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Semantic models

What is a semantic model?

program — Some Mathematical Object
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S
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Thin spans

What are thin spans?

» a semantic model which represents programs through witnesses of computation

S
AFs: B ~ /
IA \B

» a (bi)categorical abstraction of concurrent game semantics

» a proof-relevant refinement of the relational model of linear logic



Outline

From relations to spans

Interpreting programs

A rigid intersection type system



Outline

From relations to spans



CBN \-calculus with effects

Consider your favorite \-calculus and add to it an effectful operator,
like a non-deterministic operator @

s,t,u,... = x€Var | tu | Mt | n |
so that the same program can reduce to different values:

34 — 3 34 — 4

sQt
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A program like - Ax.x * x : Nat — Nat can reduce to 9, 12 or 16 on the input 3 @ 4:

(Mxxxx)(304) — (B04)*xBw4) —" 9orl2orlb
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Idea: use “bags” to represent the outcomes of arguments of programs.



CBN \-calculus with effects

A program like - Ax.x * x : Nat — Nat can reduce to 9, 12 or 16 on the input 3 @ 4:
(Mxxxx)(304) — (B04)*xBw4) —" 9orl2orlb

How to describe the semantics of a CBN program p?
Idea: use “bags” to represent the outcomes of arguments of programs.

For the program Ax.x * x:

(x < [3,3)]) > 9
(x+[3,4) ~—~ 12
(x < [4,4]) — 16



CBN \-calculus with effects

More generally, the outputs of Ax.x % x can be correctly described by a (partial) function
f:IN—>N

where IN is the set of “bags’ on N.



CBN \-calculus with effects

More generally, the outputs of Ax.x % x can be correctly described by a (partial) function
f:IN— N
where IN is the set of “bags’ on N.

But more general terms of type Nat — Nat can involve non-determinism, so that their
interpretation should be a function

f: IN — P(N)

or, equivalently, a relation f C IN x N ~~ the relational model Rel



The model Rel of LL

Objects: sets A, B, C, etc.

Morphisms A — B: relations R C A x B, i.e., sets of elements
a—ob

Exponential: 1A is Mg, (A), the set of finite multisets on A

(co)Kleisli category Rel;: morphisms A — B are morphisms !A — B of Rel, that is,
sets of elements
[al,...,a,,] —o b



Interpreting programs in Rel,

Since Rel, is cartesian closed, one can interpret programs inside it.

x: Bool F if x then ff else tt : Bool

interpreted as
{[tt] - ff, [ff] ottt} (C Msz,(Bool) x Bool)
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Interpreting programs in Rel,

Since Rel, is cartesian closed, one can interpret programs inside it.

x: Bool - if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as
{ [tt,tt] — fF, [tt fF] — tt, [ff, ff] — fF }

Here, two different executions get identified in the interpretation.

Hence, Rel, aggregates different executions.
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Witnesses of executions

How do we represent the different possible executions of a program?

Example of a program with non-determinism:
x:Nat,y : NatF x @ y : Nat
has the executions

x40, y<+2 ~ output = 40
~ output = 2



Witnesses of executions

How do we represent the different possible executions of a program?

Example of a program with non-determinism:
x:Nat,y : NatF x @ y : Nat
has the executions

X< 40, y<+2 ~ output = 40 because © chose left

~ output = 2 because @ chose right
Executions are described by witnesses: triples (inputs,outputs,reason).

Example: ([x < 40,y <« 2],40, @ chose left) for the first execution.



Witnesses as spans

Witnesses of executions of a program A — B: set of triples
S= { (a,-,b,-,r,-) ‘ IEI}

There are canonical projections to A and B, so that S is in fact a span

S
A B

Spans can be seen as generalized relations: 0, 1 or several “proofs”’ that a € A and
b € B are related.



Spans and composition

What about composition?

program s: program t:
x:NatF x @1 (x +2) : Nat y : NatF y @2 (2y) : Nat
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Spans and composition

What about composition?

program s: program t:
x:NatF x @1 (x +2) : Nat y : NatF y @2 (2y) : Nat

Witnesses between 0 and 0 of “t o s™
» @1 chose left (s[x < 0] ~» 0) and @2 chose left (t[y < 0] ~» 0); or
» @1 chose left (s[x < 0] ~» 0) and @2 chose right (t[y < 0] ~» 0).



Spans and composition

What about composition?

program s: program t:
x:NatF x @1 (x +2) : Nat y : NatF y @2 (2y) : Nat

Witnesses between 2 and 4 of “t o s™
» @1 chose right (s[x + 2] ~ 4) and ©; chose left (t[y < 4] ~~ 4); or
» @1 chose left (s[x < 2] ~» 2) and @2 chose right (t[y + 2] ~» 4).
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x:AFs:B y:BFt:C

S={(aibi,n)[icl} T={(bqs)|jcT}



Spans and composition

What about composition?
x:AFs:B y:BFt:C
S={(aibi,ri)|iel} T={(bqs)ljcT}
Witnesses of “t o s™

TOS= { (a,-, ¢, (I’,',Sj)) | (a,-, b,', I’,') S S, (bjl, Cj,Sj) € T, b,' = bjl }



Spans and composition

What about composition?
x:AFs:B y:BFt:C
S={(aibi,ri)|iel} T={(bqs)ljcT}
Witnesses of “t o s™

TS

- N
7z N N
~

‘9/5\8 B/T\a
A B C



Towards a semantic model of spans

Spans can be used to describe the semantics of toy examples and compose them.

But what about more complex examples?

» CBN and effects, lambda abstractions, higher-order functions. ..

Idea: follow the constructions on Rel
» define a model of linear logic based on spans

» derive a cartesian closed (bi)category, in which we can interpret programs



A first bicategory of spans

Before defining a model of LL, we must start with some categorical structure.

Pullbacks are defined up to isomorphism
~ associativity of composition @ is expressed by a 2-dimensional structure

Given two spans S, T: A — B, a morphism between S and T is m: S — T such that

S—" =T s —n T
\ = / and \ = / )
o5 ar a3 oL

A B

One gets a bicategory Span = Span(Set) of sets, spans and morphisms of spans.



Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.



Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.
T = () is the terminal object of Span.
0

7N

A 0



Some structure on Span

The cocartesian structure of Set translates to a cartesian structure on Span.

A& B = AU B is the cartesian product on Span.

S T . TSUT .
o5 a3 ar oL ax,a]/ \aua
X/ \A X/ \B AUB

S: X+ A T:X+B (§,T): X » A& B



Some structure on Span

The cartesian structure of Set translates to a monoidal structure on Span.

A® B = A x B gives a tensor product on Span.

S T SxT
% %, of oy 050} 05,05,
A A B B’ Ax B A x B’

S T ST



The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?



The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
» First try: can we use Mg, (—) of Rel as exponential for Span?

Given S € Span, define

S
Mﬁn 85/ \a‘g = Mﬁ“(a / \ ﬁn(‘9

A B Min(A) Miin(B)

Problem: Mg, does not respect composition, because pullbacks are not
preserved. Thus, not a functor Span — Span.
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The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
» First try: can we use Mg, (—) of Rel as exponential for Span? No.

» Second try: can we use lists as exponential?

ai,...,an €A ~»  [a1;---;apn] € List(A)

S
List ai/ \82 _ L-st(aS)/ \L.st

A B List(A) List(B)
We now have a (pseudo)functor, but no Seely equivalence
- H .
seegp: ListA® ListB ~ List(A& B) :Seeap € Span
%

because [b1; a1; az; ba] # [a1; a2; b1; bo]: lack of symmetries



The exponential issue
An ingredient of an LL model: the exponential modality

Do we still have an exponential for Span?
» First try: can we use Mg, (—) of Rel as exponential for Span? No.

» Second try: can we use lists as exponential? Probably no.

ai,...,an €A ~»  [a1;---;apn] € List(A)



Span is dead, long live Span!

Problem:
» our spans are set-based
» there is no adequate Seely equivalence in this setting

We must change the kind of spans that we use.



Span is dead, long live Span!

Let Gpd be the 2-category of groupoids, functors and natural transformations.
~ within groupoids, there are symmetries between objects:

[bl; ai; ao; bg] = [al; ao; br; bz] € LiSt*(A L B)



Span is dead, long live Span!

Let Gpd be the 2-category of groupoids, functors and natural transformations.
~ within groupoids, there are symmetries between objects:

[bl; ai; ao; bg] = [al; an; by; bz] € LiSt*(A L B)
We now have a Seely equivalence

i
seeqp: List“Ax List*B ~ List“(ALIB) :5€€ap € Gpd
%

because the symmetries allow us to reindex:

SE€a g OSees B = idList* AxList* B
seea g 0SE€A B idList* (ALB)
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(F.9): S=T ~ \ / and \ /



Span is dead, long live Span!

We (re)define Span as Span(Gpd)

> objects: groupoids A, B, ...
» 1-morphisms: spans S, T, ...
» 2-morphisms: pseudo-commutative triangles (F, ¢),(G,v),...

(F.9): S=T ~ \ / and \ /

We can now hope that the Seely equivalence of Gpd lifts in Span(Gpd).



The horizontal composition issue
But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?



The horizontal composition issue
But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?
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The horizontal composition issue
But is Span = Span(Gpd) a bicategory?
In particular, are we able to define a horizontal composition?

TOS

>

Yo

S T
| |
F G
S T



The horizontal composition issue
But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

iich

S
Lo




The horizontal composition issue
But is Span = Span(Gpd) a bicategory?

In particular, are we able to define a horizontal composition?

ToS
sl/ \T
o3 or
A%F UA HUE wac
ST b

T0oS

~~ not always possible to find such H, x”, x¢! So Span is not a bicategory!



Taking into account symmetries

This problem actually arises in other proof-relevant bicategorical models and needs to
be addressed.

> generalized species of structures [fiore2008cartesian]: quotient of the witnesses
through a coend

» template games [mellies2019template]: use of deformations to correctly align
the witnesses



Span is dead (again), long live Thin!

Our solution: we add structures to constrain the spans and the morphisms of spans, so
that horizontal composition exists.

A thin span is a tuple
A = (A)A—7A+7UA) T.A)

where A is a groupoid and the remainder is the data associated with two orthogonality
relations.



Span is dead (again), long live Thin!

Our solution: we add structures to constrain the spans and the morphisms of spans, so
that horizontal composition exists.

A thin span is a tuple

where A is a groupoid and the remainder is the-data-associated-with-twe-orthogonality
relations black box magic.



Span is dead (again), long live Thin!

Our solution: we add structures to constrain the spans and the morphisms of spans, so
that horizontal composition exists.

Theorem (C., F.)
We get a bicategory Thin:
» objects: thin groupoids A, B, . ..
» 1-morphisms: thin spans (i.e. spans compatible with the black box magic)

» 2-morphisms: positive morphisms (i.e. morphisms of spans compatible with the
black box magic)

» 1-identity on A:
A
A / \ A

» 1-composition: pullbacks



The exponential modality

Recall that the exponential !: Rel — Rel is derived from
the monad Mg, : Set — Set.

We derive an exponential !: Thin — Thin from
the monad List*: Gpd — Gpd.
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The monad List*: Gpd — Gpd? The “free strict symmetric monoidal construction”.

To A € Gpd, associates List*(A) € Gpd:

» morphisms [a1;...;a,] — [a];...; a),]: pairs (m, (fi)icr) where
» risabijection {1,....,.n} —=>{1,...,m};
» f: is a morphism a; — a;(,-) € A.
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» morphisms [a1;...;a,] — [a];...; a),]: pairs (m, (fi)icr) where
» risabijection {1,....,.n} —=>{1,...,m};
» f: is a morphism a; — a;(,-) € A.

The unit na: A — List*(A): maps a € A to [a];



The exponential modality

The monad List*: Gpd — Gpd? The “free strict symmetric monoidal construction”.

To A € Gpd, associates List*(A) € Gpd:

» morphisms [a1;...;a,] — [a];...; a),]: pairs (m, (fi)icr) where
» risabijection {1,....,.n} —=>{1,...,m};
» f: is a morphism a; — a;(,-) € A.

The unit na: A — List*(A): maps a € A to [a];

The multiplication pa: List*(List*(A)) — List*(A): merges lists of lists into lists.



The exponential modality

We get an exponential
I Thin — Thin

where

A = (List*(A),...)
for every thin groupoid A and

List™(

S
! 6;\9/ \afi A List*( / \Ll‘st (03)
A B

List*(A)

for every thin span S: A — B.



The exponential modality

The structure of comonad of ! is derived from the monad structure of List*.

Given a thin groupoid A,

A List*(List*(A))
T TN
(A) A

List* List*(A) List*(List*(A))



The Kleisli bicategory

We thus get a Kleisli bicategory Thin, with | = List*, whose 1-cells A — B
are of the form
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The Kleisli bicategory

We thus get a Kleisli bicategory Thin, with | = List*, whose 1-cells A — B
are of the form

S

5N

A B

In categorical models of LL, the Kleisli category is cartesian closed.

Theorem (C., F.)

The bicategory Thin, is cartesian closed.



Outline

Interpreting programs



Examples of interpretations

Example 1:
x: Bool - if x then ff else tt : Bool

interpreted as the span (which happens to be a relation)

{[tt] - ff, [ff] ott}

N

IBool Bool



Examples of interpretations

Example 2:
x: Bool |- if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{[tt;tt] —o fF, [tt;fF] —ott, [fFtt] —ott, [fF; fF] —o F }

N

IBool Bool



Examples of interpretations

Example 2:
x: Bool |- if x then (if x then ff else tt) else (if x then tt else ff) : Bool

interpreted as the span (which happens to be a relation)

{[tt;tt] —o fF, [tt;fF] —ott, [fFtt] —ott, [fF; fF] —o F }

N

IBool Bool
to compare with the interpretation in Rel;:

{ [tt, tt] — fF, [tt, ff] — tt, [ff,ff] — tt }.



Categorical interpretation

Since Thin, is cartesian closed, we can interpret simply-typed A-calculus. What would
it look like?



Categorical interpretation

Since Thin, is cartesian closed, we can interpret simply-typed A-calculus. What would
it look like?

Considered types:

AB,... = Bool | A—B



Categorical interpretation

Since Thin, is cartesian closed, we can interpret simply-typed A-calculus. What would
it look like?

Considered types:
AB,... = Bool | A—B

Interpretation (A)) of a type A:

(Bool) = 1U1 A= B) = I(A) % (B)



Categorical interpretation

Since Thin, is cartesian closed, we can interpret simply-typed A-calculus. What would
it look like?

Considered types:
AB,... = Bool | A—B

Interpretation (A)) of a type A:

(Bool) = 1U1 A= B) = I(A) % (B)

Interpretation () of a context I = (x1 : A1, ..., x5 : Ap):

= (AU U(AD



Categorical interpretation

Given a derivation of 't : Ain STLC, its categorical interpretation is a span

(t)

ay Yﬂ?

M) (A)

by induction on the derivation.

> this is automatically derived from the cartesian closed structure

» but uneasy to describe syntactically (notably the projection on !(I))



The bagged interpretation

We introduce a more relevant interpretation of contexts.



The bagged interpretation
We introduce a more relevant interpretation of contexts.
Bagged interpretation of a context ' = (x3 : A1,..., X, : Ap):
Ir] = I[AL] x -+ x [An] € Thin

(Recall that !(I) = '((A1) U--- LI (A4)))



The bagged interpretation
We introduce a more relevant interpretation of contexts.
Bagged interpretation of a context ' = (x3 : A1,...,xn : Ap):
[rl = A1] x -+ x [Aq] € Thin
(Recall that I(I) = ((A1) U --- U (An)))

Proposition
The underlying groupoid of [I'] is equipped with a structure of monoid.

» multiplication: given v = (y1,...,7v,) and §d = (61,...,6,) in [[],
7E6 = (A0, )

where 7; ++ d; is the concatenation of lists in ![A;]



The bagged interpretation

Given I = xy : A1,...,Xx, : A, and a derivation I - t : A, we define a thin span

[t]

r(y \&H\tﬂl

[ (A)

by induction on the derivation.



The bagged interpretation

Variable case: for ' =x; : A1,...,xp: Apand ie {1, ..., n},
(Ai) .
k] = Doesmgag el N""”
() x - 1(A,) (4)
~~ “for every a € (A;), there is one computation consuming ([],...,[a], ...

producing a"

[1) and



The bagged interpretation

A-abstraction case: given a derivation of (I',x : A) -t : B,



The bagged interpretation

A-abstraction case: given a derivation of (I',x : A) -t : B,

[t]

\@m/ w

[F] < 1(A) (8)



The bagged interpretation

A-abstraction case: given a derivation of (I',x : A) -t : B,

[t]

[t] \ It
[0 )
/ oaﬂfl\
1l

[ '(A) (B)



The bagged interpretation

A-abstraction case: given a derivation of (I',x : A) -t : B,

[t]

R

[ H(A) > (B)



The bagged interpretation

A-abstraction case: given a derivation of (I, x: A) - t: B,

[t]
.t = ’Oy ya,m oK)
[ 1(A) > (B)

~ "if t consumes (7, [aj];) to produce b, then Ax.t consumes = to produce [a;]; — b"



The bagged interpretation

Application case: given a derivationof T'-t: A— Bandof I u: A,

[t u]
! v r
t [£] % l[[Lu]] ”ngV!QA[),[[B]] -
[t u] _ 6,|I]]><!6y B,[\IHX!B’IIU]] a;""veAp,isn \0/‘ 104,151
[ < ] (1A x QBD)KX 1A (B) \
I (8)

~~ "if t consumes ~y to produce [aj]; — b and u consumes § to produce [a;];, then t u
consumes v @ & to produce b’



The bagged interpretation
Given I' = (x1 : A1,...,%n : Ap), write seer for the Seely morphism

seer: (A L -~ L (AR)) — MA1] x -+ x [Aq] € Gpd

Theorem (Compatibility)

Given a derivation ' =t : A, we have a canonical isomorphism of spans

(th [t]

[
o = 9 o

a/(] t)

in Thin.



Outline

A rigid intersection type system



Intersection type systems

[de2018execution]: interpretations of programs in Rel can be presented syntactically
through an intersection type system.

NrM-t: A ~ OFt:adA and ObFy t:|ag,...,an <A

[olimpieri2021intersection]: interpretations of programs in Esp can also be presented
syntactically through an intersection type system

Can we have a similar presentation for Thin?



Intersection type systems

Idea of intersection type system: give several types to a pure \-term:
Fr=t:mN---Nmy
In this setting, we can type Ax.xx:
Fdxxx: (A=A NA — A

The system is said
> non-commutative when c N7 £ 7 No

» non-idempotent when o No # o



Intersection type systems

In the context of Rel and Thin, it is better to change perspective.

Broke:
» simply-typed A-calculus is pure A-calculus with types
> intersection types = “typing a term with several types’

Woke:
» pure A-calculus is simply-typed A-calculus with a reflexive type/object

> intersection types = “assigning different values to a term”



ITS for Thin

[de2018execution]: the relational model be described syntactically by an intersection
type system, with multisets as bags

For Thin: we use the same system with lists as bags



ITS for Thin

Simple types considered:
AB,... = Bool | A—B

Refinement types values and intersection types values:

a,B,... = tt|ff|rk—oa«
Ky Ay = |a1,...,an] (n€eN)
where [a, ..., ap) is a list of elements.

Refinement judgements o< A and k <, A and their rules:

K <im A B<B Vie{l,...,n} a;i <A
ff <« Bool tt <« Bool K—oa<dA— B [a1, ..., qp] <m A




ITS for Thin

Resource contexts: sequences © of bindings of the form

0,x,... = (X,' : [a,-,l,...,a,-,,,,.]<1A,-)1§,-§,, (n € N)



ITS for Thin

Addition of resource contexts: given
@ = (X,' LR <1A,')1§,'§,, Y = (X,' . )\,’ <1A,')1§,'§,,

we put
OB L = (x: (ki ++ \) 9A)1<i<n

where x; ++ \; stands for the concatenation of lists.



ITS for Thin

Intersection type judgements © F t : < A and their rules:

<1A,'
(IT-Var) °
(x1:[[<AL, - xi s [a] <Aj - xn [ QAR F xi s a <A
OFt:k—ofpB<1A—>B O Fmu:k
(IT-App)

OFOFtu:BaB
(©,x: kA Ft: B
OF M.t:k—of3<A—B

OiFt:a<dA forie{l,....,n}
(IT-Int) A
01D - ®Opbmt:ifag,...,an <A

(IT-Lam)




ITS for Thin

Since we are considering Bool and if's:

©F t: tt<Bool Othen F U: <A

(IT-If-True) —— :
© @ Othen Fm if tthenvelsev:a<A

©F t:tt<Bool Oelse FV:adA
(IT-If-Else) ~ -
D Oelse Fm if tthen uelsev:a<A




ITS for Thin

Theorem
Given a derivation T =t : A and its bagged interpretation

[F] (A)

we have a bijection

Ob([t]) = { p|p derivation of O -t :a: A for©<«T }.

» Contrarily to Rel and Esp [olimpieri2021intersection], no quotient is required
here for the bijection.



A known broken system

That system is the direct system we obtain when dropping commutativity in the ITS of
Rel.

It is known for not satisfying subject reduction!



A known broken system

In the context f: Bool — Bool — Bool, x: Bool consider

ti1 =(A\yAz.fzy)xx th=Fxx



A known broken system

In the context f: Bool — Bool — Bool, x: Bool consider
ti1 =(A\yAz.fzy)xx th=Fxx
Given the resource contexts

Off e = (f: [[ff] —o [tt] —o tt] < Bool — Bool, x: [ff; tt] <« Bool)
O fr = (f: [[ff] —o [tt] —o tt] < Bool — Bool, x: [tt; ff] < Bool)

we have

@ff,tt |7{ ty: tt <« Bool efﬂtt H tr: tt <« Bool
@tt,ff H t1: tt <« Bool ett7ff }7/ tr: tt <« Bool

while t; —* t, ~ subject reduction not satisfied



A known broken system

But in Thin, the reduction t; —* t, is interpreted as a reindexing
[t1 =" ] [ta] — [t2]
so that subject reduction is weakly recovered:
O - t1: tt < Bool = Off e - t2: tt < Bool

(The above is informall)



ITS for morphisms

Let's remember that thin spans are spans of groupoids, with morphisms.

Can we we describe the ones in the interpretation of A-terms?

[t]

[t] [t
8/ Yj € Gpd

[r1 (A



ITS for morphisms

Refinement types value morphisms and intersection types value morphisms:

a,By... = tt|ff|Kk—oa«
Ky Ay oo = Jag,...,an] (n€N)
(ﬁ,iﬁ,... = idtt | |dff|6—0¢

0, ... = (m[d1,.--,0n]) (neN,TES



ITS for morphisms

Resource morphism contexts:

.. . .. /
e = (X,' : 9,‘ LR = Kj <1A,')1§;§n



ITS for morphisms
Intersection type morphism judgements
Zhtipra=ad <A and Zhnt:0k=kK <A
and their rules:
o= a <A
(ooxit(idg1y,[@]) s [a] = [@] <AL ) F X g a=a 1A

(ITM-Var)

)= (K - p)<9A=B Z'tpuilik=k

Eht:(0—o¢)(k—op
=3=Ftu 68— B

(ITM-App)

Ex:0:k=>KaA)t:¢p::8=5<B
SEMt: (0 —o9¢):(k—opB)=> (K —-p)1A>B

(ITM-Lam)

neN oce8, Vie{l,...,n},SiFt:¢ia,=a,dA
(0 © (Eiiem) Fm t:(0,[¢1,- -, ) : [aili<icn = [0 -1 (yli<icn <A

(ITM-Int)



ITS for morphisms

Given a derivation ' I- t : A, we get a groupoid [t]'T:
> objects: derivations © - t:a< A
» morphisms: derivations = t: ¢ a=d <A

» composition of derivations as composition

Theorem (C., F.)
The interpretation in Thin is described by the presented ITS, i.e.,

[t] = [1]"".



Conclusion

Thin spans
> a quantitative semantic model based on spans of groupoids
» provide a proof-relevant extension of the relational model Rel

> syntactic description given by an intersection type system



Related works

Other quantitative models:

> Generalized species of structures
fiore2008cartesian

» Template games
mellies2019template

Syntactic descriptions through intersection type systems:
» olimpieri2021lintersection
> tsukada2017generalised



The end

Any questions?



Seely equivalence

Recall: a common approach for exhibiting a categorical model of LL is to find a Seely
isomorphism
seeap: !A® !B — (A& B).



Seely equivalence

In Thin,
ARB=(AxB,...) and A&B=(AUB,...).

We have the 2-categorical analogue of a Seely isomorphism, already in Gpd:

Proposition
Given A, B € Gpd, there is an adjoint equivalence of groupoids

se€ea B

/_\

List*(A) x List*(B) 1 List“(AU B) .

\_/

Seea B

Idea: given a = (a;)ics and b = (bj)jcy, one can merge a and b as ¢ = (ck)kek
with K = /U J.



The Seely 2-cell

Recall: the Seely isomorphism
seeap: !A® !B — (A& B)

is supposed to verify the equality

IA® 1B —22, I(A& B)

laA&B

54808 = H(A&B) -

l!(!l,!r)

HA® B — (A& !B)

seela B



The Seely 2-cell

The Seely equality appears here as a non-trivial 2-cell in Gpd:

HAX IB =——== 1A X IIB
See!‘A,!B /»LA>‘<,UB
+ ~+
1AL IB) 1A x 1B

1)) Seent

v

(AU B) seeq

|
HALB l
\V

(AL B) I(AL B)




Cartesian structure

Definition
A bicategory C is cartesian when, for every objects Y, Z, there exist

an object Y& Z €C and morphisms [: Y& Z—Y and r:Y&Z—->Z
such that, for every X, there is an adjoint equivalence of categories

(10(=),ro(=))

/_\

C(X,Y & Z) L C(X,Y)xC(X,2)

'\_/

<_7_>

(4 there exists a terminal object expressed as an adjoint equivalence too).



Cartesian structure

Theorem
The bicategory Thin, is cartesian.



Cartesian structure
Theorem

The bicategory Thin, is cartesian.

Given two thin groupoids .A and B, we take A& B = (AU B,...) and

AN a

| = AL B da and  r= AL B e
nAuy 77Au7
List* (AU B) A List* (AL B)

for[: A&B—+Aand r: A& B — Bin Thin,.



Closure
A cartesian bicategory C is closed when, for every object Y, Z, there exist
an object Y = Z e C and a morphism evy 7: (Y = Z2)& Y = Z

such that, for every X € C, there is an adjoint equivalence

evy z @(—&Y)
C(X,Y = 2) 1 CX&Y,Z) .



Closure
A cartesian bicategory C is closed when, for every object Y, Z, there exist
an object Y = Z e C and a morphism evy 7: (Y = Z2)& Y = Z

such that, for every X € C, there is an adjoint equivalence

evy z @(—&Y)
C(X,Y = 2) 1 CX&Y,Z) .

Theorem
The cartesian bicategory Thin, is closed.



The closed structure for Thin,

Given thin groupoids B,C, we take B=C = (1B x C,...) and

IBx C

</7f7l>/

IBx Cx!B
evge: (B=C)&B—=C — U!BXCX!B/
I(I1Bx C)x !B

See!BxC,V

(1B x C) LU B)

(writting directly ! for List*).



Probabilistic extension

Write Prob for the category
> with one object o
» with [0,1] C R as the set of arrows

» with multiplication as composition

Prob = )



Probabilistic extension

A span enriched in probabilities is a span S: A -» B together with a natural
transformation

S
93 93
VS
A = B
Prob

in Cat.



Probabilistic extension

A span enriched in probabilities is a span S: A -» B together with a natural

transformation
S
2N
VS
A = B

Prob
in Cat.

Concretely, it is the data of v°(s) € [0,1] for every s € S respecting the symmetries in
S.



Probabilistic extension

Composing two spans enriched in probabilities S and T:

TOS



Probabilistic extension

By computing the pasting diagram we have
v (s, 1)) = v°(s) - w7 (t)

so that the composition of spans adequately multiplies the probabilities of the witnesses.



Other effectful extensions

More generally, we can hope for
Theorem (In preparation...)

Given an SMCC C, there is a cartesian closed bicategory Thin, ¢ of spans enriched in C.

We recover in our setting the weighting of gen. species of structures by SMCC:

» tsukada2018species



The end

Any questions?



Whiteboard
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