
1/41

Thin spans and their modelling of rigid intersection types

Pierre Clairambault1 Simon Forest2

1LIS, CNRS

2LIS, Aix-Marseille Université

November 16, 2023

2/41

Semantic models

What is a semantic model?

program 7→ Some Mathematical Object

3/41

Thin spans

What are thin spans?
I a semantic model which represents programs through witnesses of computation

A ` s : B
S

!A B

I a (bi)categorical abstraction of concurrent game semantics
I a proof-relevant refinement of the relational model of linear logic

3/41

Thin spans

What are thin spans?
I a semantic model which represents programs through witnesses of computation

A ` s : B
S

!A B

I a (bi)categorical abstraction of concurrent game semantics
I a proof-relevant refinement of the relational model of linear logic

3/41

Thin spans

What are thin spans?
I a semantic model which represents programs through witnesses of computation

A ` s : B
S

!A B

I a (bi)categorical abstraction of concurrent game semantics
I a proof-relevant refinement of the relational model of linear logic

4/41

Outline

From relations to spans

Interpreting programs

A rigid intersection type system

5/41

Outline

From relations to spans

Interpreting programs

A rigid intersection type system

6/41

CBN λ-calculus with effects

Consider your favorite λ-calculus and add to it an effectful operator,
like a non-deterministic operator >

s, t, u, . . . ::= x ∈ Var | t u | λx .t | n | · · · | s > t

so that the same program can reduce to different values:

3 > 4 → 3 3 > 4 → 4

6/41

CBN λ-calculus with effects

A program like ` λx .x ∗ x : Nat→ Nat can reduce to 9, 12 or 16 on the input 3 > 4:

(λx .x ∗ x) (3 > 4) → (3 > 4) ∗ (3 > 4) →∗ 9 or 12 or 16

How to describe the semantics of a CBN program p?
Idea: use “bags” to represent the outcomes of arguments of programs.

For the program λx .x ∗ x :

(x ← [3, 3]) 7→ 9
(x ← [3, 4]) 7→ 12
(x ← [4, 4]) 7→ 16

6/41

CBN λ-calculus with effects

A program like ` λx .x ∗ x : Nat→ Nat can reduce to 9, 12 or 16 on the input 3 > 4:

(λx .x ∗ x) (3 > 4) → (3 > 4) ∗ (3 > 4) →∗ 9 or 12 or 16

How to describe the semantics of a CBN program p?
Idea: use “bags” to represent the outcomes of arguments of programs.

For the program λx .x ∗ x :

(x ← [3, 3]) 7→ 9
(x ← [3, 4]) 7→ 12
(x ← [4, 4]) 7→ 16

6/41

CBN λ-calculus with effects

A program like ` λx .x ∗ x : Nat→ Nat can reduce to 9, 12 or 16 on the input 3 > 4:

(λx .x ∗ x) (3 > 4) → (3 > 4) ∗ (3 > 4) →∗ 9 or 12 or 16

How to describe the semantics of a CBN program p?
Idea: use “bags” to represent the outcomes of arguments of programs.

For the program λx .x ∗ x :

(x ← [3, 3]) 7→ 9
(x ← [3, 4]) 7→ 12
(x ← [4, 4]) 7→ 16

6/41

CBN λ-calculus with effects

More generally, the outputs of λx .x ∗ x can be correctly described by a (partial) function

f : !N→ N

where !N is the set of “bags” on N.

But more general terms of type Nat→ Nat can involve non-determinism, so that their
interpretation should be a function

f : !N→ P(N)

or, equivalently, a relation f ⊆ !N× N the relational model Rel

6/41

CBN λ-calculus with effects

More generally, the outputs of λx .x ∗ x can be correctly described by a (partial) function

f : !N→ N

where !N is the set of “bags” on N.

But more general terms of type Nat→ Nat can involve non-determinism, so that their
interpretation should be a function

f : !N→ P(N)

or, equivalently, a relation f ⊆ !N× N the relational model Rel

7/41

The model Rel of LL

Objects: sets A,B,C , etc .

Morphisms A→ B : relations R ⊆ A× B , i.e., sets of elements

a(b

Exponential: !A isMfin(A), the set of finite multisets on A

(co)Kleisli category Rel!: morphisms A→ B are morphisms !A→ B of Rel, that is,
sets of elements

[a1, . . . , an](b

8/41

Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.

x : Bool ` if x then ff else tt : Bool

interpreted as
{ [tt](ff, [ff](tt } (⊆Mfin(Bool)× Bool)

8/41

Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as
{ [tt, tt](ff, [tt,ff](tt, [ff,ff](ff }

8/41

Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as
{ [tt, tt](ff, [tt,ff](tt, [ff,ff](ff }

Here, two different executions get identified in the interpretation.

8/41

Interpreting programs in Rel!

Since Rel! is cartesian closed, one can interpret programs inside it.

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as
{ [tt, tt](ff, [tt,ff](tt, [ff,ff](ff }

Here, two different executions get identified in the interpretation.

Hence, Rel! aggregates different executions.

9/41

Witnesses of executions

How do we represent the different possible executions of a program?

Example of a program with non-determinism:

x : Nat, y : Nat ` x > y : Nat

has the executions

x ← 40, y ← 2 output = 40

because > chose left

 output = 2

because > chose right

Executions are described by witnesses: triples (inputs,outputs,reason).

Example: ([x ← 40, y ← 2], 40,> chose left) for the first execution.

9/41

Witnesses of executions

How do we represent the different possible executions of a program?

Example of a program with non-determinism:

x : Nat, y : Nat ` x > y : Nat

has the executions

x ← 40, y ← 2 output = 40

because > chose left

 output = 2

because > chose right

Executions are described by witnesses: triples (inputs,outputs,reason).

Example: ([x ← 40, y ← 2], 40,> chose left) for the first execution.

9/41

Witnesses of executions

How do we represent the different possible executions of a program?

Example of a program with non-determinism:

x : Nat, y : Nat ` x > y : Nat

has the executions

x ← 40, y ← 2 output = 40 because > chose left
 output = 2 because > chose right

Executions are described by witnesses: triples (inputs,outputs,reason).

Example: ([x ← 40, y ← 2], 40,> chose left) for the first execution.

10/41

Witnesses as spans

Witnesses of executions of a program A→ B : set of triples

S = { (ai , bi , ri) | i ∈ I }.

There are canonical projections to A and B , so that S is in fact a span

S

A B

∂SA ∂SB

Spans can be seen as generalized relations: 0, 1 or several “proofs” that a ∈ A and
b ∈ B are related.

11/41

Spans and composition

What about composition?

program s: program t:

x : Nat ` x >1 (x + 2) : Nat y : Nat ` y >2 (2y) : Nat

11/41

Spans and composition

What about composition?

program s: program t:

x : Nat ` x >1 (x + 2) : Nat y : Nat ` y >2 (2y) : Nat

Witnesses between 0 and 2 of “t ◦ s”:
I >1 chose right (s[x ← 0] 2) and >2 chose left (t[y ← 2] 2).

11/41

Spans and composition

What about composition?

program s: program t:

x : Nat ` x >1 (x + 2) : Nat y : Nat ` y >2 (2y) : Nat

Witnesses between 0 and 0 of “t ◦ s”:
I >1 chose left (s[x ← 0] 0) and >2 chose left (t[y ← 0] 0); or
I >1 chose left (s[x ← 0] 0) and >2 chose right (t[y ← 0] 0).

11/41

Spans and composition

What about composition?

program s: program t:

x : Nat ` x >1 (x + 2) : Nat y : Nat ` y >2 (2y) : Nat

Witnesses between 2 and 4 of “t ◦ s”:
I >1 chose right (s[x ← 2] 4) and >2 chose left (t[y ← 4] 4); or
I >1 chose left (s[x ← 2] 2) and >2 chose right (t[y ← 2] 4).

11/41

Spans and composition

What about composition?

x : A ` s : B y : B ` t : C

S = { (ai , bi , ri) | i ∈ I } T = { (b′j , cj , sj) | j ∈ J }.

11/41

Spans and composition

What about composition?

x : A ` s : B y : B ` t : C

S = { (ai , bi , ri) | i ∈ I } T = { (b′j , cj , sj) | j ∈ J }.

Witnesses of “t ◦ s”:

T � S = { (ai , cj , (ri , sj)) | (ai , bi , ri) ∈ S , (b′j , cj , sj) ∈ T , bi = b′j }

11/41

Spans and composition

What about composition?

x : A ` s : B y : B ` t : C

S = { (ai , bi , ri) | i ∈ I } T = { (b′j , cj , sj) | j ∈ J }.

Witnesses of “t ◦ s”:

T � S

S T

A B C

∂SA ∂SB ∂TB ∂TC

12/41

Towards a semantic model of spans

Spans can be used to describe the semantics of toy examples and compose them.

But what about more complex examples?
I CBN and effects, lambda abstractions, higher-order functions. . .

Idea: follow the constructions on Rel
I define a model of linear logic based on spans
I derive a cartesian closed (bi)category, in which we can interpret programs

13/41

A first bicategory of spans

Before defining a model of LL, we must start with some categorical structure.

Pullbacks are defined up to isomorphism
 associativity of composition � is expressed by a 2-dimensional structure

Given two spans S ,T : A→ B , a morphism between S and T is m : S → T such that

S T

A

m

∂SA ∂TA

= and
S T

B

m

∂SB ∂TB

= .

One gets a bicategory Span = Span(Set) of sets, spans and morphisms of spans.

14/41

Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

14/41

Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

> =̂ ∅ is the terminal object of Span.

∅

A ∅

[] []

14/41

Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

A & B =̂ A t B is the cartesian product on Span.

S

X A

S : X ⇸ A

∂SX ∂SA

T

X B

T : X ⇸ B

∂TX ∂TB

S t T

X A t B

〈S ,T 〉 : X ⇸ A & B

[∂SX ,∂
T
X] ∂SAt∂

S
B

14/41

Some structure on Span

The cartesian structure of Set translates to a monoidal structure on Span.

A⊗ B =̂ A× B gives a tensor product on Span.

S

A A′

S

∂SA
∂S
A′

T

B B ′

T

∂TB
∂T
B′

S × T

A× B A′ × B ′

S ⊗ T

∂SA×∂
T
B

∂S
A′×∂

S
B′

15/41

The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?

I First try: can we useMfin(−) of Rel as exponential for Span?

I Second try: can we use lists as exponential?

a1, . . . , an ∈ A [a1; · · · ; an] ∈ List(A)

15/41

The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
I First try: can we useMfin(−) of Rel as exponential for Span?

Given S ∈ Span, define

Mfin

 S

A B

∂SA ∂SB

 =
Mfin(S)

Mfin(A) Mfin(B)

Mfin(∂SA) Mfin(∂SB)

Problem: Mfin does not respect composition, because pullbacks are not
preserved. Thus, not a functor Span→ Span.

I Second try: can we use lists as exponential?

a1, . . . , an ∈ A [a1; · · · ; an] ∈ List(A)

15/41

The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
I First try: can we useMfin(−) of Rel as exponential for Span? No.

I Second try: can we use lists as exponential?

a1, . . . , an ∈ A [a1; · · · ; an] ∈ List(A)

15/41

The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
I First try: can we useMfin(−) of Rel as exponential for Span? No.

I Second try: can we use lists as exponential?

a1, . . . , an ∈ A [a1; · · · ; an] ∈ List(A)

List

 S

A B

∂SA ∂SB

 =
List(S)

List(A) List(B)

List(∂SA) List(∂SB)

15/41

The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
I First try: can we useMfin(−) of Rel as exponential for Span? No.

I Second try: can we use lists as exponential?

a1, . . . , an ∈ A [a1; · · · ; an] ∈ List(A)

List

 S

A B

∂SA ∂SB

 =
List(S)

List(A) List(B)

List(∂SA) List(∂SB)

We now have a (pseudo)functor, but no Seely equivalence

seeA,B : ListA⊗ ListB List(A & B) : seeA,B' ∈ Span

because [b1; a1; a2; b2] 6= [a1; a2; b1; b2]: lack of symmetries

15/41

The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
I First try: can we useMfin(−) of Rel as exponential for Span? No.

I Second try: can we use lists as exponential? Probably no.

a1, . . . , an ∈ A [a1; · · · ; an] ∈ List(A)

16/41

Span is dead, long live Span!

Problem:
I our spans are set-based
I there is no adequate Seely equivalence in this setting

We must change the kind of spans that we use.

16/41

Span is dead, long live Span!

Let Gpd be the 2-category of groupoids, functors and natural transformations.
 within groupoids, there are symmetries between objects:

[b1; a1; a2; b2] ∼= [a1; a2; b1; b2] ∈ List?(A t B)

We now have a Seely equivalence

seeA,B : List? A× List? B List?(A t B) : seeA,B' ∈ Gpd

because the symmetries allow us to reindex:

seeA,B ◦ seeA,B = idList? A×List? B

seeA,B ◦ seeA,B ∼= idList?(AtB)

16/41

Span is dead, long live Span!

Let Gpd be the 2-category of groupoids, functors and natural transformations.
 within groupoids, there are symmetries between objects:

[b1; a1; a2; b2] ∼= [a1; a2; b1; b2] ∈ List?(A t B)

We now have a Seely equivalence

seeA,B : List? A× List? B List?(A t B) : seeA,B' ∈ Gpd

because the symmetries allow us to reindex:

seeA,B ◦ seeA,B = idList? A×List? B

seeA,B ◦ seeA,B ∼= idList?(AtB)

16/41

Span is dead, long live Span!

We (re)define Span as Span(Gpd)

I objects: groupoids A,B, . . .
I 1-morphisms: spans S ,T , . . .
I 2-morphisms: pseudo-commutative triangles (F , φ), (G , ψ), . . .

(F , φ) : S ⇒ T
S T

A

F

∂SA ∂TA

φA
=⇒ and

S T

B

F

∂SB ∂TB

φB
=⇒

16/41

Span is dead, long live Span!

We (re)define Span as Span(Gpd)

I objects: groupoids A,B, . . .

I 1-morphisms: spans S ,T , . . .
I 2-morphisms: pseudo-commutative triangles (F , φ), (G , ψ), . . .

(F , φ) : S ⇒ T
S T

A

F

∂SA ∂TA

φA
=⇒ and

S T

B

F

∂SB ∂TB

φB
=⇒

16/41

Span is dead, long live Span!

We (re)define Span as Span(Gpd)

I objects: groupoids A,B, . . .
I 1-morphisms: spans S ,T , . . .

S
S

A B

∂SA ∂SB

I 2-morphisms: pseudo-commutative triangles (F , φ), (G , ψ), . . .

(F , φ) : S ⇒ T
S T

A

F

∂SA ∂TA

φA
=⇒ and

S T

B

F

∂SB ∂TB

φB
=⇒

16/41

Span is dead, long live Span!

We (re)define Span as Span(Gpd)

I objects: groupoids A,B, . . .
I 1-morphisms: spans S ,T , . . .
I 2-morphisms: pseudo-commutative triangles (F , φ), (G , ψ), . . .

(F , φ) : S ⇒ T
S T

A

F

∂SA ∂TA

φA
=⇒ and

S T

B

F

∂SB ∂TB

φB
=⇒

16/41

Span is dead, long live Span!

We (re)define Span as Span(Gpd)

I objects: groupoids A,B, . . .
I 1-morphisms: spans S ,T , . . .
I 2-morphisms: pseudo-commutative triangles (F , φ), (G , ψ), . . .

(F , φ) : S ⇒ T
S T

A

F

∂SA ∂TA

φA
=⇒ and

S T

B

F

∂SB ∂TB

φB
=⇒

We can now hope that the Seely equivalence of Gpd lifts in Span(Gpd).

17/41

The horizontal composition issue

But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

S

A B

S ′

∂SA ∂SB

F⇓φA ⇓φB

∂S
′

A ∂S
′

B

T

B C

T ′

∂TB ∂TC

G⇓ψB ⇓ψC

∂T
′

B ∂T
′

C

17/41

The horizontal composition issue

But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

T � S

S T

A B C

S ′ T ′

T ′ � S ′

l r

H

∂SA ∂SB

F

∂TB ∂TC

G⇓φA ⇓φB ⇓ψB ⇓ψC

∂S
′

A ∂S
′

B ∂T
′

B ∂T
′

C

l r

⇓χA ⇓χC

17/41

The horizontal composition issue

But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

T � S

S T

A B C

S ′ T ′

T ′ � S ′

l r

H

∂SA ∂SB

F

∂TB ∂TC

G⇓φA ⇓φB ⇓ψB ⇓ψC

∂S
′

A ∂S
′

B ∂T
′

B ∂T
′

C

l r

⇓χA ⇓χC

17/41

The horizontal composition issue

But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

T � S

S T

A B C

S ′ T ′

T ′ � S ′

l r

H

∂SA ∂SB

F

∂TB ∂TC

G⇓φA ⇓φB ⇓ψB ⇓ψC

∂S
′

A ∂S
′

B ∂T
′

B ∂T
′

C

l r

⇓χA ⇓χC

17/41

The horizontal composition issue

But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

T � S

S T

A B C

S ′ T ′

T ′ � S ′

l r

H

∂SA ∂SB

F

∂TB ∂TC

G⇓φA ⇓φB ⇓ψB ⇓ψC

∂S
′

A ∂S
′

B ∂T
′

B ∂T
′

C

l r

⇓χA ⇓χC

 not always possible to find such H, χA, χC ! So Span is not a bicategory!

18/41

Taking into account symmetries

This problem actually arises in other proof-relevant bicategorical models and needs to
be addressed.
I generalized species of structures [fiore2008cartesian]: quotient of the witnesses

through a coend
I template games [mellies2019template]: use of deformations to correctly align

the witnesses

19/41

Span is dead (again), long live Thin!

Our solution: we add structures to constrain the spans and the morphisms of spans, so
that horizontal composition exists.

A thin span is a tuple
A = (A,A−,A+,UA,TA)

where A is a groupoid and the remainder is the data associated with two orthogonality
relations.

19/41

Span is dead (again), long live Thin!

Our solution: we add structures to constrain the spans and the morphisms of spans, so
that horizontal composition exists.

A thin span is a tuple
A = (A, ...)

where A is a groupoid and the remainder is the data associated with two orthogonality
relations black box magic.

19/41

Span is dead (again), long live Thin!

Our solution: we add structures to constrain the spans and the morphisms of spans, so
that horizontal composition exists.

Theorem (C., F.)
We get a bicategory Thin:
I objects: thin groupoids A,B, . . .
I 1-morphisms: thin spans (i.e. spans compatible with the black box magic)
I 2-morphisms: positive morphisms (i.e. morphisms of spans compatible with the

black box magic)
I 1-identity on A:

A

A A

I 1-composition: pullbacks

20/41

The exponential modality

Recall that the exponential ! : Rel→ Rel is derived from
the monadMfin : Set→ Set.

We derive an exponential ! : Thin→ Thin from
the monad List? : Gpd→ Gpd.

20/41

The exponential modality

The monad List? : Gpd→ Gpd? The “free strict symmetric monoidal construction”.

To A ∈ Gpd, associates List?(A) ∈ Gpd:
I objects: lists [a1; . . . ; an] ∈ List(Ob(A));
I morphisms [a1; . . . ; an]→ [a′1; . . . ; a′m]: pairs (π, (fi)i∈I) where

I π is a bijection { 1, . . . , n } → { 1, . . . ,m };
I fi is a morphism ai → a′π(i) ∈ A.

The unit ηA : A→ List?(A): maps a ∈ A to [a];

The multiplication µA : List?(List?(A))→ List?(A): merges lists of lists into lists.

20/41

The exponential modality

The monad List? : Gpd→ Gpd? The “free strict symmetric monoidal construction”.

To A ∈ Gpd, associates List?(A) ∈ Gpd:
I objects: lists [a1; . . . ; an] ∈ List(Ob(A));
I morphisms [a1; . . . ; an]→ [a′1; . . . ; a′m]: pairs (π, (fi)i∈I) where

I π is a bijection { 1, . . . , n } → { 1, . . . ,m };
I fi is a morphism ai → a′π(i) ∈ A.

The unit ηA : A→ List?(A): maps a ∈ A to [a];

The multiplication µA : List?(List?(A))→ List?(A): merges lists of lists into lists.

20/41

The exponential modality

The monad List? : Gpd→ Gpd? The “free strict symmetric monoidal construction”.

To A ∈ Gpd, associates List?(A) ∈ Gpd:
I objects: lists [a1; . . . ; an] ∈ List(Ob(A));
I morphisms [a1; . . . ; an]→ [a′1; . . . ; a′m]: pairs (π, (fi)i∈I) where

I π is a bijection { 1, . . . , n } → { 1, . . . ,m };
I fi is a morphism ai → a′π(i) ∈ A.

The unit ηA : A→ List?(A): maps a ∈ A to [a];

The multiplication µA : List?(List?(A))→ List?(A): merges lists of lists into lists.

20/41

The exponential modality

The monad List? : Gpd→ Gpd? The “free strict symmetric monoidal construction”.

To A ∈ Gpd, associates List?(A) ∈ Gpd:
I objects: lists [a1; . . . ; an] ∈ List(Ob(A));
I morphisms [a1; . . . ; an]→ [a′1; . . . ; a′m]: pairs (π, (fi)i∈I) where

I π is a bijection { 1, . . . , n } → { 1, . . . ,m };
I fi is a morphism ai → a′π(i) ∈ A.

The unit ηA : A→ List?(A): maps a ∈ A to [a];

The multiplication µA : List?(List?(A))→ List?(A): merges lists of lists into lists.

20/41

The exponential modality

The monad List? : Gpd→ Gpd? The “free strict symmetric monoidal construction”.

To A ∈ Gpd, associates List?(A) ∈ Gpd:
I objects: lists [a1; . . . ; an] ∈ List(Ob(A));
I morphisms [a1; . . . ; an]→ [a′1; . . . ; a′m]: pairs (π, (fi)i∈I) where

I π is a bijection { 1, . . . , n } → { 1, . . . ,m };
I fi is a morphism ai → a′π(i) ∈ A.

The unit ηA : A→ List?(A): maps a ∈ A to [a];

The multiplication µA : List?(List?(A))→ List?(A): merges lists of lists into lists.

20/41

The exponential modality

We get an exponential
! : Thin→ Thin

where
!A =̂ (List?(A), . . .)

for every thin groupoid A and

!

 S

A B

∂SA ∂SB

 =̂

List?(S)

List?(A) List?(B)

List?(∂SA) List?(∂SB)

for every thin span S : A → B.

20/41

The exponential modality

The structure of comonad of ! is derived from the monad structure of List?.

Given a thin groupoid A,

η̌A =

A

List?(A) A

ηA idA µ̌A =

List?(List?(A))

List?(A) List?(List?(A))

µA id!!A .

21/41

The Kleisli bicategory

We thus get a Kleisli bicategory Thin! with ! = List?, whose 1-cells A → B
are of the form

S

!A B

∂S!A ∂SB .

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)
The bicategory Thin! is cartesian closed.

21/41

The Kleisli bicategory

We thus get a Kleisli bicategory Thin! with ! = List?, whose 1-cells A → B
are of the form

S

!A B

∂S!A ∂SB .

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)
The bicategory Thin! is cartesian closed.

21/41

The Kleisli bicategory

We thus get a Kleisli bicategory Thin! with ! = List?, whose 1-cells A → B
are of the form

S

!A B

∂S!A ∂SB .

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)
The bicategory Thin! is cartesian closed.

22/41

Outline

From relations to spans

Interpreting programs

A rigid intersection type system

23/41

Examples of interpretations

Example 1:

x : Bool ` if x then ff else tt : Bool

interpreted as the span (which happens to be a relation)

{ [tt](ff, [ff](tt }

!Bool Bool

.

23/41

Examples of interpretations

Example 2:

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{ [tt; tt](ff, [tt;ff](tt, [ff; tt](tt, [ff;ff](ff }

!Bool Bool

to compare with the interpretation in Rel!:

{ [tt, tt](ff, [tt,ff](tt, [ff,ff](tt }.

23/41

Examples of interpretations

Example 2:

x : Bool ` if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{ [tt; tt](ff, [tt;ff](tt, [ff; tt](tt, [ff;ff](ff }

!Bool Bool

to compare with the interpretation in Rel!:

{ [tt, tt](ff, [tt,ff](tt, [ff,ff](tt }.

24/41

Categorical interpretation
Since Thin! is cartesian closed, we can interpret simply-typed λ-calculus. What would
it look like?

Considered types:

A,B, . . . ::= Bool | A→ B

Interpretation LAM of a type A:

LBoolM = 1 t 1 LA→ BM = !LAM× LBM

Interpretation LΓM of a context Γ = (x1 : A1, . . . , xn : An):

LΓM = LA1M t · · · t LAnM

24/41

Categorical interpretation
Since Thin! is cartesian closed, we can interpret simply-typed λ-calculus. What would
it look like?

Considered types:

A,B, . . . ::= Bool | A→ B

Interpretation LAM of a type A:

LBoolM = 1 t 1 LA→ BM = !LAM× LBM

Interpretation LΓM of a context Γ = (x1 : A1, . . . , xn : An):

LΓM = LA1M t · · · t LAnM

24/41

Categorical interpretation
Since Thin! is cartesian closed, we can interpret simply-typed λ-calculus. What would
it look like?

Considered types:

A,B, . . . ::= Bool | A→ B

Interpretation LAM of a type A:

LBoolM = 1 t 1 LA→ BM = !LAM× LBM

Interpretation LΓM of a context Γ = (x1 : A1, . . . , xn : An):

LΓM = LA1M t · · · t LAnM

24/41

Categorical interpretation
Since Thin! is cartesian closed, we can interpret simply-typed λ-calculus. What would
it look like?

Considered types:

A,B, . . . ::= Bool | A→ B

Interpretation LAM of a type A:

LBoolM = 1 t 1 LA→ BM = !LAM× LBM

Interpretation LΓM of a context Γ = (x1 : A1, . . . , xn : An):

LΓM = LA1M t · · · t LAnM

24/41

Categorical interpretation

Given a derivation of Γ ` t : A in STLC, its categorical interpretation is a span

LtM

!LΓM LAM

∂
LtM
l ∂

LtM
r

by induction on the derivation.

I this is automatically derived from the cartesian closed structure
I but uneasy to describe syntactically (notably the projection on !LΓM)

25/41

The bagged interpretation

We introduce a more relevant interpretation of contexts.

Bagged interpretation of a context Γ = (x1 : A1, . . . , xn : An):

JΓK = !JA1K× · · · × !JAnK ∈ Thin

(Recall that !LΓM = !(LA1M t · · · t LAnM))

Proposition
The underlying groupoid of JΓK is equipped with a structure of monoid.

I multiplication: given γ = (γ1, . . . , γn) and δ = (δ1, . . . , δn) in JΓK,

γ ~⊕ δ = (γ1 ++ δ1, . . . , γn ++ δn)

where γi ++ δi is the concatenation of lists in !JAiK

25/41

The bagged interpretation

We introduce a more relevant interpretation of contexts.

Bagged interpretation of a context Γ = (x1 : A1, . . . , xn : An):

JΓK = !JA1K× · · · × !JAnK ∈ Thin

(Recall that !LΓM = !(LA1M t · · · t LAnM))

Proposition
The underlying groupoid of JΓK is equipped with a structure of monoid.

I multiplication: given γ = (γ1, . . . , γn) and δ = (δ1, . . . , δn) in JΓK,

γ ~⊕ δ = (γ1 ++ δ1, . . . , γn ++ δn)

where γi ++ δi is the concatenation of lists in !JAiK

25/41

The bagged interpretation

We introduce a more relevant interpretation of contexts.

Bagged interpretation of a context Γ = (x1 : A1, . . . , xn : An):

JΓK = !JA1K× · · · × !JAnK ∈ Thin

(Recall that !LΓM = !(LA1M t · · · t LAnM))

Proposition
The underlying groupoid of JΓK is equipped with a structure of monoid.

I multiplication: given γ = (γ1, . . . , γn) and δ = (δ1, . . . , δn) in JΓK,

γ ~⊕ δ = (γ1 ++ δ1, . . . , γn ++ δn)

where γi ++ δi is the concatenation of lists in !JAiK

25/41

The bagged interpretation

Given Γ = x1 : A1, . . . , xn : An and a derivation Γ ` t : A, we define a thin span

JtK

JΓK LAM

∂
JtK
l ∂

JtK
r

by induction on the derivation.

25/41

The bagged interpretation

Variable case: for Γ = x1 : A1, . . . , xn : An and i ∈ { 1, . . . , n },

JxiK =

LAi M

!LA1M× · · · × !LAnM LAi M

〈[],...,ηLAi M
,...,[]〉

idLAi M

 “for every a ∈ LAi M, there is one computation consuming ([], . . . , [a], . . . , []) and
producing a”

25/41

The bagged interpretation

λ-abstraction case: given a derivation of (Γ, x : A) ` t : B ,

25/41

The bagged interpretation

λ-abstraction case: given a derivation of (Γ, x : A) ` t : B ,

JtK

JΓK× !LAM LBM

∂
JtK
l ∂

JtK
r

25/41

The bagged interpretation

λ-abstraction case: given a derivation of (Γ, x : A) ` t : B ,

JtK

JΓK !LAM LBM

l◦∂JtK
l ∂

JtK
r

r ◦∂JtK
r

25/41

The bagged interpretation

λ-abstraction case: given a derivation of (Γ, x : A) ` t : B ,

JtK

JΓK !LAM× LBM

l◦∂JtK
l 〈r ◦∂JtK

l ,∂
JtK
r 〉

25/41

The bagged interpretation

λ-abstraction case: given a derivation of (Γ, x : A) ` t : B ,

Jλx .tK =

JtK

JΓK !LAM× LBM

l◦∂JtK
l 〈r ◦∂JtK

l ,∂
JtK
r 〉

 “if t consumes (γ, [ai]i) to produce b, then λx .t consumes γ to produce [ai]i (b”

25/41

The bagged interpretation

Application case: given a derivation of Γ ` t : A→ B and of Γ ` u : A,

Jt uK =

Jt uK

JtK× !JuK linev!LAM,JBK

JΓK× !JΓK (!LAM× LBM)× !LAM LBM

JΓK LBM

l r

∂
JtK
l ×!∂

JuK
l

∂
JtK
r ×!∂

JuK
r ∂

linev!LAM,JBK
l

∂
linev!LAM,JBK
r

...

 “if t consumes γ to produce [ai]i (b and u consumes δ to produce [ai]i , then t u
consumes γ ~⊕ δ to produce b”

25/41

The bagged interpretation

Given Γ = (x1 : A1, . . . , xn : An), write seeΓ for the Seely morphism

seeΓ : !(LA1M t · · · t LAnM) → !JA1K× · · · × !JAnK ∈ Gpd

Theorem (Compatibility)
Given a derivation Γ ` t : A, we have a canonical isomorphism of spans

LtM

!LΓM

JΓK LAM

∂
LtM
l

∂
LtM
r

seeΓ

∼
=⇒

JtK

JΓK LAM

∂
JtK
l ∂

JtK
r

in Thin.

26/41

Outline

From relations to spans

Interpreting programs

A rigid intersection type system

27/41

Intersection type systems

[de2018execution]: interpretations of programs in Rel can be presented syntactically
through an intersection type system.

Γ ` t : A Θ ` t : α / A and Θ `m t : [α1, . . . , αn] / A

[olimpieri2021intersection]: interpretations of programs in Esp can also be presented
syntactically through an intersection type system

Can we have a similar presentation for Thin?

27/41

Intersection type systems

Idea of intersection type system: give several types to a pure λ-term:

Γ ` t : τ1 ∩ · · · ∩ τn

In this setting, we can type λx .xx :

` λx .xx : ((A→ A) ∩ A)→ A

The system is said
I non-commutative when σ ∩ τ 6= τ ∩ σ
I non-idempotent when σ ∩ σ 6= σ

27/41

Intersection type systems

In the context of Rel and Thin, it is better to change perspective.

Broke:
I simply-typed λ-calculus is pure λ-calculus with types
I intersection types = “typing a term with several types”

Woke:
I pure λ-calculus is simply-typed λ-calculus with a reflexive type/object
I intersection types = “assigning different values to a term”

28/41

ITS for Thin

[de2018execution]: the relational model be described syntactically by an intersection
type system, with multisets as bags

For Thin: we use the same system with lists as bags

28/41

ITS for Thin

Simple types considered:

A,B, . . . ::= Bool | A→ B

Refinement types values and intersection types values:

α, β, . . . ::= tt | ff | κ(α

κ, λ, . . . ::= [α1, . . . , αn] (n ∈ N)

where [α1, . . . , αn] is a list of elements.

Refinement judgements α / A and κ /m A and their rules:

ff / Bool tt / Bool
κ /m A β / B

κ(α / A→ B

∀i ∈ { 1, . . . , n } αi / A

[α1, . . . , αn] /m A

28/41

ITS for Thin

Resource contexts: sequences Θ of bindings of the form

Θ,Σ, . . . ::= (xi : [ai ,1, . . . , ai ,ni] / Ai)1≤i≤n (n ∈ N)

28/41

ITS for Thin

Addition of resource contexts: given

Θ = (xi : κi / Ai)1≤i≤n Σ = (xi : λi / Ai)1≤i≤n

we put
Θ ~⊕ Σ = (xi : (κi ++ λi) / Ai)1≤i≤n

where κi ++ λi stands for the concatenation of lists.

28/41

ITS for Thin

Intersection type judgements Θ ` t : α / A and their rules:

(IT-Var)
α / Ai

(x1 : [] / A1, · · · , xi : [α] / Ai , · · · , xn : [] / An) ` xi : α / Ai

(IT-App)
Θ ` t : κ(β / A→ B Θ′ `m u : κ

Θ ~⊕Θ′ ` t u : β / B

(IT-Lam)
(Θ, x : κ / A) ` t : β / B

Θ ` λx .t : κ(β / A→ B

(IT-Int)
Θi ` t : αi / A for i ∈ { 1, . . . , n }
Θ1 ~⊕ · · · ~⊕Θn `m t : [α1, . . . , αn] / A

28/41

ITS for Thin

Since we are considering Bool and if’s:

(IT-If-True)
Θ ` t : tt / Bool Θthen ` u : α / A

Θ ~⊕Θthen `m if t then u else v : α / A

(IT-If-Else)
Θ ` t : tt / Bool Θelse ` v : α / A

Θ ~⊕Θelse `m if t then u else v : α / A

28/41

ITS for Thin

Theorem
Given a derivation Γ ` t : A and its bagged interpretation

JtK

JΓK LAM

∂
JtK
l ∂

JtK
r

we have a bijection

Ob(JtK) ∼= { p | p derivation of Θ ` t : α : A for Θ / Γ }.

I Contrarily to Rel and Esp [olimpieri2021intersection], no quotient is required
here for the bijection.

29/41

A known broken system

That system is the direct system we obtain when dropping commutativity in the ITS of
Rel.

It is known for not satisfying subject reduction!

29/41

A known broken system

In the context f : Bool→ Bool→ Bool, x : Bool consider

t1 = (λy .λz .f z y) x x t2 = f x x

29/41

A known broken system

In the context f : Bool→ Bool→ Bool, x : Bool consider

t1 = (λy .λz .f z y) x x t2 = f x x

Given the resource contexts

Θff,tt = (f : [[ff]([tt](tt] / Bool→ Bool, x : [ff; tt] / Bool)
Θtt,ff = (f : [[ff]([tt](tt] / Bool→ Bool, x : [tt;ff] / Bool)

we have

Θff,tt 6` t1 : tt / Bool Θff,tt ` t2 : tt / Bool
Θtt,ff ` t1 : tt / Bool Θtt,ff 6` t2 : tt / Bool

while t1 →∗ t2 subject reduction not satisfied

29/41

A known broken system

But in Thin, the reduction t1 →∗ t2 is interpreted as a reindexing

Jt1 →∗ t2K : Jt1K→ Jt2K

so that subject reduction is weakly recovered:

Θtt,ff ` t1 : tt / Bool ∼= Θff,tt ` t2 : tt / Bool

(The above is informal!)

30/41

ITS for morphisms

Let’s remember that thin spans are spans of groupoids, with morphisms.

Can we we describe the ones in the interpretation of λ-terms?

JtK

JΓK LAM

∂
JtK
l ∂

JtK
r ∈ Gpd

30/41

ITS for morphisms

Refinement types value morphisms and intersection types value morphisms:

α, β, . . . ::= tt | ff | κ(α

κ, λ, . . . ::= [α1, . . . , αn] (n ∈ N)

φ, ψ, . . . ::= idtt | idff | θ(φ

θ, ζ, . . . ::= (π, [φ1, . . . , φn]) (n ∈ N, π ∈ Sn)

30/41

ITS for morphisms

Resource morphism contexts:

Ξ,Ξ′, . . . ::= (xi : θi :: κi ⇒ κ′i / Ai)1≤i≤n

30/41

ITS for morphisms
Intersection type morphism judgements

Ξ ` t : φ :: α⇒ α′ / A and Ξ `m t : θ :: κ⇒ κ′ / A

and their rules:

(ITM-Var)
φ :: α⇒ α′ / Ai

(. . . , xi : (id{ 1 }, [φ]) :: [α]⇒ [α′] / Ai , . . .) ` xi : φ :: α⇒ α′ / Ai

(ITM-App)
Ξ ` t : (θ(φ) :: (κ(β)⇒ (κ′(β′) / A→ B Ξ′ `m u : θ :: κ⇒ κ′

Ξ ~⊕ Ξ′ ` t u : φ :: β ⇒ β′ / B

(ITM-Lam)
(Ξ, x : θ :: κ⇒ κ′ / A) ` t : φ :: β ⇒ β′ / B

Ξ ` λx .t : (θ(φ) :: (κ(β)⇒ (κ′(β′) / A→ B

(ITM-Int)
n ∈ N σ ∈ Sn ∀i ∈ { 1, . . . , n }, Ξi ` t : φi :: αi ⇒ α′i / A

(σ 4 (Ξi)i∈[n]) `m t : (σ, [φ1, . . . , φn]) :: [αi]1≤i≤n ⇒ [α′σ−1(i)]1≤i≤n / A

30/41

ITS for morphisms

Given a derivation Γ ` t : A, we get a groupoid JtKIT:
I objects: derivations Θ ` t : α / A

I morphisms: derivations Ξ ` t : φ :: α⇒ α′ / A

I composition of derivations as composition

Theorem (C., F.)
The interpretation in Thin is described by the presented ITS, i.e.,

JtK ∼= JtKIT.

31/41

Conclusion

Thin spans
I a quantitative semantic model based on spans of groupoids
I provide a proof-relevant extension of the relational model Rel
I syntactic description given by an intersection type system

32/41

Related works

Other quantitative models:
I Generalized species of structures

fiore2008cartesian
I Template games

mellies2019template

Syntactic descriptions through intersection type systems:
I olimpieri2021intersection
I tsukada2017generalised

33/41

The end

Any questions?

34/41

Seely equivalence

Recall: a common approach for exhibiting a categorical model of LL is to find a Seely
isomorphism

seeA,B : !A⊗ !B → !(A & B).

34/41

Seely equivalence
In Thin,

A⊗ B =̂ (A× B, . . .) and A& B =̂ (A t B, . . .).

We have the 2-categorical analogue of a Seely isomorphism, already in Gpd:

Proposition
Given A,B ∈ Gpd, there is an adjoint equivalence of groupoids

List?(A)× List?(B) ⊥ List?(A t B)

seeA,B

seeA,B

.

Idea: given a = (ai)i∈I and b = (bj)j∈J , one can merge a and b as c = (ck)k∈K
with K ∼= I t J.

35/41

The Seely 2-cell

Recall: the Seely isomorphism

seeA,B : !A⊗ !B → !(A & B)

is supposed to verify the equality

!A⊗ !B !(A & B)

!!(A & B)

!!A⊗ !!B !(!A & !B)

seeA,B

δA⊗δB =

δA&B

!〈!l ,!r〉

see!A,!B

.

35/41

The Seely 2-cell

The Seely equality appears here as a non-trivial 2-cell in Gpd:

!!A× !!B !!A× !!B

!(!A t !B) !A× !B

!!(A t B)

!(A t B) !(A t B)

see!A,!B

SeeA,B
===⇒

µA×µB

![!(l),!(r)]

seeA,B

µAtB

.

36/41

Cartesian structure

Definition
A bicategory C is cartesian when, for every objects Y ,Z , there exist

an object Y & Z ∈ C and morphisms l : Y & Z → Y and r : Y & Z → Z

such that, for every X , there is an adjoint equivalence of categories

C(X ,Y & Z) ⊥ C(X ,Y)× C(X ,Z)

(l �(−),r �(−))

〈−,−〉

(+ there exists a terminal object expressed as an adjoint equivalence too).

36/41

Cartesian structure

Theorem
The bicategory Thin! is cartesian.

Given two thin groupoids A and B, we take A& B =̂ (A t B, . . .) and

l =

A

A t B

List?(A t B) A

l

idA

ηAtB

and r =

B

A t B

List?(A t B) B

r

idB

ηAtB

for l : A& B → A and r : A& B → B in Thin!.

36/41

Cartesian structure

Theorem
The bicategory Thin! is cartesian.

Given two thin groupoids A and B, we take A& B =̂ (A t B, . . .) and

l =

A

A t B

List?(A t B) A

l

idA

ηAtB

and r =

B

A t B

List?(A t B) B

r

idB

ηAtB

for l : A& B → A and r : A& B → B in Thin!.

37/41

Closure

A cartesian bicategory C is closed when, for every object Y ,Z , there exist

an object Y ⇒ Z ∈ C and a morphism evY ,Z : (Y ⇒ Z) & Y → Z

such that, for every X ∈ C, there is an adjoint equivalence

C(X ,Y ⇒ Z) ⊥ C(X & Y ,Z)

evY ,Z �(−&Y)

(−)†

.

Theorem
The cartesian bicategory Thin! is closed.

37/41

Closure

A cartesian bicategory C is closed when, for every object Y ,Z , there exist

an object Y ⇒ Z ∈ C and a morphism evY ,Z : (Y ⇒ Z) & Y → Z

such that, for every X ∈ C, there is an adjoint equivalence

C(X ,Y ⇒ Z) ⊥ C(X & Y ,Z)

evY ,Z �(−&Y)

(−)†

.

Theorem
The cartesian bicategory Thin! is closed.

38/41

The closed structure for Thin!

Given thin groupoids B, C, we take B ⇒ C =̂ (!B × C , . . .) and

evB,C : (B ⇒ C) & B → C =

!B × C

!B × C × !B

!(!B × C)× !B

!((!B × C) t B) C

〈l ,r ,l〉

rη!B×C×!B

see!B×C ,B

(writting directly ! for List?).

39/41

Probabilistic extension

Write Prob for the category
I with one object •
I with [0, 1] ⊂ R as the set of arrows
I with multiplication as composition

Prob = •

[0,1]

39/41

Probabilistic extension

A span enriched in probabilities is a span S : A ⇸ B together with a natural
transformation

S

A
νS
=⇒ B

Prob

∂SA ∂SB

in Cat.

Concretely, it is the data of νS(s) ∈ [0, 1] for every s ∈ S respecting the symmetries in
S .

39/41

Probabilistic extension

A span enriched in probabilities is a span S : A ⇸ B together with a natural
transformation

S

A
νS
=⇒ B

Prob

∂SA ∂SB

in Cat.

Concretely, it is the data of νS(s) ∈ [0, 1] for every s ∈ S respecting the symmetries in
S .

39/41

Probabilistic extension

Composing two spans enriched in probabilities S and T :

νT�S =

T � S

S = T

A
νS
=⇒ B

νT
=⇒ C

Prob Prob

∂SA ∂SB ∂SA ∂SB

=

39/41

Probabilistic extension

By computing the pasting diagram we have

νT�S((s, t)) = νS(s) · νT (t)

so that the composition of spans adequately multiplies the probabilities of the witnesses.

40/41

Other effectful extensions

More generally, we can hope for

Theorem (In preparation...)
Given an SMCC C, there is a cartesian closed bicategory Thin!,C of spans enriched in C.

We recover in our setting the weighting of gen. species of structures by SMCC:
I tsukada2018species

41/41

The end

Any questions?

1/1

Whiteboard

	Introduction
	From relations to spans
	Interpreting programs
	A rigid intersection type system
	Conclusion
	Miscellaneous
	The end
	Appendix

