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Notions of computations

To “compute” can have different meanings depending on context

General definition: to construct something using a sequence of known operations.
▶ “something”: numbers, mathematical objects, instances of datastructures, etc.
▶ “known operations”: addition, colimits, while loops, etc.

In the CS meaning, different levels of computability or computational methods
▶ algorithm (gold standard): fully terminating procedure on all instances
▶ procedure: might terminate or not
▶ proof assistant: ask the user for the next step of computation, check that the

steps are sound
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Computable functions

There is different models for the notion of computable functions, like the one of
recursive functions.

Recursive functions: subclasses Rec𝑘 for 𝑘 ≥ 0 of partial functions ℕ𝑘 → ℕ s.t.
▶ constant functions (𝑛1, … , 𝑛𝑘) ↦ 𝑐 are in Rec𝑘
▶ projections (𝑛1, … , 𝑛𝑘) ↦ 𝑛𝑖 are in Rec𝑘
▶ closed by composition and recursion

But computation is not just about natural numbers. What about other structures?

We can still replace ℕ by datastructures (lists, maps, etc.) but this is just syntax for
ℕ.

Can we talk about other mathematical objects with ℕ?
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Computing on mathematical objects

Given a “universe” (a set, a category, etc.) of objects 𝒰, an encoding is a subset
𝐸 ⊆ ℕ together with a mapping

𝐸 → 𝒰
𝑒 ↦ ⟦𝑒⟧

An object 𝑋 ∈ 𝒰 is encoded by 𝐸 when there is 𝑒 ∈ 𝐸 and an “equivalence” 𝑋 ≃ ⟦𝑒⟧.

Examples: the finite sets are encoded by ℕ through the mapping

𝑛 ↦ {0, … , 𝑛 − 1}
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Computing on mathematical objects

Once such an encoding is given, one can ask what operations can be computed with it,
as recursive functions.

Examples with sets:

Disjoint union Product
(𝑆, 𝑇 ) ↦ 𝑆 ∐ 𝑇 (𝑆, 𝑇 ) ↦ 𝑆 × 𝑇
(𝑛, 𝑚) ↦ 𝑛 + 𝑚 (𝑛, 𝑚) ↦ 𝑛𝑚

Using this kind of encoding, one can wonder what is computable among mathematical
structures.
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Category

Category theory: categories, functors, natural transformations, their constructions and
properties.

Given a category 𝒞, examples of things that we want to know:
▶ is 𝒞 complete or cocomplete?
▶ is 𝒞 closed?

Given a functor 𝐹∶ 𝒞 → 𝒟, examples of things that we want to know:
▶ does 𝐹 preserve limits or colimits?
▶ is 𝐹 part of an adjunction?

Can we find encodings enabling computational methods for these problems?
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Computing with presentations

When computing with mathematical objects, the standard way to go is with
presentations.
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Computing with presentations

Given a group 𝐺, one can express it using a presentation ⟨𝑆 ∣ 𝐸⟩

▶ ℤ2 ≅ ⟨{𝑎, 𝑏} ∣ 𝑎𝑏 = 𝑏𝑎⟩
▶ ℤ/𝑛ℤ ≅ ⟨{𝑎} ∣ 𝑎𝑛 = 1⟩
▶ …

When such a presentation is finite, one can easily describe it to a computer

let Z2 = group(gens = {a,b}, eqs = {([a;b],[b;a])})
let Z/3Z = group(gens = {a}, eqs = {([a;a;a],[])})
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Computing with presentations

Using this encoding or others, several algorithms were introduced, notably:
▶ Todd–Coxeter algorithm: coset enumeration
▶ Schreier–Sims algorithm: find the order of a permutation group

We can also present morphisms between presented groups and make computations on
them.
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Presentations for categories

Remember that categories, technically, are algebraic structures (essentially).

2 sorts:
C0 and C1

4 operations:

id ∶ C0 → C1 𝜕− ∶ C1 → C0 𝜕+ ∶ C1 → C0 𝑐 ∶ C1 ×0 C1 → C1

They thus admit a notion of presentation.
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Computational representations

Example: one can consider a category 𝐶 with
▶ objects 𝑢, 𝑣, 𝑤
▶ generating arrows 𝑎∶ 𝑢 → 𝑣, 𝑏 ∶ 𝑣 → 𝑤 and 𝑐 ∶ 𝑢 → 𝑣

𝑢

𝑤

𝑣

𝑎

𝑐

𝑏

𝐹
−−−−−−−−−→ 𝑥 𝑦 𝑧𝑑 𝑒
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Computational representations

Also a category 𝐷 with
▶ objects 𝑥, 𝑦, 𝑧
▶ generating arrows 𝑑∶ 𝑥 → 𝑦 and 𝑒∶ 𝑦 → 𝑧

𝑢

𝑤

𝑣

𝑎

𝑐

𝑏

𝐹
−−−−−−−−−→

𝑥 𝑦 𝑧𝑑 𝑒
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Computational representations

Then one can consider the functor 𝐹 such that

𝐹(𝑢) = 𝑥 𝐹(𝑣) = 𝑦 𝐹(𝑤) = 𝑧
𝐹(𝑎) = 𝑑 𝐹(𝑏) = 𝑒 𝐹(𝑐) = 𝑑 ∗ 𝑒

𝑢

𝑤

𝑣

𝑎

𝑐

𝑏

𝐹
−−−−−−−−−→ 𝑥 𝑦 𝑧𝑑 𝑒
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Computational representations

Such data can be given to a computer.

A := category {
obj := {u,v,w},
arr := {a : u => v, b : v => w, c : u => w}

}
B := category {
obj := {x,y,z},
arr := {d : x => y, e : y => z}

}
F := functor A => B {
u -> x, v -> y, w -> z,
a -> d, b -> e, c -> d * e

}
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Computational representations

Such encoding allows considering the computability of several construction or property
on finitely presented categories.

But the categories described this way feels very artificial.

What about real categories like Set, Grp, etc. and associated functors.

Still, some successes were obtained with this encoding:
▶ solution for the word problem on morphisms based on rewriting
▶ computation of Left Kan extensions (some at least) [Carmody,Walters]

▶ generalisation of Todd–Coxeter algorithm for groups
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The category Set

The category Set of sets and functions is a standard example of categories.

The situation of Set is already different from an f.p. category
▶ its classes of objects and morphisms is not finite (not even sets!)
▶ it is morally only defined up to equivalence of category

Let’s see what we can compute inside Set.
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Encoding finite sets

Finite sets can easily be encoded as follows.

Type of integers: type nat = Zero | Succ of nat

Type of elements: type el = El of nat

Type of sets: type set = el list
▶ but: need to filter lists with duplicates
▶ more efficient: use Set Module to create Sets of el

Mapping:
[El 1; El 5; El 7; El 42] ↦ {1, 5, 7, 42}
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Encoding functions between sets
Functions between finite sets can be encoded as follows.

Type of functions (1st try): type sfun = el -> el
▶ difficult to define and inspect
▶ more generally, not efficient

Type of functions (2nd try): type sfun = (el * el) list
▶ easier to define and inspect
▶ still a bit inefficient
▶ better: use Map Module to create Maps of (el,el)-bindings

Assuming sets 𝑆, 𝑆′ encoded by [El 1;El 2] and [El 4;El 5; El 6], we have a
mapping:

[(El 1, El 6); (El 2, El 4)] ↦ 𝑓 = 𝑆 ≅ {1, 2}
𝑓′

−→ {4, 5, 6} ≅ 𝑆′

with 𝑓 ′ defined by 𝑓 ′(1) = 6 and 𝑓 ′(2) = 4
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Observations

Simple computability observations:
▶ From an encoding of a finite set 𝑆, the identity function id𝑆 is encodable

▶ From encodings of functions 𝑆
𝑓
−→ 𝑆′

𝑓′

−→ 𝑆″, the composite 𝑓 ′ ∘ 𝑓 is computable

(s,s') ∈ f, (s',s'') ∈ f'  (s,s'') ∈ ff'
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Encoding graphs

An oriented (multi-)graph is a diagram

𝐴 𝑁
s

t

in Set.

An oriented graph 𝐺 induces a free category 𝐺∗ of paths between nodes.
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Encoding graphs

Finite graphs 𝐴 𝑁
s

t
can be encoded quite easily:

type graph = { nodes : set ;
arrows : set ;

src : sfun ;
tgt : sfun }
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Encoding diagrams

A diagram (on a graph) in Set is a functor 𝑑∶ 𝐺∗ → Set, for some graph 𝐺.

Given an encoding of 𝐺 = (𝑁, 𝐴), diagrams on 𝐺∗ with finite sets as images can be
encoded:

type diagram = { obj_map : el -> set ;
arr_map : el -> sfun }

where
▶ obj_map encodes Ob(𝑑) ∶ 𝑁 → Ob(Set)
▶ arr_map encodes 𝐺 → 𝐺∗ 𝑑

−→ Morph(Set)
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Computing colimits

Recall that a colimit 𝑄 on a (general) diagram 𝑑∶ 𝐶 → 𝒟 can be expressed as

∐𝑓∶ 𝑖→𝑗∈𝐶 𝑑(𝑖) ∐𝑖∈𝐶 𝑑(𝑖) 𝑄
[𝜄𝑖]𝑓∶ 𝑖→𝑗

[𝜄𝑗∘𝑓]𝑓∶ 𝑖→𝑗

𝑞

When 𝐶 = 𝐺∗, we can replace the left coproduct by ∐𝑓∶ 𝑖→𝑗∈𝐺 𝑑(𝑖)
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Computing colimits

In Set, finite coproducts
𝑆 = ∐

𝑖∈𝐼
𝑆𝑖

of encoded sets 𝑆𝑖 are easy to compute, together with the coprojections 𝑆𝑖 → 𝑆.

Moreover, coequalisers in Set can be described as

𝑆 𝑇 𝑇/∼
𝑓

𝑔
𝑞

where ∼ generated by 𝑓(𝑠) ∼ 𝑔(𝑠) for every 𝑠 ∈ 𝑆.

When 𝑆, 𝑇 and 𝑓, 𝑔 are encoded, we are able to compute 𝑇/∼ and 𝑞
using a Union–Find algorithm in (almost) linear time.
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Computing colimits

Thus, we can compute colimits over diagrams

𝑑∶ 𝐺∗ → Set

where 𝐺 is finite and 𝑑 has images in finite sets.

Moreover, given a category 𝐼, together with a bijective-on-objects epimorphism

𝑒∶ 𝐺∗ → 𝐼

where 𝐺 is a finite graph, the colimit on a diagram 𝑑∶ 𝐼 → Set is the same as the one
for 𝑑 ∘ 𝑒.

Conclusion: we can compute finite colimits of finite sets over categories 𝐼 with finite
sets of objects and of generating morphisms.
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Computing factorisations

Given an encoded diagram 𝑑∶ 𝐺∗ → Set, a cocone

(𝑝𝑖 ∶ 𝑑(𝑖) → 𝑆)𝑖∈𝐺

where 𝑆 is finite, can be encoded.

type cocone = { vertex : set ;
coprojs : el -> sfun }

▶ vertex encodes 𝑆
▶ coprojs encodes the 𝑝𝑖’s
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Computing factorisations
Given the colimit (𝑞𝑖 ∶ 𝑑(𝑖) → 𝑄) where 𝑄 = (∐ 𝑑(𝑖))/∼, the factorisation

⋮
𝑑(𝑖)

𝑄 𝑆
𝑑(𝑗)

⋮

𝑑(𝑓)

𝑞𝑖

𝑝𝑖

𝑝

𝑞𝑗

𝑝𝑗

of the cocone (𝑝𝑖 ∶ 𝑑(𝑖) → 𝑆)𝑖∈𝐺 can be computed.

Indeed, each element of 𝑄 is the image of some 𝑥 ∈ 𝑑(𝑖),
so that the mappings of 𝑝 can be computed as:

1) 𝑃 ∶= empty
2) for each 𝑖, for each 𝑥 ∈ 𝑑(𝑖), add (𝑞𝑖(𝑥), 𝑝𝑖(𝑥)) to 𝑃
3) return 𝑃

which gives the encoding of 𝑝 as sfun.
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Our computable framework can be easily extended to presheaves.
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Encoding presheaves
Given a finitely presented category 𝐶, finite presheaves 𝑋 on 𝐶 can be encoded by
type presheaf = {
obj_map : el -> set ;
arr_map : el -> sfun

}

where
▶ obj_map encodes Ob(𝑋)∶ Ob(𝐶op) → Ob(Set)
▶ arr_map encodes the mapping Morph(𝑋)∶ Morph(𝐶op) → Morph(Set)

(only for the generating morphisms of 𝐶)

Alternatively, with more efficient EMaps, that is Maps of el:

type presheaf = {
obj_map : set EMap.t ;
arr_map : set EMap.t

}
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Encoding morphisms

Given two encoded presheaves 𝑋, 𝑌 ∈ 𝐶, the morphisms 𝑚∶ 𝑋 → 𝑌
(that is, the natural transformations 𝑚∶ 𝑋 ⇒ 𝑌∶ 𝐶op → Set)
can be encoded:

type ps_morph = {
psm_arr_map : el -> sfun

}

Alternatively, with Maps:

type ps_morph = {
psm_arr_map : sfun EMap.t

}
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Encoding/Computing other things

What we did for Set naturally extends to 𝐶.
▶ computing composition of morphisms
▶ encoding cocones
▶ computing colimits
▶ computing factorisation for cocones
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Presheaf categories encompass already several examples, like Set, Grph, etc.

But we still miss some important examples: Mnd, Grp, etc.

Idea: constrain the objects of presheaf categories, in order to be more expressive
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Example

Consider the theory of monoids:

1 sort:
M

2 generating operations:

𝑒∶ 1 → M 𝑐 ∶ M2 → M

How to monoids as presheaves?
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Example

M

Start with sorts as objects.
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Example

1 M M2

Add objects for the domains of the operations.

𝑒∶ 1 → M 𝑐 ∶ M2 → M
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Example

1 M M2𝑒 𝑐

Add the arrows for these operations.
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Example

1 M M2𝑒

𝜋𝑅

𝜋𝐿
𝑐

Add arrows for the cone projections.
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Example

1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅

Reverse all arrows.
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Example

1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅

A monoid is then a particular presheaf on the above category 𝐶, i.e., a functor

𝑋∶ 𝐶op → Set
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Example

1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅

A monoid is then a particular presheaf on the above category 𝐶, i.e., a functor

𝑋∶ 𝐶op → Set

They are the ones such that
▶ 𝑋(1) is a terminal set
▶ (𝑋(M2), 𝑋(𝜋𝐿), 𝑋(𝜋𝑅)) is the product of 𝑋(M) and 𝑋(M)
▶ the equations of monoids must hold: 𝑋(𝑐)(𝑋(𝑒)(𝑥), 𝑦) = 𝑦, etc.

These conditions can be expressed through orthogonality conditions.
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Orthogonality

Let 𝒞 be a category, 𝑔∶ 𝐴 → 𝐵 and 𝑋 ∈ 𝒞.

𝑋 is orthogonal to 𝑔 when, for all ℎ∶ 𝐴 → 𝑋, there is a unique ℎ̄ ∶ 𝐵 → 𝑋 such that
ℎ = ℎ̄ ∘ 𝑔.

𝐴 𝐵

𝑋

𝑔

∀ℎ ∃!ℎ̄
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Orthogonality
Let 𝑂𝒞 ⊆ 𝒞1 be a chosen set of orthogonality morphisms.

𝒞⟂: full subcategory of objects of 𝒞 orthogonal to the arrows of 𝑂𝒞.

There is then a canonical inclusion functor

𝐽∶ 𝒞⟂ → 𝒞.

Proposition (Adámek, Rosický)
If 𝒞 is loc. fin. presentable, the canonical inclusion functor 𝐽∶ 𝒞⟂ → 𝒞 has a left
adjoint 𝐿:

𝒞 𝒞⟂

𝐿

⟂
𝐽
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

1 M M2𝑒 𝑐
𝜋𝑅

𝜋𝐿

Example for monoids:
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

1 M M2𝑒 𝑐
𝜋𝑅

𝜋𝐿

Example for monoids:

Let 𝐵 be the presheaf freely generated from one element ∗ in 𝐵(1).

M2

M

1

𝑐 𝜋𝑅𝜋𝐿

𝑒

•
∗

𝐵
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

1 M M2𝑒 𝑐
𝜋𝑅

𝜋𝐿

Example for monoids:

Let 𝐵 be the presheaf freely generated from one element ∗ in 𝐵(1).

Let 𝑋 in 𝐶. Then, 𝑋(1) is a terminal set when 𝑋 is orthogonal to ∅ → 𝐵

∅ 𝐵

𝑋

∅

∀𝐻 ∃!𝐻̄

Indeed, 𝐶(𝐵, 𝑋) ≅ 𝑋(1), so that the condition says 𝑋(1) ≅ {∗}.
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

Let

▶ 𝐴 ∈ 𝐶 freely gen. from two element 𝑙, 𝑟 in 𝐵(M)
▶ 𝐵 ∈ 𝐶 freely gen. from an element 𝑢 ∈ 𝐵(M2)
▶ 𝐺∶ 𝐴 → 𝐵 such that 𝐺(𝑙) = 𝜋𝐿(𝑢) and 𝐺(𝑟) = 𝜋𝑅(𝑢).
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M2

M

1

𝑐 𝜋𝑅𝜋𝐿

𝑒

•
𝑙

•
𝑟

𝐴

𝐺
−−−−−→

•
𝑢

•
𝜋𝐿(𝑢)

•
𝜋𝑅(𝑢)

𝐵
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M2

M

1

𝑐 𝜋𝑅𝜋𝐿

𝑒

•
𝑙

•
𝑟

𝐴

𝐺
−−−−−→

•
𝑢

•
𝜋𝐿(𝑢)

•
𝜋𝑅(𝑢)

𝐵
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

Let
▶ 𝐴 ∈ 𝐶 freely gen. from two element 𝑙, 𝑟 in 𝐵(M)
▶ 𝐵 ∈ 𝐶 freely gen. from an element 𝑢 ∈ 𝐵(M2)
▶ 𝐺∶ 𝐴 → 𝐵 such that 𝐺(𝑙) = 𝜋𝐿(𝑢) and 𝐺(𝑟) = 𝜋𝑅(𝑢).

(𝑋(M2), 𝑋(𝜋𝐿), 𝑋(𝜋𝑅)) is a product iif 𝑋 is orthogonal to 𝐺∶ 𝐴 → 𝐵.

Indeed, 𝐶(𝐴, 𝑋) ≅ 𝑋(M) × 𝑋(M) and 𝐶(𝐵, 𝑋) ≅ 𝑋(M2).
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Orthogonality conditions

The restrictions on presheaves can be expressed as orthogonality conditions.

The equations of monoids can also be expressed as orthogonality conditions.

𝐴𝐿 𝐺𝐿

−−→ 𝐵𝐿 𝐴𝑅 𝐺𝑅

−−→ 𝐵𝑅 𝐴𝐴 𝐺𝐴

−−→ 𝐵𝐴

Thus, Mon ≃ 𝐶⟂ for a set 𝑂𝐶 ⊆ 𝐶1 of orthogonality morphisms.

𝐶 = 1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅
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Expressivity

With this representation, we can describe all locally finitely presentable categories.

Proposition
Every loc. fin. pres. category 𝒞 can be described as

𝒞 ≃ 𝐶⟂

for some 𝐶 ∈ Cat and 𝑂𝐶 ⊆ (𝐶)1.

L.f.p. categories are very common: Set, Mnd, Cat, etc. …
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Encoding

(Sufficiently finite) l.f.p. can be encoded:

type path = Id of el | Cons of (el * path)

type fp_category = {
objects : set;
arrows : set;
equations : (path * path) list

}

type lfp_category = {
base_cat : fp_category ;
ortho_maps : ps_morph list

}
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Compress information

ℱ∶ 𝒞 → 𝒟

Goal: describe (some) functors between two l.f.p. categories 𝒞 and 𝒟.

We will need to filter some out.
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Compress information

ℱ′ ∶ 𝐶⟂ → 𝐷̂⟂

First, we use the characterization: 𝒞 ≃ 𝐶⟂ and 𝒟 ≃ 𝐷̂⟂.
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Compress information

ℱ″ ∶ 𝐶 → 𝐷̂⟂

Then, let’s actually define a functor ℱ″ on a larger domain.

In good cases, ℱ′ can then be recovered by precomposition with 𝐽∶ 𝐶⟂ → 𝐶.
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Compress information

ℱ‴ ∶ 𝐶 → 𝐷̂

Also, let’s actually define a functor ℱ‴ on a larger codomain.

In good cases, ℱ″ can be recovered by post-composition with (−)⟂.
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Compress information

ℱ⁗ ∶ 𝐶 → 𝐷̂

Then, let’s actually only define ℱ‴ ∘ 𝑦 where 𝑦 is the Yoneda embedding

𝑦∶ 𝑐 ↦ Hom(−, 𝑐)
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Compress information

ℱ⁗ ∶ 𝐶 → 𝐷̂

If ℱ‴ is nice enough, it can be recovered using a left Kan extension:

𝐶

𝐶 𝐷̂

ℱ‴

ℱ⁗

𝑦
⇑ 𝛼
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Compress information

ℱ⁗ ∶ 𝐶 → 𝐷̂

Under some finiteness hypothesis on 𝐶, 𝐷 and ℱ⁗, the latter can be described
computationally.
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Kan model

Conversely: one can start with a functor, called Kan model,

𝐹∶ 𝐶 → 𝐷̂

and recover a functor 𝒞 → 𝒟.
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Kan model

𝐹∶ 𝐶 → 𝐷̂
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Kan model

𝐹 ′ ∶ 𝐶 → 𝐷̂

computed with a left Kan extension

𝐶

𝐶 𝐷̂

𝐹 ′

𝐹

𝑦
⇑ 𝛼
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Kan model

̃𝐹 ∶ 𝐶 → 𝐷̂⊥

with ̃𝐹 = 𝐿 ∘ 𝐹 ′
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Kan model

̃𝐹 ′ ∶ 𝐶⊥ → 𝐷̂⊥

with ̃𝐹 ′ = ̃𝐹 ∘ 𝐽
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Kan model

̄𝐹 ∶ 𝒞 → 𝒟

with ̄𝐹 = 𝒞 ≃ 𝐶⊥
̃𝐹 ′

−→ 𝐷̂⊥ ≃ 𝒟
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Kan model

Summary:
𝒞

𝐶⟂

𝐶 𝐷̂ 𝐷̂⟂ 𝒟

𝐶

≃

̄𝐹

̃𝐹 ′
𝐽

𝐹 ′

𝐿 ≃

𝐹
𝑦
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Encoding Kan models

Assuming encodings for 𝒞 and 𝒟, Kan models 𝐶 → 𝐷̂ with finite images can be
encoded.

type kan_model = {
km_obj_map = el -> presheaf ;
km_arr_map = el -> ps_morph

}
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Kan extensions

What is actually a Kan extension doing?

Some intuition with a particular case but essential for the following.
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Kan extensions

𝐶

𝐶 𝐷̂

𝑦

𝐹

Given 𝐹∶ 𝐶 → 𝐷̂ and 𝑦∶ 𝐶 → 𝐶 the Yoneda embedding,



36/57

Kan extensions

𝐶

𝐶 𝐷̂

𝐹 ′

⇑ 𝛼
𝑦

𝐹

a left Kan extension of 𝐹 along 𝑦 is a pair (𝐹 ′, 𝛼) which is universal in some sense.
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Kan extensions

𝐶

𝐶 𝐷̂

𝐹 ′

⇑ 𝛼
𝑦

𝐹

Concretely:

𝐹 ′(𝑋) = ∫
𝑐∈𝐶

𝐹(𝑐) ⊗ 𝑋(𝑐)

Idea: for each 𝑥 ∈ 𝑋(𝑐), there is one copy of 𝐹(𝑐) in 𝐹 ′(𝑋), adequately glued to
other copies.
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Kan extensions

𝐶

𝐶 𝐷̂

𝐹 ′

⇑ 𝛼
𝑦

𝐹

Even more concretely:

∐𝑓∶ 𝑐→𝑐′ 𝐹(𝑐) ⊗ 𝑋(𝑐′) ∐𝑐 𝐹(𝑐) ⊗ 𝑋(𝑐) ∫𝑐∈𝐶 𝐹(𝑐) ⊗ 𝑋(𝑐) = 𝐹 ′(𝑋)
[𝜄𝑐′∘𝐹(𝑓)⊗𝑋(𝑐′)]𝑓

[𝜄𝑐∘𝐹(𝑐)⊗𝑋(𝑓)]𝑓

which can be computed when 𝐹 is encoded and 𝑋 is finite!
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Examples of functor descriptions
Taking

▶ Set ≃ ̂1⟂ with 𝑂Set = ∅
▶ Set × Set ≃ 1̂∐ 1

⟂
with 𝑂Set×Set = ∅

the functor
ℱ∶ (𝑋, 𝑌 ) ∈ Set × Set ↦ 𝑋 ∈ Set

can be described by ̃𝐹 ∶ 1∐ 1 → ̂1 where ̃𝐹 (0𝐿) = {∗} and ̃𝐹 (0𝑅) = ∅.

Set × Set

1∐ 1 Set

ℱ

[{∗},∅]

𝑦
⇑ 𝛼

Idea: in Set × Set, 0𝐿  ({∗}, ∅), 0𝑅  (∅, {∗})
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Examples of functor descriptions
Taking

▶ Set ≃ ̂1⟂ with 𝑂Set = ∅
▶ Mon ≃ 𝐶⟂ with 𝑂Mon = {𝐺𝑇, 𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} and

𝐶 = 1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅

the free monoid functor

ℱ∶ 𝑆 ∈ Set ↦ 𝑆∗ ∈ Mon

can be described by ̃𝐹 ∶ 1 → 𝐶 where ̃𝐹 (0) = 𝑦(M).
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Examples of functor descriptions
Taking
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▶ Mon ≃ 𝐶⟂ with 𝑂Mon = {𝐺𝑇, 𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} and

𝐶 = 1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅

the free monoid functor

ℱ∶ 𝑆 ∈ Set ↦ 𝑆∗ ∈ Mon

can be described by ̃𝐹 ∶ 1 → 𝐶 where ̃𝐹 (0) = 𝑦(M).

Set

1 𝐶 Mon

ℱ

𝑦(M)

𝑦
⇑ 𝛼

(−)⟂
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Examples of functor descriptions
Taking

▶ Set ≃ ̂1⟂ with 𝑂Set = ∅
▶ Mon ≃ 𝐶⟂ with 𝑂Mon = {𝐺𝑇, 𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} and

𝐶 = 1 M M2𝑒 𝑐
𝜋𝐿

𝜋𝑅

the free monoid functor

ℱ∶ 𝑆 ∈ Set ↦ 𝑆∗ ∈ Mon

can be described by ̃𝐹 ∶ 1 → 𝐶 where ̃𝐹 (0) = 𝑦(M).

Idea:
▶ in Set, 0 {∗}
▶ in Mon, 𝑦(M) corresponds to the free monoid {∗}∗
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A method for cartesian closure
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Problem

Given a functor
ℱ∶ 𝒞 → 𝒟

described by a functor
̃𝐹 ∶ 𝐶 → 𝐷̂

how can we check that ℱ is a left adjoint?
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Adjointness criterion

Proposition (Adámek, Rosický)
A functor ℱ∶ 𝒞 → 𝒟 between loc. fin. pres. cat. is a left adjoint if and only if it
preserves all small colimits.

So: when is ℱ preserving all small colimits?
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Adjointness criterion

Assuming 𝒞 ≃ 𝐶⟂ and 𝒟 ≃ 𝐷̂⟂, and a Kan model 𝐹∶ 𝐶 → 𝐷̂,

Theorem
If the functor ̃𝐹 ∶ 𝐶 → 𝐷̂⟂ sends the elements of 𝑂𝐶 to isomorphisms, then

̄𝐹 ∶ 𝒞 → 𝒟 preserves all colimits (and thus is a left adjoint).

When 𝒞, 𝒟 and 𝐹 are encoded, checking the above property can be mechanised, if
not automatically computed.

Indeed, checking that a morphism 𝐺∶ 𝐴 → 𝐵 ∈ 𝐷̂ is sent to an isomorphism by 𝐿 can
be done by playing a game.
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When 𝒞, 𝒟 and 𝐹 are encoded, checking the above property can be mechanised, if
not automatically computed.

Indeed, checking that a morphism 𝐺∶ 𝐴 → 𝐵 ∈ 𝐷̂ is sent to an isomorphism by 𝐿 can
be done by playing a game.
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Product functors

Product functors can be given as inputs to the criterion:

Proposition
Given 𝒞 ≃ 𝐶⟂ and 𝐵 ∈ 𝒞, the functor

𝑋 ↦ 𝑋 × 𝐵

can be expressed by the Kan model 𝐹∶ 𝐶 → 𝐶, 𝑐 ↦ 𝐴 × y(𝑐).

Indeed, working directly with 𝑋, 𝐵 ∈ 𝐶, we have

𝑋 × 𝐵 ≅ (∫
𝑐
y(𝑐) ⊗ 𝑋(𝑐)) × 𝐵 ≅ ∫

𝑐
(y(𝑐) × 𝐵) ⊗ 𝑋(𝑐)
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Cartesian closure

To show that a category 𝒞 is cartesian closed, it is enough to show that all the
functors − × 𝐵 are left adjoint.

We can use our criterion to show that − × 𝐵 is a left adjoint for a specific 𝐵.

Problem: infinite number of instances to check!
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Cartesian closure

But, as presheaves

(−) × 𝐵 ≅ (−) × ∫
𝑐
y(𝑐) ⊗ 𝐵(𝑐)

≅ ∫
𝑐
((−) × y(𝑐)) ⊗ 𝐵(𝑐)

Taking into account reflection,

Theorem
Given 𝒞 ≃ 𝐶⊥, if the functors

𝐿((−) × y(𝑐))

are left adjoint for every 𝑐 ∈ 𝐶, then 𝒞 is cartesian closed.
Moreover, 𝐿((−) × y(𝑐)) is modeled by the Kan model 𝑑 ↦ y(𝑑) × y(𝑐), so our l.a.
criterion applies.
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Non-example
Consider the functor

ℱ∶ Set × Set → Set
(𝑋, 𝑌 ) ↦ 𝑋 × 𝑌

It is not a left adjoint. Let’s see where the criterion fails.

First, let’s get a description for ℱ:
▶ Set ≃ 1̂
▶ Set × Set ≃ 1̂∐ 1

But, ℱ cannot be expressed by ̃𝐹 ∶ 1∐ 1 → 1̂.

Indeed,
▶ 0𝐿  ({∗}, ∅), 0𝑅  (∅, {∗})
▶ ({∗}, ∅) and (∅, {∗}) are mapped to ∅ by ℱ.
▶ but ̃𝐹 = ∅ describes the functor (𝑋, 𝑌 ) ↦ ∅.
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Non-example
Another try: we add a (useless) product in the description of Set × Set

▶ Set ≃ 1̂
▶ Set × Set ≃ 𝐶⟂

where

𝐶 =
𝑝

0𝐿 0𝑅

𝜋𝐿 𝜋𝑅

Idea: 0𝐿  ({∗}, ∅), 0𝑅  (∅, {∗}), 𝑝 ({∗}, {∗})
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Non-example
Another try: we add a (useless) product in the description of Set × Set

▶ Set ≃ 1̂
▶ Set × Set ≃ 𝐶⟂

where

𝐶 =
𝑝

0𝐿 0𝑅

𝜋𝐿 𝜋𝑅

and where we require orthogonality to 𝐺∶ 𝐴 → 𝐵:

{∗} {∗}

𝜋𝑅𝜋𝐿
𝐺

7−→
{∗}

{∗} {∗}

𝜋𝑅𝜋𝐿

i.e., given 𝑋 ∈ 𝐶⟂, 𝑋(𝑝) must be the product of 𝑋(0𝐿) and 𝑋(0𝑅).
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Non-example
Another try: we add a (useless) product in the description of Set × Set

▶ Set ≃ 1̂
▶ Set × Set ≃ 𝐶⟂

where

𝐶 =
𝑝

0𝐿 0𝑅

𝜋𝐿 𝜋𝑅

Now, we can describe ℱ∶ (𝑋, 𝑌 ) ↦ 𝑋 × 𝑌 with

̃𝐹 ∶ 𝐶 → 1̂
0𝐿 ↦ ∅
0𝑅 ↦ ∅
𝑝 ↦ {∗}
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Non-example
ℱ∶ (𝑋, 𝑌 ) ↦ 𝑋 × 𝑌 is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⟂ ∘ ̄𝐹 ∶ 𝐶 → 𝐷̂⟂ does not map 𝐺∶ 𝐴 → 𝐵 to an isomorphism.
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{∗} {∗}

𝜋𝑅𝜋𝐿 𝐺
−→

{∗}

{∗} {∗}

𝜋𝑅𝜋𝐿
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Non-example
ℱ∶ (𝑋, 𝑌 ) ↦ 𝑋 × 𝑌 is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⟂ ∘ ̄𝐹 ∶ 𝐶 → 𝐷̂⟂ does not map 𝐺∶ 𝐴 → 𝐵 to an isomorphism.

̄𝐹 (𝐴)

∅ ∅

̄𝐹 (𝐺)
−−−→ ̄𝐹(𝐵)

{∗}

∅ ∅
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Non-example
ℱ∶ (𝑋, 𝑌 ) ↦ 𝑋 × 𝑌 is not a left adjoint (coproducts are not preserved), so the
criterion should not be satisfied.

We thus check that (−)⟂ ∘ ̄𝐹 ∶ 𝐶 → 𝐷̂⟂ does not map 𝐺∶ 𝐴 → 𝐵 to an isomorphism.

∅
̄𝐹 (𝐺)

−−−→ {∗}
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Consider the presentations of Cat ≃ 𝐶⟂ and Set ≃ ̂1 with

𝐶 = C0 C1 C2
1

𝜕−

𝜕+

id 𝑐
𝜋𝑅

𝜋𝐿
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Consider the presentations of Cat ≃ 𝐶⟂ and Set ≃ ̂1 with

𝐶 = C0 C1 C2
1

𝜕−

𝜕+

id 𝑐
𝜋𝑅

𝜋𝐿

Consider the functor ̃𝐹 ∶ 𝐶 → Set where
̃𝐹 (C0) = {∗}
̃𝐹 (C1) = {∗0, ∗1}
̃𝐹 (C2

1) = {∗0, ∗1, ∗2}
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Consider the presentations of Cat ≃ 𝐶⟂ and Set ≃ ̂1 with

𝐶 = C0 C1 C2
1

𝜕−

𝜕+

id 𝑐
𝜋𝑅

𝜋𝐿

Consider the functor ̃𝐹 ∶ 𝐶 → Set where
̃𝐹 (C0) = {∗}
̃𝐹 (C1) = {∗0, ∗1}
̃𝐹 (C2

1) = {∗0, ∗1, ∗2}

Proposition
The functor ℱ is presented by ̃𝐹.
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set

C2
1

C1

C0

id

𝑐𝜋𝐿 𝜋𝑅

𝜕− 𝜕+

•
𝑙

•
𝑟

•
𝑥0

•
𝑥1

•
𝑥2

𝐴

𝐺𝑃

−−−−−→

•
𝑢

•
𝜋𝐿(𝑢)

•
𝜋𝑅(𝑢)

•
𝑥0

•
𝑥1

•
𝑥2

𝐵
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set

C2
1

C1

C0

id

𝑐𝜋𝐿 𝜋𝑅

𝜕− 𝜕+

•
𝑥0

•
𝑥1

•
𝑥2

̄𝐹𝐴

̄𝐹 (𝐺𝑃)
−−−−−→ •

𝑥0
•
𝑥1

•
𝑥2

̄𝐹𝐵
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set

Similarly, we have

C2
1

C1

C0

id

𝑐𝜋𝐿 𝜋𝑅

𝜕− 𝜕+

•
𝑥0

•
𝑥1

̄𝐹𝐴𝐿

̄𝐹(𝐺𝐿)
−−−−−→ •

𝑥0
•
𝑥1

̄𝐹𝐵
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set

Similarly, we have

C2
1

C1

C0

id

𝑐𝜋𝐿 𝜋𝑅

𝜕− 𝜕+

•
𝑥0

•
𝑥1

̄𝐹𝐴𝑅

̄𝐹(𝐺𝑅)
−−−−−→ •

𝑥0
•
𝑥1

̄𝐹𝐵𝑅
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set

Similarly, we have

C2
1

C1

C0

id

𝑐𝜋𝐿 𝜋𝑅

𝜕− 𝜕+

•
𝑥0

•
𝑥1

•
𝑥2

•
𝑥3

̄𝐹𝐴𝐴

̄𝐹(𝐺𝐴)
−−−−−→ •

𝑥0
•
𝑥1

•
𝑥2

•
𝑥3

̄𝐹𝐵𝐴
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A bigger example
Let’s show that this functor is a left adjoint:

ℱ∶ Cat → Set
𝐷 ↦ 𝐷0

Let’s compute whether 𝑂𝐶 = {𝐺𝑃, 𝐺𝐿, 𝐺𝑅, 𝐺𝐴} is sent to isomorphisms by
̄𝐹 ∶ 𝐶 → Set

Proposition
The functor ℱ is a left adjoint.
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Example of product

We can use the criterion to show that 2 × (−)∶ Cat → Cat is a left adjoint where
Cat ≃ 𝐶⟂ with

𝐶 = C0 C1 C2
1

𝜕−

𝜕+

̄id ̄𝑐
𝜋̄𝐿

𝜋̄𝑅

Indeed, by computation, we check that every orthogonality morphism is sent to an
isomorphism.
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Outline

Computing with f.p. categories

Computing with Set

Computing with presheaves

Encoding standard categories

Encoding functors

Method for left adjointness

A method for cartesian closure

Applications

Bonus slides
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The reflection construction
Recall the adjunction

𝐷̂ 𝐷̂⟂

(−)⟂

⟂
𝐽

Given 𝐻∶ 𝑋 → 𝑌, we have
𝑋 𝑌

𝐽𝑋⟂ 𝐽𝑌 ⟂

𝐻

𝜂𝑋 𝜂𝑌

𝐽𝐻⟂
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The reflection construction
Recall the adjunction

𝐷̂ 𝐷̂⟂

(−)⟂

⟂
𝐽

Given 𝐻∶ 𝑋 → 𝑌, we have
𝑋 𝑌

𝑋⟂ 𝑌 ⟂

𝐻

𝜂𝑋 𝜂𝑌

𝐻⟂

How to compute whether 𝐻⟂ is an isomorphism?
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The reflection construction
Recall the adjunction

𝐷̂ 𝐷̂⟂

(−)⟂

⟂
𝐽

Given 𝐻∶ 𝑋 → 𝑌, we have
𝑋 𝑌

𝑋⟂ 𝑌 ⟂

𝐻

𝜂𝑋 𝜂𝑌

𝐻⟂

First: given 𝑋 ∈ 𝐷̂, what is 𝜂𝑋 ∶ 𝑋 → 𝑋⟂?

Idea: if 𝑋 is not orthogonal, 𝜂𝑋 is adding and merging the elements as required.
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The reflection construction
Let 𝐺∶ 𝐴 → 𝐵 ∈ 𝑂𝐷 be an orthogonality morphism.
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The reflection construction
Let 𝐺∶ 𝐴 → 𝐵 ∈ 𝑂𝐷 be an orthogonality morphism.

If some liftings are missing, as in

𝐵

𝑋

𝐴

??

𝐻

𝐺

we correct that using a pushout:

𝐵 𝑋′

𝐴 𝑋𝐻

𝐺
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The reflection construction
Let 𝐺∶ 𝐴 → 𝐵 ∈ 𝑂𝐷 be an orthogonality morphism.

If some liftings are non-unique, as in

𝐵

𝑋

𝐴

𝐻̄1

𝐻̄2

𝐻

𝐺

we correct that using a coequalizer:

𝐵 𝑋 𝑋′
𝐻̄1

𝐻̄2
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The reflection construction

𝜂𝑋 is then the transfinite composition

𝑋 = 𝑋0 𝑋1 𝑋2 ⋯ 𝑋⟂
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The game

Given 𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂, how can we check that 𝐻⟂ ∶ 𝑋⟂ → 𝑌 ⟂ is an isomorphism?

Idea: progressively apply the moves of the reflection procedure until an isomorphism is
obtained.



50/57

The game

𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂

Four possible moves

▶ add elements to 𝑋 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑋 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷

▶ add elements to 𝑌 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑌 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷
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The game

𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂

Four possible moves

▶ add elements to 𝑋 using a pushout with 𝐺 ∈ 𝑂𝐷

𝐻′ ∶ 𝑋′ → 𝑌

▶ merge elements in 𝑋 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷

▶ add elements to 𝑌 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑌 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷
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The game

𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂

Four possible moves

▶ add elements to 𝑋 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑋 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷

𝐻′ ∶ 𝑋′ → 𝑌

▶ add elements to 𝑌 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑌 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷
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The game

𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂

Four possible moves

▶ add elements to 𝑋 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑋 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷

▶ add elements to 𝑌 using a pushout with 𝐺 ∈ 𝑂𝐷

𝐻′ ∶ 𝑋 → 𝑌 ′

▶ merge elements in 𝑌 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷
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The game

𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂

Four possible moves

▶ add elements to 𝑋 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑋 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷

▶ add elements to 𝑌 using a pushout with 𝐺 ∈ 𝑂𝐷

▶ merge elements in 𝑌 using a coequalizer of liftings of 𝐺 ∈ 𝑂𝐷

𝐻′ ∶ 𝑋 → 𝑌 ′
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Play the game
Consider the category 𝐷 where

𝐷 =

𝑒

𝑏

𝜋𝑙 𝜋𝑟

and with 𝑂𝐷 = {𝐺∶ 𝐴 → 𝐵} ⊆ 𝐷̂ with

𝑒

𝑏

𝜋𝐿𝜋𝑅

•
𝑙

•
𝑟

𝐴

𝐺
−−−−−→

•
𝑢′

•
𝜋𝐿(𝑢′)

•
𝜋𝑅(𝑢′)

𝐵



51/57

Play the game
Show that 𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂ is sent to an isomorphism:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑙

•
𝑟

𝑋

𝐻
−−−−−→

•
𝑢′

•
𝑣′

•
𝑙′

•
𝑟′

𝑌

with 𝑙′ = 𝜋𝑙(𝑢′) = 𝜋𝑙(𝑣′) and 𝑟′ = 𝜋𝑟(𝑢′) = 𝜋𝑟(𝑣′)
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Play the game
Show that 𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂ is sent to an isomorphism:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑢

•
𝑙

•
𝑟

𝑋

𝐻1

−−−−−→
•
𝑢′

•
𝑣′

•
𝑙′

•
𝑟′

𝑌

First, create a preimage for 𝑢′.
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Play the game
Show that 𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂ is sent to an isomorphism:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑢

•
𝑣

•
𝑙

•
𝑟

𝑋

𝐻2

−−−−−→
•
𝑢′

•
𝑣′

•
𝑙′

•
𝑟′

𝑌

Then, create a preimage for 𝑣′.
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Play the game
Show that 𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂ is sent to an isomorphism:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑢

•
𝑣

•
𝑙

•
𝑟

𝑋

𝐻2

−−−−−→
•
𝑢′

•
𝑣′

•
𝑙′

•
𝑟′

𝑌

Then, create a preimage for 𝑣′.

We thus get an isomorphism.
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Play the game
Show that 𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂ is sent to an isomorphism:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑢

•
𝑣

•
𝑙

•
𝑟

𝑋

𝐻2

−−−−−→
•
𝑢′

•
𝑣′

•
𝑙′

•
𝑟′

𝑌

Then, create a preimage for 𝑣′.

We used a “greedy strategy”: add/merge when required and possible.

Proposition
The greedy strategy can decide whether 𝐻⟂ is an isomorphism for finite
𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂.
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Play the game
Another strategy:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑙

•
𝑟

𝑋

𝐻
−−−−−→

•
𝑢′

•
𝑣′

•
𝑙′

•
𝑟′

𝑌

with 𝑙′ = 𝜋𝑙(𝑢′) = 𝜋𝑙(𝑣′) and 𝑟′ = 𝜋𝑟(𝑢′) = 𝜋𝑟(𝑣′)
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Play the game
Another strategy:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑙

•
𝑟

𝑋

𝐻1

−−−−−→
•
𝑢′

1

•
𝑙′

•
𝑟′

𝑌

First, merge 𝑢′ and 𝑣′, since they lift the same morphism.
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Play the game
Another strategy:

𝑒

𝑏

𝜋𝑅𝜋𝐿

•
𝑙

•
𝑟

𝑋

𝐻2

−−−−−→
•
𝑢′

1
•
𝑢′

2
•
𝑢′

3
•
𝑢′

4

•
𝑙′

•
𝑟′

𝑌

Then, create all the possible liftings in 𝑌.

𝑢′
1 = (𝑙′, 𝑟′) 𝑢′

2 = (𝑙′, 𝑙′) 𝑢′
3 = (𝑟′, 𝑟′) 𝑢′

4 = (𝑟′, 𝑙′)
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Play the game
Another strategy:

𝑒

𝑏

𝜋𝐿𝜋𝑅

•
𝑢1

•
𝑢2

•
𝑢3

•
𝑢4

•
𝑙

•
𝑟

𝑋

𝐻3

−−−−−→
•
𝑢′

1
•
𝑢′

2
•
𝑢′

3
•
𝑢′

4

•
𝑙′

•
𝑟′

𝑌

Then, create all the possible liftings in 𝑋.
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Play the game
Another strategy:

𝑒

𝑏

𝜋𝐿𝜋𝑅

•
𝑢1

•
𝑢2

•
𝑢3

•
𝑢4

•
𝑙

•
𝑟

𝑋

𝐻3

−−−−−→
•
𝑢′

1
•
𝑢′

2
•
𝑢′

3
•
𝑢′

4

•
𝑙′

•
𝑟′

𝑌

Then, create all the possible liftings in 𝑋.

We thus get an isomorphism.
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Play the game
Another strategy:

𝑒

𝑏

𝜋𝐿𝜋𝑅

•
𝑢1

•
𝑢2

•
𝑢3

•
𝑢4

•
𝑙

•
𝑟

𝑋

𝐻3

−−−−−→
•
𝑢′

1
•
𝑢′

2
•
𝑢′

3
•
𝑢′

4

•
𝑙′

•
𝑟′

𝑌

Then, create all the possible liftings in 𝑋.

We used an “exhaustive strategy”: add/merge whenever possible.

Proposition
The exhaustive strategy can decide whether 𝐻⟂ is an isomorphism for finite
𝐻∶ 𝑋 → 𝑌 ∈ 𝐷̂.
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Strategies in general

Winning the game can answer positively whether a morphism is sent to an
isomorphism.

However,
▶ greedy strategies can be too stupid and miss some winnable games
▶ exhaustive strategies might not terminate

Future work: characterize the categories 𝐷 and sets 𝑂𝐷 for which these strategies
terminate.

In any case: one can enter “manual mode” and provide a winning play.
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Colimit preservation
Recall the definition of 𝐹:

𝐶⟂

𝐶 𝐷̂ 𝐷̂⟂

𝐶

𝐹𝐽
̄𝐹

(−)⟂

̃𝐹
𝑦

Proposition
The functor ̄𝐹 ∶ 𝐶 → 𝐷̂ preserves colimits.

Proof.
Indeed we have

̄𝐹 (colim𝑖 𝑋𝑖) ≃ ∫
𝑐∈𝐶0

̃𝐹 (𝑐) ⊗ (colim𝑖 𝑋𝑖)(𝑐)
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Colimit preservation
Recall the definition of 𝐹:

𝐶⟂

𝐶 𝐷̂ 𝐷̂⟂

𝐶

𝐹𝐽
̄𝐹

(−)⟂

̃𝐹
𝑦

Proposition
The functor ̄𝐹 ∶ 𝐶 → 𝐷̂ preserves colimits.

Proof.
Indeed we have

̄𝐹 (colim𝑖 𝑋𝑖) ≃ ∫
𝑐∈𝐶0

̃𝐹 (𝑐) ⊗ colim𝑖(𝑋𝑖(𝑐))
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Colimit preservation
Recall the definition of 𝐹:

𝐶⟂

𝐶 𝐷̂ 𝐷̂⟂

𝐶

𝐹𝐽
̄𝐹

(−)⟂

̃𝐹
𝑦

Proposition
The functor ̄𝐹 ∶ 𝐶 → 𝐷̂ preserves colimits.

Proof.
Indeed we have

̄𝐹 (colim𝑖 𝑋𝑖) ≃ ∫
𝑐∈𝐶0

colim𝑖( ̃𝐹 (𝑐) ⊗ 𝑋𝑖(𝑐))
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Colimit preservation
Recall the definition of 𝐹:

𝐶⟂

𝐶 𝐷̂ 𝐷̂⟂

𝐶

𝐹𝐽
̄𝐹

(−)⟂

̃𝐹
𝑦

Proposition
The functor ̄𝐹 ∶ 𝐶 → 𝐷̂ preserves colimits.

Proof.
Indeed we have

̄𝐹 (colim𝑖 𝑋𝑖) ≃ colim𝑖(∫
𝑐∈𝐶0

̃𝐹 (𝑐) ⊗ 𝑋𝑖(𝑐))
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Colimit preservation
Recall the definition of 𝐹:

𝐶⟂

𝐶 𝐷̂ 𝐷̂⟂

𝐶

𝐹𝐽
̄𝐹

(−)⟂

̃𝐹
𝑦

Proposition
The functor ̄𝐹 ∶ 𝐶 → 𝐷̂ preserves colimits.

Proof.
Indeed we have

̄𝐹 (colim𝑖 𝑋𝑖) ≃ colim𝑖(∫
𝑐∈𝐶0

̃𝐹 (𝑐) ⊗ 𝑋𝑖(𝑐)) ≃ colim𝑖 ̄𝐹 (𝑋𝑖)
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Knowing that ̄𝐹 ′ =̂ (−)⟂ ∘ ̄𝐹 is preserving colimits, when 𝐹 is?
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition (A-R)
The colimits in 𝐶⟂ are the reflection of the ones computed in 𝐶:

colim𝐶⟂

𝑖 𝐴𝑖 ≃ (colim𝐶
𝑖 𝐽(𝐴𝑖))⟂

Thus, the unit of the reflection gives a canonical morphism

𝜂∶ colim𝐶
𝑖 𝐽𝐴𝑖 → 𝐽(colim𝐶⟂

𝑖 𝐴𝑖)
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition (A-R)
The colimits in 𝐶⟂ are the reflection of the ones computed in 𝐶:

colim𝐶⟂

𝑖 𝐴𝑖 ≃ (colim𝐶
𝑖 𝐽(𝐴𝑖))⟂

Thus, the unit of the reflection gives a canonical morphism

̄𝐹 ′𝜂∶ ̄𝐹 ′(colim𝐶
𝑖 𝐽𝐴𝑖) → ̄𝐹 ′𝐽(colim𝐶⟂

𝑖 𝐴𝑖)
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition (A-R)
The colimits in 𝐶⟂ are the reflection of the ones computed in 𝐶:

colim𝐶⟂

𝑖 𝐴𝑖 ≃ (colim𝐶
𝑖 𝐽(𝐴𝑖))⟂

Thus, the unit of the reflection gives a canonical morphism

̄𝐹 ′𝜂∶ ̄𝐹 ′(colim𝐶
𝑖 𝐽𝐴𝑖) → 𝐹(colim𝐶⟂

𝑖 𝐴𝑖)
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition (A-R)
The colimits in 𝐶⟂ are the reflection of the ones computed in 𝐶:

colim𝐶⟂

𝑖 𝐴𝑖 ≃ (colim𝐶
𝑖 𝐽(𝐴𝑖))⟂

Thus, the unit of the reflection gives a canonical morphism

̄𝐹 ′𝜂∶ colim𝐷⟂

𝑖 ( ̄𝐹 ′𝐽𝐴𝑖) → 𝐹(colim𝐶⟂

𝑖 𝐴𝑖)
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition (A-R)
The colimits in 𝐶⟂ are the reflection of the ones computed in 𝐶:

colim𝐶⟂

𝑖 𝐴𝑖 ≃ (colim𝐶
𝑖 𝐽(𝐴𝑖))⟂

Thus, the unit of the reflection gives a canonical morphism

̄𝐹 ′𝜂∶ colim𝐷⟂

𝑖 (𝐹𝐴𝑖) → 𝐹(colim𝐶⟂

𝑖 𝐴𝑖)
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition
The functor 𝐹∶ 𝐶⟂ → 𝐷̂⟂ preserves colimits (and is a left adjoint) if and only if

̄𝐹 ′𝜂
colim𝐶

𝑖 𝐽𝐴𝑖
is an isomorphism for all diagrams 𝑖 ↦ 𝐴𝑖 in 𝐶⟂.

Corollary
If ̄𝐹 ′𝜂 is an isomorphism, then 𝐹 preserves colimits (and is a left adjoint).
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Colimit preservation

𝐶⟂

𝐶 𝐷̂⟂

𝐹𝐽

̄𝐹 ′

Proposition
The functor 𝐹∶ 𝐶⟂ → 𝐷̂⟂ preserves colimits (and is a left adjoint) if and only if

̄𝐹 ′𝜂
colim𝐶

𝑖 𝐽𝐴𝑖
is an isomorphism for all diagrams 𝑖 ↦ 𝐴𝑖 in 𝐶⟂.

Corollary
If ̄𝐹 ′𝜂 is an isomorphism, then 𝐹 preserves colimits (and is a left adjoint).
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Theorem
Suppose now that, for every orthogonality morphism 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism.
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Theorem
Suppose now that, for every orthogonality morphism 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism.

If some liftings are missing for 𝑋, as in

𝐵

𝑋

𝐴

??

𝐻

𝐺
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Theorem
Suppose now that, for every orthogonality morphism 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism.

If some liftings are missing for 𝑋, as in

𝐵

𝑋

𝐴

??

𝐻

𝐺

we correct that using a pushout:

𝐵 𝑋′

𝐴 𝑋𝐻

𝐺
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Theorem
Suppose now that, for every orthogonality morphism 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism.

If some liftings are missing for 𝑋, as in

𝐵

𝑋

𝐴

??

𝐻

𝐺

…and we obtain the pushout
̄𝐹𝐵 ̄𝐹𝑋′

̄𝐹𝐴 ̄𝐹𝑋̄𝐹 (𝐻)

̄𝐹(𝐺)

where ̄𝐹 (𝐺) is an isomorphism. Thus, ̄𝐹𝑋 ≃ ̄𝐹𝑋′.
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Theorem
Suppose now that, for every orthogonality morphism 𝐺, ̄𝐹 (𝐺) is an isomorphism.

If liftings are non-unique, as in
𝐵

𝑋

𝐴

𝐻̄1

𝐻̄2

𝐻

𝐺
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Theorem
Suppose now that, for every orthogonality morphism 𝐺, ̄𝐹 (𝐺) is an isomorphism.

If liftings are non-unique, as in
𝐵

𝑋

𝐴

𝐻̄1

𝐻̄2

𝐻

𝐺

we correct that using a coequalizer:

𝐵 𝑋 𝑋′
𝐻̄1

𝐻̄2
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Theorem
Suppose now that, for every orthogonality morphism 𝐺, ̄𝐹 (𝐺) is an isomorphism.

If liftings are non-unique, as in
𝐵

𝑋

𝐴

𝐻̄1

𝐻̄2

𝐻

𝐺

…and we obtain the coequalizer:

̄𝐹𝐵 ̄𝐹𝑋 ̄𝐹𝑋′
̄𝐹 (𝐻̄1)

̄𝐹 (𝐻̄2)

with ̄𝐹 (𝐻̄1) ∘ ̄𝐹 (𝐺) = ̄𝐹 (𝐻̄2) ∘ ̄𝐹 (𝐺), thus ̄𝐹 (𝐻̄1) = ̄𝐹 (𝐻̄2) and ̄𝐹𝑋 ≃ ̄𝐹𝑋′
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Theorem

Thus, ̄𝐹 𝜂𝑋 is a transfinite composition of isomorphism

̄𝐹𝑋 = ̄𝐹𝑋0 ̄𝐹𝑋1 ̄𝐹𝑋2 ⋯ ̄𝐹𝑋⟂∼ ∼ ∼ ∼

Theorem
If, for all 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism, then ̄𝐹 𝜂 is an isomorphism.

Corollary
With the same hypothesis, 𝐹 preserves colimits and is a left adjoint.
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Theorem

Thus, ̄𝐹 𝜂𝑋 is a transfinite composition of isomorphism

̄𝐹𝑋 = ̄𝐹𝑋0 ̄𝐹𝑋1 ̄𝐹𝑋2 ⋯ ̄𝐹𝑋⟂∼ ∼ ∼ ∼

Theorem
If, for all 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism, then ̄𝐹 𝜂 is an isomorphism.

Corollary
With the same hypothesis, 𝐹 preserves colimits and is a left adjoint.
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Theorem

Thus, ̄𝐹 𝜂𝑋 is a transfinite composition of isomorphism

̄𝐹𝑋 = ̄𝐹𝑋0 ̄𝐹𝑋1 ̄𝐹𝑋2 ⋯ ̄𝐹𝑋⟂∼ ∼ ∼ ∼

Theorem
If, for all 𝐺 ∈ 𝑂𝐶, ̄𝐹 (𝐺) is an isomorphism, then ̄𝐹 𝜂 is an isomorphism.

Corollary
With the same hypothesis, 𝐹 preserves colimits and is a left adjoint.
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The end

Thank you!
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