhomogeneous Hopfield-like graph (more realistic for regu-
latory networks), we used the same technique with a more complex model, where
the synaptic weights are defined by a function of the vertex discrete coordinates.
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Fig. 6. Phase diagram highlighting the existence of a phase transition for the
classical and homogeneous Hopfield-like attractive interaction graphs (P is given
as absolute value of difference of the percentages P1 and P−1; u0 and u1 are given
in real values).
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Fig. 7. Phase diagram highlighting the existence of a space of parametric condi-
tions for which the centre of the network depends on the boundaries for the clas-
sical (left) and inhomogeneous (right) Hopfield-like repulsive interaction graphs
(P is given as absolute value of difference of the percentages P1/−1 and P−1/1).

To be more precise, we consider the square Q ∈ Z2, the relative integers plane,
and we define a coordinate system on Z2 so that the origin O belongs to the



centre of Q. Then the synaptic weights are defined as follows: wii = T · u0,
wij = T ·u1

dM (i,O) if dM (i, j) = 1 and wij = 0 otherwise.

This inhomogeneous stochastic Hopfield model is not translation invariant,
but is still a nearest neighbours model. This is interesting (resp. unusual) to
break the translation-symmetry because it is more realistic in the context of
regulatory networks (resp. the majority of phase transition results supposed
that the system is translationally invariant). We observe in this case a good
significance of the influence of boundaries on the network in a space of parametric
conditions (see Figure 7 (right)) which, once again, seems to be very close to
the one described by Dobrushin. However, some theoretical studies have to be
performed to understand the location of this emergent phenomenon.

Our results show that the phenomenon of influence of boundaries on net-
works in the stochastic Hopfield-like model is very close to the results of phase
transitions obtained by Ruelle for the homogeneous attractive case and to those
obtained by Dobrushin for the homogeneous repulsive case. Furthermore, they
also give a first answer about what happens when the sytem is not translationally
invariant even if theoretical studies have of course to be developed. Nevertheless,
these first simulations seem to be relevant for our purpose because of the nature
of regulatory networks. We can notice that in the inhomogeneous case above, the
domain of boundary dependence contains still, in the repulsive case, a part of the
line u0 + 2 · u1 = 0 beyond a critical temperature. This line corresponds to the
linear dependency between the Bayes conditional equation (giving the probabil-
ity of states at the centre knowing its boundary) and the projectivity equations
(linking the probabilities of states on the boundary), which gives a partial expla-
nation of the boundary dependence [15]. To finish on this point, it will be now of
great interest to prove theoretically that these domains of parametric conditions
where boundaries influence such networks are phase transitions spaces like for
the classical 2D Ising model.

4 Robustness to updating methods

4.1 Robustness to updating iteration modes

The robustness also concerns the dependency of asymptotics on updating
iteration modes in the case of deterministic Hopfield model. We will in this
section change state space from {−1, 1}n to {0, 1}n by choosing the deterministic
transition rule.

Let F : {0, 1}n → {0, 1}n be a mapping whose components f1, . . . , fn are
threshold functions:

∀i(1, . . . , n),∀x ∈ {0, 1}n, fi(x) = H(HHopfield(xi(t))

where H is defined by H(y) = 1, if y > 0 and H(y) = 0, if y ≤ 0.
The block sequential iteration on F associated to the ordered partition (Ik)k

of the set {1, . . . , n} is defined by:

∀k (1, . . . , p),∀i ∈ Ik, xi(t+ 1) = fi(y
k(t))



where y1(t) = x(t),

∀k (2, . . . , p), ykj (t) =

{
xj(t+ 1) if j ∈ I1

⋃
· · ·
⋃
Ik−1,

xj(t) otherwise.

Particular cases of block sequential iterations correspond to particular choices
of the partition:

- when the partition is ({k})k=σ(1),...,σ(n) where σ is a permutation of the set
{1, . . . , n}, the iteration is called a sequential iteration on F;

- when the partition is trivially reduced to the unique set {1, . . . , n}, the
iteration is called a parallel iteration on F.

As block sequential iterations on F can be associated to ordered partitions of
the set {1, . . . , n}, one can directly find the number of updating iteration modes
for a network composed of n nodes.

Proposition 5. Let Un be the number of updating iteration modes for a network
composed of n nodes. Un satisfies

Un =

n−1∑
i=0

(
n
i

)
Ui where U0 = 1.

Table 1. Number of updating iteration modes for networks composed by n
nodes.

n 1 2 3 4 5 10 12 20
Number of 1 3 13 75 541 1.02 108 2.81 1010 2.68 1021

modes

Table 1 shows the number of updating iteration modes for some network sizes
(numbers of nodes). The number of modes grows exponentially with the size of
the network.

As seen in section 2, the set of fixed configurations for the network dynamics
does not change with the updating iteration mode. Nevertheless, cycles of con-
figurations may appear or disappear if the updating iteration mode changes. In
the scope of genetic regulatory networks modeling, fixed points and cycles are
very important. Cell types differ because different subsets of genes are ”active”
in the different cell types. We can then associate each fixed point of the network
dynamics to a distinct cell type [16]. But there is no evident biological sense to
cycles when there are no cyclic behaviour cells.

In the example of the genetic regulatory network of Arabidopsis thaliana
flower morphogenesis, four (of six) fixed points correspond to the differentiated
cells of the flower: stamens, carpels, petals and sepals [7]. The fifth fixed point



corresponds to cells that will not become part of flowers, whereas the sixth one
does not agree with any observed gene expression pattern in wild-type plants
but could be experimentally induced according to the authors. For the network
dynamics, the updating iteration mode is based on experimental data: genes are
grouped into a hierachy of five sets depending on their time of activation as the
transition to flowering and flower morphogenesis proceeds. The block sequential
iteration corresponds to the following ordered partition of the set {1, . . . , 12}:
(1, 2)(3, 4, 5)(6, 7, 8)(9, 10, 11)(12) (see Figure 8).
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Fig. 8. Numbers assigned to genes in the Arabidopsis thaliana flower morpho-
genesis network.

If the network dynamics is computed with a parallel udpating mode, one
observes seven limit cycles of length two and the same six fixed points as with
the block sequential updating. These cycles are biologically meaningless. Table 2
refers to the attractors of the Arabidopsis thaliana network dynamics depending
on the updating iteration mode. Let us notice that the genes number 4, 8, 9, 10
and 11 are the only ones whose values change in cycles. In the interaction graph,
these genes correspond to three (of six) positive circuits of length 2: C1 = {4, 9},
C2 = {8, 10} and C3 = {8, 11}. These circuits are ”broken”in the block sequential
updating: vertices belonging to a same circuit are in different groups. Because
of the huge number of updating iteration modes for a network composed by
twelve nodes (see Table 1) and because the execution time exponentially grows
with the network size, we have not computed every possible dynamics for the
genetic regulatory network for Arabidospis thaliana flower morphogenesis. How-
ever, this biological example shows that the notion of robustness also concerns
the dependency of asymptotics on updating iteration modes.



Table 2. Attractors of the Arabidopsis thaliana network dynamics for the bi-
ologically inspired block sequential iteration and for the parallel iteration, and
the corresponding cell types.

Attractors Block sequential updating Parallel updating Cell types

Fixed point 1 000100000000 000100000000 Sepal
Fixed point 2 000100010110 000100010110 Petal
Fixed point 3 000000001000 000000001000 Carpel
Fixed point 4 000000011110 000000011110 Stamen
Fixed point 5 110000000000 110000000000 No flower
Fixed point 6 110000010110 110000010110 Mutant

Cycle 1 None
000100010000
000100000110

None

Cycle 2 None
000000000000
000100001000

None

Cycle 3 None
000000010000
000100001110

None

Cycle 4 None
000000000110
000100011000

None

Cycle 5 None
000000010110
000100011110

None

Cycle 6 None
000000001110
000000011000

None

Cycle 7 None
110000000110
110000010000

None

As every trajectory in the dynamics of a network composed by n nodes is
ultimately periodic (ending to a fixed point or a cycle) whatever the updating
iteration mode is, we can define four classes of dynamic behaviour for regulation
networks:

– B1: whatever the updating iteration mode is, every trajectory ends to a fixed
point;

– B2: whatever the updating iteration mode is, every trajectory ends to a cycle;

– B3: whatever the updating iteration mode is, some trajectories end to a fixed
point, others to a cycle;

– B4: depending on the updating iteration mode, either every trajectory ends
to a fixed point or some trajectories end to a fixed point, others to a cycle.

B1, B2 and B3 correspond to regulation networks that are robust to updating
iteration modes, while B4 corresponds to networks that are sensitive to updating
iteration modes, like the Arabidopsis thaliana one.



Our aim is to understand what makes networks behave differently, and in
the case of B4-class networks, what the relationship between block sequential
iterations and asymptotic configurations (fixed points or cycles) is. Previous
studies [17,18,19] have shown that the networks with symmetric matrices and non
negative diagonals are B1 class networks. This result has even been generalized
for quasi-symmetric matrices. But this class of interaction matrices is not relevant
from a biological point of view when modelling regulation networks.

We have done some simulations on little size networks. We have worked on
networks with two and three nodes and on null-threshold functions. Interaction
weights were chosen in {−1, 0, 1}. Let us notice that, with these conditions, there
is no network belonging to the B2 class because the null configuration is always
a fixed configuration. Table 3 shows the total number of simulated networks, and
the number of networks belonging to each class.

Table 3. Numbers of simulated networks for each size.

Size Total B1 B2 B3 B4

2 81 73 0 4 4
3 19683 14818 0 2241 2624

Each one of the four networks composed by two nodes that belong to the B4

class comprises a positive circuit C = {1, 2} (both edges are positive) as shown in
Figure 9. Block sequential iterations that break this circuit (sequential iterations
in this case) allow only fixed points while the parallel iteration allow cycles and
fixed points. Thus, the dynamic behaviour of these two-nodes networks is very
similar to the one observed for the Arabidospis network.

− 1 2

+

+

−

Fig. 9. Interaction graph for the four B4-class networks of size two. Edges that
are present in each network are in solid lines. Edges that are only present in
some networks are in dashed lines.

The network whose interaction graph is represented in Figure 10 is also a B4-
class network. It is composed of three nodes and its dynamical behaviours is not
similar. Fixed points are observed for the following block sequential iterations:
(1)(3)(2), (2)(1)(3), (3)(2)(1), (1, 3)(2) and (2)(1, 3). For the eight other itera-
tions trajectories end to fixed points and cycles. The (1)(2)(3) block sequential
iteration breaks the positive circuit of length three of the graph as other sequen-



tial iterations but allows cycles. In this example, there is no direct link between
positive circuits of the interaction graph and blocks that allow only fixed points.

+

2 3

1

−

+

+
+

Fig. 10. Interaction graph of one of the 2624 B4-class networks with three nodes.

Our very simple examples show that the link between the interaction graph
and the dynamic behaviour of a network is not straightforward. It is important to
notice that, in general, regulation networks are not robust to updating iteration
modes.

4.2 Robustness and asynchronous cellular automata

Cellular automata were originally introduced by von Neumann to study the
logical properties of self-reproducing and self-organising machines. Their study is
attractive for biology because of their general properties which seem sometimes
to be close to those of living systems.

However, the classical researches about this model have been based on specific
features and very strong hypotheses about the network and its transitions that
seem to be too far from the reality of living systems. Indeed, cellular automata
have been essentially studied with perfect synchrony on regular lattices. Recent
researches about the robustness to asynchronism of cellular automata have given
new relevant results, that have more chance to be close to the reality of biological
systems. These researches have mainly focused on the case where perturbations of
synchrony are added. They have brought to classify elementary cellular automata
in four experimental classes of robustness. In this subsection, we will briefly
present the results obtained on this subject [20,21].

Definition 1. An asynchronous cellular automaton is a 5-tuple (L,Q, G, f,∆)
such as: i) a cell is a variable that takes its values in Q which is the set of
possible states; ii) the set of all cells is called the lattice, denoted by L,L ⊆ Zd
where d is the dimension of the lattice; iii) the neighbourhood of a cell N(c) is a
function that associates to a cell c an ordered set of cells. The cardinality of N(c)
is constant and is equal to N ; iv) f : Qn → Q is the local transition rule that
defines how the new state of a cell c is computed. This computation is function
of the states of the cells belonging to the neighbourhood of c; v) ∆ : N→ P(L) is



the updating method which defines for each time t, the set of cells to which the
transition rule is applied.

We can denote by ∆α the asynchronous stochastic dynamics defined by as-
signing at each time t to every cell c ∈ L a probability α which corresponds to
the probability this cell c is in ∆(t). α is called the synchrony rate. Moreover, we
call configuration at time t, which is denoted by xt = (xt(c))c∈L with xt ∈ QL,
an assignment of a state to each cell of L. Thus, when ∆ is fixed, the global
transition function F∆ : QL × N→ QL which associates to the configuration at
time t xt = (xt(c))c∈L the configuration at time t+ 1 xt+1 = (xt+1(c))c∈L such
that:

xt+1(c) =

{
f((xt(ξ))ξ∈N(c) if c ∈ ∆(t),

xt(c) otherwise.

Our aim is here to show on examples that the asynchrony may lead to insta-
bilities that can bring to the emergence of new behaviours. However, we have to
notice that the influence of asynchrony depends on the nature of the automaton
and that it can easily be highlighted by simulations (all the simulations presented
here have been obtained by using FiatLux [22]).

For our purpose, we give two examples of simulations of asynchrony on 1D
cellular automata, the first one showing an important dependence on the syn-
chrony rate and the second one being α-invariant (i.e. its behaviour does not
significantly change with the synchrony rate). The cellular automaton of Fig-
ure 11 is α-dependent, i.e. its behaviour significantly changes with the synchrony
rate, in particular just near a critical value αc where a phase transition can be
observed. When α > αc (e.g. α = 0.75), the space-time diagrams illustrates
branching structures whereas when α < αc (e.g. α = 0.5), those branching
structures quickly die to become a fixed point only composed of cells at state 0.

Fig. 11. Simulation of the evolution of the α-dependent elementary cellular au-
tomata 50: (left) α = 1.0 (centre) α = 0.75 (right) α = 0.5. The critical value of
α for this automaton is approximatively αc = 0.63.



The cellular automaton of Figure 12 is a version of the “majority vote rule”
(i.e. the next state of a cell is the most represented state of the cells of its
neighbourhood) and is α-invariant. The behaviour of this automaton depends
on the initial density but is invariant relatively to the synchrony rate.

Fig. 12. Simulation of the evolution of the α-invariant elementary cellular au-
tomata 232: (left) α = 1.0 (centre) α = 0.75 (right) α = 0.5.

The two examples given in Figure 11 and Figure 12 above belong to two
of the four classes of robustness defined in [21]. An interesting point coming
from this study is that those empirical classes of robustness cannot be directly
deduced from Wolfram’s empirical classification [23]. Cellular automata are here
differenciated thanks to the density parameter. So, it could be of great interest to
study the density influence in regulation networks too. Moreover, as regulation
networks do not evolve with a perfect synchrony, we think that a generalisation
of this study to graphs having the properties of genetic regulatory networks could
lead to a significant advance in understanding the dynamics of these networks.

5 Robustness to topology perturbations

The robustness can be defined also with respect to the graph architecture:
it concerns for example regulatory networks in which we add some vertices in
order to increase the number of positive loops (see Section 2) in order to adapt
the number of attractors to the observed fixed configurations. It is the case
of the Drosophila gastrulation graph [5,24]: we add two supplementary fixed
configurations, by adding two new vertices.

The interaction graph G of the Figure 13 comes from an initial regulation
network proposed by Leptin [25,26] for the gastrulation on which we have added
two vertices dedicated to “energetic” genes ADK (adenylate kinase) and NDK
(nucleotide diphosphate kinase) involved in the differentiation of a key cell for
gastrulation, the bottle cell. The overall effect of NDKs is to transfer a phosphate
group from a nucleoside triphosphate to a nucleoside diphosphate. Starting with
adenosine triphosphate (ATP) and guanosine diphosphate (GDP), the action of
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Fig. 13. The example of the interaction graph G of the gastrulation.
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Fig. 14. Identification of the peripheral vertex P of the gastrulation graph G,
and of its central vertices a, b, c.

NDK would produce adenosine diphosphate (ADP) and guanosine triphosphate
(GTP): ATP + GDP ⇐ ADP + GTP , ATP (produced by ADK) giving GTP
(produced by NDK) both necessary for Cytoskeleton genes products (actine
and tubuline) polymerisation, which activates their expression. The interaction
graph G has five fixed configurations, if we use the deterministic majority rule
(all weights have the same absolute value 1). One corresponds to the states
values +1 for P , −1 for ADK, +1 for NDK, +1 for the others except +1, −1, +1
for the central genes a, b, c (see Figure 14). The four other fixed configurations
correspond to: i) xP (∞) = −1, like all other genes, ii) xP (∞) = −1 , like all
other genes except xNDK(∞) = +1 and xa(∞) = +1, iii) xP (∞) = −1, like all



other genes, except xADK(∞) = +1 and xa(∞) = +1, iv) xP (∞) = −1, like all
other genes except xADK(∞) = xNDK(∞) = +1 and xa(∞) = +1.

If we consider now the original graphG proposed by M. Leptin (see Figure 15)
and if we use the deterministic majority rule, there is only two fixed configura-
tions for this original graph G: if the gene P is on (its state value equals +1)
then the state values of the central genes a, b, c equal respectively +1, −1, +1,
whereas when P is off (value −1), they are −1, −1, −1.
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Fig. 15. The interaction graph of the original regulatory network proposed by
M. Leptin for the gastrulation.

6 Discussion

It is in general of a great biological interest and relevance to determine the in-
cident matrix W of an interaction graph G expressing the relationships between
genes, or proteins, or metabolites, or neurons... This matrix can be inferred from
the raw data, but W is often noisy and/or partially known due to both uncer-
tainty and incompleteness in the acquisition process. We suppose that despite
this part of ignorance, such a matrix W has characteristic properties like i) a
minimal number of non zero labels or weights for a given set of observed phe-
notypic attractors (fixed points or cycles) or ii) a minimal number P (W ) of
positive loops and N(W ) of negative circuits, controlling the number A(W ) of
its attractors and their stability. Various problems concern the extraction and
the exploitation of a minimal matrix W expressing the relationships between the
elements of a biological regulatory network:

– if W is not ”architecture robust”, A(W ) can highly depend on the precise
composition of W , i.e. on the number of its connex components, or positive
and negative loops;



– if W is not ”updating robust”, A(W ) can dramatically vary with the mode of
refreshment of the states (sequential, block sequential or massively parallel);

– if W is not ”boundary robust”, A(W ) can be influenced by the states chosen
to express the action of the environment of the experimental protocol on the
peripheral elements of the network;

– if we observe only partially the phenomenology, the number A(W ) or the
nature (fixed points or cycles) of the attractors can be respectively underes-
timated or unidentified.

If one of the previous statements holds, then it will be very difficult to use W
and G to deeply understand the dynamical behaviour of the regulatory system,
hence to do valuable predictions, in particular to guide the future experimen-
tal planning (provoking a cascade of uncertainty on the future measurements).
More, in case of absence of robustness of the matrix W too sensitive to architec-
ture/updating/boundary variations and in case of a lack of observability of its
attractors, W has some chance to be very incorrect, because the architecture of
W is often the result of a long evolution and probably the nature has selected
robust (to environmental perturbations) solutions for the regulation (especially
if the function controlled by G is vital). More, if the phenomenology does not
give access to all the attractors by varying experimental conditions, it signifies
that certain attractors are difficult to be observed, in other terms there exist
rare modes of dynamical expression and Maupertuis principle excludes in gen-
eral such rare dynamics involving superfluous interactions. The remarks above
justify the interest to revisit the incident matrices of known interaction graphs in
order to detect pathologic situations of lack of robustess or of non-observability
of attractors (e.g. attractors having a small attraction basin, that is presenting
few initial conditions leading asymptotically to themselves). If we have to choose
a pertinent matrix W inside a set of possible, we have to privilege the most ro-
bust ones having as attractors those which have been really observed, and to
leave far away the non robust matrices having more artefactual asymptotic dy-
namical behaviours. That justifies the chosen approach and pushes to continue
to explore the parametric domains where a small perturbation in the architec-
ture/updating/boundary parameters values causes a big change in the number
and nature of attractors (”infrastructural” bifurcation). This domain of study
could be called infrastructural instabilities analysis, the adjective ”infrastruc-
tural” referring to the specific character of the concerned parameters, involved
in defining the architecture, the mode of updating and/or the boundary condi-
tions of the interaction graphs and their associated incident matrices.

7 Conclusion

We have described in this paper different situations of infrastructural insta-
bility for incident matrices of interaction graphs in various biological regulatory
systems. This first approach shows that certain matrices are highly sensitive to
environmental and/or experimental modifications that could affect the number



of elements in interaction, or the number of these interactions, or their nature
(inhibitory or activatory), or the states of some elements depending on experi-
mental protocols and/or on external physico-chemical conditions (boundary ele-
ments), or the temporality (synchrony or asynchrony) of the dynamics of states
changes of the (observed or hidden) elements. The present study is preliminary
and it is concerned by numerous parallel works about the robustness of specific
or generic regulatory networks. An interesting perspective is now the elucidation
of the ways in which the nature has selected robust regulatory mechanisms and
we will see in the future the explicitation of functional phylogenetic trees show-
ing filiations of parameter sets defining interaction graphs and incident matrices.
The analysis of these trees will probably show situations of high robustness and
infrastructural stability and lead to a set of ”optimal” or ”viable” interaction
graphs minimizing environmental influences on their dynamical properties. The
way to reach this optimality or viability through the evolution could constitute
a real challenge for future studies in comparative physiology or genomics.
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