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Abstract

In earlier work, Batanin has shown that an important class of definitions of higher cat-
egories could be apprehended together simply as monads over globular sets. This allowed
him to generalize the notion of polygraph, initially introduced by Street and Burroni for
strict categories, to all algebraic globular higher categories. In this work, we refine this per-
spective and introduce new constructions and properties for this class of higher categories.
In particular, we define the notion of cellular extension and its associated free construction,
from which we obtain another definition of polygraph and the adjunction between globular
algebras and polygraphs. We moreover introduce two criteria allowing one to use most of
the constructions of this article without having to describe explicitly the underlying globular
monad.

Introduction

Over the last years, higher categories have emerged as a convenient tool to study problems in
mathematics, physics and computer science [3, 16]. The notion of “higher category” encompasses
informally all the structures that have higher-dimensional cells which can be composed together
with several operations. It admits a vast number of definitions, which can make it hard to
apprehend.

In order to get a more global view and factor out several common constructions and properties
across the different possible definitions higher categories, it is useful to consider a restriction of
this general notion to a more formal class of theories. This was done by Batanin [4], who
introduced a unified formalism for algebraic globular higher categories. The latter are very
common, since they include all the globular higher categories defined by a set of operations
and equations between them. Moreover, the instances of such higher categories form locally
finitely presentable categories and, as such, have very good properties, like being complete and
cocomplete [1]. The setting of Batanin then enables one to derive several common constructions
for such higher categories. In particular, one can generalize to those the notion of polygraph,
which can be thought as higher-dimensional signatures, originally defined by Street [26] for
strict 2-categories and Burroni for strict ω-categories. Batanin moreover showed that there is
an adjunction between n-polygraphs and n-categories, which is “most of the time” monadic (as
proved by Street for 2-polygraphs of strict categories), allowing for presenting higher categories
of this framework using polygraphs.

Although this is already valuable, it seems that the work of Batanin can be refined in several
aspects. First, several constructions of interest for concrete applications are too implicit, if not
absent of Batanin’s treatment. For example, in the context of higher dimensional rewriting, one
is usually interested in a notion intermediate to higher category and polygraph, called cellular
extension, which is simply a higher category with a set of generators in the next dimension.
One can then consider the free (n+1)-category obtained from an n-cellular extension by freely
∗This work was partially supported by the French ANR project PPS (ANR-19-CE48-0014).
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generating the (n+1)-cells from the set of generators. Thus, cellular extensions can be considered
as a more flexible construction than the one on polygraphs, where each dimension has to be freely
generated.

Second, in order to use the results of Batanin, one has to work directly with a monad and its
Eilenberg-Moore category. However, one usually does not have direct access to the underlying
monad of the considered theory of higher category, but only the operations of the theory together
with the equations satisfied by the theory, from which one can derive a monad, but the description
of the latter can be very tedious [22]. Instead, one would prefer results that can work directly with
the equational theory, the category of models of this theory, and the straight-forward functors
that one can build from it. In particular, such a shortcut feels particularly desirable for showing
the truncability of the monad, which is required for the constructions and properties of Batanin
to work.

Third, it seems that deeper understanding about globular algebras can be gained by seeing
them through the lenses of the formal theory of monads of Street [25]. Indeed, several natu-
ral constructions on globular algebras, like truncations functors and their right adjoints, are in
fact projections, through the Eilenberg-Moore functor, of constructions happening in the cat-
egory MND of monads and monad functors, whose compositions involve vertical composition
of square-shaped natural transformation. Then, several computations on these functors can
be nicely described using string diagrams, facilitating their readability and making them more
intuitive.

In this work, we attempt to address these three points.

Outline In Section 1, we recall some elements of Street’s formal theory of monads [25]. In
particular, we define the category MND of monads over categories together with the Eilenberg-
Moore construction, which produces a category of algebras from a monad. In Section 2, we
recall Batanin’s framework for globular higher categories, where theories of higher categories are
simply studied as monads on globular sets, and extend it with new results and constructions.
Among other, we prove two criterions (Theorem 2.5.2 and Theorem 2.7.4) which help bridge the
gap between that framework and the usual definitions of higher categories as structures with
operations satisfying equations. In Section 3, we recover the notion of polygraph through a
different path than the one of Batanin using the intermediate and intuitive notion of cellular
extensions. We also describe explicitly the free constructions associated to both notions. The
adjunctions shown by Batanin between higher categories and polygraphs can then be recovered
from an adjunction between cellular extensions and polygraphs (Theorem 3.4.1). Finally, in
Section 4, we illustrate the use of our properties and constructions on the case of strict categories.
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him.
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Notations In this article, given n ∈ N, Nn denotes the set {0, . . . , n} and N∗n denotes the
set {1, . . . , n}. We extend this notation to the infinity and put Nω = N and N∗ω = N∗. As a

1https://github.com/smimram/satex.
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consequence of the above choices, we might write Nn∪{n} as a convenient abbreviation to denote
either Nn when n ∈ N, or N ∪ {ω} when n = ω.

1 Highlights of the formal theory of monads

In order to better manipulate globular algebras and constructions upon them, we use the formal
theory of monads of Street [25], of which we recall briefly the salient points.

We start by recalling the notion of algebra for a monad and the associated Eilenberg-Moore
category in Section 1.1. Then, in Section 1.2, we recall that the construction of the Eilenberg-
Moore category is part of an adjunction between the 2-categories MND, describing monads
over categories, and CAT. Finally, in Section 1.3, we give several useful properties to build
morphisms in MND from adjunctions in CAT.

In the following, we introduce monads either as (T, η, µ), where T is the endofunctor of the
monad and (η, µ) is the unit-counit pair; or we introduce them as (C, T ), where C is the base
category for which T is the endofunctor. When the latter notation is used, the unit and counit,
when required, are introduced explicitly.

1.1 Algebras

Given a monad (T, η, µ) on a category C, a T -algebra is the data of an object X ∈ C together
with a morphism h : TX → X such that

h ◦ ηX = idX and h ◦ µX = h ◦ T (h).

A morphism between two algebras (X,h) and (X ′, h′) is given by a morphism f : X → X ′ of C
satisfying

f ◦ h = h′ ◦ T (f).

We write CT for the category of T -algebras, also called Eilenberg-Moore category of T . There is
a canonical forgetful functor

UT : CT → C

which maps the T -algebra (X,h) to X. This functor has a canonical left adjoint

FT : C → CT

which maps X ∈ C to the T -algebra (TX, µX), such that the unit of FT a UT is ηT = η, and the
associated counit, denoted εT , is such that εT(X,h) = h for a given T -algebra (X,h). The monad
induced by FT a UT is then exactly (T, η, µ).

1.2 The category MND

Given two monads (S, γ, ν) and (T, η, µ) on two categories C and D respectively, a monad functor
betweem (S, γ, ν) and (T, η, µ) is the data of a functor F : C → D together with a natural
transformation α : TF ⇒ FS such that

α ◦ (ηF ) = Fγ and α ◦ (µF ) = (Fν) ◦ (αS) ◦ (Sα).

A monad functor transformation (often abbreviated truncable monads) between two monad
functors (F, α), (G, β) : (C, S)→ (D, T ) is a natural transformation m : F ⇒ G such that

(mS) ◦ α = β ◦ (Tm).
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Monads, monad functors and monad transformations form a (very large) strict 2-category
denoted MND. There is a functor

Inc : CAT→MND

which maps a large category C to the identity monad (C,1C). This functor admits a right adjoint

EM : MND→ CAT

which maps a monad (C, T ) to the Eilenberg-Moore category CT , and a monad functor

(F, α) : (C, S)→ (D, T )

to a functor
Fα : CS → DT

mapping an algebra (X,h) ∈ CS to the algebra (FX,Fh ◦ αX) ∈ DT , and mapping an algebra
morphism f to F (f). Finally, a monad transformation

m : (F, α)⇒ (G, β) : (C, S)→ (D, T )

is mapped by EM to the natural transformation Fα ⇒ Gβ whose component at an S-algebra
(X,h) is mX . The component of the counit of the adjunction at a monad (C, T ) is given by
(UT ,UT εT ). Moreover, the monad functor (T, µ) : (C,1) → (C, T ) corresponds to the functor
FT : C → CT by the adjunction Inc a EM.

There is also a forgetful functor

Und : MND→ CAT

which maps a monad (C, T ) to C and whose action on monad functors and monad transformations
is the expected one. We mention that this functor is left adjoint to Inc, even though this is not
really useful for our purposes.

1.3 Morphisms of MND from adjunctions

We give several results that allows building morphisms of MND from adjunctions. First, we
prove that every functor which is a right adjoint can be lifted canonically to MND:

Proposition 1.3.1. Let C and D be two categories, (S, ηS , µS) be a monad on C, and

L a R : C → D

be an adjunction. The functor R lifts through Und to a cocartesian map

(R,RSε) : (C, S)→ (D, T )

where T = (T, ηT , µT ) is the canonical monad with T = RSL and ε is the counit of L a R.

Proof. The fact that we obtain a monad functor can readily be verified using string diagrams.
For example, the equation (RSε) ◦ (ηTR) = RηS asserts that the two diagrams

R S L R
and

R S

4



represents the same natural transformation, which is true by the zigzag equations for L a R.
The other equation (RSε) ◦ (µTR) = (RµS) ◦ (RSεS) ◦ (TRSε) is verified similarly.

We are now left to prove the cocartesianness of (R,RSε). So let (D′, T ′) be a monad,
U : C → D′ and Ū : D → D′ such that U = ŪR, and (U,α) : (C, S) → (D′, T ′) be a monad
functor. We define ᾱ : T ′Ū ⇒ ŪT by

ᾱ =

T ′ Ū

R L

=

U

α

U S

=

Ū R

=

Ū T

and verify that it defines a monad functor (Ū , ᾱ) : (D, T ) → (D′, T ′). We start with the unit
equation, i.e., ᾱ ◦ (ηT

′
Ū) = ŪηT :

Ū

R L

=

T ′ U

α

U S

=

Ū R

=

Ū T

=

Ū

R L

=

U

= S

Ū R

=

Ū T

=

Ū

R S L

=

Ū T

=
Ū

Ū T

.

The second equation, i.e., ᾱ ◦ (µT Ū) = (ŪµS) ◦ (ᾱT ) ◦ (T ′ᾱ), is proved in Figure 1. Thus, we
conclude that (Ū , ᾱ) is a monad functor. We verify that it is a factorization of (U,α) through
(R,RSε):

T ′ Ū R

R L

=

U

α

U S

=

Ū R

=

T

RSε

Ū R S

=

T ′ Ū R

R L

=

U

α

U S

=

Ū R S

=

T ′ Ū R

=

U

α

U S

=

Ū R S

.

Moreover, by the zigzag equations, we observe that the vertical pasting operation

D D′

D D′
T

Ū

⇓ β T ′

Ū

7→
C D D′

C D D′

R

S ⇓ RSε T

Ū

⇓ β T ′

R Ū
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T ′ T ′ Ū

R L

=

T ′ U

α

U S

=

Ū R

=

Ū T

=

T ′ T ′ Ū

R L

=

U

α

U S

α

U S

= S

Ū R

=

Ū T

=

T ′ T ′ Ū

R L

=

U

α

U S

=

Ū R

=

U

α

U S

= S

Ū R

=

Ū T

=

T ′ T ′ Ū

ᾱ

Ū T

=

Ū R S L

=

U

α

U S

= S

Ū R

=

Ū T

=

T ′ T ′ Ū

ᾱ

Ū T

R L

=

U

α =

U S R S L

=

Ū R S

=

Ū T

=

T ′ T ′ Ū

ᾱ

Ū T

ᾱ

Ū T

Ū T

Figure 1: Proof of ᾱ ◦ (µT Ū) = (ŪµS) ◦ (ᾱT ) ◦ (T ′ᾱ).
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is a bijective operation between natural transformations of adequate types, whose inverse is
β′ 7→ (β′L) ◦ (T ′Ūη) where η is the unit of L a R. Thus, we conclude that (Ū , ᾱ) is the unique
monad functor above Ū which factors (U,α) through (R,RSε). Thus, the latter is a cocartesian
morphism for Und.

Remark 1.3.2. The morphism of Proposition 1.3.1 is even 2-cocartesian, meaning that given
a monad transformation θ : (U,α) ⇒ (U ′, α′) : (D, T ) → (D′, T ′) and θ̄ : Ū ⇒ Ū ′ such that
θ̄R = θ, then θ̄ uniquely lifts through Und to a monad modification θ̄ : (Ū , ᾱ)⇒ (Ū ′, ᾱ′) which
factors θ seen as a monad modification through (R,RSε). The proof that θ̄ induces a monad
transformation is done by observing that the bijection introduced in the end of the proof of
Proposition 1.3.1 generalizes to a bijection

D D′

D D′
T

Ū

⇓ β T ′

Ū ′

7→
C D′

C D′
S

U

⇓ β′ T ′

U ′

.

Then, the equation required for θ̄ to be a monad transformation is given by the one of θ, through
this bijection.

Given a situation as in the statement of Proposition 1.3.1, we might wonder whether the ad-
junction L a R lifts to an adjunction inMND. In fact, we can ask this question in a more general
setting: given (C, S) and (D, T ) two objects of MND and (R, ρ) : (C, S)→ (D, T ) ∈MND such
that R = Und(R, ρ) is part of an adjunction L a R, when does this adjunction lift to an
adjunction in MND, i.e., there exists λ : SL⇒ LT such that (L, λ) a (R, ρ) in MND?

Given the situation just described, consider the natural transformation ρ∗ : LT ⇒ SL, also
called the mate [15] of ρ, defined by

ρ∗ =
L T R L

ρ

R S

.

We then have the following property:

Proposition 1.3.3. Given an adjunction L a R : C → D and a monad functor

(R, ρ) : (C, S)→ (D, T ),

the following are equivalent:

(i) there exists λ : SL⇒ LT such that (L, λ) a (R, ρ) is an adjunction in MND, whose image
by Und is the adjunction L a R;

(ii) the natural transformation ρ∗ is an isomorphism.

Proof. We first show that (i) implies (ii). So let λ be as in (i). We prove that λ is an inverse
for ρ∗. We start by showing that λ ◦ ρ∗ = idLT . By the correspondence given by the adjunction
L a R, it is equivalent to show that (R(λ ◦ ρ∗)) ◦ (ηT ) = ηT . From the fact that (L, λ) a (R, ρ)
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is an adjunction, we get in particular the following equality

D C D

D C D

L

T

1D

⇓ λ
R

S ⇓ ρ T

L R

⇓ η

=

D D

D D

C

1D

T = T

1D

L R

⇓ η

(1)

from which we can prove the wanted equality as follows:

R L T R L

ρ

R S

λ

R L T

=

T R L

ρ

R S

λ

R L T

=
T

R L T

.

Symmetrically, in order to prove that ρ∗ ◦ λ = idSL, it is equivalent to prove that

(Sε) ◦ ((ρ∗ ◦ λ)R) = Sε.

In order to prove the latter, we use the equality satisfied by ε as a monad transformation:

C D C

C D C

R

S ⇓ ρ

L

T ⇓ λ S

R

1C

L

⇓ ε

=

D

C C

C C

L

1C

S =

R

S

1C

⇓ ε

. (2)

Then, the wanted equality can be proved using string diagrams just as before. Thus, (ii) is
proved.

Conversely, assume that (ii) holds. We put λ = (ρ∗)−1 and show that (L, λ) is a monad
functor. First, we need to show that λ◦(ηSL) = (LηT ), or equivalently, that (ηSL) = ρ∗ ◦(LηT ).
We show the latter using string diagrams:

L T R L

ρ

R S

=
L R L

S L

=
L

S L

.

Second, we need to show that λ◦ (µSL) = (LµT )◦ (λT )◦ (Sλ), or equivalently, that the equation

8



(µSL) ◦ (Sρ∗) ◦ (ρ∗T ) = ρ∗ ◦ (LµT ) holds. We show the latter using string diagrams again:

L T R L T

ρ

R S

R L

ρ

R S

S L

=

L T T R L

ρ

R S

ρ

R S

S L

=

L T T

T R L

ρ

R S

S L

.

Thus, (L, λ) is a monad functor. We must now prove that η and ε induce monad transformations.
First, we show that (1) holds, or equivalently, that

D C D

C D

L

1D

R

S ⇓ ρ T

R

⇓ η

=

D D D

C C D

T

L ⇓ ρ∗

1D

L ⇓ η 1D

S R

.

But the latter equation follows directly from the string diagram definition of ρ∗ and the zigzag
equations of the adjunction L a R.

The other required equation (2), or equivalently,

C D

C D C

R

S ⇓ ρ T

R

1C

L

⇓ ε

=

C D D

C C C

R

1C ⇓ ε

T

L ⇓ ρ∗ L

1C S

holds by a similar argument. Finally, the zigzag equations for η and ε seen as monad transfor-
mations follows from the zigzag equations satisfied by them as natural transformation in CAT.
Hence, (i) holds.

We have the same kind of property for left adjoints (first suggested by Dominic Verity to the
author):

Proposition 1.3.4. Given an adjunction L a R : C → D and a monad functor

(L, λ) : (D, T )→ (C, S),

the following are equivalent:

(i) there exists ρ : SR⇒ RT such that (L, λ) a (R, ρ) is an adjunction in MND, whose image
by Und is the adjunction L a R;

(ii) the natural transformation λ is an isomorphism.
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Proof. The proof is essentially the same as the one for Proposition 1.3.3. For (ii) implies (i), ρ
is now defined by the string diagram

ρ =
R L T R

λ−1

S L

and we prove just as before that it induces a monad functor (R, ρ) such that (L, λ) a (R, ρ) is
an adjunction in MND.

Proposition 1.3.5. Given two adjunctions L a R and L̄ a R̄, in the configuration

C D E
L

R

L̄

R̄
,

if we write S for the monad associated with L a R and T for the monad associated with L̄L a RR̄,
and η̄ for the unit of L̄ a R̄, we have a monad functor

(1C , Rη̄L) : (C, T )→ (C, S).

Proof. The fact that it is a monad functor can be checked using string diagrams. On the one
hand, the compatibility of Rη̄L with the units of S and T asserts that the two diagrams

U Ū L̄ L

=

T

and
T

represents the same cell, which is true by definition of the unit of T . On the other hand, the
compatibility of Rη̄L with the multiplications of S and T asserts that the two diagrams

S S

=

R L R L

R R̄ L̄ L

=

T

and

S S

=

R L R L

R̄ L̄

R̄ L̄

R R̄ L̄ L

=

T

represents the same cell, which is true by the zigzag equations of L̄ a R̄. Thus, (1C , Rη̄L) is
indeed a monad functor.

2 Higher categories as globular algebras

The notion of “higher category” encompasses informally all the structures that have higher-
dimensional cells which can be composed together with several operations. Such structures can
differ on many points. First, there are several possible shapes for the cells of higher categories.
For example, globular higher categories have 0-cells, 1-cells, 2-cells, 3-cells, etc. of the form

x, x y
f

, x y

f

g

⇓φ , x y

f

g

φ⇓
F
≡V⇓ψ , etc.
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But one can consider higher categories with other shapes than the globular ones. Common
variants include cubical [2] and simplicial [14] higher categories, whose 2-cells for example are
respectively of the form

x y

x′ y′

f

g ⇓φ h

f ′

and
y

x z

gf

h

⇓φ .

Moreover, higher categories have several operations which satisfy axioms that can take different
forms, according to their position in the strict/weak spectrum. For example, a strict 2-category
is a globular 2-dimensional category that have, among others, an operation ∗0 to compose 1-cells
in dimension 0, as in

x y
f ∗0 y zg = x z

f∗0g ,

and operations ∗0 and ∗1 to compose 2-cells in dimensions 0 and 1 respectively, as in

x y

f

g

⇓φ ∗0 y z

f ′

g′

⇓φ′ = x z

f∗0f ′

g∗0g′

⇓φ∗0φ′

and

x y

f

g

⇓φ ∗1 x y

g

h

⇓ψ = x y

f

h

⇓φ∗1ψ .

These operations are required to satisfy several axioms consisting in equalities, like the associa-
tivity axiom: given 0-composable 1- or 2-cells u, v, w,

(u ∗0 v) ∗0 w = u ∗0 (v ∗0 w)

and, given 1-composable 2-cells φ, ψ, χ,
(φ ∗1 ψ) ∗1 χ = φ ∗1 (ψ ∗1 χ).

An example of a weak higher category is given by a bicategory, which is a globular 2-dimensional
category that has operations similar to a strict 2-category but which satisfy axioms in the form
of “weak equalities”. For example, the 0-composition of 1-cells is only required to be weakly
associative, in the sense that, given 0-composable 1-cells

w x y z
f g h ,

the equality (f ∗0 g) ∗0 h = f ∗0 (g ∗0 h) does not hold necessarily, but there should exist a
coherence cell between the two sides, i.e., an invertible 2-cell αf,g,h as in

w z

(f∗0g)∗0h

f∗0(g∗0h)

⇓αf,g,h .

Finally, a subtle difference between the different kinds higher categories is the algebraicity of
their definition [16, 13]. This notion essentially pertains to weak higher categories. Informally, a
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definition of some sort of higher categories is algebraic when it can be equivalently described by
means of a monad. Concretely, algebraic definitions of weak higher categories involve coherence
cells that are distinguished (like the definition of bicategories, which requires that “there exists an
invertible 2-cell αf,g,h between (f ∗0 g) ∗0 h and f ∗0 (g ∗0 h)”), whereas non-algebraic definitions
of weak higher categories involve coherence cells that are not (a non-algebraic definition of
bicategories would only require that “there exists some invertible 2-cell between (f ∗0 g) ∗0 h
and f ∗0 (g ∗0 h)”).

In the remainder of this article, we will restrain our attention to globular algebraic higher
categories. A particular theory of k-categories can be seen as a monad on the category of k-glo-
bular sets, and a k-category instance of this theory is an algebra for this monad. A lot of globular
higher categories that one usually encounters fit in this setting: strict k-categories, bicategories,
Gray categories, etc. Several constructions can then be defined at this level of abstractions, like
the truncation of globular algebras and its left adjoint.

In Section 2.1, we recall the definition of globular sets and elementary operations on them.
We then introduce globular algebras as algebras of a monad on globular sets in Section 2.2, and
then define the truncation and inclusion functors which relate globular algebras from different
dimensions in Section 2.3. Then, in the case of a monad on Globω, we use the truncation
functors to formally express Algω as a (bi)limit over the Algk’s in Section 2.4. In Section 2.5,
we introduce a criterion to recognize a tower of categories as equivalent to the categories of
globular algebras over a monad, simplifying the concrete use of the theory developped in this
article. In Section 2.6, we introduce the notion of truncable monads, which correspond more to
the notions of higher categories that we are accustomed to than general globular monads, and,
in Section 2.7, we prove a criterion to easily recognize such monads in the wild.

2.1 Globular sets and operations

Here, we recall the classical notion of globular set. It is the underlying structure of a globular
higher category which describes globes of different dimensions together with their sources and
targets. We moreover define the truncation and inclusion functors between globular sets of
different dimensions.

Definition Given n ∈ N ∪ {ω}, an n-globular set (X, ∂−, ∂+) (often simply denoted X) is the
data of sets Xk for k ∈ Nn together with functions ∂−i , ∂

+
i : Xi+1 → Xi for i ∈ Nn−1 as in

X0 X1 X2 · · · Xk Xk+1 · · ·
∂−0

∂+
0

∂−1

∂+
1

∂−2

∂+
2

∂−k−1

∂+
k−1

∂−k

∂+
k

∂−k+1

∂+
k+1

such that
∂−i ◦ ∂

−
i+1 = ∂−i ◦ ∂

+
i+1 and ∂+

i ◦ ∂
−
i+1 = ∂+

i ◦ ∂
+
i+1 for i ∈ Nn−1.

When there is no ambiguity on i, we often write ∂− and ∂+ for ∂−i and ∂+
i . An element u

of Xi is called an i-globe of X and, for i > 0, the globes ∂−i−1(u) and ∂+
i−1(u) are respectively

called the source and target and u. Given n-globular sets X and Y , a morphism of n-globular
set between X and Y is a family of functions F = (Fk : Xk → Yk)k∈Nn , such that

∂−i ◦ Fi+1 = Fi ◦ ∂−i for i ∈ Nn−1.

We write Globn for the category of n-globular sets.

Remark 2.1.1. The above definition directly translates to an essentially algebraic theory, so
that Globn is essentially algebraic. In particular, Globn is locally finitely presentable, complete
and cocomplete by Theorem A.2.1 and Proposition A.1.7.
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For ε ∈ {−,+} and j ≥ 0, we write

∂εi,j = ∂εi ◦ ∂εi+1 ◦ · · · ◦ ∂εi+j−1

for the iterated source (when ε = −) and target (when ε = +) operations. We generally omit
the index j when there is no ambiguity and simply write ∂εi (u) for ∂εi,j(u). Given i, k, l ∈ Nn
with i < min(k, l), we write Xk ×i Xl for the pullback

Xk ×i Xl Xl

Xk Xi

∂−i

∂+
i

.

Given p ≥ 2 and k1, . . . , kp ∈ Nn, a sequence of globes u1 ∈ Xk1 , . . . , up ∈ Xkp is said i-com-
posable for some i < min(k1, . . . , kp), when ∂+

i (uj) = ∂−i (uj+1) for j ∈ N∗p−1. Given k ∈ Nn
and u, v ∈ Xk, u and v are said parallel when k = 0 or ∂εk−1(u) = ∂εk−1(v) for ε ∈ {−,+}. To
remove the side condition k = 0, we use the convention that X−1 is the set {∗} and that ∂−−1, ∂

+
−1

are the unique function X0 → X−1.
For u ∈ Xi+1, we sometimes write u : v → w to indicate that ∂−i (u) = v and ∂+

i (u) = w. In
low dimension, we use n-arrows such as ⇒, V, , etc. to indicate the sources and the targets of
n-globes in several dimensions. For example, given a 2-globular set X and φ ∈ X, we sometimes
write φ : f ⇒ g : x→ y to indicate that

φ ∈ X2, ∂−1 (φ) = f, ∂+
1 (φ) = g, ∂−0 (φ) = x and ∂+

0 (φ) = y.

We also use these arrows in graphical representations to picture the elements of a globular set X.
For example, given an n-globular set X with n ≥ 2, the drawing

x y z

f

g

h

⇓φ

⇓ψ
k (3)

figures two 2-cells φ, ψ ∈ X2, four 1-cells f, g, h, k ∈ X1 and three 0-cells x, y, z ∈ X0 such that

∂−1 (φ) = f, ∂+
1 (φ) = ∂−1 (ψ) = g, ∂+

1 (ψ) = h,

∂−0 (f) = ∂−0 (g) = ∂−0 (h) = x, ∂+
0 (f) = ∂+

0 (g) = ∂+
0 (h) = ∂−0 (k) = y, ∂+

0 (k) = z.

Truncation and inclusion functors Given m ∈ Nn and X ∈ Globn, we denote by X≤m the
m-truncation of X, i.e., the m-globular set obtained from X by removing the i-globes for i ∈ Nn
with i > m. This operation extends to a functor

(−)Glob
≤m,n : Globn → Globm

often denoted (−)Glob
≤m when there is no ambiguity. This functor admits a left adjoint

(−)Glob
↑n,m : Globm → Globn

often denoted (−)Glob
↑n when there is no ambiguity, and which maps an m-globular set X to the

n-globular setX↑n, called n-inclusion of X, and which is defined by (X↑n)≤m = X and (X↑n)i = ∅
for i ∈ Nn with i > m. The unit of the adjunction (−)Glob

↑n a (−)Glob
≤m is the identity and the

13



counit is the natural transformation denoted im,n, or simply im when there is no ambiguity, which
is given by the family of canonical morphisms

imX : (X≤m)↑n → X

for X ∈ Globn. The functor (−)Glob
≤m,n also admits a right adjoint

(−)Glob
⇑m,n : Globm → Globn

denoted (−)Glob
⇑n when there is no ambiguity, and which maps an m-globular set to the n-globular

set X⇑n defined by (X⇑n)≤m = X, and, for i ∈ Nn with i > m,

(X⇑n)i = {(u, v) ∈ Xm | u and v are parallel}

such that, for (u, v) ∈ (X⇑n)i,

∂−m((u, v)) = u and ∂+
m((u, v)) = v

and
∂−j ((u, v)) = ∂+

j ((u, v)) = (u, v) for j ∈ Ni−1.

Note that, since they are left adjoints, the functors (−)Glob
↑n,m and (−)Glob

≤m,n preserves colimits.

2.2 Globular algebras

We now introduce categories of globular algebras, i.e., the Eilenberg-Moore categories induced
by monads on globular sets, as were first introduced by Batanin in [4]. We moreover give several
additional constructions and properties on these objects.

Let n ∈ N∪{ω} and (T, η, µ) be a finitary monad on Globn. We write Algn for the category
of T -algebras GlobTn and

Un : Algn → Globn Fn : Globn → Algn

for the induced left and right adjoints, that were denoted UT and FT in Section 1: given an
algebra (X,h) ∈ Algn, the image of (X,h) by Un is X and, given Y ∈ Globn, FnY is the free
T -algebra

(TY, µY : TTY → TY ).

Given k < n, using Proposition 1.3.1 with the adjunction (−)Glob
≤k a (−)Glob

↑n , we get a monad
(T k, ηk, µk) on Globk where

T k = (−)Glob
≤k T (−)Glob

↑n

and such that ηk : idGlobk
→ T k is the composite

idGlobk
(−)Glob

≤k (−)Glob
↑n T k

(−)Glob
≤k η(−)Glob

↑n

i.e., ηkX = (ηX↑n)≤k for X ∈ Globk, and such that µk : T kT k → T k is the composite

T kT k (−)Glob
≤k TT (−)Glob

↑n T k
(−)Glob
≤k T ik T (−)Glob

↑n (−)Glob
≤k µ(−)Glob

↑n .

So, for k ∈ Nn, we get a category Algk = GlobT
k

k , and canonical functors

Uk : Algk → Globk Fk : Globk → Algk

defined like Un and Fn above, forming an adjunction Fk a Uk whose counit is denoted εk. The
objects of Algk are called k-categories. Moreover, given a k-category C = (X,h), the elements
of Xi are called the i-cells of C for i ∈ Nk.

14



Remark 2.2.1. In the above definition, we require that the monad (T, η, µ) is finitary in order
to prove later the existence of several free constructions on the k-categories. This is not too
restrictive, since it includes all the monads of algebraic globular higher categories that have
operations with finite arities, i.e., most theories of algebraic globular higher categories.
We can already derive several properties of the categories Algk:

Proposition 2.2.2. For k ∈ N ∪ {n}, the category Algk is locally finitely presentable. In
particular, it is complete and cocomplete. Moreover, the functor Uk preserves and creates directed
colimits, and creates limits.

Proof. The category Algk is locally finitely presentable as a consequence of Proposition A.1.9
since Globk is locally finitely presentable by Remark 2.1.1. The functor Uk preserves directed
colimits by Proposition A.1.9. Moreover, since Uk reflects isomorphisms and Algk is cocom-
plete, Uk creates directed colimits. Finally, it is well-known that the forgetful functor associated
to an Eilenberg-Moore category creates limits (see [9, Proposition 4.3.1] for example).

We can usually derive monads from equational definitions of higher categories as illustrated by
the following examples.
Example 2.2.3. The canonical forgetful functor Cat → Glob1 is a finitary right adjoint (see
Example A.2.8 for a detailed argument) which thus induces a finitary monad (T, η, µ) on Glob1.
This monad maps a 1-globular set G to the underlying 1-globular set of the category of paths
on G seen as a graph. Using Beck’s monadicity theorem (Theorem 4.2.1), one can verify that
the functor Cat → Glob1 is monadic, so that Alg1 ' Cat. Moreover, the monad (T 0, η0, µ0)
is essentially the identity monad on Glob0, and thus Alg0 ' Set. More generally, we will see
in Section 4 that the monads of strict k-categories for k ∈ N are derived from the monad of strict
ω-categories.
Example 2.2.4. We define a notion of weird 2-category as follows: a weird 2-category is a 2-glo-
bular set C equipped with an operation

∗ : C2 × C2 → C0.

Note that we do not require the composability of the arguments of ∗, and we do not enforce
any axiom on ∗. A morphism between two weird 2-categories is then a morphism between the
underlying 2-globular sets that is compatible with ∗. The category Weird of weird 2-categories
and their morphisms is essentially algebraic, and the functor which maps a weird 2-category
to its underlying 2-globular set is induced by an essentially algebraic theory morphism, so that
it is a right adjoint and finitary by Theorem A.2.5. From the adjunction, we derive a finitary
monad (T, η, µ) on Glob2, and, given X ∈ Glob2, we have that

(TX)0
∼= X0 t (X2 ×X2) (TX)1

∼= X1 (TX)2
∼= X2

so that, for Alg2 derived from the monad T , Alg2
∼= Weird. Moreover, the monads (T 0, η0, µ0)

and (T 1, η1, µ1) are essentially the identity monads on Glob0 and Glob1 respectively, so that
the associated notions of weird 0- and 1-categories are simply 0- and 1-globular sets.
The previous example moreover illustrates the unusual operations that notions of higher cate-
gories defined in the setting of Batanin can have. It is also an example of a monad on globular
sets which is not truncable (c.f. Example 2.6.2).
Example 2.2.5. Monoids can be considered in any category with a monoidal structure. Given a
theory of globular algebraic higher category, one can define an associated notion of strict monoidal
higher category by considering monoids in the category of algebras, choosing the monoidal struc-
ture to be the cartesian one. Monadically, we have an operation mapping a monad T on n-glo-
bular sets to a monad T ′ on n-globular sets representing the theory of strictly monoidal higher
categories which are instances of T . This operation can be seen to preserve a finitary hypothesis
on T .
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2.3 Truncation and inclusion functors

We now introduce truncation and inclusion functors between the categories Algk together with
some of their properties.

Let n ∈ N ∪ {ω} and (T, η, µ) be a finitary monad on Globn. Given k < n, using Proposi-
tion 1.3.1, we get that (−)Glob

≤k,n lifts to a cocartesian morphism

(Globn, T )
((−)Glob

≤k ,(−)Glob
≤k T ik)

−−−−−−−−−−−−−→ (Globk, T
k)

with respect to the functor Und. By applying EM, we get a functor

(−)Alg
≤k,n : Algn → Algk

also denoted (−)Alg
≤k when there is no ambiguity.

Now, given k, l ∈ N with k < l < n, since (−)Glob
≤k,n can be factored as (−)Glob

≤k,l (−)Glob
≤l,n , the

cocartesianness of ((−)Glob
≤l , (−)Glob

≤l T il) ensures that there is a unique morphism (F, α) which
factorizes ((−)Glob

≤k , (−)Glob
≤k T ik) through ((−)Glob

≤l , (−)Glob
≤l T il) in MND.

Lemma 2.3.1. Given k, l ∈ N with k < l < n, the morphism

((−)Glob
≤k,l , (−)Glob

≤k T l ik,l) : (Globl, T
l)→ (Globk, T

k)

is the factorization of ((−)Glob
≤k , (−)Glob

≤k T ik) through the cocartesian morphism

((−)Glob
≤l , (−)Glob

≤l T il).

Proof. By Proposition 1.3.1, there is a morphism

((−)Glob
≤k,l , (−)Glob

≤k T l ik,l) : ((−)Glob
≤l , T l)→ ((−)Glob

≤k , T ′)

where (T ′, η′, µ′) is the monad on (−)Glob
≤k defined by

T ′ = (−)Glob
≤k T l(−)Glob

↑l

η′ = (−)Glob
≤k ηl(−)Glob

↑l

µ′ = ((−)Glob
≤k µl(−)Glob

↑k ) ◦ ((−)Glob
≤k T l ik,l T l(−)Glob

↑l ).

By a straight-forward computation, we get T ′ = T k, η′ = ηk and µ′ = µk. To verify that the
above morphism is the wanted factorization, we are left to check that

((−)Glob
≤k,l , (−)Glob

≤k T l ik,l) ◦ ((−)Glob
≤l , (−)Glob

≤l T il) = ((−)Glob
≤k , (−)Glob

≤k T ik)

in MND. But it is straight-forward too, since

il,n ◦((−)Glob
↑l,n ik,l (−)Glob

≤l,n ) = ik,n .

By applying EM to the factorization morphism given by Lemma 2.3.1, we get a functor

(−)Alg
≤k,l : Algl → Algk

also denoted (−)Alg
≤k when there is no ambiguity. Concretely, given a T l-algebra

(X,h : T lX → X),
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its image by (−)Alg
≤k is the T k-algebra (X≤k, h

′), where h′ is defined as the composite

T k(X≤k) (T lX)≤k X≤k
((−)Glob

≤k,lT
l ik,l)X h≤k .

The image of (X,h) in Algl by (−)Alg
≤k is called the k-truncation of (X,h) and we denote

it (X,h)≤k. Note that the image of a morphism f : (X,h)→ (X ′, h′) by (−)Alg
≤k is f≤k (the

globular k-truncation of f). The same concrete description holds for the functors (−)Alg
≤k,n.

The definition of the truncation functors allows for the following compatibility property:

Proposition 2.3.2. Given j, k, l ∈ Nn ∪ {n} with j < k < l, we have

(−)Alg
≤j,k ◦ (−)Alg

≤k,l = (−)Alg
≤j,l.

Proof. The two morphisms

((−)Glob
≤j,k , (−)Glob

≤j T k ij,k) ◦ ((−)Glob
≤k,l , (−)Glob

≤k,l T
l ik,l) and ((−)Glob

≤j,l , (−)Glob
≤j,l T

l ij,l)

provide a factorization of ((−)Glob
≤j,n , (−)Glob

≤j,nT ij,n) through the cocartesian morphism

((−)Glob
≤l,n , (−)Glob

≤l,nT il,n).

Thus, they are equal. The conclusion follows from the functoriality of EM.

The finitary assumption on T enables the existence of a left adjoint to truncation functors:

Proposition 2.3.3. Given k, l ∈ Nn ∪{n} with k < l, the functor (−)Alg
≤k,l is finitary and admits

a left adjoint.

Proof. By the adjunction Inc a EM, we have a commutative diagram

Algl Algk

Globl Globk

(−)Alg
≤k

Ul Uk

(−)Glob
≤k

.

The functor (−)Alg
≤k,l is finitary since, by Proposition 2.2.2, Uk creates directed colimits and the

functor
Uk(−)Alg

≤k,l = (−)Glob
≤k Ul

preserves directed colimits. Moreover, (−)Alg
≤k,l preserves limits since Uk creates limits and the

functor Uk(−)Alg
≤k,l = (−)Glob

≤k Ul preserves limits (both (−)Glob
≤k,l and Ul are right adjoints). Then,

by Proposition A.1.8, the functor (−)Alg
≤k,l admits a left adjoint.

Given k, l ∈ Nn ∪ {n} with k < l, we write

(−)Alg
↑l,k : Algk → Algl

for the left adjoint to (−)Alg
≤k,l, or even (−)Alg

↑l when there is no ambiguity on k. The image
of (X,h) in Algk by (−)Alg

↑l is called the l-inclusion of (X,h) and we denote it (X,h)↑l.
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2.4 Algω as a limit

Let (T, η, µ) be a finitary monad on Globω. The purpose of this paragraph is to character-
ize Algω as a limit on the categories Algk for k ∈ N using the truncation functors (−)Alg

≤k .

Proposition 2.4.1. The cone

((Globω, T ), ((−)Glob
≤k , (−)Glob

≤k T ik)k∈N)

is a limit cone in MND on the diagram

(Glob0, T
0) (Glob1, T

1) (Glob2, T
2) (Glob3, T

3) · · ·
(−)Glob
≤0 (−)Glob

≤1 (−)Glob
≤2 (−)Glob

≤3

where we abbreviated by (−)Glob
≤k the monad functor ((−)Glob

≤k , (−)Glob
≤k T k+1 ik) for k ∈ N for

readability.

Proof. We already know that it is a cone by Lemma 2.3.1. Let us prove that it is a limit cone
in MND (seen here as a 1-category).

Let (C, S) be a monad and ((Γk, γk) : (C, S)→ (Globk, T
k))k∈N be a cone on the diagram of

the statement. By forgetting the 2-cells, we get a cone (Γk : C → Globk)k and thus a functor
Γ: C → Globω. In order to get a monad functor, we still need to build a 2-cell γ : TΓ ⇒ ΓS.
Such a 2-cell is the data of morphisms γX : TΓX → ΓSX for X ∈ C. Write Rk for

Rk = (−)Glob
↑ω (−)Glob

≤k : Globω → Globω

and jk for the natural transformation

jk = (−)Glob
↑ω ik,k+1 (−)Glob

≤k+1 : Rk ⇒ Rk+1.

Note that, for all Y ∈ Globω, (ik,ωY : RkY → Y )k∈N is a colimit cocone in Globω on the diagram

R0Y R1Y · · · RkY Rk+1Y · · ·
j0Y j1Y jk−1

Y jkY jk+1
Y

Since T is finitary, ((T ik,ω)Y : TRkY → TY )k∈N is a colimit cocone on the diagram

TR0Y TR1Y · · · TRkY TRk+1Y · · ·(T j0)Y (T j1)Y (T jk−1)Y (T jk)Y (T jk+1)Y

In particular, the sought morphisms γX are uniquely characterized by the cocone

((γ ◦ (T ik,ω Γ))X : TRkΓX → ΓSX)k∈N

on the above diagram, where we put Y = ΓX. Using some rephrasing, we have a limit cone

((T ik,ω Γ)∗ : Hom(TΓ,ΓS)→ Hom(TRkΓ,ΓS))k∈N

on the diagram

Hom(TR0Γ,ΓS) Hom(TR1Γ,ΓS) Hom(TR2Γ,ΓS) · · ·(T j0 Γ)∗ (T j1 Γ)∗ (T j2 Γ)∗

On the other hand, given a pair of functors G,G′ : C → Globω, every natural transformation
α : G⇒ G′ is uniquely characterized by the projections (−)Glob

≤k α for k ∈ N. In other words, we
have a limit cone

((−)Glob
≤l : Hom(G,G′)→ Hom((−)Glob

≤l G, (−)Glob
≤l G′)l∈N
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on the diagram

Hom((−)Glob
≤0 G, (−)Glob

≤0 G′) Hom((−)Glob
≤1 G, (−)Glob

≤1 G′) Hom((−)Glob
≤2 G, (−)Glob

≤2 G′) · · ·
(−)Glob
≤0 (−)Glob

≤1 (−)Glob
≤3

By combination of the two limit diagrams, we have that Hom(TΓ,ΓS) is limit cone on the
diagram

...
...

· · · Hom((−)Glob
≤l+1TR

kΓ, (−)Glob
≤l+1ΓS) Hom((−)Glob

≤l+1TR
k+1Γ, (−)Glob

≤l+1ΓS) · · ·

· · · Hom((−)Glob
≤l TRkΓ, (−)Glob

≤l ΓS) Hom((−)Glob
≤l TRk+1Γ, (−)Glob

≤l ΓS) · · ·

...
...

(−)Glob
≤l+1 (−)Glob

≤l+1

(jk−1)∗

(−)Glob
≤l

(jk)∗

(−)Glob
≤l

(jk+1)∗

(−)Glob
≤l−1

(jk−1)∗ (jk)∗

(−)Glob
≤l−1

(jk+1)∗

expressed on the category (N× N,≤ × ≤)op. By finality of the diagonal functor

(N,≤)op → (N× N,≤ × ≤)op,

Hom(TΓ,ΓS) is in fact a limit cone on the diagram

Hom((−)Glob
≤0 TR0Γ, (−)Glob

≤0 ΓS) Hom((−)Glob
≤1 TR1Γ, (−)Glob

≤1 ΓS) Hom((−)Glob
≤2 TR2Γ, (−)Glob

≤2 ΓS) · · ·

One can check that a compatible sequence for this diagram is precisely given by the γk for k ∈ N.
Indeed, it is a consequence of the fact that ((Γk, γk))k∈N is a cone. Thus, we get γ : TΓ ⇒ ΓS
such that ((−)Glob

≤k γ) ◦ ((−)Glob
≤k T ik,ω Γ) = γk and γ is uniquely defined by this property. Thus,

we have the uniqueness of a factorizing (Γ, γ) in MND for the cone we started from. We are
left to show that (Γ, γ) is indeed a monad functor for existence.

Let’s prove the first required equality, i.e., γ ◦ (ηTΓ) = ΓηS . By an argument similar to the
one we used above, it is enough to prove that

((−)Glob
≤k γ) ◦ ((−)Glob

≤k ηTΓ) ◦ ((−)Glob
≤k ik,ω Γ) = ((−)Glob

≤k ΓηS) ◦ ((−)Glob
≤k ik,ω Γ)

for every k ∈ N. We compute that

((−)Glob
≤k γ) ◦ ((−)Glob

≤k ηTΓ) ◦ ((−)Glob
≤k ik,ω Γ)

=((−)Glob
≤k γ) ◦ ((−)Glob

≤k T ik,ω Γ) ◦ ((−)Glob
≤k ηTRkΓ) (by naturality)

=γk ◦ ((−)Glob
≤k ηTRkΓ)

=γk ◦ (ηkΓk) (since the unit of (−)Glob
↑ω a (−)Glob

≤k is the identity)

=ΓkηS

=(−)Glob
≤k ΓηS

=((−)Glob
≤k ΓηS) ◦ ((−)Glob

≤k ik,ω Γ) (since (−)Glob
≤k ik,ω is an identity).
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In order to show the other equality, that is,

γ ◦ (µTΓ) = (ΓµS) ◦ (γS) ◦ (Tγ) (4)

we need to use twice the argument we used earlier to get that

(πk : Hom(TTΓ,ΓS)→ Hom((−)Glob
≤k TRkTRkΓ, (−)Glob

≤k ΓS))k∈N

is a limit cone on the adequate diagram, where πk is the composite

Hom(TTΓ,ΓS) Hom((−)Glob
≤k TTΓ, (−)Glob

≤k ΓS) Hom((−)Glob
≤k TRkTRkΓ, (−)Glob

≤k ΓS).
(−)Glob
≤k ((−)Glob

≤k T ik T ik Γ)∗

Then, using the existing equations and naturality, the reader can prove similarly as above that

((−)Glob
≤k (γ ◦ (µTΓ))) ◦ ((−)Glob

≤k T ik T ik Γ) = ((−)Glob
≤k ((ΓµS) ◦ (γS) ◦ (Tγ))) ◦ ((−)Glob

≤k T ik T ik Γ)

so that (4) holds and (Γ, γ) is indeed a monad functor, which moreover factorizes uniquely the
cone (Γk, γk)k∈N. Thus, (Globω, T ) is indeed a limit cone in MND as stated.

Proposition 2.4.2. ((−)Alg
≤k : Algω → Algk)k∈N is a (bi)limit cone in CAT on the diagram

Alg0 Alg1 Alg2 Alg3 · · ·
(−)Alg
≤0 (−)Alg

≤1 (−)Alg
≤2 (−)Alg

≤3

Proof. This is a consequence of Proposition 2.4.1 and that EM is a right adjoint.

Remark 2.4.3. The above proof only show thatAlgω is a limit in the 1-categorical sense, i.e., only
factorizes cones of functors by a functor (and not morphisms of cones as natural transformations,
a priori). But, by a generic argument (stated for example as [23, Lemma 7.5.1]), any limit in
the 1-categorical sense in CAT is also a strict 2-limit, i.e., factorizes morphisms between cones
as well.

Remark 2.4.4. If we restrain our interest to weakly truncable monads (defined in Section 2.6),
another proof is possible which dispenses with the specific and technical argument of Propo-
sition 2.4.1. Indeed, writing MNDpsd for the sub-2-category of MND consisting of monads,
pseudo monad functors and monad transformations, where a monad functor (F, φ) is said pseudo
when φ is an isomorphism, we have that the underlying functor Und : MNDpsd → CAT, map-
ping a monad (C, T ) to its underlying category C, creates bilimits, and the latter are moreover
preserved by the inclusion MNDpsd ↪→ MND (this is left as an exercise for now). Thus, a
bilimit version of Proposition 2.4.1 can be deduced from the fact that Globω is a bilimit of the
Globk’s for k ∈ N. This argument does not apply for MND as a whole, and it is really the
finitary hypothesis on T which makes Proposition 2.4.1 work.

2.5 A criterion for globular algebras

Usually, a specific notion of higher category and the associated truncation and inclusion functors
are not directly derived from a monad. Instead, we often manipulate higher categories that are
defined, in each dimension k ∈ N, as structures with operations satisfying some equations, and
the truncation and inclusion functors are defined by hand. Such equational definitions surely
induce monads on k-globular sets, but it is not immediate that the monad in dimension l1
is obtained by truncating the monad in dimension l2 for l1 < l2, as was done earlier, nor is
the equivalence between the boilerplate definitions of truncation and inclusion functors and the
ones defined earlier in this section. Verifying the equivalences of these definitions is required in
order to use general constructions for globular algebras, like the ones of the next section. But,
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without a generic argument, the verification can be tedious since it involves, among others, an
explicit description of the different monads. In this section, we give a criterion, in the form
of Theorem 2.5.2, to recognize that categories and functors between them are equivalent to
categories of globular algebras and truncation functors derived from some monad on globular
sets.

We first prove a technical lemma:

Lemma 2.5.1. Given a commutative diagram of functors

C D

C̄ D̄

U

T T ′

Ū

which are part of adjunctions F a U , F̄ a Ū , I a T , I ′ a T ′, we have a diagram in MND

(C,1) (D,R)

(C̄,1) (D̄, T̄ ) (D̄, S̄) (D̄, S)

Inc(T )

(U,UεF,U )

(T ′,T ′RεI′,T ′ )

(Ū ,ŪεF̄ ,Ū ) (1,ŪηI,T F̄ ) ∼

where R, S, S̄ and T̄ are the monads respectively derived from the adjunctions F a U , FI ′ a T ′U ,
IF̄ a ŪT and F̄ a Ū , and (D̄, S)→ (D̄, S̄) is the isomorphism of monads induced by T ′U = ŪT ,
and where we wrote ηL,R and εL,R for the unit and counit of each adjunction L a R. Moreover,
if the unit of the adjunction I a T is an isomorphism (or, equivalently, I is fully faithful), then
the morphism (D̄, S̄)→ (D̄, T̄ ) is an isomorphism.

Proof. By Propositions 1.3.1 and 1.3.5 already introduced, the morphisms shown on the diagram
are indeed monad functors. We are left to check that the diagram commutes. More precisely, we
need to show that pasting of 2-cells

C D D̄ D̄ D̄

C D D̄ D̄ D̄

U

1 =

T ′

R ⇓ T ′RεI′,T ′

1

S ⇓ ŪT θ−1

1

S̄ ⇓ ŪηI,T F̄ T̄

U T ′ 1 1

is equal to

C C̄ D̄

C C̄ D̄

T

1 =

Ū

1 ⇓ ŪεF̄ ,Ū T̄

T Ū

where θ : FI ′ ⇒ IF̄ is the canonical isomorphism between the two functors which are left adjoint
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to ŪT = T ′U , defined by

θ =

F I′

Ū T
=

T ′ U

I F̄

.

We check that the wanted equality holds using string diagrams:

T̄ T ′ U

=

Ū F̄

T I
= θ−1

T ′ U F I′

=

T̄ T ′ U

=

Ū F̄

T I
= =

T ′ U Ū T

=

T̄ T ′ U

= =

Ū F̄ Ū T

=

T ′ U

.

The criterion for recognizing categories and functors as categories of globular algebras and
truncation functors between them is the following:

Theorem 2.5.2. Let (T, η, µ) be a finitary monad on Globω, and

(Ck)k∈N and Cω

be categories, and
(Uk : Ck → Globk)k∈N and Uω : Cω → Globω

be monadic functors, and

(T k+1
k : Ck+1 → Ck)k∈N and (T ωk : Cω → Ck)k∈N

be right adjoint functors with fully faithful left adjoints such that T k+1
k T ωk+1 = T ωk and

Cω Globω

Ck Globk

Uω

T ωk (−)Glob
≤k,ω

Uk

commute for every k ∈ N. Then, there exist equivalences of categories

Hω : Cω → Algω and (Hk : Ck → Algk)k∈N

such that
Cω Algω

Ck Algk

Hω

T ωk (−)Alg
≤k,ω

Hk

and
Ck+1 Algk+1

Ck Algk

Hk+1

T k+1
k (−)Alg

≤k,k+1

Hk

(5)

commute for every k ∈ N.
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Remark 2.5.3. The statement of the above theorem can easily be adapted when working on a
monad T on Globn for some n ∈ N by requiring instead that

Ck+1 Globk+1

Ck Globk

Uk+1

T k+1
k

(−)Glob
≤k,k+1

Uk

commutes for every k < n, and then one only gets the right commuting square of (5).

Proof. Let k ∈ N. Taking Cω, Ck, Globω and Globk respectively for C, C̄, D and D̄, and Uω,
Uk, T ωk and (−)Glob

≤k,ω respectively for U , Ū , T and T ′ in Lemma 2.5.1, and using the adjunction
Inc a EM, we get a commutative square

Cω Algω

Ck GlobT̄k GlobS̄k Algk

T ωk

Hω

(−)Alg
≤k,ω

H̄k
∼ ∼

where S̄ and T̄ are the monads defined in the lemma. Remember that both Algk and (−)Alg
≤k,ω

were defined using Proposition 1.3.1 so that the arrow on the right of the above diagram is indeed
(−)Alg

≤k,ω. Also, Hω and H̄k are equivalences since Uω and Uk were supposed monadic. Finally,
by the final part of Lemma 2.5.1 and the hypothesis, the middle arrow in the bottom line is
an isomorphism. Thus, by defining Hk to be the composition of the three morphisms on the
bottom line (after inverting the second and third ones), we get the commutative diagram on the
left of (5), and we are left to get the one on the right. Writing Ik+1

ω for a left adjoint to T ωk+1,
since the unit 1⇒ T ωk+1Ik+1

ω is an isomorphism, it is enough to check that

(−)Alg
≤kHk+1T ωk+1Ik+1

ω = HkT k+1
k T ωk+1Ik+1

ω .

But

(−)Alg
≤kHk+1T ωk+1Ik+1

ω = (−)Alg
≤k (−)Alg

≤k+1,ωHωIk+1
ω

= (−)Alg
≤k,ωHωIk+1

ω

= HkT ωk Ik+1
ω

= HkT k+1
k T ωk+1Ik+1

ω

which concludes the proof.

2.6 Truncable globular monads

The general setting of higher category theories as monads over globular sets allows defining
theories with unusual operations, like compositions of l-cells that produce unrelated l′-cells for
some l′ < l (c.f. Example 2.2.4). Anticipating the next section, such theories are badly behaved
when it comes to freely adding new (k+1)-generators to k-categories, since the underlying k-cate-
gories will not be preserved in the process. In order not to allow such monads, we recall from [4]
the notion of truncable monad which forbids those problematic operations and still includes most
usual theories for higher categories: those are the monads which “commute with truncation” in a
suitable sense. As we will see in the nextsection, the k-categories of these theories are preserved
when freely adding (k+1)-generators.
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Let n ∈ N∪{ω} and (T, η, µ) be a finitary monad on Globn. For k ∈ Nn, remember that we
used Proposition 1.3.1 to define both the monad (T k, ηk, µk) and the cocartesian morphism

((−)Glob
≤k,n, (−)Glob

≤k T ik,n) : (Globn, T )→ (Globk, T
k).

In the following, we write tk for the natural transformation (−)Glob
≤k T ik,n. The monad T is said

weakly truncable when tk is an isomorphism for each k < n; it is truncable when, for each k < n,
tk is the natural identity transformation (so that Tk(−)Glob

≤k = (−)Glob
≤k T ).

Example 2.6.1. The monad (T, η, µ) of categories on Glob1 defined in Example 2.2.3 is weakly
truncable. By choosing adequately the left adjoint Glob1 → Cat that defines T , we can even
suppose that T is truncable. More generally, we will see in Section 4.4 that the monad of strict
ω-categories is weakly truncable, and even truncable up to an isomorphism of monads.

Example 2.6.2. The monad (T, η, µ) of weird 2-categories on Glob2 defined in Example 2.2.4 is
not truncable since, for X ∈ Glob2, we have

(TX)0
∼= X0 t (X2 ×X2) and (T 0(X≤0))0

∼= X0.

The following property tells that we can always adapt a weakly truncable monad to a truncable
monad:

Proposition 2.6.3. If (T, η, µ) is weakly truncable, then it is isomorphic to a monad which is
truncable.

Proof. We define a truncable monad (T̄ , η̄, µ̄) on Globn and an isomorphism φ : T → T̄ from
their trunctations

(−)Glob
≤k T̄ and φ≤k : (−)Glob

≤k T → (−)Glob
≤k T̄

and we define those using an induction on k for k ∈ Nn. In dimension 0, we put

(−)Glob
≤0 T̄ = T 0(−)Glob

≤0 and φ0 = (t0)−1

Then, given k ∈ Nn and a (k+1)-globular set X, we define (T̄X)≤k+1 as the (k+1)-globular
set Y where

Y≤k = (T̄X)≤k and Yk+1 = (T k+1(X≤k+1))k+1

and the operation ∂εk : Yk+1 → Yk is defined as the composite

Yk+1 = (T k+1(X≤k+1))k+1
∂εk−→ (T k+1(X≤k+1))k

(tk+1)k−−−−→ (TX)k
(φk)k−−−→ (T̄X)k

for ε ∈ {−,+}. Our definition extends canonically to a functor

(−)Glob
≤k+1T̄ : Globn → Globk+1.

We also extend φ≤k on dimension k + 1 by putting, for X ∈ Globn,

(φX)k+1 = ((tk+1
X )−1)k+1 : (TX)k+1 → (T̄X)k+1

So we defined T̄ : Globn → Globn together with an isomorphism φ : T → T̄ . Finally, we put

η̄ = φ ◦ η and µ̄ = φ ◦ µ ◦ (φ−1φ−1)

so that (T̄ , η̄, µ̄) is a monad and (1, φ−1) : (Globn, T )→ (Globn, T̄ ) a monad isomorphism. By
the definition of T̄ , we easily verify that (T̄ , η̄, µ̄) is truncable.
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The truncability with respect to dimension n implies the truncability with respect to dimension l
for any l < n:

Lemma 2.6.4. If T is weakly truncable (resp. truncable), then, for every k, l ∈ N with k < l < n,
(−)Glob

≤k T l ik,l is an isomorphism (resp. an identity).

Proof. We have ik,n = ik,l ◦((−)Glob
↑l,k ik,l (−)Glob

≤k,l ), so that

(−)Glob
≤k,nT ik,n = ((−)Glob

≤k,l (−)Glob
≤l,nT il,n) ◦ ((−)Glob

≤k,l T
l ik,l (−)Glob

≤l,n ).

By the 2-out-of-3 property for isomorphisms, we get that (−)Glob
≤k,l T

l ik,l (−)Glob
≤l,n is an isomor-

phism. By precomposing with (−)Glob
↑n,l , we get that (−)Glob

≤k,l T
l ik,l is an isomorphism. When T is

truncable, this isomorphism is an equality.

When T is truncable, the T k, ηk and µk can be related through the equations given by the
following lemma:

Lemma 2.6.5. If T is truncable, then, for k, l ∈ Nn ∪ {n} with k < l, we have

T k(−)Glob
≤k,l = (−)Glob

≤k,l T
l and (−)Glob

≤k,l η
l = ηk(−)Glob

≤k,l and (−)Glob
≤k,l µ

l = µk(−)Glob
≤k,l

Proof. By Lemma 2.6.4, we have that (−)Glob
≤k T l ik,l is an identity. In particular,

T k(−)Glob
≤k,l = (−)Glob

≤k,l T
l.

Moreover, from the equations satisfied by the monad functor ((−)Glob
≤k,l , (−)Glob

≤k T l ik,l), we deduce
that

(−)Glob
≤k,l η

l = ηk(−)Glob
≤k,l and (−)Glob

≤k,l µ
l = µk(−)Glob

≤k,l .

We now prove several properties of truncable monads regarding truncation of algebras. First,
the truncation of algebras has now a simpler definition:

Proposition 2.6.6. If T is truncable, then given k, l ∈ Nn ∪ {n} such that k < l, and an
l-algebra (X,h) ∈ Algl, we have (X,h)≤k = (X≤k, h≤k).

Proof. Indeed, since T is truncable, we have

((−)Glob
≤k,l T

l ik,l)X = (T k(−)Glob
≤k,l ik,l)X = idTkX

so that (X,h)≤k = (X≤k, h≤k).

Moreover, the operation of truncation of algebras is now a left adjoint:

Proposition 2.6.7. If T is truncable, then, given k, l ∈ Nn ∪ {n} with k < l, the functor

(−)Alg
≤k,l : Algl → Algk

is a left adjoint. In particular, it preserves colimits.

Proof. By Lemma 2.6.4, (−)Glob
≤k T l ik,l is an identity and in particular an isomorphism. Thus, by

Proposition 1.3.4, since we have an adjunction (−)Glob
≤k,l a (−)Glob

⇑l,k , this adjunction lifts canonically
through Und to an adjunction

((−)Glob
≤k,l , (−)Glob

≤k T l ik,l) a ((−)Glob
⇑l,k , ρ)

for some ρ given by Proposition 1.3.4. By applying EM, we get an adjunction (−)Alg
≤k,l a (−)Alg

⇑l,k
where (−)Alg

⇑l,k = EM((−)Glob
⇑l,k , ρ).
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2.7 Characterization of truncable monads

Earlier, we introduced Theorem 2.5.2 that allows recognizing that some categories and functors
between them are equivalent to the categories of globular algebras and the associated truncation
functors derived from a monad T on globular sets, without having to explicitly describe this
monad. But, by the current definition of truncability, in order to show that the monad T is
truncable, a direct proof would require to show that the natural transformations (−)Glob

≤l T il,n are
isomorphisms, so that a description of T is still needed. Below, we introduce a characterization
of the truncability of T that does not rely on such tedious description.

We start by proving the following lemma, relating the functors Fk:

Lemma 2.7.1. Let n ∈ N∪ {ω} and (T, η, µ) be a finitary monad on Globn. Given k ∈ N such
that k < n, we have

(−)Alg
≤k Fn(−)Glob

↑n,k = Fk.

Proof. By the adjunction Inc a EM, it amounts to prove that the two pastings of 2-cells

Globk Globn Globn Globk

Globk Globn Globn Globk

(−)Glob
↑n

1 =

T

1 ⇓ µ

(−)Glob
≤k

T ⇓ (−)Glob
≤k T ik Tk

(−)Glob
↑n

T (−)Glob
≤k

and
Globk Globk

Globk Globk

Tk

1 ⇓ µk Tk

Tk

are equal. But this directly follows from the definition of µk. So the wanted equality holds.

Now, we prove that truncable monads can be characterized through the associated globular
algebras:

Proposition 2.7.2. Let n ∈ N ∪ {ω} and (T, η, µ) be a finitary monad on Globn. Then, the
monad (T, η, µ) is weakly truncable (resp. truncable) if and only if, for k ∈ Nn−1, the natural
transformation

(−)Alg
≤k Fn ik,n : Fk(−)Glob

≤k ⇒ (−)Alg
≤k Fn

is an isomorphism (resp. an identity).

Proof. Note that the domain of (−)Alg
≤k Fn ik,n is the claimed one by Lemma 2.7.1. Now, for k ∈ Nn−1,

we have that

Uk(−)Alg
≤k Fn ik = (−)Glob

≤k UnFn ik

= (−)Glob
≤k T ik .

The proposition follows from the fact that Uk reflects isomorphisms (resp. identities).

We will need the following folklore property about adjunctions:
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Proposition 2.7.3. Let

L a R : C → D and L′ a R′ : C → D

be two adjunctions with respective unit-counit pairs (γ, ε) and (γ′, ε′), and

θ : L⇒ L′ and θ̄ : R′ ⇒ R

be two natural transformations such that θ = (εL′) ◦ (Lθ̄L′) ◦ (Lγ′), i.e., graphically:

L

θ

L′

=

L

R′ L′

θ̄

L R

L′

.

Then, θ is an isomorphism if and only if θ̄ is an isomorphism.

Proof. An inverse for θ can be straight-forwardly constructed from an inverse for θ̄ using string
diagrams, and symmetrically.

Given k ∈ N, we write
jk,n : idGlobn ⇒ (−)Glob

⇑n,k (−)Glob
≤k,n

or simply jk, for the unit of the adjunction (−)Glob
≤k,n a (−)Glob

⇑n,k : Globk → Globn. We can now
introduce the criterion for showing the truncability of monads through their globular algebras:

Theorem 2.7.4. Let n ∈ N∪{ω} and (T, η, µ) be a finitary monad on Globn. The monad (T, η, µ)

is weakly truncable if and only if, for k ∈ Nn−1, the functor (−)Alg
≤k,n has a right adjoint, that we

write (−)Alg
⇑n,k, which satisfies that jkUn(−)Alg

⇑n,k is an isomorphism.

Proof. By Proposition 2.6.7, if T is weakly truncable, (−)Alg
≤k,n has a right adjoint, so we can

assume that this adjoint exists and denote it by (−)Alg
⇑n,k. Then, the morphism (−)Alg

≤k Fn ik,
pictured by

(−)Alg
≤k Fn (−)Glob

↑n (−)Glob
≤k

ik

is a natural transformation between two composites of left adjoints. Then, by deriving the units
and counits of these composite adjunctions (as in [17, IV.§8 Theorem 1] for example), and using
(the dual of) Proposition 2.7.3, the above natural transformation is an isomorphism if and only
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if the natural transformation depicted by the string diagram

(−)Glob
⇑n (−)Glob

≤k Un (−)Alg
⇑n (−)Alg

≤k Fn (−)Glob
↑n (−)Glob

≤k Un (−)Alg
⇑n

α

ηn

γ

jk

ik

εn

α′

is an isomorphism, where (α, α′), (ηn, εn), (γ, ik) are the pairs of units and counits associated
with the adjunctions (−)Alg

≤k a (−)Alg
⇑n , Fn a Un and (−)Glob

↑n a (−)Glob
≤k respectively. Using the

zigzag equations satisfied by adjunctions to reduce the above diagram, we obtain

(−)Glob
⇑n (−)Glob

≤k Un (−)Alg
⇑n

jk

which is the diagram associated to the morphism jkUk(−)Alg
⇑k . Thus, (−)Alg

≤k Fn ik is an isomor-
phism if and only if jkUk(−)Alg

⇑k is an isomorphism. We conclude with Lemma 2.7.2.

We will use the above criterion to show that the monad associated to the theories of strict
categories is weakly truncable (c.f. Theorem 4.4.2).

3 Free higher categories on generators

Given some theory of higher categories, an important construction is the one that builds a k-cate-
gory which is freely generated on a set of generators. Indeed, like for other algebraic theories,
a k-category can be described by means of a presentation, i.e., by quotienting a free k-category
by a set of relations. For example, a formal adjunction can be described as the strict 2-category
generated by two 0-cells x and y, two 1-cells l : y → x and r : x→ y, and two 2-cells γ : idy ⇒ l∗0r
and ε : r ∗0 l⇒ idx satisfying the zigzag identities. Given a theory of higher categories expressed
in Batanin’s setting, i.e., as a monad (T, η, µ) on Globn for some n ∈ N∪ {ω}, there are several
free constructions that one can consider. First, the functors Fk : Globk → Algk already enable
to construct the free k-category on a k-globular set. Moreover, there is a construction which
produces a (k+1)-category from a k-cellular extension, i.e., a pair consisting of a k-category
and a set of (k+1)-generators. Such construction was introduced for strict categories in [10].
Finally, one can consider the free k-category on a k-polygraph: the latter is a system of i-gene-
rators for i ∈ Nn which is organized inductively as cellular extensions. It differs from a mere
k-globular set in the sense that a k-polygraph allows generators to have complex sources and
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targets that are composites of other generators, whereas the sources and targets of generators
organized in a k-globular set can only be globes. Polygraphs were first introduced by Street [26]
and Burroni [10] for strict categories, and then generalized to any finitary monad on globular
sets by Batanin [4].

In this section, we define free constructions for algebraic globular higher categires following the
path of Burroni, giving in the process another light on the results of Batanin, who was not relying
on cellular extensions in his proofs. More precisely, we define the notion of cellular extension for
any algebraic theory of globular higher categories, and then derive the notion polygraphs from
it, together with the free construction associated to each notion. Since most of the definitions
rely on pullbacks in CAT, we first recall some properties of these pullbacks (Section 3.1). Then,
we introduce cellular extensions together with the associated free construction for any finitary
monad on globular sets, and, in the case of a truncable monad, we show that this construction
is stable, i.e., that freely adding (k+1)-generators does not change the underlying k-category
(Section 3.2). Then, we introduce polygraphs together with the associated free construction
for any finitary monad on globular sets (Section 3.3). Finally, we recover in our setting the
adjunction of Batanin between higher categories and polygraphs in Section 3.4.

3.1 Pullbacks in CAT

In the following sections, we define the categories of cellular extensions and polygraphs using
pullbacks in CAT. We will be interested in showing that these categories are cocomplete and
that several of the projection functors are left or right adjoints. Such properties are consequence
of general properties of pullbacks that we recall below. In particular, a pullback of an isofibration,
i.e., a functor which lifts isomorphisms, has good properties with regard to cocompleteness and
preservation of colimits. This is convenient since, as we will see below, all the truncation functors
introduced until now are isofibrations.

In the following, given C ∈ CAT, we write id2
C for the identity natural transformation on the

identity functor idC : C → C. We begin with a property of compatibility of pullbacks in CAT
with left and right adjoints:

Proposition 3.1.1. Given a pullback in CAT

C ′ C

D′ D

F ′

G′ G

F

and a functor H : D → C such that GH = idD, then there exists a canonical H ′ : D′ → C ′

such that G′H ′ = idD′. Moreover, if there is an adjunction H a G (resp. G a H) whose unit
(resp. counit) is id2

D, then there is an adjunction H ′ a G′ (resp. H a G) whose unit (resp. counit)
is id2

D′ .

Proof. We define H ′ using the universal property of pullbacks by

D′

C ′ C

D′ D

H◦F

H′

id
D′

F ′

G′ G

F

which satisfies G′H ′ = idD′ by definition. Moreover, suppose that there is an adjunction H a G
whose unit is id2

D. Then, since C ′ is defined by a pullback, a morphism f : H ′X → Y ∈ C ′
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is the data of morphisms fl : X → G′Y and fr : HFX → F ′Y with F (fl) = G(fr). But,
since the unit of H a G is id2

D, G induces a bijective correspondence between C(HFX,F ′Y )
and D(FX,GF ′Y ), so that fr is uniquely defined by F (fl). Thus, G′ induces a bijective natural
correspondence between C ′(H ′X,Y ) and D′(X,G′Y ) for all X ∈ D′ and Y ∈ C ′, so that there
is an adjunction H ′ a G′ with unit id2

D′ . The case where G is left adjoint is similar.

Moreover, we prove that isofibrations are well-behaved regarding pullbacks in CAT. We re-
call that a functor G : C → D ∈ CAT is an isofibration when it lifts isomorphisms, i.e., for
all X ∈ C and Ỹ ∈ D, given an isomorphism f̃ : GX → Ỹ in D, there exists Y ∈ C and an
isomorphism f : X → Y such that GY = Ỹ and G(f) = f̃ . We then have:

Proposition 3.1.2. Given a pullback in CAT

C ′ C

D′ D

F ′

G′ G

F

such that G is an isofibration, the following hold:

(i) G′ is an isofibration,

(ii) given a small category I, if C and D′ have all I-colimits and F and G preserve them,
then C ′ has all I-colimits and F ′ and G′ preserve them.

Proof. Proof of (i): Let X ∈ C ′, YL ∈ D′ and θL : G′X → YL be an isomorphism. Then, since G
is an isofibration, there is YR ∈ C and an isomorphism θR : F ′X → YR such that F (θL) = G(θR).
Moreover, F (θ−1

L ) = G(θ−1
R ) so that (θL, θR) : X → (YL, YR) is an isomorphism of C ′.

Proof of (ii): Let d : I → C ′ be a functor, which is the data of dL : I → D′ and dR : I → C.
Then, there are colimit cocones (pL,i : dL(i)→ XL)i∈I and (pR,i : dR(i)→ XR)i∈I . Since both F
and G preserve colimits, both

(F (pL,i) : F (dL(i))→ F (XL))i∈I and (G(pR,i) : F (dL(i))→ G(XR))i∈I

are colimit cocones for F ◦ dL. So there exists an isomorphism θ : F (XL)→ G(XR) between the
two cocones. Since G is an isofibration, we can suppose that F (XL) = G(XR) and θ = idF (XL).
Thus, we have a cocone ((pL,i, pR,i) : d(i) → (XL, XR))i on d, and we easily verify that it is a
colimit cocone.

Remark 3.1.3. Pullbacks in CAT should normally raise suspicion since strict limits are not well-
behaved in CAT in general. Indeed, a limit cone in CAT on a diagram is not stable when
replacing some functors of the diagram by isomorphic functors. Moreover, the limit cone is
defined up to isomorphism, and not up to equivalence of categories. To solve this problem, one
usually considers a weaker notion of limits, where the triangles of cones commute only up to
isomorphisms, as with weighted bilimits [19]. But the strict limit on a diagram is generally
not equivalent to the associated weighted bilimit. However, introducing weighted bilimits here
would be an unnecessary pain for what we want to do, since the pullbacks along isofibrations are
equivalent to the weighted bipullbacks (see [19, Proposition 5.1.1]).

We say that a monad functor is an isofibration when the underlying functor is an isofibration.
We then have:

Lemma 3.1.4. The functor EM preserves isofibrations.
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Proof. Let (F, α) : (C, S)→ (D, T ) be a monad functor isofibration. Let (X,h : SX → X) be an
S-algebra, and f : Fα(X,h) → (Y, k) be a T -algebra isomorphism. Since F is an isofibration,
there is an isomorphism f̃ : X → Ỹ such that F (f̃) = f . One can equip Ỹ with a structure
of S-algebra (Ỹ , k̃) by putting k̃ = f̃ ◦ h ◦ S(f̃−1). Then, we have an S-algebra morphism
f̃ : (X,h) → (Ỹ , k̃). Moreover, (Ỹ , k̃) is mapped to (Y, k) by Fα, so that f̃ is an isomorphism
which lifts f . Hence, EM preserves isofibration.

We now verify that several functors of interest to us are isofibrations:

Proposition 3.1.5. Given k, l ∈ N ∪ {ω} with k < l, the functor (−)Glob
≤k,l is an isofibration.

Proof. Straight-forward.

Proposition 3.1.6. Let n ∈ N ∪ {ω} and (T, η, µ) be a finitary monad on Globn. Given
k, l ∈ N ∪ {ω} with k < l, the functor (−)Alg

≤k,l is an isofibration.

Proof. The functor (−)Alg
≤k,l is the image by EM of ((−)Glob

≤k,l , (−)Glob
≤k,l T

l ik,l), which is an isofibra-
tion. Thus, by Lemma 3.1.4, it is an isofibration.

3.2 Cellular extensions

In this section, we introduce the notion of k-cellular extension, which describes a k-category (for
some theory of higher categories) equipped with a set of (k+1)-generators. We moreover give
the construction of the free (k+1)-category on a k-cellular extension together with more specific
results when the theory we are considering is associated with a truncable monad.

Let n ∈ N∪ {ω} and (T, η, µ) be a finitary monad on Globn. Given k ∈ Nn−1, we define the
category Alg+

k of k-cellular extensions as the pullback

Alg+
k Globk+1

Algk Globk

Gk+1

Ak (−)Glob
≤k

Uk

We verify that:

Proposition 3.2.1. The category Alg+
k is locally finitely presentable. In particular, it is complete

and cocomplete. Moreover, both Gk+1 and Ak are finitary right adjoints.

Proof. The categoyAlg+
k is defined as the pullback of the finitary right adjoint isofibration (−)Glob

≤k
along the right adjoint Uk. Thus, it is a bipullback of right adjoints between locally finitely pre-
sentable categories. Since the 2-category of locally finitely presentable and finitary right adjoint
functors is closed under bilimits (see [7, Theorem 2.17]), Alg+

k is locally finitely presentable and
the two projections Gk+1 and Ak are finitary right adjoint functors.

Remark 3.2.2. In fact, one can check by hand that the finitely presentable objects of Alg+
k are

exactly the compatible pairs (C,X), where C is a finitely presentable object of Algk and X is a
compatible (k+1)-globular set such that Xk+1 is finite.

Proposition 3.2.3. The functor Ak is an isofibration and has a right adjoint.

Proof. This is a consequence of Propositions 3.1.1 and 3.1.5.

Proposition 3.2.4. The functor Ak preserves finitely presentable objects.
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Proof. By adjunction, it is equivalent to prove that its right adjoint is finitary. By the construc-
tive content of Proposition 3.1.1, this right adjoint is built from a cone of finitary functors on
the (bi)pullback defining Alg+

k , itself made of finitary functors. Thus, the factorizing functor is
itself finitary.

There is a functor Vk : Algk+1 → Alg+
k defined as the factorization arrow

Algk+1

Alg+
k Globk+1

Algk Globk

Uk+1

(−)Alg
≤k

Vk

Ak

Gk+1

(−)Glob
≤k

Uk

.

Then, there is an operation which produces a (k+1)-category from a k-cellular extension. It is
the left adjoint to Vk, that exists by the following property:

Theorem 3.2.5. Vk has a left adjoint.

Proof. Let αk be the unit of the adjunction (−)Alg
↑k+1,k a (−)Alg

≤k,k+1, and let

ΦL : Algk+1((−)Alg
↑k+1,−) ⇒ Algk(−, (−)Alg

≤k )

ΨL : Algk((−)Alg
↑k+1Fk(−),−) ⇒ Globk(−,Uk(−)Alg

≤k,k+1)

ΦR : Algk+1(Fk+1(−),−) ⇒ Globk+1(−,Uk+1(−))

ΨR : Globk+1(Fk+1(−)Glob
↑k+1,k,−) ⇒ Globk(−, (−)Glob

≤k Uk+1(−))

be the natural bijections derived from the associated adjunctions. Note that these bijections can
be defined using the units of the adjunctions. For example, given C ∈ Algk and D ∈ Algk+1, ΦL

maps a morphism f : C↑k+1 → D ∈ Algk+1 to the morphism

f≤k ◦ αkC : C → D≤k ∈ Algk

where α is the unit of (−)Alg
≤k a (−)Alg

↑k+1. Since

Fk+1(−)Glob
↑k+1 and (−)Alg

↑k+1Fk

are both left adjoint to Uk(−)Alg
≤k,k+1 = (−)Glob

≤k Uk+1, the natural morphism

θ : Fk+1(−)Glob
↑k+1,k ⇒ (−)Alg

↑k+1Fk
defined as the composite

θ = (εk+1(−)Alg
↑k+1,kFk) ◦ (Fk+1 ik Uk+1(−)Alg

↑k+1,kFk) ◦ (Fk+1(−)Glob
↑k+1,kUkαkFk) ◦ (Fk+1(−)Glob

↑k+1,kη
k)

which can be represented by

Fk+1 (−)Glob
↑k+1,k

θ

(−)Alg
↑k+1,k Fk

=

Fk+1 (−)Glob
↑k+1,k

Uk (−)Alg
≤k,k+1

=

(−)Glob
≤k,k+1 Uk+1

(−)Alg
↑k+1,k Fk
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is an isomorphism as a consequence of Proposition 2.7.3. In the following, given a morphism
f : X → Y of a category C, we write f∗ : C(Y,Z) → C(X,Z) for the function g 7→ g ◦ f for
all Z ∈ C. One can verify using the zigzag equations that the natural transformation θ makes
the diagram

Algk+1((FkZ)↑k+1, A) Globk(Z,Uk(A≤k))

Algk+1(Fk+1(Z↑k+1), A) Globk(Z, (Uk+1A)≤k)

(θZ)∗

ΨL
Z,A

ΨR
Z,A

(6)

commutes for all Z ∈ Globk and A ∈ Algk+1. Let (C,X) ∈ Alg+
k , D ∈ Algk+1 and (D≤k, Y )

be VkD. Since
UkC = X≤k and UkD = Y≤k

and by the properties of adjunctions, we have a diagram

Algk+1(C↑k+1, D) Algk(C,D≤k)

Algk+1((FkUkC)↑k+1, D) Globk(UkC,Uk(D≤k))

Algk+1(Fk+1((X≤k)↑k+1), D) Globk(X≤k, Y≤k)

Algk+1(Fk+1X,D) Globk+1(X,Y )

(eL
(C,X)

)∗ Uk

(θX≤k )∗

(eR
(C,X)

)∗ (−)Glob
≤k

ΦL
C,D

ΨL
UkC,D

ΨR
X≤k,D

ΦR
X,D

(7)

such that each square commutes and where eL and eR are the natural transformations

eL = (−)Alg
↑k+1ε

kAk and eR = Fk+1 ik Gk+1

respectively. Indeed, the middle square commutes by (6) and the top and bottom squares
commute by the zigzag equations. By definition of Alg+

k , the set Alg+
k ((C,X),VkD) is the

pullback

Alg+
k ((C,X),VkD) Globk+1(X,Gk+1VkD)

Algk(C,AkVkD) Globk(X≤k, (Gk+1VkD)≤k)

Gk+1

Ak (−)Glob
≤k

Uk

.

Since
(−)Alg

≤k = AkVk and Uk+1 = Gk+1Vk
and by the commutative diagram (7), the following diagram is also a pullback:

Alg+
k ((C,X),VkD) Algk+1(Fk+1X,D)

Algk+1(C↑k+1, D) Algk+1(Fk+1((X≤k)↑k+1), D)

(ΦR
X,D)−1◦Gk+1

(ΦL
C,D)−1◦Ak (eR

(C,X)
)∗

(eL
(C,X)

◦θX≤k )∗

.
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Since Algk+1 is cocomplete by Proposition 2.2.2, the diagram

Algk+1(C[X], D) Algk+1(Fk+1X,D)

Algk+1(C↑k+1, D) Algk+1(Fk+1((X≤k)↑k+1), D)

(pR
(C,X)

)∗

(pL
(C,X)

)∗ (eR
(C,X)

)∗

(eL
(C,X)

◦θX≤k )∗

is also a pullback, where C[X], pL
(C,X) and pR

(C,X) are defined as the pushout

C[X] Fk+1X

C↑k+1 Fk+1((X≤k)↑k+1)

pR
(C,X)

pL
(C,X)

eR
(C,X)

eL
(C,X)

◦θX≤k

.

Thus, there is an isomorphism

Algk+1(C[X], D) ∼= Alg+
k ((C,X),VkD)

which is natural in D. Hence, Vk admits a left adjoint.

The operation (C,X) 7→ C[X] defined in the proof of Theorem 3.2.5 extends to a functor

−[−]k : Alg+
k → Algk+1

that we often write −[−] when there is no ambiguity on k, and which is left adjoint to Vk. The
image C[X] of some (C,X) ∈ Alg+k is called the free extension on (C,X).
Example 3.2.6. Consider the monad (T, η, µ) on Glob1 defined in Example 2.2.3. A 0-cellular
extension (C,X) is then essentially the data of a set C0 of 0-cells, a set X1 of 1-generators, and
functions d−0 , d

+
0 : X1 → C0, i.e., a graph. Moreover, the 1-category C[X] is the image of (C,X)

seen as a graph by the left adjoint to the functor Cat→ Gph defined in Example A.2.8.
Remark 3.2.7. Theorem 3.2.5 is a particular case of the fact that the category of locally pre-
sentable categories and right adjoints are closed under weighted bilimits (see [7] and the end
of [19, §5.1]). But the concrete pushout description given by the proof will be useful later to
show properties of the functor −[−].

Proposition 3.2.8. For every k ∈ N, the functor −[−]k preserves finitely presentable objects.

Proof. By adjunction, it is equivalent to show that its right adjoint Vk is finitary. But, since T
is finitary, Uk is finitary, and (−)Alg

≤k is finitary by Proposition 2.3.3, so that the same argument
as in the proof of Proposition 3.2.4 applies to conclude that Vk is finitary.

The truncable case Let n ∈ N ∪ {ω} and (T, η, µ) be a finitary monad on Globn. In this
paragraph, we consider the case where T is a truncable monad, and show that the underlying
k-category of a k-cellular extension is preserved by −[−]k. In the following, we write ηA,k for the
unit of the adjunction (−)Alg

↑k+1,k a (−)Alg
≤k,k+1. We have:

Proposition 3.2.9. If T is truncable, then ηA,k is an isomorphism for k ∈ Nn−1.

Proof. The adjunction (−)Alg
≤k a (−)Alg

⇑k+1 was built from the adjunction (−)Glob
≤k a (−)Glob

⇑k+1 by
lifting. The counit of the latter being an isomorphism, the counit of the former is as well, so that
(−)Alg

⇑k+1 is fully faithful. Since we have (−)Alg
↑k+1 a (−)Alg

≤k a (−)Alg
⇑k+1, by the unity and identity

of opposites, (−)Alg
↑k+1 is fully faithful as well, so that ηA,k is an isomorphism.
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We can conclude a conservation result for the underlying k-category of (k+1)-categories produced
by −[−]k:

Proposition 3.2.10. If T is truncable, then, given k ∈ Nn and (C,X) ∈ Alg+
k , there is an

isomorphism C ∼= C[X]≤k which is natural in (C,X).

Proof. Recall that C[X] was defined in the proof of Theorem 3.2.5 as the pushout

C[X] Fk+1X

C↑k+1 Fk+1((X≤k)↑k+1)

pR
(C,X)

pL
(C,X)

eR
(C,X)

eL
(C,X)

◦θX≤k

.

By Proposition 2.6.7, the following diagram is also a pushout

C[X]≤k (Fk+1X)≤k

(C↑k+1)≤k (Fk+1((X≤k)↑k+1))≤k

(pR
(C,X)

)≤k

(pL
(C,X)

)≤k (eR
(C,X)

)≤k

(eL
(C,X)

◦θX≤k )≤k

.

Since T is truncable, we have (−)Alg
≤k Fk+1 = Fk(−)Glob

≤k . Thus,

(eR)≤k = (−)Alg
≤k Fk+1 ik Gk+1

= Fk(−)Glob
≤k ik Gk+1

= idFk(−)Glob
≤k Gk+1

(since (ik)≤k = idGlobk
)

so that (eR
(C,X))≤k = idFk(X≤k). Hence, (pL

(C,X))≤k is an isomorphism, since the pushout of an
isomorphism is an isomorphism. By Proposition 3.2.9, we conclude that the composite

C (C↑k+1)≤k C[X]≤k
ηA,k
C

(pL
(C,X)

)≤k

is an isomorphism.

Remark 3.2.11. If T is truncable, given k ∈ Nn, by Proposition 3.1.6, we can suppose that we
chose −[−]k so that the isomorphism of Proposition 3.2.10 is the identity. When such a choice
is made, we have C[X]≤k = C for all k-cellular extension (C,X).

3.3 Polygraphs

In this section, we recover the generalized notion of polygraph of Batanin using cellular exten-
sions. Intuitively, a polygraph is a system of generators which organizes inductively as cellular
extensions, so that a definition of polygraphs based on the latter structures seems relevant. In the
process, we study some properties of the different functors involved, and consider the truncable
case.

Another definition of cellular extensions Let n ∈ N∪{ω} and (T, η, µ) be a finitary monad
on Globn. Before defining polygraphs, we first provide an alternative definition of Algk which
is simpler than the one based on pullbacks given in Section 3.2.

Proposition 3.3.1. Given k ∈ Nn−1, the category Alg+
k is isomorphic to the category
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– whose objects are the pairs (C, S) where C ∈ Algk and S is a set, equipped with two
functions

d−k , d
+
k : S → Ck

such that ∂εk−1 ◦ d−k = ∂εk−1 ◦ d+
k for ε ∈ {−,+},

– and whose morphisms between two such pairs (C, S) and (C ′, S′) are the pairs (F, f) where

F : C → C ′ ∈ Algk and f : S → S′ ∈ Set

and such that dεk ◦f = Fk ◦ dεk for ε ∈ {−,+}.

Proof. Write Alg
+
k for the category described in the statement. An isomorphism between Alg+

k

andAlg
+
k can be described as follows. Given (C,X) ∈ Alg+

k , we map (C,X) to the pair (C,Xk+1)
and, for ε ∈ {−,+} and x ∈ Xk+1, we put dεk(x) = ∂εk(x) (where ∂εk is the operation of the
globular structure on X), and we extend this mapping to morphisms of Alg+

k as expected.
Since UkC = X≤k for (C,X) ∈ Alg+

k , the resulting functor is an isomorphism of categories.

In the following, we will prefer this new definition of cellular extensions to the original one.
This other description helps better understand how a colimit of a diagram (Ci, Si) in Alg+

k is
computed: first, one computes a colimit C of the Ci’s in Algk, then one compute a colimit S of
the Si’s and equips it with the evident source and target operations d−k , d

+
k : S → Ck.

Categories of polygraphs Let n ∈ N ∪ {ω} and (T, η, µ) be a finitary monad on the cate-
gory Globn. For k ∈ Nn, we define the category Polk of k-polygraphs by induction on k, together
with a functor

(−)∗,k : Polk → Algk

simply denoted (−)∗ when there is no ambiguity on k, which maps a k-polygraph P to the free
k-category P∗ on P. First, we put

Pol0 = Glob0 and (−)∗,0 = F0.

Now suppose that Polk and (−)∗,k are defined for some k ∈ Nn−1. We define Polk+1 as the
pullback

Polk+1 Alg+
k

Polk Algk

(−)Pol
≤k,k+1

Ek+1

Ak

(−)∗,k

and (−)∗,k+1 as the composite

Polk+1 Alg+
k Algk+1

Ek+1 −[−]k

.

As usual, we write P≤k for the image of P ∈ Polk+1 by (−)Pol
≤k,k+1, and we often simply

write (−)Pol
≤k for the latter functor.

Using the simpler definition of Alg+
k from Proposition 3.3.1, we can give a more concrete

description of Polk for k ∈ Nn. A 0-polygraph P is the data of a set P0 of 0-generators, and a
morphism P→ P′ in Pol0 is the data of a function F0 : P0 → P′0. Given k ∈ Nn−1, a (k+1)-poly-
graph is the data of a pair

P = (P≤k,Pk+1)
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where P≤k is a k-polygraph and Pk+1 is a set of (k+1)-generators, together with functions

d−k , d
+
k : Pk+1 → ((P≤k)

∗)k

such that
∂εk−1 ◦ d−k = ∂εk−1 ◦ d+

k

for ε ∈ {−,+}, where ∂−k−1, ∂
+
k−1 : ((P≤k)

∗)k → ((P≤k)
∗)k−1 are the source and target oper-

ations of the k-category (P≤k)
∗. Moreover, a morphism P → P′ in Polk+1 is the data of a

pair (F≤k, Fn+1) where F≤k : P≤k → P′≤k is a morphism of Polk and Fn+1 : Pn+1 → P′n+1 is a
function such that

dεk ◦Fn+1 = (F≤k)
∗ ◦ dεk

for ε ∈ {−,+}, i.e., a (k+1)-generator g is mapped by Fn+1 to a generator g′ whose k-source
and k-target are exactly the images of the k-source and k-target of g by (F≤k)

∗.

Remark 3.3.2. Note that the diagram

Polk+1 Globk+1

Polk Globk

Gk+1Ek+1

(−)Pol
≤k (−)Glob

≤k

Uk(−)∗,k

(8)

is a pullback, since Alg+
k is defined as a pullback and the concatenation of two pullbacks is still

a pullback.

In order to better handle side conditions, we use the convention that

Alg+
−1 = Glob0, E0 = idGlob0

, and −[−]0 = F0

so that (−)∗,0 = −[−]0 ◦ E0. We then have:

Proposition 3.3.3. For k ∈ Nn, the category Polk is locally ω1-presentable (in particular,
complete and cocomplete), and the functor Ek (resp. (−)Pol

≤k−1 when k > 0) is a left adjoint which
preserves ω1-presentable objects.

Proof. We prove this property by induction on k. The category Pol0 is locally finitely presentable
since equivalent to Set. Moreover, since U0 is finitary, it is also ω1-accessible so that F0 preserves
finitely presentable objects. Thus, the property holds for k = 0.

Now assume that it holds in dimension k. By Proposition 3.2.8, the functor −[−]k is a
left adjoint which preserves finitely presentable objects. Thus, its right adjoint is finitary and
in particular ω1-accessible. Thus, −[−]k also preserves ω1-presentable objects. By induction
hypothesis, (−)∗,k is a left adjoint which preserves ω1-presentable objects. By Proposition 3.2.4
and the same argument, Ak is also a left adjoint which preserves ω1-presentable objects. By
[7, Proposition 3.14], the (bi)pullback Polk+1 of these two functors is a locally ω1-presenta-
ble category, and the two projecting functors (−)Pol

≤k and Ek+1 are left adjoints which preserve
ω1-presentable objects.

Remark 3.3.4. Sadly, [7, Proposition 3.14] requires us to deal with uncountable cardinals, so
that we can not use it to prove that Polk is locally finitely presentable. But one can use an ad
hoc argument as in [11, Paragraph 1.3.3.16] to prove that it actually is. Moreover, the finitely
presentable objects of Polk are the expected ones, that is, the k-polygraphs with a finite number
of generators.

Proposition 3.3.5. For k ∈ Nn, the functor (−)Pol
≤k,k+1 is an isofibration which has both a left

adjoint and a right adjoint.
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Proof. We know already that it has a right adjoint by Proposition 3.3.3. But it is also the
consequence, as is the remainder of the statement, of Propositions 3.1.1 and 3.1.2.

Given i, k ∈ N such that i ≤ k < n+ 1, we write

(−)ki : Polk → Set

or simply (−)i when there is no ambiguity on k, for the functor which maps a k-polygraph P to
its set of i-generators Pi. We verify that colimits of polygraphs are computed dimensionwise:

Proposition 3.3.6. Given i, k ∈ Nn such that i ≤ k, the functor (−)ki preserves colimits.

Proof. This functor can be described as the composite

(−)g ◦ Ei ◦ (−)Pol
≤i ◦ · · · ◦ (−)Pol

≤k−1

where (−)g : Alg+
i−1 → Set is the functor mapping a cellular extension (X,S) to its set of i-gene-

rator S. By our comment on the computation of colimit using the concrete description of Alg+
i−1,

the functor (−)g preserves colimits. Moreover, all the other functors of the above composition
preserve colimits by Proposition 3.3.3, so that the conclusion holds.

In the case where T is truncable, given k, l ∈ N with k < l, the underlying k-category of the free
l-category on an l-polygraph is only determined by the underlying k-polygraph, as stated by the
following proposition:

Proposition 3.3.7. If T is truncable, then, given k ∈ N such that k < n and a (k+1)-polygraph,
there exists an isomorphism (P∗)≤k ∼= (P≤k)

∗.

Proof. By definition of (−)∗,k, we have

P∗ = (P≤k)
∗[Pk+1]

so that the wanted isomorphism comes from Proposition 3.2.10.

Remark 3.3.8. When T is truncable, under the assumption of Remark 3.2.11, the isomorphism
given by Proposition 3.3.7 is the identity. This enables to simplify some notations: given k, l ∈ Nn
with k ≤ l and an l-polygraph P, we write directly P∗≤k for both (P∗)≤k and (P≤k)

∗, and P∗k for
both (P∗)k and ((P≤k)

∗)k.

Remark 3.3.9. When T is truncable, given k ∈ Nn, a k-polygraph P can be alternatively described
as a diagram in Set of the form

P0 P1 P2 . . . Pk−1 Pk

P∗0 P∗1 . . . P∗k−2 P∗k−1

e0

d−0

d−0
e1

d−1

d−1 e2

d−k−2

d−k−2

ek

d−k−1

d−k−1
∂−0

∂+
0

∂−1

∂+
1

∂−k−2

∂+
k−2

where, for i ∈ Nk−1, ei is the embedding of the i-generators in the i-cells induced by the unit of
the adjunction −[−]i a Vi−1 at ((P≤i−1)∗,Pi), such that

∂−i ◦ d−i+1 = ∂−i ◦ d+
i+1 and ∂+

i ◦ d−i+1 = ∂+
i ◦ d+

i+1

for i ∈ Nk−1. The above description of polygraphs can already be found in the original paper of
Burroni [10] for polygraphs of strict categories.
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ω-polygraphs Let (T, η, µ) be a finitary monad on Globω. We define the category of ω-poly-
graphs Polω as the limit in CAT

((−)Pol
≤k,ω : Polω → Polk)k∈N

on the diagram

Pol0 Pol1 · · · Polk Polk+1 · · ·
(−)Pol
≤0 (−)Pol

≤1 (−)Pol
≤k−1 (−)Pol

≤k (−)Pol
≤k+1

Concretely, an ω-polygraph P is the data of a sequence (Pk)k∈N, where Pk is a k-polygraph, such
that (Pk+1)≤k = Pk for k ∈ N. We start with a presentability result for Polω:

Proposition 3.3.10. The category Polω is locally ω1-presentable (in particular complete and
cocomplete), and the functors (−)Pol

≤k,ω are both left and right adjoints and preserve ω1-presenta-
ble objects.

Proof. By Proposition 3.3.3, the functors (−)Pol
≤k,k+1 are isofibrations, so that the limit defining

Polω is in fact a bilimit. Since (−)Pol
≤k,k+1 preserves colimits as left adjoints, they are ω1-accessible

right adjoints. By [7, Theorem 2.17], Polω is locally ω1-presentable and the functors (−)Pol
≤k,ω are

ω1-accessible right adjoint functors.
The functors (−)Pol

≤k,k+1 are also left adjoints which preserve ω1-presentable objects by Propo-
sition 3.3.3. Thus, [7, Proposition 3.14] also applies, so that we moreover get that (−)Pol

≤k,ω are
left adjoints which preserve ω1-presentable objects.

Remark 3.3.11. Assuming the finite presentability of the Polk given by Remark 3.3.4, we can
apply [7, Theorem 2.17] to deduce that Polω is in fact locally finitely presentable. A small
additional argument would then prove that the finitely presentable objects of Polk are the
ω-polygraph with a finite number of generators. A proof of these facts without using Bird can
be found in [11, Paragraph 1.3.3.16].
Now, in the truncable case, we can easily define the free ω-category on an ω-polygraph, just like
for finite-dimensional polygraphs:

Proposition 3.3.12. If T is truncable, there is a functor (−)∗,ω : Polω → Algω which is uniquely
defined by

(−)Alg
≤k,ω ◦ (−)∗,ω = (−)∗,k ◦ (−)Pol

≤k,ω

for k ∈ N.

Proof. By Remark 3.2.11 and Remark 3.3.8, we have a commutative diagram

Pol0 Pol1 · · · Polk Polk+1 · · ·

Alg0 Alg1 · · · Algk Algk+1 · · ·

(−)∗,0

(−)Pol
≤0

(−)∗,1

(−)Pol
≤1 (−)Pol

≤k−1

(−)∗,k

(−)Pol
≤k

(−)∗,k+1

(−)Pol
≤k+1

(−)Alg
≤0 (−)Alg

≤1 (−)Alg
≤k−1 (−)Alg

≤k (−)Alg
≤k+1

which, by the definition of Polω and Proposition 2.4.2, induces a functor (−)∗,ω which satisfies
the wanted properties.

Remark 3.3.13. In the case where T is only weakly truncable, the squares in the proof of Propo-
sition 3.3.12 only commute up to isomorphism, so that we only get a pseudocone on the Algk’s
of vertex Polω. In this case, we can use the fact that Algω is a bilimit on the Algk’s (since the
functors (−)Alg

≤k,k+1 are isofibrations by Proposition 3.1.6) to get a functor (−)∗,ω : Polω → Algω
which factorizes up to isomorphism that pseudocone.
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Remark 3.3.14. We can still define a functor (−)∗,ω : Polω → Algω in the case where T is not
weakly truncable. However, this functor is not expected to be compatible with the functors (−)Alg

≤k
as in Proposition 3.3.12. Indeed, in this case, the functor −[−]k does not preserve the underlying
k-category C of a k-cellular extension (C, S) ∈ Alg+

k .

3.4 The polygraphic adjunctions

We now translate in our setting the definition given by Batanin of the adjunction between
globular algebras and polygraphs. In our case, this adjunction will be derived from one between
cellular extensions and polygraphs that we are going to introduce.

The constructions of this section are done using an induction on k ∈ N to build a functor

R+
k : Alg+

k → Polk

which is part of an adjunction Ek a R+
k , with unit ξ̄k and counit ν̄k, from which we derive a

functor Rk : Algk → Polk which is part of an adjunction (−)∗,k a Rk, with unit ξk and counit
νk.

When k = 0, this is easy: we take R+
k = 1Glob0 and R0 = U0. So now, we assume that

we have defined the right adjoints R+
l and Rl up to dimension k ∈ N, and we define the right

adjoints R+
k+1 and Rk+1 starting with the former.

By the pullback definition of Polk+1, this will require defining a functor Alg+
k → Polk and a

functor Alg+
k → Alg+

k , the latter being reasonably suspected to be the functor of the comonad
induced by the adjunction.

The functor Alg+
k → Polk is defined as expected as the composite

Alg+
k

Ak−−→ Algk
Rk−−→ Polk.

We define the functor Alg+
k → Alg+

k , denoted Sk, as follows: given (C, S) ∈ Alg+
k , Sk(C, S)

is the pullback

Sk(C, S) (C, S)

((RkC)∗)⇑k+1 C⇑k+1

qR
(C,S)

qL
(C,S) jk

(C,S)

((−)Alg+
⇑k+1ν

k)C

where jk denotes the unit of the adjunction Ak a (−)Alg+
⇑k+1,k, with (−)Alg+

⇑k+1,k being the right
adjoint given by Proposition 3.2.3, and where νk is the counit of the adjunction (−)∗,k a Rk
defined by induction hypothesis. The idea behind this pullback is the following: we forget the
k-category C as a k-polygraph and freely generate it back immediately to a k-category (the left
leg), then we attach back the generators of S to this new k-category, taking into account that
there now several choices of cells which evaluate to the old sources and targets of the elements
of S (the right leg).

Since Ak preserves limits (as a right adjoint), the diagram

(Sk(C, S))≤k C

(RkC)∗ C

(qR)≤k

(qL)≤k idC

νkC
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is a pullback (we picked (−)Alg+
⇑k+1,k so that the counit of Ak a (−)Alg+

⇑k+1,k is the identity, which
is possible by Proposition 3.1.1). Moreover, since Ak is an isofibration, we can suppose that we
defined Sk so that (Sk(C, S))≤k = (RkC)∗ and (qL)≤k = id.

Thus, we get as a factorization through Polk+1 of the cone made of the above two functors
a functor

R+
k+1 : Alg+

k → Polk+1

which is characterized by (−)Pol
≤kR

+
k+1 = RkAk and Ek+1R+

k+1 = Sk.
We now equip (Ek+1,R+

k+1) with a structure of an adjunction. First, we build a unit

ξ̄
k+1

= 〈ξ̄k+1
l , ξ̄

k+1
r 〉 : 1Polk+1

⇒ R+
k+1Ek+1

through the pullback ofPolk+1 as follows. The projection of ξ̄k+1 through (−)Pol
≤k is ξ̄k+1

l = ξk (−)Pol
≤k ;

this is well-defined, since

(−)Pol
≤kR+

k+1Ek+1 = RkAkEk+1 = Rk(−)∗,k(−)Pol
≤k .

Moreover, the projection of ξ̄k+1 through Ek+1 is a natural transformation

ξ̄
k+1
r : Ek+1 ⇒ Ek+1R+

k+1Ek+1 = SkEk+1 : Polk+1 → Alg+
k

which is defined using the pullback definition of Sk: we have the cone

Ek+1

SkEk+1 Ek+1

(−)Alg+
⇑k+1(−)∗,kRkAkEk+1 (−)Alg+

⇑k+1AkEk+1

id

λ

ξ̄
k+1
r

qR

qL jk Ek+1

(−)Alg+
⇑k+1ν

kAkEk+1

where λ is defined using string diagram as

λ =

Ek+1

(−)Alg+
⇑k+1 Ak

=

(−)∗,k Rk (−)∗,k (−)Pol
≤k

=

(−)Alg+
⇑k+1 (−)∗,k Rk Ak Ek+1

.

This is indeed a cone, as one can easily verify using the zigzag equations of adjunctions that the
following two string diagrams

Ek+1

(−)Alg+
⇑k+1 Ak

=

(−)∗,k Rk (−)∗,k (−)Pol
≤k

=

(−)Alg+
⇑k+1 Ak Ek+1

and
Ek+1

(−)Alg+
⇑k+1 Ak Ek+1
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represent the same natural transformation. Thus, we get a factorization natural transformation
ξ̄
k+1
r : Ek+1 ⇒ Ek+1R+

k+1Ek+1.
We still need to verify that the equation (−)∗,k ξ̄

k+1
l = Ak ξ̄

k+1
r , whose string diagrams

representation is

Ak Ek+1

=

(−)∗,k Rk (−)∗,k (−)Pol
≤k

=

(−)∗,k Rk Ak Ek+1

=

Ak Ek+1

(−)Alg+
⇑k+1 Ak

=

(−)∗,k Rk (−)∗,k (−)Pol
≤k

= =

(−)∗,k Rk Ak Ek+1

so that the equation holds by the zigzag equations of adjunctions. Thus,

ξ̄
k+1

= 〈ξ̄k+1
l , ξ̄

k+1
r 〉 : 1Polk+1

⇒ R+
k+1Ek+1

is well-defined.
We are now required to give a counit

ν̄k+1 : Ek+1R+
k+1 ⇒ 1Alg+

k
.

A candidate already exists: since Ek+1R+
k+1 = Sk, we can take ν̄k+1 = qR. We now verify that

we have an adjunction:

Theorem 3.4.1. There is an adjunction Ek+1 a R+
k+1 with ξ̄k+1 and ν̄k+1 as unit and counit.

Proof. We verify the first zigzag equation, namely (ν̄k+1Ek+1) ◦ (Ek+1 ξ̄
k+1

) = idEk+1
:

(ν̄k+1Ek+1) ◦ (Ek+1 ξ̄
k+1

) = (ν̄k+1Ek+1) ◦ (ξ̄
k+1
r )

= idEk+1

by the definition ξ̄k+1
r .

We now verify the second zigzag equation, namely (R+
k+1ν̄

k+1) ◦ (ξ̄
k+1R+

k+1) = idR+
k+1

. We
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first check that the projection along (−)Pol
≤k is an identity using string diagrams:

(−)Pol
≤k R+

k+1

R+
k+1

Ek+1 R+
k+1

=

(−)Pol
≤k R+

k+1

Rk (−)∗,k

=

Ak Ek+1

=

(−)Pol
≤k R+

k+1

=

(−)Pol
≤k R+

k+1

Rk (−)∗,k

=

Ak Ek+1

=

(−)Pol
≤k R+

k+1

=

(−)Pol
≤k R+

k+1

Rk (−)∗,k

=

Ak Ek+1

=

(−)∗,k Rk Ak

=

(−)Pol
≤k R+

k+1

=

(−)Pol
≤k R+

k+1

=

Rk Ak

Rk (−)∗,k =

(−)Pol
≤k R+

k+1

=

Ak Ek+1

=

(−)∗,k Rk Ak

=

(−)Pol
≤k R+

k+1

=

(−)Pol
≤k R+

k+1

=

Rk (−)∗,k Rk Ak

=

(−)Pol
≤k R+

k+1

=

(−)Pol
≤k R+

k+1

(−)Pol
≤k R+

k+1

.

We now check that the projection along Ek+1 is also an identity, i.e.,

(SkqR) ◦ (ξ̄
k+1
r R+

k+1) = idSk . (9)

As an equation between two natural transformation with codomain Sk, we check it by verifying
that the projections along qL and qR are the same. We start with qL and use for this purpose
the following property:

Lemma 3.4.2. Given two natural transformation α, β : F ⇒ (−)Alg+
⇑k+1G for some functors

F : C → Alg+
k and G : C → Algk, we have α = β if and only if Akα = Akβ.

Proof. The adjunction Ak a (−)Alg+
⇑k+1 induces a correspondence between natural transformations

of type F ⇒ (−)Alg+
⇑k+1G and the ones of type AkF ⇒ G. Since the counit of this adjunction is

an identity, the forward map of this correspondence is given by the application of Ak.

Thus, by Lemma 3.4.2, qL is a cofork of the two sides of (9) if the equation

(AkSkqR) ◦ (Ak ξ̄
k+1
r R+

k+1) = idAkSk

holds. We compute that

(AkSkqR) ◦ (Ak ξ̄
k+1
r R+

k+1)

= ((−)∗,kRkAkqR) ◦ ((−)∗,k ξk (−)Pol
≤kR+

k+1)

= ((−)∗,kRkνkAk) ◦ ((−)∗,k ξkRkAk)
= id(−)∗,kRkAk = idAkSk (by the zigzag equations).
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We proceed with verifying that qR is a cofork of the two sides of the equation:

qR ◦ (SkqR) ◦ (ξ̄
k+1
r R+

k+1)

= qR ◦ (qRSk) ◦ (ξ̄
k+1
r R+

k+1) (by the exchange law)

= qR = qR ◦ idSk (by definition of ξ̄k+1
r ).

Thus, by the universal property of the pullback, the equation (9) holds. Hence, since its projec-
tions along qL and qR holds, the second zigzag equation holds, concluding the proof.

Writing Rk+1 for the composite R+
k+1Vk, we get:

Corollary 3.4.3. There is an adjunction (−)∗,k+1 a Rk+1 : Algk+1 → Polk+1.

Proof. By composing the two adjunctions given by Theorem 3.2.5 and Theorem 3.4.1.

The unit ξk+1 and counit νk+1 are defined in the process of composing the two adjunctions.
This concludes the inductive argument of this section.

4 The full example of strict categories

In this section, we illustrate the previous constructions on the classical example of strict cat-
egories, which is a well-known theory of higher categories. Strict categories, as their name
suggests, are a classical example of a theory for higher categories that lies on the strict side
of the strict/weak spectrum of higher categories. As such, they do not represent faithfully the
homotopical information of topological spaces (see [24] or [6]). Nevertheless, they admit a rel-
atively simpler axiomatization than weak higher categories, and can be encountered in several
situations of interest. In the following, we recall the equational definition of strict categories and
show that it is associated with a truncable monad on globular sets using the criterions proved
in the previous sections (Theorem 2.5.2 and Theorem 2.7.4). This allows deriving notions of
cellular extensions and polygraphs with the associated free constructions.

We start by recalling the equational definition of strict categories in Section 4.1. Then, we
give the full calculation that the forgetful functor from strict categories to globular sets is monadic
in Section 4.2. Next, we give the boilerplate definitions of the truncation and inclusion functors
for strict categories in Section 4.3. Then, we show that the categories of strict categories that we
obtain in each dimension are coherently equivalent to the categories of globular algebras derived
from a monad on Globω (the monad of strict ω-categories) in Section 4.4. Finally, we instantiate
the free constructions introduced in Section 3 in the case of strict categories in Section 4.5.

4.1 Equational definition

Given n ∈ N∪{ω}, a strict n-category (C, ∂−, ∂+, id, ∗) (often simply denoted C) is an n-globular
set (C, ∂−, ∂+) together with, for k ∈ N with k < n, identity operations

idk+1 : Ck → Ck+1

often writen id when there is no ambiguity on k, and, for i, k ∈ Nn with i < k, composition
operations

∗i,k : Ck ×i Ck → Ck

often denoted ∗i when there is no ambiguity on k, which satisfy the axioms (S-i) to (S-vi) below.
Given k, l ∈ Nn such that k ≤ l and u ∈ Ck, we extend the notations for identity operations and
write idl(u) for

idl(u) = idl ◦ · · · ◦ idk+1(u)
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and, for the sake of conciseness, we often write idlu for idl(u), or even idu when l = k + 1. The
axioms are the following:

(S-i) for k ∈ Nn−1 and u ∈ Ck,
∂−k (idk+1

u ) = ∂+
k (idk+1

u ) = u,

(S-ii) for i, k ∈ Nn with i < k, (u, v) ∈ Ck ×i Ck and ε ∈ {−,+},

∂εk−1(u ∗i v) =


∂εk−1(u) ∗i ∂εk−1(v) if i < k − 1,
∂−k−1(u) if i = k − 1 and ε = −,
∂+
k−1(v) if i = k − 1 and ε = +,

(S-iii) for i, k ∈ Nn such that i < k, and u ∈ Ck,

idk(∂−i (u)) ∗i u = u = u ∗i idk(∂+
i (u)),

(S-iv) for i, k ∈ Nn such that i < k, and i-composable u, v, w ∈ Ck,

(u ∗i v) ∗i w = u ∗i (v ∗i w),

(S-v) for i, k ∈ Nn−1 such that i < k, and (u, v) ∈ Ck ×i Ck,

idk+1(u ∗i v) = idk+1
u ∗i idk+1

v ,

(S-vi) for i, j, k ∈ Nn such that i < j < k, and u, u′, v, v′ ∈ Ck such that u, v are i-composable,
and u, u′ are j-composable, and v, v′ are j-composable,

(u ∗i v) ∗j (u′ ∗i v′) = (u ∗j u′) ∗i (v ∗j v′).

Note that the composition that appear in Axioms (S-iii), (S-iv), (S-v) and (S-vi) are well-defined
as a consequence of Axioms (S-i) and (S-ii) and the equations satisfied by the source and target
operations of a globular set. The Axiom (S-vi) is frequently called the exchange law of strict
categories.

Example 4.1.1. Given a 2-category C and 0-, 1- and 2-globes as in the following configuration

x y z

f1

f2

f3

g1

g2

g3

⇓u

⇓u′

⇓v

⇓v′

we have (u ∗0 v) ∗1 (u′ ∗0 v′) = (u ∗1 u′) ∗0 (v ∗1 v′) by Axiom (S-vi).

Our definition of strict categories involves sets, but we could have written a similar definition
using classes to define large strict categories. For such alternative definition, we have the following
classical example:

Example 4.1.2. There is a large strict 2-category Cat whose 0-cells are the small categories,
whose 1-cells are the functors between the 1-categories, and whose 2-cells are the natural trans-
formations between functors, and where the operations ∗0,1 is the composition of functors, and
the operations ∗0,2 and ∗1,2 are respectively the horizontal and vertical compositions of natural
transformations. Note that the exchange law Axiom (S-vi) in this setting corresponds to the
usual exchange law for natural transformations.
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Given two strict n-categories C and D, a morphism F between C and D is the data of an
n-globular morphism F : C → D which moreover satisfies that

– F (idk+1
u ) = idk+1

F (u) for every k ∈ Nn−1 and u ∈ Ck,

– F (u ∗i v) = F (u) ∗i F (v) for every i, k ∈ Nn with i < k and i-composable u, v ∈ Ck.

We often call such morphisms n-functors. We write Catn for the category of strict n-categories.

There is a functor
Ūn : Catn → Globn

which maps a strict n-category to its underlying n-globular set. The above definition of strict
n-categories directly translates into an essentially algebraic theory (c.f. Appendix A.2), so that
the functor Ūn is induced by a morphism between the essentially algebraic theory of n-globular
sets (c.f. Remark 2.1.1) and the one of strict n-categories. Thus, we get:

Proposition 4.1.3. For every n ∈ N ∪ {ω}, the category Catn is locally finitely presentable,
complete and cocomplete. Moreover, the functor Ūn is a right adjoint which preserves directed
colimits.

Proof. The category Catn is locally finitely presentable by Theorem A.2.1 and in particular
cocomplete. It is moreover complete by Proposition A.1.7. The required properties on Ūn are a
consequence of Theorem A.2.5.

4.2 Monadicity

We prove here that the functors Ūn are monadic. For this purpose, we use Beck’s monadicity the-
orem, that we first recall quickly. Given a category C and morphisms f, g : X → Y and h : Y → Z
in C, we say that h is a split coequalizer of f and g when there exist s : Z → Y and t : Y → X as
in

X Y Z
f

g

h

t s

such that h ◦ f = h ◦ g, h ◦ s = idZ , f ◦ t = idY , and s ◦ h = t ◦ g. From this data, it can be
shown that h is a coequalizer of f and g. Beck’s monadicity theorem is then:

Theorem 4.2.1. Given a functor R : C → D, the functor R is monadic if and only if the
following conditions are satisfied:

(i) R is a right adjoint,

(ii) R reflects isomorphisms,

(iii) for every pair of morphisms f, g : X → Y in C, if R(f), R(g) have a split coequalizer,
then f, g have a coequalizer which is preserved by R.

Proof. See [9, Theorem 4.4.4] or the original work of Beck [5].

We can then prove the following:

Proposition 4.2.2. Given n ∈ N ∪ {ω}, the functor Ūn is monadic.
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Proof. By Proposition 4.1.3, Ūn is a right adjoint. Moreover, given a morphism

F : C → D ∈ Catn,

if Fk : Ck → Dk is a bijection for k ∈ Nn, then there is a morphism

F−1 : D → C ∈ Catn

defined by (F−1)k = (Fk)
−1 for k ∈ Nn, so that Ūn reflects isomorphisms. Now, let F,G : X → Y

be two morphisms of Catn such that there exist Z ∈ Globn, and morphisms

H : ŪnY → Z, S : Z → ŪnY and T : ŪnY → ŪnX

of Globn, as in

ŪnX ŪnY Z
Ūn(F )

Ūn(G)

H

T S

that witness that Ūn(F ), Ūn(G) is a split coequalizer. We prove that F,G has a coequalizer which
is preserved by Ūn. For this purpose, we shall equip Z with a structure of a strict n-category.
For i, k ∈ Nn with i < k and (u, v) ∈ Zk ×i Zk, we put

u ∗i v = H(S(u) ∗i S(v))

and, given k ∈ Nn−1 and u ∈ Ck, we put

idk+1
u = H(idk+1

S(u))

We verify that the axioms of strict n-categories are verified. Let k ∈ Nn−1, u ∈ Zk and ε ∈ {−,+}.
We have

∂εk(id
k+1
u ) = ∂εk(H(idk+1

S(u)))

= H(∂εk(id
k+1
S(u)))

= H(S(u)) = u

so that Axiom (S-i) is satisfied. Now, let i, k ∈ Nn such that i < k, (u, v) ∈ Zk ×i Zk
and ε ∈ {−,+}. We have

∂εk−1(u ∗i v) = H(∂εk−1(S(u) ∗i S(v)))

=


H(∂εk−1(S(u)) ∗i ∂εk−1(S(v))) if i < k − 1,
H(∂−k−1(S(u))) if i = k − 1 and ε = −,
H(∂+

k−1(S(v))) if i = k − 1 and ε = +,

so that, by reducing the last expressions, we see that Axiom (S-ii) is satisfied. Now, let i, k ∈ Nn
such that i < k, and u ∈ Zk. We have

idk(∂−i (u)) ∗i u = H(S(H(idk
S(∂−i (u))

)) ∗i S(u))

= H(S(H(idk
∂−i (S(u))

)) ∗i SHS(u))

= H(GT (idk
∂−i (S(u))

) ∗i GTS(u))

= HG(T (idk
∂−i (S(u))

) ∗i TS(u))
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= HF (T (idk
∂−i (S(u))

) ∗i TS(u))

= H(FT (idk
∂−i (S(u))

) ∗i FTS(u))

= H(idk
∂−i (S(u))

∗i S(u))

= H(S(u)) = u

and, similarly, u∗i idk(∂+
i (u)) = u, so that Axiom (S-iii) holds. Now, let i, k ∈ Nn such that i < k,

and i-composable u, v, w ∈ Ck. We have

(u ∗i v) ∗i w = H(S(H(S(u) ∗i S(v))) ∗i S(w))

= H(SH(S(u) ∗i S(v)) ∗i SHS(w))

= H(GT (S(u) ∗i S(v)) ∗i GTS(w))

= HG(T (S(u) ∗i S(v)) ∗i TS(w))

= HF (T (S(u) ∗i S(v)) ∗i TS(w))

= H(FT (S(u) ∗i S(v)) ∗i FTS(w))

= H((S(u) ∗i S(v)) ∗i S(w))

= H(S(u) ∗i S(v) ∗i S(w))

and, similarly, u∗i(v∗iw) = H(S(u)∗iS(v)∗iS(w)). So that Axiom (S-iv) is satisfied. Axioms (S-
v) and (S-vi) are proved similarly, so Z is equipped with a structure of a strict n-category.

We now verify that H is a strict n-category morphism. Given k ∈ Nn−1 and u ∈ Yk, we have

idkH(u) = H(idkSH(u)) = H(idku)

and, given i, k ∈ Nn with i < k, and (u, v) ∈ Yk ×i Yk, we have

H(u) ∗i H(v) = H(SH(u) ∗i SH(v))

= H(GT (u) ∗i GT (v))

= HG(T (u) ∗i T (v))

= HF (T (u) ∗i T (v))

= H(FT (u) ∗i FT (v))

= H(u ∗i v)

so that H is a strict n-category morphism.

We now prove that H is the coequalizer of F and G in Catn. Let K : Y → W be an n-functor
such that KF = KG. Then, since H is the coequalizer of Ūn(F ) and Ūn(G), there is a unique
morphism

K ′ : ŪnZ → ŪnW

of Globn such that K ′H = K. We are only left to prove that K ′ is an n-functor. First, note
that we have

K ′ = K ′HS = KS and KSH = KGT = KFT = K.

Now, given k ∈ Nn−1 and u ∈ Ck, we have

KS(idk+1
u ) = KSH(idk+1

S(u))

= K(idk+1
S(u))

= idk+1
KS(u).
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Moreover, given i, k ∈ Nn with i < k, and (u, v) ∈ Ck × Ck, we have

KS(u ∗i v) = KSH(S(u) ∗i S(v))

= K(S(u) ∗i S(v))

= KS(u) ∗i KS(v),

so that K ′ is an n-functor. Hence, H is the coequalizer in Catn of F and G. We can conclude
with Theorem 4.2.1.

4.3 Truncation and inclusion functors

Let k, l ∈ N ∪ {ω} such that k < l. There is a truncation functor

(−)Cat
≤k,l : Catl → Catk

which maps a strict l-category C to its evident underlying strict k-category, denoted C≤k, and
called the k-truncation of C.

Conversely, there is an inclusion functor

(−)Cat
↑l,k : Catk → Catl

which maps a strict k-category C to the strict l-category C↑l, called the l-inclusion of C, and
defined by

(C↑l)≤k = C and (C↑l)m = Ck

for m ∈ Nl with k < m, and such that

– for m ∈ Nl−1 with k ≤ m and u ∈ (C↑l)m+1, ∂−m(u) = ∂+
m(u) = u,

– for m ∈ Nl−1 with k ≤ m and u ∈ (C↑l)m, idm+1
u = u,

– for i,m ∈ Nl with i < k < m and (u, v) ∈ (C↑l)m ×i (C↑l)m, u ∗i,m v = u ∗i,k v,

– for i,m ∈ Nl with k ≤ i < m and (u, v) ∈ (C↑l)m ×i (C↑l)m, u ∗i,m v = u = v.

There is an adjunction (−)Cat
↑l,k a (−)Cat

≤k,l whose unit is the identity and whose counit ik,l is such
that, given a strict l-category C, the l-functor ik,lC : (C≤k)↑l → C is defined by (ik,lC )≤k = idC≤k
and, for m ∈ Nl with m > k, ik,lC maps u ∈ ((C≤k)↑l)m = Ck to idmu .

4.4 Strict categories as globular algebras

By Proposition 4.1.3, each functor Ūn admits a left adjoint F̄n for n ∈ N ∪ {ω}. In particular,
the adjunction F̄ω a Ūω defines a monad (T, η, µ), which is finitary by Proposition 4.1.3, and
it induces categories of algebras Algn for n ∈ N ∪ {ω} as explained in Section 2.2. By Propo-
sition 4.2.2, the comparison functor Hω : Catω → Algω is an equivalence of categories, that
moreover satisfies that UωHω = Ūω. Using the criterion introduced in Section 2.5, we prove that
the other categories Catn are, up to equivalence, the categories of algebras Algn:

Theorem 4.4.1. There exists a family of equivalences

(Hk : Catk → Algk)k∈N
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making the diagrams

Catk+1 Algk+1

Catk Algk

Hk+1

(−)Cat
≤k (−)Alg

≤k

Hk

and

Catω Algω

Catk Algk

Hω

(−)Cat
≤k (−)Alg

≤k

Hk

commute and such that UkHk = Ūk for every k ∈ N.

Proof. The unit of the adjunction (−)Cat
↑ω,n a (−)Cat

≤n is the identity, so that (−)Cat
↑ω,n is fully faithful

and Theorem 2.5.2 applies.

Finally, we prove the truncability of the monad of strict ω-categories:

Theorem 4.4.2. The monad (T, η, µ) on Globω derived from F̄ω a Ūω is weakly truncable.

Proof. By Theorem 2.7.4 and Theorem 4.4.1, it is enough to show that, for every k ∈ N, the
functors (−)Cat

≤k,ω have right adjoints such that jkUω(−)Cat
⇑ω,k is an isomorphism, where recall that jk

is the counit of (−)Glob
≤k,ω a (−)Glob

⇑ω,k . So let k ∈ N. Given a strict k-category C, we define a strict
ω-category C ′ whose underlying globular set is the image the underlying k-globular set of C
by (−)Glob

⇑ω,k , i.e.,

C ′≤k = C and C ′l = {(u, v) ∈ C2
k | u, v are parallel} for l > k,

and we equip C ′ with a structure of a strict ω-category that extends the one on C by putting

idk+1
u = (u, u) for u ∈ Ck, idl+1

(u,v) = (u, v) for l ∈ N with l > k and (u, v) ∈ C ′l ,

and moreover, for i, l ∈ N with max(i, k) < l and i-composable (u, v), (u′, v′) ∈ C ′l ,

(u, v) ∗i,l (u′, v′) =

{
(u ∗i,k u′, v ∗i,k v′) if i < k,
(u, v′) if i ≥ k.

One can show that the axioms of strict ω-categories are verified by C ′. Now, let D be a strict
ω-category and F : D≤k → C be a k-functor. By the properties of the adjunction (−)Glob

≤k,ω a (−)Glob
⇑ω,k ,

there is a unique ω-globular morphism F ′ : D → C ′ such that F ′≤k = F , which is defined by

F ′(u) = (F (∂−k (u)), F (∂+
k (u)))

for every l ∈ N with k < l and u ∈ Dl. We verify that F ′ is an ω-functor by checking the
compatibility with the idl and ∗i,l operations. Given l ∈ N with l ≥ k and u ∈ Dl, we have

F ′(idl+1
u ) = (F (∂−k (u)), F (∂+

k (u))) = idk+1
F ′(u).

Moreover, given i, l ∈ N with max(i, k) < l and i-composable u, v ∈ Dl, we have

F ′(u ∗i v) =

{
(F (∂−k (u)) ∗i F (∂−k (v)), F (∂+

k (u)) ∗i F (∂+
k (v))) if i < k

(F (∂−k (u)), F (∂+
k (v))) if i ≥ k

= F ′(u) ∗i F ′(v).

Thus, F ′ is an ω-functor. Hence, the natural bijective correspondence

(−)Glob
≤k,ω : Globω(D,C ′)→ Globk(D≤k, C)
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restricts to a bijective correspondence

(−)Cat
≤k,ω : Catω(D,C ′)→ Catk(D≤k, C)

so that the operation C 7→ C ′ extends to a functor (−)Cat
⇑ω,k which is right adjoint to (−)Cat

≤k,ω.
Moreover, by the definition of C ′ above, the natural morphism jkUω(−)Cat

⇑ω,k is an isomorphism.
Hence, Theorem 2.7.4 applies and (T, η, µ) is a weakly truncable monad.

Remark 4.4.3. We highlight that the criterions given by Theorem 2.5.2 and Theorem 2.7.4 enabled
us to prove that the categories Catn are globular algebras derived from a truncable monad
on Globω without giving an explicit description of this monad, which could have been a tedious
exercise [22].

4.5 Free constructions

Using Theorem 4.4.1 and Theorem 4.4.2, we can instantiate the definitions and properties devel-
oped in Section 3 to define free constructions on strict n-categories. In particular, for every n ∈ N,
there is a notion of n-cellular extension, with associated category Cat+

n defined like Alg+
n . More-

over, there is a canonical forgetful functor Catn+1 → Cat+
n which has a left adjoint

−[−]n : Cat+
n → Catn+1

which can be chosen such that C[X]≤n = C for (C,X) ∈ Cat+
n . As was shown in [20], the

(n+1)-cells of a free extension admit a syntactical description consisting of “well-typed” terms
considered up to the axioms of strict categories (c.f. Section 4.1).

Using the functors −[−]k, we can define, for every n ∈ N∪{ω}, a notion of n-polygraph with
associated category Poln, and a functor

(−)∗,n : Poln → Catn

which maps an n-polygraph P to the free strict n-category P∗ induced by the generators contained
in P. Note that, when n > 0, as a consequence of the compatibility of −[−]n−1 with truncation,
the underlying strict (n−1)-category (P∗)≤n−1 of P∗ is exactly (P≤n−1)∗. As before, the cells
of P∗ admit a syntactic description as equivalence classes of well-typed terms (see [18] or [11,
Proposition 1.4.1.16]).

Example 4.5.1. Given the 1-polygraph P with P0 = {x} and P1 = {f : x → x}, the strict
1-category P∗ is the monoid of natural numbers (N, 0,+).

Example 4.5.2. We define a 3-polygraph P that aims at encoding the structure of a pseudomonoid
in a 2-monoidal category as follows. We put

P0 = {x} P1 = {1̄ : x→ x} P2 = {µ : 2̄⇒ 1̄, η : 0̄⇒ 1̄}

where, given n ∈ N, we write n̄ for the composite 1̄ ∗0 · · · ∗0 1̄ of n copies of 1̄, and we define P3

as the set with the following three elements

L : (η ∗0 id2
1̄) ∗1 µ V id2

1̄

R : (id2
1̄ ∗0 η) ∗1 µ V id2

1̄

A : (µ ∗0 id2
1̄) ∗1 µ V (id2

1̄ ∗0 µ) ∗1 µ .

It is convenient to represent the 2-cells of P∗ using string diagrams. In this representation, the
2-generators η and µ are represented by and respectively, and the 2-cells of the form id2

n̄ are
represented by sequences of n wires ··· for n ∈ N. Moreover, given u, v ∈ P∗2, when u, v
are 0-composable (resp. 1-composable), a representation of the 2-cell u ∗0 v (resp. u ∗1 v) is
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obtained by concatenating horizontally (resp. vertically) representations of u and v. For example,
using this representation, the 3-generators L, R and A, can be pictured by

L : V

R : V

A : V .

Note that, by Axiom (S-vi), a 2-cell can admit several representations as string diagrams. For
example, the 2-cell

µ ∗0 id2
3̄ ∗0 µ = (µ ∗0 id2

5̄) ∗1 (id2
4̄ ∗0 µ) = (id2

5̄ ∗0 µ) ∗1 (µ ∗0 id2
4̄)

can be represented by the three string diagrams

and and .
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A Local presentability

Locally presentable categories are a standard tool for deriving elementary properties on categories
of algebraic structures (monoids, groups, but also categories, 2-categories, etc.). They are those
categories where every object is a directed colimit of “finitely presentable” objects, which are
a generalization of the notions of finitely presentable monoids or groups. Knowing that some
categories are locally finitely presentable category is helpful since those categories are complete,
cocomplete and satisfy other nice properties. For a more complete presentation, we refer to the
existing literature [12, 1, 9].

We first recall the definition of locally finitely presentable categories (Appendix A.1) and then
introduce essentially algebraic theories, which are a standard tool to show that some categories
are locally finitely presentable (Appendix A.2).

A.1 Presentability

In this section, we define the notion of locally finitely presentable category, after recalling directed
colimits and presentable objects of categories.

Directed colimits A partial order (D,≤) is directed when D 6= ∅ and for all x, y ∈ D, there
exists z ∈ D such that x ≤ z and y ≤ z. A small category I is called directed when it is isomorphic
to a directed partial order (D,≤).

Given a category C ∈ CAT, a diagram in C is the data of a functor d : I → C where I is
a small category. We say that it is a directed diagram when I is moreover directed. A directed
colimit of C is a colimit cocone (pi : d(i)→ X)i∈I on a directed diagram d : I → C.
Example A.1.1. A set is a directed colimit of its finite subsets. A monoid is a directed colimit of
its finitely generated submonoids.

In Set, we have the following characterization of directed colimits:

Proposition A.1.2. Let d : I → Set be a directed diagram in Set and (pi : d(i) → C)i∈I be a
cocone on d. Then, (pi : d(i)→ C)i∈I is a directed colimit on d if and only if

(i) for all x ∈ C, there is i ∈ I and x′ ∈ d(i) such that pi(x′) = x,

(ii) for all i1, i2 ∈ I, x1 ∈ d(i1) and x2 ∈ d(i2), if pi1(x1) = pi2(x2), then there exists i ∈ I
such that

i1 → i ∈ I, i2 → i ∈ I and d(i1 → i)(x1) = d(i2 → i)(x2).

Proof. See for example [8, Proposition 2.13.3].

Finitely presentable objects Let C ∈ CAT. An object P ∈ C is finitely presentable when
its hom-functor

C(P,−) : C → Set

commutes with directed colimits. By Proposition A.1.2, it means that, given a directed colimit

(pi : d(i)→ X)i∈I

on a directed diagram d : I → C, we have

(i) for every X ∈ C and f : P → X, there is a factorization of f through d, i.e., there exists
i ∈ I and g : P → d(i) such that f = pi ◦ g;
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(ii) this factorization is essentially unique, i.e., if there exist others i′ ∈ I and g′ : P → d(i)
such that f = pi′ ◦ g′, then there exist j ∈ I, h : i→ j ∈ I and h′ : i′ → j ∈ I such that

d(h) ◦ g = d(h′) ◦ g′.

Example A.1.3. Given a set S, S is finitely presentable if and only if it is finite. See [1, Exam-
ple 1.2(1)] for details.

Example A.1.4. A monoid is finitely presentable when it admits a presentation consisting of a
finite number of generators and equations. A similar description of finitely presentable objects
holds for the other categories of algebraic structures (groups, rings, etc.). See [1, Theorem 3.12]
for details.

Locally finitely presentable categories A locally small category C ∈ CAT is locally finitely
presentable when

(i) it has all small colimits,

(ii) every object of C is a directed colimit of locally finitely presentable objects,

(iii) the full subcategory of C whose objects are the finitely presentable objects is essentially
small.

Example A.1.5. The category Set is locally finitely presentable. Indeed, it is cocomplete and
every set is a directed colimit of its finite subsets, which are finitely presentable objects of Set.

Example A.1.6. The category Mon of monoids is locally finitely presentable. More generally, the
categories of algebraic structures (groups, rings, etc.) are locally finitely presentable. This is the
consequence of the fact that such categories can be described by means of essentially algebraic
theories, as we will see in the next section.

Identifying a category as locally finitely presentable enables to derive several elementary prop-
erties, like completeness:

Proposition A.1.7. A locally finitely presentable category is complete.

Proof. See [1, Corollary 1.28, Remark 1.56(1), Theorem 1.58] for details.

Moreover, showing that a functor between two locally finitely presentable categories is a left or
right adjoint is easier than in the general case, since we do not need the existence of solution set
like in Freyd’s adjoint theorem ([8, Theorem 3.3.3]):

Proposition A.1.8. Given a functor F : C → D between two locally finitely presentable categories
C and D, the following hold:

(i) F is left adjoint if and only if it preserves colimits,

(ii) if F preserves limits and directed colimits, then it is right adjoint.

Finally, there is a simple criterion for a category of algebras on a monad to be locally finitely
presentable. We recall that a functor F is finitary when F preserves directed colimits, and a
monad (T, η, µ) on a category C is finitary when T is finitary. We then have:

Proposition A.1.9. Given a locally finitely presentable category C and a finitary monad (T, η, µ)
on C, the category of algebras CT is locally finitely presentable. Moreover, the canonical forgetful
functor CT → C preserves directed colimits.
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Proof. The category CT is finitely locally presentable by [1, Theorem 2.78 and the following
remark]. Moreover, since T is finitary, the directed colimits of CT are computed in C, so that the
mentioned forgetful functor preserves directed colimits.

Example A.1.10. The categoryMon is equivalent to the category of algebras SetT where (T, η, µ)
is the free monoid functor on Set. It can be shown that T is finitary, so that we obtain another
proof that Mon is locally finitely presentable using Proposition A.1.9.

Locally ω1-presentable categories The above definitions and properties can be generalized
to higher cardinals in order to define more general notions of presentable categories, in particular
for the first non-countable cardinal ℵ1 = |ω1|.

A partial order (D,≤) is ω1-directed when every countable subset S ⊆ D admits an upper
bound in D. A small category I is called ω1-directed when it is isomorphic to an ω1-directed
partial order (D,≤).

Given a diagram d : I → C in a category C, we say that it is an ω1-directed diagram when I
is ω1-directed. An ω1-directed colimit of C is a colimit cocone (pi : d(i) → X)i∈I on a directed
diagram d : I → C.

Let C ∈ CAT. An object P ∈ C is ω1-presentable when its hom-functor

C(P,−) : C → Set

commutes with ω1-directed colimits.
A locally small category C ∈ CAT is locally ω1-presentable when

(i) it has all small colimits,

(ii) every object of C is an ω1-directed colimit of locally ω1-presentable objects,

(iii) the full subcategory of C whose objects are the ω1-presentable objects is essentially small.

Proposition A.1.11. A locally ω1-presentable category is complete.

Proof. See [1, Corollary 1.28].

Proposition A.1.12. Given a functor F : C → D between two locally ω1-presentable categories
C and D, the following hold:

(i) F is left adjoint if and only if it preserves colimits,

(ii) if F preserves limits and ω1-directed colimits, then it is right adjoint.

We stop the copy-and-paste here and refer the reader to [1] for other properties shared by locally
ω1- and finitely presentable categories.

A.2 Essentially algebraic theories

Verifying that some category is locally finitely presentable with the above definition can be
tedious. A simpler way consists in describing it as the category of models of some essentially
algebraic theory. The latter is similar to an algebraic theory (theory of monoids, theory of
groups, etc.), except that operations with partial domains are allowed, as long as those domains
are specified by equations. Another interesting property is that morphisms between such theories
induce functors between the associated categories of model, and those functors are moreover right
adjoints and preserve directed colimits. The main reference here is [1, Section 3.D].
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Definition Given a set S, an S-sorted signature is the data of a set Σ of symbols such that
each σ ∈ Σ has an arity under the form of a finite sequence (si)i∈N∗n of elements of S for
some n ∈ N, and a target in the form of an element s ∈ S and we write

σ : s1 × · · · × sn → s

such a symbol σ of Σ with such arity and target.
Let (xi)i∈N be a chosen sequence of distinct variable names. Given a set S, an S-sorted

context is the data of a finite sequence Γ = (si)i∈N∗n of elements of S for some n ∈ N. Under the
context Γ, the variable xi should be thought “of type si” for i ∈ Nn so that we often write

x1 : s1, . . . , xn : sn

for such a context Γ.
Given a set S and S-sorted signature Σ and context Γ, we define Σ-terms on Γ together with

judgements Γ ` t : s where t is a Σ-term and s ∈ S, inductively as follows:

– if Γ = (si)i∈N∗n for some n ∈ N and s1, . . . , sn ∈ S, then, for every i ∈ N∗n, Γ ` xi : si,

– given σ : s1 × · · · × sn → s ∈ Σ and Σ-terms t1, . . . , tn such that Γ ` ti : si for i ∈ N∗n,
then Γ ` σ(t1, . . . , tn) : s.

Note that s is uniquely determined by t in a judgement Γ ` t : s.

An essentially algebraic theory is a tuple

T = (S,Σ, E,Σt,Def)

where

– S is a set,

– Σ is an S-sorted signature,

– E is a set of triples (Γ, t1, t2) where Γ is an S-sorted context, and t1, t2 are Σ-terms on Γ
such that there exists s ∈ S so that Γ ` ti : s for i ∈ {1, 2},

– Σt is a subset of Σ,

– Def is a function which maps σ : s1 × · · · × sn → s ∈ Σ \ Σt to a set of pairs (t1, t2)
of Σt-terms such that there exists s ∈ S so that (x1 : s1, . . . , xn : sn) ` ti : s for i ∈ {1, 2}.

The set S represents the different sorts of the theory, the set Σ the different operations that
appear in the theory, the set E the global equations satisfied by the theory, the set Σt the
operations whose domains are total, and the function Def the equations that define the domains
of the partial operations. Given such an essentially algebraic theory T, a model of T, or T-model,
is the data of

– for all s ∈ S, a set Ms,

– for all σ : s1 × · · · × sn → s ∈ Σt, a function

Mσ : Ms1 × · · · ×Msn →Ms,

– for all σ : s1 × · · · × sn → s ∈ Σ \ Σt, a partial function

Mσ : Ms1 × · · · ×Msn →Ms,
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such that

– for all σ : s1 × · · · × sn → s ∈ Σ \ Σt, Mσ is defined at ȳ = (y1, . . . , yn) ∈Ms1 × · · · ×Msn

if and only if, for all (t1, t2) ∈ Def(σ), we have Jt1Kȳ = Jt2Kȳ,

– for every triple (Γ, t1, t2) ∈ E where Γ = (si)i∈N∗n for some n ∈ N and sorts s1, . . . , sn ∈ S,
given a tuple ȳ = (y1, . . . , yn) ∈ Ms1 × · · · × Msn , if both Jt1Kȳ and Jt2Kȳ are defined,
then Jt1Kȳ = Jt2Kȳ,

where, given an S-sorted context Γ = (si)i∈N∗n , a sort s ∈ S, a Σ-term t such that Γ ` t : s,
and a tuple ȳ = (y1, . . . , yn) ∈ Ms1 × · · · ×Msn , the evaluation of t at ȳ, denoted JtKȳ, is either
undefined or an element of Ms, and is defined by induction on t by

– if t = xi for some i ∈ N∗n, then JtKȳ is defined and

JtKȳ = yi,

– if t = σ(t1, . . . , tk) for some k ∈ N∗ and Σt-terms t1, . . . , tk, then JtKȳ is defined if and only
if Jt1Kȳ, . . . , JtkKȳ are defined and Mσ is defined at Jt1Kȳ, . . . , JtkKȳ and, in this case,

JtKȳ = Mσ(Jt1Kȳ, . . . , JtkKȳ).

Given two models M and M ′ of T, a morphim of T-model between M and M ′ is a family of
functions f = (fs : Ms →M ′s)s∈S such that

– for all σ : s1 × · · · × sn → s ∈ Σt, fs ◦Mσ = M ′σ ◦ (fs1 × · · · × fsn),

– for all σ : s1 × · · · × sn → s ∈ Σ \Σt and ȳ = (y1, . . . , yn) ∈Ms1 × · · · ×Msn such that Mσ

is defined on ȳ, fs ◦Ms(ȳ) = M ′s(fs1(y1), . . . , fsn(yn)).

We then write Mod(T) for the category of T-models and their morphisms. We say that a (big)
category C ∈ CAT is essentially algebraic when it is equivalent to the category of models of
some essentially algebraic theory.

Identifying a category as essentially algebraic enables to deduce that it is locally finitely
presentable, since the two notions are the same:

Theorem A.2.1. Given a category C ∈ CAT, C is essentially algebraic if and only if it is locally
finitely presentable.

Proof. See the proof of [1, Theorem 3.36].

Example A.2.2. The category Set is essentially algebraic since it is the category of models of the
essentially algebraic theory ({s}, ∅, ∅, ∅,⊥).

Example A.2.3. The category Mon is essentially algebraic since it is the category of models of
the essentially algebraic theory

Tmon = ({s}, {e : 1→ s,m : s× s→ s}, E, {e,m},⊥)

where E consists of three equations

– m(e, x1) = x1 in the context (x1 : s),

– m(x1, e) = x1 in the context (x1 : s),

– m(m(x1, x2), x3) = m(x1,m(x2, x3)) in the context (x1 : s, x2 : s, x3 : s).
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In particular, it gives a simple proof that Mon is locally finitely presentable.

Example A.2.4. The category Cat of small categories is essentially algebraic since it is the
category of models of the essentially algebraic theory Tcat = (S,Σ, E,Σt,Def) defined as follows.
The set S consists of two sorts c0 and c1 corresponding to 0-cells and 1-cells, and

Σ = {∂−0 : c1 → c0, ∂+
0 : c1 → c0, id1 : c0 → c1, ∗ : c1 × c1 → c1}.

Moreover, E consists of the equations

– ∂−0 (id1(x1)) = x1 and ∂+
0 (id1(x1)) = x1 in the context (x1 : c0),

– ∂−0 (∗(x1, x2)) = ∂−0 (x1) and ∂+
0 (∗(x1, x2)) = ∂+

0 (x2) in the context (x1 : c1, x2 : c1),

– ∗(id1(∂−0 (x1)), x1) = x1 and ∗(x1, id
1(∂+

0 (x1))) = x1 in the context (x1 : c1),

– ∗(∗(x1, x2), x3) = ∗(x1, ∗(x2, x3)) in the context (x1 : c1, x2 : c1, x3 : c1).

Finally, Σt = {∂−0 , ∂
+
0 , id

1}, and Def(∗) is the singleton set containing the equation ∂+
0 (x1) = ∂−0 (x2).

This shows that Cat is a locally finitely presentable category.

Morphisms of theories Given two essentially algebraic theories

T = (S,Σ, E,Σt,Def) and T′ = (S′,Σ′, E′,Σ′t,Def ′)

a morphism of essential algebraic theories between T and T′ is the data of

– a function f : S → S′,

– a function g : Σ→ Σ′,

such that

– given σ : s1 × · · · × sn → s ∈ Σ, we have g(σ) : f(s1)× · · · × f(sn)→ f(s) ∈ Σ′,

– given σ ∈ Σ, σ ∈ Σt if and only if g(σ) ∈ Σ′t,

– given (Γ, t1, t2) ∈ E, we have (f(Γ), g(t1), g(t2)) ∈ E′,

– given σ ∈ Σ \ Σt and two Σt-terms t1 and t2, we have that (t1, t2) ∈ Def(σ) if and only
if (g(t1), g(t2)) ∈ Def ′(g(σ)),

where, given Γ = (si)i∈N∗n , we write f(Γ) for (f(si))i∈N∗n and, given a Σ-term t, we write g(t) for
the Σ′-term defined by induction on t by

– for all variable xi,
g(xi) = xi,

– for all σ : s1 × · · · × sn → s ∈ Σ and Σ-terms t1, . . . , tn,

g(σ(t1, . . . , tn)) = g(σ)(g(t1), . . . , g(tn)).

Such a morphism (f, g) : T→ T′ induces a functor

Mod((f, g)) : Mod(T′)→ Mod(T)

which maps a model M ′ ∈ Mod(T′) to a model M ∈ Mod(T) defined by
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– for all s ∈ S, Ms = M ′f(s),

– for all σ ∈ Σ, Mσ = M ′g(σ),

and which maps morphisms of models as expected. The functors induced this way by morphisms
between theories have good properties:

Theorem A.2.5. Given a morphism (f, g) : T→ T′ between two essentially algebraic theories T
and T′, the functor Mod((f, g)) is a right adjoint which preserves directed colimits.

Proof. The fact that it is a right adjoint is given by [21, Theorem 5.4]. Moreover, one easily
verifies that the directed colimits are computed pointwise in both Mod(T) and Mod(T′), so that
they are preserved by Mod((f, g)).

Remark A.2.6. A more general definition of morphisms between essentially algebraic theories for
which Theorem A.2.5 holds can be defined. However, it would require the introduction of formal
deduction systems, which would be quite long and technical. This would be in vain since our
definition of morphisms is enough for our purposes.

Example A.2.7. One can define the essentially algebraic theory Tgrp of groups from the one of
monoids given in Example A.2.3 by adding a symbol i : s → s representing a total function,
and by adding the equations m(i(x1), x1) = e and m(x1, i(x1)) = e in the context (x1 : s). The
canonical embedding Tmon → Tgrp induces a functor Grp → Mon between the categories of
groups and monoids which is the expected forgetful functor. This functor is a right adjoint and
preserves directed colimits by Theorem A.2.5.

Example A.2.8. The essentially algebraic theory

Tgph = ({c0, c1}, {d−0 : c1 → c0, d
+
0 : c1 → c0}, ∅, {d−0 ,d

+
0 },⊥)

exhibits the category Gph of graphs as an essentially algebraic category. Recalling from Ex-
ample A.2.4 the definition of Tcat, the mappings d−0 7→ ∂−0 and d+

0 7→ ∂+
0 define a morphism

of essentially algebraic theories Tgph → Tcat, which induces a functor Cat → Gph that is the
expected forgetful functor. This functor is a right adjoint and preserves directed colimits by
Theorem A.2.5.
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