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Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille

Email: Pierre.Clairambault@cnrs.fr

Simon Forest
Aix Marseille Univ, CNRS, I2M, Marseille, France

Email: Simon.Forest@univ-amu.fr

Abstract—Recently, there has been growing interest in bicat-
egorical models of programming languages, which are “proof-
relevant” in the sense that they keep distinct account of execution
traces leading to the same observable outcomes, while assigning
a formal meaning to reduction paths as isomorphisms.

In this paper we introduce a new model, a bicategory called
thin spans of groupoids. Conceptually it is close to Fiore et
al.’s generalized species of structures and to Melliès’ homotopy
template games, but fundamentally differs as to how replication of
resources and the resulting symmetries are treated. Where those
models are saturated – the interpretation is inflated by the fact
that semantic individuals may carry arbitrary symmetries – our
model is thin, drawing inspiration from thin concurrent games:
the interpretation of terms carries no symmetries, but semantic
individuals satisfy a subtle invariant defined via biorthogonality,
which guarantees their invariance under symmetry.

We first build the bicategory Thin of thin spans of groupoids.
Its objects are certain groupoids with additional structure, its
morphisms are spans composed via plain pullback with identities
the identity spans, and its 2-cells are span morphisms making
the induced triangles commute only up to natural isomorphism.
We then equip Thin with a pseudocomonad !, and finally show
that the Kleisli bicategory Thin! is cartesian closed.

I. INTRODUCTION

The relational model [1] is one of the most basic and
elementary denotational models for linear logic or the λ-
calculus. At its heart, it is simply an interpretation of formulas
/ types as sets and proofs / programs as relations, i.e. in the
category Rel. Despite its simplicity the relational model is
ubiquitous: it is the basic substrate for the spectrum of so-
called web-based models of linear logic, including coherence
or finiteness spaces [2]. It faithfully predicts reduction time
[3]. It supports quantitative extensions such as in probabilistic
coherence spaces [4], the weighted relational model [5], and
even up to quantum computation [6] – quantitative extensions
which enjoy powerful full abstraction results [7], [8]. Presented
syntactically, the relational model exactly corresponds to non-
idempotent intersection types [9], a currently active research
topic in its own right (see e.g. [10], [11]) which enables
a syntactic methodology to addressing semantic questions.
Finally, it has a tight connection with game semantics [12],
[13], of which it appears as a desequentialization (see e.g. [8],
[14]–[16]). In short, it is at the crossroads of multiple topics,
past and current, of the denotational semantics universe.

Another recent trend in denotational semantics is the adop-
tion of bicategorical models [17] where the familiar categor-
ical laws hold only up to certain 2-cells satisfying coherence
conditions – in particular, Fiore and Saville have recently thor-
oughly explored cartesian closed bicategories [18]. In such
models, the denotation is no longer an invariant of reduction:
two convertible terms yield merely isomorphic objects, and
reduction paths have a genuine interpretation as specific iso-
morphisms [19] – thus bringing reduction into the categorical
model. There are still not many concrete bicategorical models,
and we are aware of only three (families of) such models that
can deal with non-linear computation, in chronological order:
firstly, Fiore, Gambino, Hyland and Winskel’s cartesian closed
bicategory of generalized species of structure [20]; secondly,
Castellan, Clairambault and Winskel’s thin concurrent games
[21] (as established by Paquet [22]); thirdly, Melliès’ homo-
topy template games [23]. Of these three, the first is by far
the most studied with various works including generalizations
and application to semantics [24]–[26], links with intersection
types and Taylor expansion [27], [28], or applications to
the pure λ-calculus [29]. Beyond giving a non-degenerated
interpretation to reduction paths, those concrete bicategorical
models are “proof-relevant”, in the sense that they keep distinct
semantic witnesses for the possibly multiple evaluation traces
with the same observable behaviour and thus keep a clear,
branching account of non-determinism.

These models have something else in common: in their
construction, the main subtlety has to do with replication, i.e.
the modality ! of linear logic. In the relational model, !A is
the set M(A) of finite multisets of elements of A, or alter-
natively, the free monoid A∗ quotiented by permutations. In
bicategorical models, this is replaced by a categorification of
M(A): a category (or groupoid) whose objects keep separate
individual resource usages (e.g. A∗). Its morphisms are explicit
permutations, often called symmetries in this paper. Individuals
in the model must refer to specific resources (e.g. ai in
a1 . . . an ∈ A∗), but the categorical laws expected for mod-
els of programming languages requires that their behaviour
should still be invariant under symmetry. In both generalized
species of structure and template games, this is done by
saturating the set of witnesses with respect to symmetries:
intuitively, the behaviour of an individual cannot depend on
the specific identity of resources, because those resources
are seen through the “noise” of all possible symmetries –979-8-3503-3587-3/23/$31.00 ©2023 IEEE



this shall be reviewed gently in Section II. This saturation
complicates models and their construction, though for good
reasons. But this contrasts with thin concurrent games, which
handles symmetry with a mechanism inspired by Abramsky-
Jagadeesan-Malacaria games [12] and Melliès’ orbital games
[15]: strategies are not saturated, but their invariance under
“Opponent’s symmetries” is ensured by a subtle bisimulation-
like structure – we call this the thin approach.

We believe that the thin approach is helpful at least for appli-
cations to semantics: the absence of symmetries on witnesses
allow a more concrete flavour which may help when order-
ing individuals allowing continuous reasoning1, or simplify
quantitative extensions such as [24]. But more fundamentally,
there is a clear tension between these two worlds that deserves
investigation. Are proof-relevant relational models inherently
saturated? Is the thin approach only possible in games thanks
to the presence of time and causality? These fundamental
questions may be of interest beyond denotational semantics, as
the handling of symmetry in such models is deeply connected
to algebraic combinatorics [20] and homotopy theory [23].

a) Contributions: We introduce the bicategory Thin of
thin spans of groupoids: its objects are certain groupoids with
additional structure, its morphisms certain spans, and its 2-
cells certain weak span morphisms, i.e. making the induced
triangles commute up to chosen natural isos. Identities are
identity spans, and composition of spans is by plain pullback.

Of course, plain pullbacks are too weak to support the
horizontal composition of weak span morphisms. To address
this, we first define uniform spans via a biorthogonality con-
struction, ensuring that the composition pullbacks also satisfy
the bipullback universal property. This allows us to compose
2-cells horizontally, but that horizontal composition is still not
canonically defined and fails to give a bicategory.

For the next step, we import from thin concurrent games and
from Melliès’ orbital games a decomposition of symmetries
into positive symmetries (due to the program), and negative
symmetries (due to the environment). We then define thin
spans via a second biorthogonality construction, which ensures
that the horizontal composition of weak span morphisms are
canonically defined as long as we consider positive weak
span morphisms, where the chosen iso only involves positive
symmetries. We show this results in a bicategory Thin.
Furthermore, we equip Thin with a pseudocomonad !, and
show that the Kleisli bicategory Thin! is cartesian closed.

b) Outline: In Section II we start with a gentle introduc-
tion to the relational model and its proof-relevant extensions.
In Section III we introduce the bicategory Thin, deploying
first the uniform orthogonality and then the thin orthogonality.
In Section IV we introduce the pseudocomonad !, and show
that the Kleisli bicategory Thin! is cartesian closed.

1For instance, in [29], the generalization from finite to infinite computation
is not simply by continuity as per usual in denotational semantics, because
of the quotient involved in the management of saturation.

II. RELATIONAL MODELS, SPANS, SPECIES

A. The Relational Model

The relational model is one of the simplest denotational
models of the λ-calculus, linear logic, or simple programming
languages such as PCF. It consists in simply interpreting every
type A as a set JAK, and a program ⊢ M : A as a subset of
JAK. This set JAK is often called the web seeing that it is the
first component of the so-called web-based models of linear
logic such as coherence spaces and their extensions. One may
think of elements of JAK as completed executions (which is
straightforward enough for ground types such as booleans or
natural numbers but may be more complex for higher-order
types), and of JMK ⊆ JAK as simply the collection of all the
completed executions that M may achieve.

Example 1. The ground type for booleans is interpreted as
JBK = {tt, ff}, and the constant ⊢ tt : B as JttK = {tt}.

The interpretation of a program M is computed composi-
tionally, following the methodology of denotational semantics,
organized by the categorical structure of sets and relations.

1) Basic categorical structure: There is a category Rel
with sets as objects, and as morphisms the relations from A
to B, i.e. subsets R ⊆ A×B. The identity on A is the diagonal
relation {(a, a) | a ∈ A} ⊆ A × A, and the composition of
R ⊆ A×B and S ⊆ B×C consists in all pairs (a, c) ∈ A×B
such that (a, b) ∈ R and (b, c) ∈ S for some b ∈ B.

Besides, Rel has a monoidal structure given by the
cartesian product on objects, and for Ri ∈ Rel(Ai, Bi),
R1 × R2 ∈ Rel(A1 × A2, B1 × B2) set as comprising all
((a1, a2), (b1, b2)) when (ai, bi) ∈ Ri – the unit I is a fixed
singleton set, say {∗}. Additionally, Rel is compact closed:
each set A has a dual A∗ defined simply as A itself, and there
are relations ηA ∈ Rel(I, A × A) and ϵA ∈ Rel(A × A, I),
both diagonal relations, satisfying coherence conditions [30].
In particular, Rel is ⋆-autonomous and as such a model of
multiplicative linear logic, and the linear λ-calculus: the linear
arrow type is interpreted as JA ⊸ BK = JAK× JBK. Finally,
Rel has finite products, with the binary product of sets A and
B given by the disjoint union A+B = {1} ×A ⊎ {2} ×B.

2) The exponential modality: The exponential modality of
Rel is based on finite multisets. If A is a set, we writeM(A)
for the set of finite multisets on A. To denote specific multisets
we use a list-like notation, as in e.g. [0, 1, 1] ∈ M(N) – we
write [] ∈M(A) for the empty multiset.

For A a set, its bang !A is simply the set M(A). This ex-
tends to a comonad on Rel, satisfying the required conditions
to form a so-called Seely category – in particular, there is

M(A+B) ∼=M(A)×M(B)

a bijection providing the Seely isomorphism. Altogether, this
makes Rel a model of intuitionistic linear logic; and this
makes the Kleisli category Rel! cartesian closed so that we
may interpret (among others) the simply-typed λ-calculus.



Example 2. Considering the term ⊢M : B→ B of PCF

⊢ λxB. ifx thenx
else ifx then ff else tt : B→ B ,

we have JMK = {([tt, tt], tt), ([tt, ff ], ff), ([ff , ff ], tt)}.
Here we can observe that the model is quantitative, in that

it records how many resources each execution consumes: one
may observe output tt either with two evaluations of x to tt,
or with two evaluations of x to ff . One may observe output
ff with two evaluations of x, one to tt and one to ff . Recall
that in [tt, ff ] = [ff , tt], the order is irrelevant.

The relational model also supports the interpretation of non-
determinism: if ⊢ choice : B is a new primitive evaluating
non-deterministically to tt or ff , then we may simply set

JchoiceK = {tt, ff} .

3) Extensions of the relational model: The relational model
is extremely flexible, and can be extended in multiple different
ways. In one direction one may add to the objects a coherence
relation and restrict to compatible morphisms – we obtain in
this way (multiset-based) coherence semantics.

Another extension is the weighted relational model [5], [31]
where a term ⊢M : A, instead of denoting a subset of JAK –
i.e. a function JMK : JAK→ {0, 1} – denotes a function

JMK : JAK→ R

assigning to each point of the web a ∈ JAK a weight JMKa ∈
R. The weight may be used to record additional information
about executions. One may record the number of distinct non-
deterministic branches leading to a certain result: for instance,
if R = N ∪ {+∞}, then Jif choice then tt else ttKtt = 2.
With R = R+ = R+ ∪ {+∞}, we may track the probability
with which a certain result occurs, obtaining a model fully
abstract for probabilistic PCF [7]. The paper [5] contains other
examples: resource consumption, must convergence, etc.

It is natural to go one step further and make the relational
model “proof-relevant”. This means not merely recording a
weight or counting non-deterministic branches, but keeping
track of a set JMKa ∈ Set of witnesses of the execution of
M to a, for each ⊢ M : A and a ∈ JAK. There are well-
documented ways to do that which we shall review later on,
but for now let us attempt this naively.

B. The Bicategory of Spans

A first idea is to simply replace relations with spans.
1) Spans: Recall that if C is a category with pullbacks, then

we form Span(C) has having as objects those of C, and as
morphisms from A to B triples (S, ∂SA, ∂

S
B) forming a diagram

A
∂S
A← S

∂S
B→ B ,

where intuitively S is a set of internal witnesses, projected to
A and B via the maps ∂SA and ∂SB . For C = Set one obtains a
relation by collecting the pairs (∂SA(s), ∂

S
B(s)) for s ∈ S, but

we have more: for each pair (a, b) ∈ A×B we have

witS(a, b) = {s ∈ S | ∂SA(s) = a & ∂SB(s) = b} ,

a set of witnesses that a and b are related – hence this indeed
provides a notion of a proof-relevant relational model.

Example 3. Writing B = {tt, ff} and 1 = {∗}, we may
represent the program ⊢ if choice then tt else tt as

1
∂l← {a, b} ∂r→ B

a span, where ∂l(a) = ∂l(b) = ∗, ∂r(a) = ∂r(b) = tt.
Thus, the evaluation of the program to tt has two witnesses.

2) A bicategory: The exact identity of S does not matter –
the same span above with S′ = {a′, b′} should not be treated
distinctly. A morphism between spans is f : S → S′ making

S

A B

S′

∂S
A ∂S

B

f

∂S′
A ∂S′

B

commute; an isomorphism of span is an invertible morphism.
The identity span on A is simply A ← A → A with

two identity maps. The composition of A ← S → B and
B ← T → C is obtained by first forming the pullback

T ⊙ S

S T

A B C

l r

∂S
A ∂S

B ∂T
B ∂T

C

(1)

and setting ∂T⊙S
A = ∂SA ◦ l and ∂T⊙S

C = ∂TC ◦ r – for
Span(Set), this means that T ⊙ S has elements all pairs
(s, t) such that ∂SB(s) = ∂TB(t), projected to A and C via
∂T⊙S
A ((s, t)) = ∂SA(s) and ∂T⊙S

C ((s, t)) = ∂TC(t).
This composition need not be associative on the nose, but

the universal property of pullbacks entails that it is associative
up to canonical isomorphism – forming a bicategory:

Theorem 1. If C has pullbacks, then Span(C) defined with

objects: objects of C,
morphisms: spans A← S → B,

2-cells: morphisms of spans,

forms a bicategory, denoted Span(C).

In fact, Span(C) is a compact closed bicategory [32], and
thus a model of the linear λ-calculus. In particular, Span(Set)
shares much structure with Rel: it has the same objects and
the operation sending a span A ← S → B to the pairs
(∂SA(s), ∂

S
B(s)) for s ∈ S is a functor, establishing Span(Set)

as a natural candidate for a proof-relevant relational model.
3) The exponential: However, the exponential of Rel does

not directly transport to Span. The operation M(−) does
yield a functor on Set obtained by setting, for f : A→ B,

M(f)([a1, . . . , an]) = [f(a1), . . . , f(an)]

defining M(f) : M(A) → M(B). But M(f) does not lift
to Span(Set) as it does not preserve pullbacks. Indeed, the
diagram obtained by image of the composition pullback

M(T ⊙ S)

M(S) M(T )

M(B)

M(l) M(r)

M(∂S
B) M(∂T

B)



is no pullback: this would need a bijection ofM(T ⊙S) with

{(µ, ν) ∈M(S)×M(T ) | M(∂SB)(µ) =M(∂TB)(ν)} ,

which fails in general. If S = T = B and B = 1, the pair
of multisets ([tt, ff ], [tt, ff ]) does not uniquely specify who is
synchronized with whom: it may correspond to both multisets
[(tt, tt), (ff , ff)] and [(tt, ff), (ff , tt)] in M(T ⊙ S).

This might be expected: a finite multiset only remembers the
multiplicity of elements, but does not track distinct individual
occurrences. This is in tension with the goal of a proof-relevant
relational semantics, for which specific witnesses are naturally
associated with individual resource occurrences.

4) Categorifying objects: If the exponential is to track indi-
vidual resource occurrences, that means avoiding the quotient
of finite multisets: an element of !A may for instance be a
list, or a word a1 . . . an ∈ A∗ of elements of A. We must
of course still account for reorderings, which turn A∗ into a
groupoid – in fact, it is an instance of the construction of the
free symmetric monoidal category Sym(A) over a category
A: its objects are finite words a1 . . . an of objects of A, and a
morphism from a1 . . . an to a′1 . . . a

′
n consists of a permutation

π ∈ Sn, and a family (fi ∈ A(ai, aπ(i)))1≤i≤n.
Thus, objects are not mere sets but categories, which means

that we move from Span(Set) to Span(Cat). Indeed, Cat
also has pullbacks, and so the exact same construction as above
yields a bicategory Span(Cat) – except that now the functor
Sym : Cat→ Cat preserves pullbacks and thus lifts to

Sym : Span(Cat)→ Span(Cat) .

However, in this categorification, the Seely isomorphism
M(A+B) ∼=M(A)×M(B) is lost. Instead, we only get

Sym(A+B) ≃ Sym(A)× Sym(B)

an equivalence of categories. In order to lift it to spans, we
observe that given a functor F : A→ B we get a span

F̂ =
A

A B

FidA ∈ Span(Cat)(A,B)

so that lifting an equivalence F : A ≃ B : G to spans requires
us to provide a family of 2-cells, i.e. for each category A:

A

A A

A

idA GF

?

idA idA

however whatever our choice for the mediating map is, one
of the triangles fails to commute on the nose but only up to
isomorphism, which the 2-cells of Span(Cat) are too strict
to accommodate. This invites weakening the 2-cells to:

Definition 1. A weak morphism from A ← S → B to A ←
S′ → B is a triple (F, FA, FB) where

S

A FA⇓ ⇓FB B

S′

∂S
A ∂S

B

F

∂S′
A ∂S′

B

P

S T

B

l r

u

µ
=⇒

v

Fig. 1. A bipullback

X

S T

B

l′ r′

u

ν
=⇒

v

Fig. 2. Alternative square

with FA : ∂SA ⇒ ∂S
′

A ◦F and FB : ∂SB ⇒ ∂S
′

B ◦F natural isos.
We call this a strong morphism if FA and FB are identities.

Adopting weak morphisms seems to solve the problem
above, but only to run into a much more subtle one: in
Span(Cat), the horizontal composition of 2-cells F : S ⇒
S′ and G : T ⇒ T ′ as required by the bicategorical structure
follows from the universal property of the pullback T ′ ⊙ S′:

T ⊙ S
S T

A B C

S′ T ′

T ′ ⊙ S′

G⊙FF G (2)

but this universal property is powerless to compose horizon-
tally weak morphisms. We cannot have the cake and eat it
too: if our method to compose spans ignores the 2-categorical
nature of Cat, then we cannot hope composition to preserve
an equivalence between spans that relies on it, as required
for a model of linear logic. So it seems that this road to a
proof-relevant relational model is doomed – except that this
is exactly what we shall do in this paper!

Before we delve into that, we review existing solutions.

C. Proof-Relevant Relational Models, and Other Related Work

As plain pullbacks are “too 1-dimensional”, it is natural to
compose spans with a 2-dimensional version.

1) Bipullbacks: There are multiple variants for weakened
versions of pullbacks in a 2-category. In this paper, a central
notion will be that of a bipullback:2

Definition 2. In a 2-category C, a bipullback of the cospan
S

u−→ B
v←− T is a square commuting up to an invertible 2-cell

as in Figure 1, such that for any square as in Figure 2:
(a) There is a morphism h : X → P and 2-cells α and β s.t.:

X

P

S T

B

l′ r′h

l r

β
=⇒α

=⇒

u

µ
=⇒

v

=

X

S T

B

l′ r′

u

ν
=⇒

v

(b) h, α, β are unique up to unique 2-cell – see ??.

The important observation is that this alternative universal
property is sufficient to extend the definition of the horizontal
composition in (2) to weak morphisms – with the proviso that

2According to the nlab, its proper name is a bi-iso-comma-object.



this defines horizontal composition only up to iso; as (b) does
not guarantee uniqueness of h on the nose.

2) Hoffnung’s monoidal tricategory: Hoffnung [33] con-
structs a categorification of Span(Cat) following this idea.
He exploits that Cat actually has pseudo-pullbacks3, which
are a special case of the definition above where α and β are
required to be identities and h is unique on the nose – making
horizontal composition of weak morphisms of spans a well-
defined function once a choice of pseudo-pullbacks is fixed.

Concretely, a pseudo-pullback of a cospan S
u−→ B

v←− T
may be constructed as a category with objects triples (s, θ, t)
where θ ∈ B(u(s), v(t)). So for instance, if S = T =
Sym(B) and B = Sym(1), the pseudo-pullback would have
two objects synchronizing [tt, ff ] ∈ S and [tt, ff ] ∈ T :
([tt, ff ], id, [tt, ff ]) and ([tt, ff , swap, [tt, ff ]). The issue of
Section II-B3 is avoided by adding new witnesses carrying
all possible symmetries. This is a fundamental phenomenon
in models of linear logic, which we refer to as saturation.

Because saturation inflates the number of witnesses at each
composition, spans composed by pseudo-pullbacks no longer
form a bicategory. In particular, the post-composition of a span
A ← S → B with the identity span B ← B → B yields an
inflated S′ much bigger than S. So neutrality of identity no
longer holds up to isomorphism, but only up to equivalence
factoring in maps between maps of spans. Accordingly, Hoff-
nung actually constructs a monoidal tricategory of categorical
spans with weak morphisms, i.e. a one-object tetracategory!

3) Melliès’ template games: Recently, Melliès introduced
template games [34], in an attempt to unify various games
models. This is essentially a model of categorical spans where
categories are regarded as games and structured by a projection
to a category called the template, capturing the mechanisms of
synchronization and scheduling between players. Though [34]
was developped in a purely linear setting with spans related
by strong morphisms, Melliès proposed a non-linear extension,
forming a model of differential linear logic [23].

Melliès’ contribution puts into play notions from homotopy
theory: he starts not with Cat, but from any 2-category
S equipped with a Quillen model structure (with additional
conditions). Spans are composed by mere pullbacks, but a span

A
u←− S v−→ B

must satisfy a fibration property to the effect that symmetries
in A and B can be lifted uniquely in S – in our terminology, S
is saturated. Saturation ensures that pullbacks between those
spans are actually homotopy pullbacks, and thus that they may
be used for the horizontal composition of weak morphisms.
The higher dimensional structure seen in Hoffnung [33] is then
managed by the homotopy-theoretic operation of localization,
formally inverting weak equivalences. This yields an actual
bicategory of objects of S related by homotopy spans.

This elegant construction gives a model of differential linear
logic, showing that the symmetries implicit in linear logic may
be naturally managed via the tools of homotopy theory.

3According to the nlab, its proper name is an iso-comma-object.

4) Generalized Species of Structures: Last but not least,
the most well-studied proof-relevant extension of Rel is defi-
nitely Fiore, Gambino, Hyland and Winskel’s cartesian closed
bicategory of generalized species of structure [20]. Relations
from A to B are replaced with distributors or profunctors:

F : Aop ×B → Set

for A and B categories. This forms a (compact closed)
bicategory Dist of (small) categories, distributors and natural
transformations between them. The free symmetric monoidal
construction Sym(−) yields a pseudocomonad on Dist,
whose Kleisli bicategory Esp is cartesian closed.

As for the span-based approaches above, the way in which
Dist and Esp handle symmetries is saturated. This may first
be seen in the identity distributor which is defined to be

A[−,−] : Aop ×A→ Set

the Yoneda embedding, which associates as witnesses over a
pair (a, a) the homset A[a, a], including all symmetries on a.

Composition of distributors is via the coend formula

G⊙ F =

∫ b∈B
F (−, b)×G(b,−)

which sets witnesses in (G ⊙ F )(a, c) to be pairs (s, t) ∈
F (a, b) × G(b, C) quotiented by a relation identifying the
action of a morphism in B on s or on t.

Accordingly, when computing the interpretation of a pro-
gram ⊢M : A in Esp, for every a ∈ JAK we get JMK(a) a set
of witnesses carrying around explicit symmetries, quotiented
by an equivalence relation letting symmetries flow around –
this is described syntactically elegantly by Olimpieri [28]. The
treatment of symmetry in Esp is, again, saturated.

5) Game semantics: To our knowledge, this saturation
phenomenon in models of linear logic first appears in Bail-
lot, Danos, Ehrhard and Regnier’s (BDER) version [35] of
Abramsky-Jagadeesan-Malacaria (AJM) games [12].

In AJM games, the moves of a game !A are defined as pairs
(i, a) of i ∈ N a copy index, and a ∈ A a move in A – a
fundamental difficulty in setting up the games model, is that
of uniformity: ensuring that the behaviour of strategies does
not depend on the specific choice of copy indices (which is
the game semantics analogue of composition preserving weak
morphisms). In BDER, uniformity is guaranteed by requir-
ing strategies to be saturated: they are morally wrapped by
copycat processes exchanging non-deterministically all copy
indices. This “noise” prevents strategies from seeing specific
copy indices, let alone depending on them – this is analogous
to the saturation phenomenon above.

But in AJM games there is another choice: in the original
AJM setting [12], strategies carry a deterministic choice of
copy indices. Instead of saturation, uniformity is guaran-
teed by requiring that strategies satisfy a bisimulation-like
property, which ensures that whenever Opponent swaps their
copy indices, Player can swap theirs accordingly, leaving the
behaviour “up to copy indices” invariant. In contrast to the
“saturated” approach to uniformity, we refer to this as the



“thin” approach. Similar ideas are at play in other game
models based on copy indices: in Melliès’ orbital games [15],
and more recently in thin concurrent games4 [21].

Thin concurrent games are a particularly striking related
work, because just as Esp, they also form a cartesian closed
bicategory as proved by Paquet [22], and also generalize the
relational model [37]. In thin concurrent games, strategies are
composed by pullback. But it is a theorem that this pullback is
also a bipullback, which can be used to compose horizontally
weak morphisms even though strategies are not saturated.
But this bipullback property follows from a subtle interactive
reindexing mechanism between strategies, relying crucially on
the fact that we have access to time – it seems hard to replicate
it purely statically as in a relational model.

III. THE BICATEGORY OF THIN SPANS

This long discussion lets us state the main question in this
paper: can we construct a thin version of categorical spans?

A. Pullbacks and Bipullbacks in Groupoids

For simplicity, we focus on spans of groupoids rather than
categories, which are sufficient for the interpretation of types
– we write Gpd for the small 2-category of groupoids. So
we aim to construct a bicategory whose objects are small
groupoids, whose morphisms are spans A ← S → B with
identity the identity span A← A→ A, whose composition is
plain pullback and yet, whose 2-cells are weak morphisms.

1) Notations and terminology: A span A ← S → B may
be presented as a functor S → A×B, so it is convenient not
to focus on spans, but on functors S → A over a groupoid
A. We refer to those with terminology inspired from game
semantics. A prestrategy on groupoid A is a pair (S, ∂F )
where ∂F : S → A is called the display map. We often refer
to the prestrategy only with S, and write PreStrat(A) for the
set of prestrategies on A. A prestrategy from A to B is a
prestrategy on A × B – then, we write ∂FA : S → A and
∂FB : S → B for the two display maps. If S is a prestrategy
from A to B and T a prestrategy from B to C, we write T⊙S
for the prestrategy from A to C obtained as in Section II-B2.
We often refer to morphisms in groupoids as symmetries and
write e.g. φ : s ∼=S s′ instead of φ ∈ S(s, s′).

We write 1 for the groupoid with one object ∗, and only the
identity morphism; and o for the groupoid with one object •
and only the identity morphism. If A,B are groupoids, then we
use A ⊢ B and A⊸ B as synonyms for A×B, with objects
respectively denoted by a ⊢ b and a ⊸ b – likewise, their
morphisms have form θA ⊢ θB ∈ (A ⊸ B)(a ⊸ b, a′ ⊸ b′)
for θA ∈ A(a, a′) and θB ∈ B(b, b′) and likewise for θA ⊸
θB . We find these purely notational distinctions useful to read
examples, since they coincide with familiar type constructors.

2) Indexed families: As explained earlier, types of λ-calculi
may be interpreted as groupoids – but in a linear language,
these groupoids remain discrete: only the exponential intro-
duces non-trivial morphisms. As those symmetries play a

4The first version of concurrent games with symmetry was saturated [36].

crucial role, we introduce early our version of the exponential
construction. If X is a set, then we write Fam(X) the set
of families indexed by finite sets of natural numbers, i.e. of
(xi)i∈I where I ⊆f N and for all i ∈ I , xi ∈ X .

Definition 3. Consider A a (small) groupoid. The (small)
groupoid Fam(A) has: objects, the set Fam(A); morphisms
from (ai)i∈I to (bj)j∈J , pairs (π, (fi)i∈I) of a bijection
π : I ≃ J and for each i ∈ I , fi ∈ A(ai, bπ(i)).

This yields a functor Fam : Gpd→ Gpd in the obvious
way. For (Ai)i∈I ∈ Fam(A), we call elements of I copy
indices. A family (ai)i∈I ∈ Fam(A) is more “intensional”
than A∗ (which is more intensional than M(A)): it gives
a presentation of a multiset in M(A) not only providing a
sequence, but assigning to each element a distinct “address”.

Just as multisets are connected to non-idempotent intersec-
tion types, families are connected with Vial’s sequence types
[38] – thus we often write families using Vial’s notation, e.g.

[2 · a2, 4 · a4, 12 · a12] ∈ Fam(A)

for (ai)i∈{2,4,12} – in the particular case where A = o, we
only write [i1, . . . , in] for [i1 · •, . . . , in · •].

For any groupoid A, Fam(A) and Sym(A) are equivalent.
However, using Fam(A) is crucial in our model construction:
it allows the interpretation of programs to use copy indices as
identifiers for resource accesses, that are independent of other
concurrent resource accesses. We give a few examples:

Example 4. For a groupoid A, the dereliction span derA is

Fam(A)
derA←−−− A idA−−→ A

where derA : A→ Fam(A) sends a to [0 · a].

In models of linear logic, the role of dereliction is to extract
a single instance of a replicable resource. In our model – as in
AJM games [12] and thin concurrent games [21] – dereliction
does so by picking a copy index (here 0), chosen in advance
once and for all. The specific choice is irrelevant; in fact
for any n the span using n instead of 0 will turn out to be
isomorphic to derA. But, the span must comprise a choice.

Example 5. The thin span interpreting the term M of Exam-
ple 2 shall have a “head” groupoid with four objects

[0 · tt, 1 · tt] ⊸ tt , [0 · ff , 1 · ff ] ⊸ tt ,
[0 · tt, 1 · ff ] ⊸ ff , [0 · ff , 1 · tt] ⊸ tt ,

morphisms reduced to identities, and display map the identity.

The use of specific copy indices allows one to observe which
occurrence of x evaluates to tt or ff , hence associating distinct
points to the two evaluations leading to ff .

3) Bipullbacks of groupoids: If composition-by-pullback is
to allow us to compose horizontally weak morphisms, we must
ensure that every composition pullback is also a bipullback.

It is useful to understand a bit better the shape of bipullbacks
in Gpd. A first useful fact is that condition (b) of Definition 2
(uniqueness up to iso) automatically holds in the case of Gpd;



furthermore, we can characterise those pullbacks that are also
bipullbacks (see ??):

Lemma 1. A pullback square in Gpd, of the form

P

S T

B

l r

f g

is a bipullback if and only if it satisfies the following property:
for all s ∈ S, t ∈ T and θ ∈ B(fs, gt), there is φ ∈ S(s, s′)
and ψ ∈ T (t′, t) such that fs′ = gt′ and θ = fψ ◦ gφ.

Let us comment on this. We regard triples of the form

s ∈ S , θ ∈ B(fs, gt) , t ∈ T

as pairs of states (s, t) that match up to symmetry – we call
this a reindexing problem. The lemma above says that given a
reindexing problem, we can always find s′ symmetric to s and
t′ symmetric to t matching on the nose, in a way compatible
with θ – called a solution to the reindexing problem. Thus,
the lemma above may be reformulated to say that a pullback
is a bipullback iff all its reindexing problems have a solution.

We show a concrete example of this reindexing process:

Example 6. Take B = Fam(o) ⊸ Fam(o), with objects

[i1, . . . , in] ⊸ [j1, . . . , jk] .

Take S the sub-groupoid of B with objects [i1, . . . , in] ⊸
[i1, . . . , in] and morphisms all θ ⊸ θ for θ in Fam(o); and
T the full sub-groupoid of B with objects [j1, . . . , jn] ⊸ [0].

The pullback of S → B ← T is a bipullback. For instance,

θ ∈ B([2] ⊸ [2], [1] ⊸ [0])

is a reindexing problem that may be solved by first applying

φ ∈ S([2] ⊸ [2], [0] ⊸ [0])

in S. We are reduced to finding morphisms in S and T w.r.t.

θ′ ∈ B([0] ⊸ [0], [1] ⊸ [0])

Now, applying ψ ∈ T ([0] ⊸ [0], [1] ⊸ [0]) in T , we have

φ ∈ S([2] ⊸ [2], [0] ⊸ [0]) , ψ ∈ T ([0] ⊸ [0], [1] ⊸ [0])

a solution to the reindexing problem, as in Lemma 1.

That the pullback of two prestrategies forms a bipullback
is not a property of either: in this example neither strategy
is a fibration as in [23], and solving the reindexing problem
requires reindexing in both groupoids. So it is a property
emerging from the harmonious interaction between two pre-
strategies. In an appropriate game semantics setting [21], one
can prove that under reasonable assumptions, such interactive
reindexing always succeeds. However, this is a gradual process
progressing over time – which we do not have access to here.

B. Orthogonality and Uniform Groupoids

1) Definition: In the literature on models of linear logic,
there is a technique for choreographing models where one only
composes pairs of morphisms satisfying a given interactive
property: biorthogonality. The first step is to specify the
desired interactive property via an orthogonality relation:

Definition 4. Take prestrategies (S, ∂S) and (T, ∂T ) on B.
We say they are uniformly orthogonal, written S ⊥ T , iff

the pullback of the cospan S → B ← T is also a bipullback.

If S ⊆ PreStrat(B), then its uniform orthogonal is set to:

S⊥ = {T ∈ PreStrat(B) | ∀S ∈ S, S ⊥ T}.

As usual with orthogonality, this automatically entails a
number of properties: for all S ⊆ PreStrat(B), we have
S ⊆ S⊥⊥, and S⊥ = S⊥⊥⊥. We are particularly interested in
sets of the form S⊥, which are invariant under biorthogonal:

Definition 5. A uniform groupoid is a pair (A,UA) where
A is a groupoid and UA ⊆ PreStrat(A) is s.t. U⊥⊥

A = UA.

We often refer to a uniform groupoid (A,UA) just with A
when it is clear from the context that it is a uniform groupoid.

2) Constructions: The uniform groupoid 1 is the terminal
groupoid equipped with U1 = PreStrat(1). If A and B are
uniform groupoids, their tensor A⊗B is the groupoid A×B
equipped with the set UA⊗B = (UA ⊗UB)

⊥⊥, writing

UA ⊗UB = {(S × T, ∂S × ∂T ) | S ∈ UA, T ∈ UB}

with ∂S × ∂T : S × T → A × B. The dual A⊥ of A is
(A,UA⊥) with UA⊥ = U⊥

A. The par of A and B has

UA`B = (U⊥
A ⊗U⊥

B)
⊥

yielding the De Morgan duality (A⊗B)⊥ = A⊥`B⊥. From
this we derive the linear arrow A⊸ B = A⊥ `B.

A uniform prestrategy on uniform groupoid A is simply
any S ∈ UA. If A,B are uniform groupoids, then a uniform
prestrategy from A to B is a uniform prestrategy on A⊸ B.

3) Uniform composition: We claim that whenever compos-
ing S ∈ UA⊸B with T ∈ UB⊸C , we have the orthogonality

(S, ∂SB) ⊥ (T, ∂TB)

so that the composition pullback is a bipullback.
If S is a prestrategy on A and T is a prestrategy from A to

B, we write T@S from the prestrategy on B obtained by

T ⊙ S

S T

A B

called the application of T to S. This lets us state:

Proposition 1. Consider (A,UA) and (B,UB) uniform
groupoids, and T a prestrategy from A to B; consider fur-
thermore a class S ⊆ UA s.t. (A, idA) ∈ S and UA = S⊥⊥.

Then T ∈ UA⊸B iff the following two conditions hold:
(1) for all S ∈ S, T@S ∈ UB ,



(2) (T, ∂TA) ∈ U⊥
A.

Proof. Unfolding the definitions, one encounters a few dia-
gram chasing lemmas on pullbacks that are also bipullbacks
– themselves proved via Lemma 1. See ??.

The apparent asymmetry is intriguing: by definition A⊥ `
B = A⊥`B⊥⊥, so that T ∈ UA⊸B iff the span B ← T → A
denoted by T ⋆ obtained by reversing the two legs, is in
UB⊥⊸A⊥ . A similar phenomenon appears in the orthogonal-
ity used by Ehrhard for his extensional collapse [39].

Now, observe that (A, idA) ∈ UA always – not the identity
span, but the identity functor regarded as a prestrategy on A.
Indeed, if S ∈ U⊥

A, then the pullback of A → A ← S is
clearly a bipullback, so (A, idA) ∈ U⊥⊥

A = UA. But now this
lets us instantiate Proposition 1 with S = UA. Then given
S ∈ UA⊸B , the application S@(A, idA) is (up to iso) the
right leg (S, ∂SB), which must by (1) be in UB . Likewise, if
T ∈ UB⊸C , the left leg (T, ∂TB) is in U⊥

B . Hence,

(S, ∂SB) ⊥ (T, ∂TB)

and thus the composition pullback of S and T is a bipullback.
Proposition 1 has more consequences, all obtained in the

particular case where S = UA: we saw above that (A, idA) ∈
UA, but the same argument goes to show (A, idA) ∈ U⊥

A as
well – so the identity span satisfies condition (2). Since it also
satisfies (1), we have (A ← A → A) ∈ UA⊸A as expected.
Likewise, if A ← S → B and B ← T → C are uniform
prestrategies, then it follows fairly easily that the composition
A← T ⊙ S → C is indeed in UA⊸C (see ??).

4) Horizontal composition of 2-cells: We have an identity
uniform prestrategy in UA⊸A, and a well-defined composition
of S ∈ UA⊸B and T ∈ UB⊸C such that the composition
pullback is always a bipullback. So given weak morphisms

S

A FA⇓ ⇓FB B

S′

∂S
A ∂S

B

F

∂S′
A ∂S′

B

T

B GB⇓ ⇓GC C

T ′

∂T
B ∂T

C

G

∂T ′
B ∂T ′

C

by the bipullback property of T ′ ⊙ S′ there are a functor H
and natural isos α and β such that we have the equality

T ⊙ S

S T

S′ T ′

B

=

(FB)−1

====⇒ GB

==⇒
=

T ⊙ S

S T ′ ⊙ S′ T

S′ T ′

B

H
α
=⇒ β

=⇒

=

altogether yielding a weak morphism as in the diagram:

S T ⊙ S T

A C

S′ T ′ ⊙ S′ T ′

∂S
A

F H G

∂T
C

⇓FA ⇓α ⇓β−1 ⇓GC

∂S′
A ∂T ′

C

.

However, H,α, β are not unique: though Lemma 1 guar-
antees the existence of solutions to all reindexing problems,
those may not be unique. We only know by condition (b) of
Definition 2 that different choices of H,α, β yield isomorphic

weak morphisms of uniform prestrategies, by which we mean
isomorphic morphisms of the 2-category Unif(A):

Definition 6. Consider A a uniform groupoid.
The 2-category Unif(A) has: objects UA, i.e. uniform pre-

strategies on A; morphisms from S to T the weak morphisms,
i.e. pairs (F : S → T, ϕ : ∂S ⇒ ∂TF ); 2-cells from (F, ϕ) to
(G,ψ) the natural transformations µ : F ⇒ G such that:

S T

A

G

ψ
=⇒ =

S T

A

G

F

⇑µ
ϕ
=⇒ .

Thus, although bipullbacks guarantee the existence of a
fitting weak morphism for horizontal composition, there is
a priori no canonical choice. One could pick a choice of
horizontal composition, but there is no reason why an arbitrary
choice would satisfy the coherence conditions for a bicategory.

C. Thin Spans of Groupoids

In fact, if formulated in the adequate way, the reindexing
problems that arise from the interpretation of programming
languages do have a unique solution – as in Example 6. But
to prove that, we shall need to add more structure to uniform
groupoids, starting with polarized sub-groupoids:

1) Polarized sub-groupoids: Consider the groupoid

Fam(o) ⊸ Fam(o)

of Example 6, interpreting the formula !o⊸ !o of intuitionistic
linear logic. Here, the two occurrences of ! are intuitively very
different: on the left-hand side, as in Example 4 the program
performs the copying – in game semantics the copy index
would be carried by a Player move. In contrast, for the right
hand side exponential, the environment does the copying –
in game semantics, the copy index would be carried by an
Opponent move. This assigns a polarity to certain symmetries,
very clear in game semantics: those reindexing copy indices
only for exponentials in covariant position (resp. contravariant
position) are negative (resp. positive). We enrich the groupoids
interpreting types to keep track of these special symmetries:

Definition 7. A polarized groupoid is a groupoid A with two
sub-groupoids A− and A+, with the same objects as A.

It would be natural to require additional conditions for this
structure (in particular, see conditions (a) and (b) in Lemma 3).
We omit them here, as they shall hold automatically once we
introduce the more complete notion of a thin groupoid.

If θ ∈ A−(a1, a2), we write θ : a1 ∼=−
A a2 and likewise

for positive symmetries. Usual constructions on groupoids
extend to polarized groupoids componentwise. The dual of
(A,A−, A+) is defined as (A,A+, A−), exchanging the two
sub-groupoids. Finally, we set (!A)− = Fam(A−) and
(!A)+ = Famid(A+), which has morphisms from (ai)i∈I
to (bj)j∈J those (π, (θi)i∈I) such that I = J and π = idI
– thus we see indeed that Player cannot reindex copy indices
from the outer ! in !A, as it appears in covariant position.



2) Thinness: Solutions to reindexing problems may be
computed interactively as in Example 6. Intuitively, the
uniqueness of the solution relies on the fact that at each stage,
there is a unique choice of reindexing. This is captured by the
definition of thin below, imported from thin concurrent games:

Definition 8. Consider A a polarized groupoid, and S a
prestrategy on A. We say that S is thin iff for all φ : s ∼=S s′,
if ∂Sφ is positive then s = s′ and φ = ids.

Intuitively, this captures that positive copy indices are se-
lected deterministically from negative ones – so a non-trivial
symmetry φ : s ∼=S s′ cannot display to a purely positive
symmetry on A. This is in contrast with the saturated case,
where spans must be able to reach all positive symmetries.

We show how thinness addresses uniqueness for the reso-
lution of reindexing problems. Call a solution to a reindexing
problem φ,ψ as in Lemma 1 positive if writing ∂Sφ = φA ⊢
φB and ∂Tψ = ψB ⊢ ψC , we have φA ⊢ ψC positive.

Lemma 2. Consider A,B,C polarized uniform groupoids,
S ∈ UA⊸B and T ∈ UB⊸C s.t. T ⊙ S ∈ UA⊸C is thin.

Then, any reindexing problem in the composition pullback
of S and T has at most one positive solution.

Proof. Consider a reindexing problem s ∈ S, t ∈ T, θ :
∂SBs

∼=B ∂TBt with solutions φ1 : s ∼=S s′1 and ψ1 : t′1
∼=T t

with ∂SBs
′
1 = ∂TBt

′
1 and ∂TBψ1 ◦ ∂SBφ1 = θ, and φ2 : s ∼=S s′2

and ψ2 : t′2
∼=T t with ∂SBs

′
2 = ∂TBt

′
2 and ∂TBψ2 ◦ ∂SBφ1 = θ.

Then, ∂S(φ2 ◦ φ−1
1 ) = ∂T (ψ2 ◦ ψ−1

1 ), so that we have

Ω = (φ2 ◦ φ−1
1 , ψ2 ◦ ψ−1

1 ) : (s′1, t
′
1)
∼=T⊙S (s′2, t

′
2) ,

whose display to A ⊢ C is positive since φ1, ψ1 and φ2, ψ2

are positive solutions. Hence, by thin, Ω is an identity map
which entails φ1 = φ2 and ψ1 = ψ2 as required.

Thus, thinness allows us to find canonical solutions to
reindexing problems by insisting on finding positive solutions.

However, this relies on thinness not of S and T , but of T⊙S.
Again in thin concurrent games, this follows by induction on
the causal structure. In the absence of a handle on causality,
we must as for uniformity treat the fact that T ⊙ S is thin as
an interactive property, again handled by biorthogonality.

D. Thin Spans

1) The thin orthogonality: We observe that for A a polar-
ized groupoid, a prestrategy S on A is thin iff the pullback

P

S A+

A id+
A

(3)

is discrete, i.e. all the morphisms in P are identities. We shall
base our orthogonality on this observation, and set:

Definition 9. For A a polarized uniform groupoid, S ∈ UA,
and T ∈ U⊥

A, we say S and T are thinly orthogonal, written

S ⊥⊥ T

iff the pullback T ⊙ S is discrete.

Note that this is already assuming that S and T are
uniformly orthogonal. If S ⊆ UA, then its thin orthogonal is

S⊥⊥ = {T ∈ U⊥
A | ∀S ∈ S, S ⊥⊥ T} ,

and as before we have S ⊆ S⊥⊥⊥⊥ (note that this typechecks
only because U⊥⊥

A = UA) and S⊥⊥ = S⊥⊥⊥⊥⊥⊥ for all S ⊆ UA.
2) Thin groupoids: As before, we are interested in sets of

uniform prestrategies closed under bi-thin-orthogonal:

Definition 10. A thin groupoid is a polarized uniform
groupoid with a set TA ⊆ UA of strategies s.t. T⊥⊥⊥⊥

A = TA,
and such that (A−, idA) ∈ TA and (A+, idA) ∈ T⊥⊥

A .

If S ∈ TA then S is automatically thin in the sense of
Definition 8: as (A+, idA) ∈ T⊥⊥

A the pullback (3) is discrete.
This also entails properties of the polarized symmetries:

Lemma 3. Consider A a thin groupoid. Then we have:
(a) if θ : a ∼=−

A a′ and θ : a ∼=+
A a

′, then a = a′ and θ = ida.
(b) if θ : a ∼=A a′, then there are unique a′′ along with θ− :
a ∼=−

A a′′ and θ+ : a′′ ∼=+
A a

′ such that θ = θ+ ◦ θ−.

Proof. For (a), this follows from A− ⊥⊥ A+, as then the
pullback of the cospan A− ↪→ A←↩ A+ is discrete.

For (b), A− ∈ TA ⊆ UA and A+ ∈ T⊥⊥
A ⊆ U⊥

A, we also
have A− ⊥ A+. Hence, the pullback of the cospan A− ↪→
A ←↩ A+ is a bipullback. But then any θ : a ∼=A a′ forms
a reindexing problem, whose solution is exactly the seeked
reindexing. Uniqueness follows immediately from (a).

Thus, we get from the definition of thin groupoids some
of the expected properties of the polarized sub-groupoids: if
a symmetry is both positive and negative then it must be an
identity, and any symmetry can be obtained by first “reindex-
ing Opponent moves”, then ”reindexing Player moves”.

3) Further structure: Constructions on uniform groupoids
extend to thin groupoids in the expected way. The thin
groupoid 1 has T1 = PreStrat(1). If A and B are thin
groupoids, their tensor is the uniform groupoid A ⊗ B ex-
tended with TA⊗B = (TA ⊗ TB)

⊥⊥⊥⊥. The dual of A has
TA⊥ = T⊥⊥

A . The par of A and B has TA`B = (T⊥⊥
A⊗T⊥⊥

B )
⊥⊥,

and the linear arrow is A⊸ B = A⊥ `B.
To establish the compositional properties of strategies, we

rely on the following analogue of Proposition 1:

Proposition 2. Consider T ∈ UA⊸B for A,B thin groupoids,
along with a class S ⊆ TA such that S⊥⊥⊥⊥ = TA.

Then, T ∈ TA⊸B iff T@S ∈ TB for all S ∈ S.

This follows from diagram chasing lemmas on situations
where the pullbacks are discrete, see ??. Interestingly, this is
also equivalent to T ⋆@S ∈ T⊥⊥

A for all S ∈ T⊥⊥
B .

It is a direct consequence of Proposition 2 that the identity
span on A is in TA⊸A for any thin groupoid A, and that if S ∈
TA⊸B and T ∈ TB⊸C then T ⊙S ∈ TA⊸C . Together with
Lemma 2, we have thus identified a compositional situation
where the composition pullback of spans is a bipullback, and
where all arising reindexing problems have a unique solution
if one insists on this solution being positive.



4) Positive weak morphisms: Insisting on positive solutions
amounts to relating strategies not via arbitrary weak mor-
phisms, but with positive weak morphisms:

Definition 11. Consider A a thin groupoid, S, T ∈ TA, and
(F, ϕ) a weak morphism from S to T , i.e. F : S → T and
ϕ : ∂S ⇒ ∂T ◦F . Then, (F, ϕ) is positive if ϕ is positive, that
is, if ∀s ∈ S, ϕs : ∂Ss ∼=+

A ∂
TF (s) is a positive symmetry.

Intuitively, comparing strategies with positive morphisms
amounts to relating them only via maps that do not reindex
Opponent moves. This has the effect of making everything
stricter, and cutting the higher dimension. More precisely:

Proposition 3. Let A be a thin groupoid. Consider
PreThin(A) the sub-2-category of Unif(A) with objects
TA, and Thin(A) where additionally morphisms are positive.

Then, Thin(A) is locally discrete, i.e. all 2-cells are identi-
ties. Moreover, PreThin(A) and Thin(A) are biequivalent.

Proof. The first is a direct consequence of thinness: if µ :
(F, ϕ)⇒ (G,ψ) : S → T for ϕ and ψ positive, then by defi-
nition of 2-cells of Unif(A), for all s ∈ S, µs ∈ T (Fs,Gs)
is such that ψs = ∂Tµs ◦ ϕs, i.e. ∂Tµs = ψs ◦ ϕ−1

s positive.
Thus, µs is an identity morphism by thinness.

For the biequivalence, the crux is that if (F, ϕ) : S → T is
a weak morphism, then there is a unique (F+, ϕ+) : S → T
positive isomorphic to (F, ϕ), and a unique 2-cell µ between
them. Uniqueness follows from thinness. For existence, note
that if s ∈ S and θ : ∂Ss ∼=A a, then there exist unique
φ : s ∼=S s′ and θ+ : ∂Ss ∼=+

A a such that θ = θ+ ◦ ∂Sφ –
this exploits thinness, and the reindexing problem from the fact
that the pullback of the cospan S ↪→ A←↩ A+ is a bipullback.
We obtain (F+, ϕ+) by applying this lemma pointwise.

This proposition illustrates the situation well: thanks to the
thin biorthogonality, the 2-category PreThin(A) is repre-
sented up to biequivalence as a mere category Thin(A). The
higher dimensional structure simply vanishes.

5) The bicategory Thin: With this in place, we may finally
define the components of our bicategory Thin. Its objects
are thin groupoids. Its morphisms from A to B are strategies
from A to B, i.e. elements of TA⊸B – recall that they are
(S, ∂S : S → A×B), in particular spans from A to B

A
∂S
A←−− S ∂S

B−−→ B .

The identities are identity spans, and composition is via the
pullback (1). If S and T are strategies from A to B, the 2-
cells from S to T are the positive morphisms (F, ϕ) : S → T .
As ϕ : ∂S ⇒ ∂T ◦ F is a family of positive morphisms on
A⊥ ` B with underlying plain groupoid A × B, it may be
equivalently presented as pair of FA : ∂SA ⇒ ∂TA ◦F and FB :
∂SB ⇒ ∂TB ◦ F , as in Definition 1. For horizontal composition
of positive morphisms, we first proceed as in Section III-B4
and obtain a connected groupoid of (non necessarily positive)
horizontal compositions – which must all have the same image
through the biequivalence of Proposition 3, providing our
unique positive horizontal composition. Altogether, we have:

Theorem 2. Those components form Thin, a bicategory.

Proof. See details in ??.

Next, we develop the further structure of Thin.

IV. CARTESIAN CLOSED STRUCTURE

To construct a cartesian closed bicategory, we intend to
follow [20]. We first turn the construction Fam – thereafter
denoted by ! – into a pseudocomonad, and then equip the
Kleisli bicategory Thin! with the cartesian closed structure.

A. The Pseudocomonad

We first develop the action of ! on objects of Thin.
1) The bang of thin groupoids: First, ! is defined on uniform

groupoids via U!A = (!UA)
⊥⊥, where we have used

!UA = {(!S, !∂S) | S ∈ UA}

using the functorial action !∂S : !S → !A. For thin groupoids,
the positive and negative symmetries of !A were defined in
Section III-C1. The thin structure is set as T!A = (!TA)

⊥⊥⊥⊥

– it is a direct verification that this is a thin groupoid.
2) The bang of strategies: If S ∈ TA⊸B , we have ∂S =
⟨∂SA, ∂SB⟩ for ∂SA : S → A and ∂SB : S → B – its bang is

!A
!∂S

A←−− !S
!∂S

B−−→ !B

packaged as (!S, ⟨!∂SA, !∂SB⟩). That this is in T!A⊸!B relies on:

Lemma 4. Consider A,B thin groupoids, and T a prestrategy
from !A to B. Then, the following two properties hold:

(1) T ∈ U!A⊸B iff (T, ∂T!A) ∈ U⊥
!A and

for all S ∈ UA, T@!S ∈ UB ,
(2) T ∈ T!A⊸B iff for all S ∈ TA, T@!S ∈ TB .

This is an immediate application of Propositions 1 and 2.
Since U!A = (!UA)

⊥⊥ and T!A = (!TA)
⊥⊥⊥⊥. From this

lemma, it is a rather direct verification that for any S ∈
TA⊸B , we have !S ∈ T!A⊸!B as required.

3) A pseudofunctor: Since ! is a functor, it preserves the
identity span on the nose. Since ! preserves pullbacks, for
S ∈ TA⊸B and T ∈ TB⊸C , the universal property gives us

mS,T : !(T ⊙ S) ∼= !T ⊙ !S

a strong invertible 2-cell in Thin. As expected, this 2-cell
is natural in S and T (with respect to positive morphisms).
Altogether, we obtain a pseudofunctor ! : Thin → Thin.
See ?? for details.

4) A pseudomonad on groupoids: In fact we first turn !
into a pseudomonad on Gpd, from which its pseudocomonad
structure on Thin shall be derived. We noted earlier that we
have a functor Fam : Gpd→ Gpd – in fact, it is extended
to a 2-endofunctor on the 2-category of small groupoids, noted

! : Gpd→ Gpd ,

defined on a 2-cell α : F ⇒ G : A → B as the natural
transformation !α : !F ⇒ !G with components all pairs

(!α)(Ai)i∈I
= (idI , (αAi

)i∈I) ∈ !B((FAi)i∈I , (GAi)i∈I) .



!!A !A !!A

!A

µA

η!A !ηA

id!A

αA⇒
µA

βA⇐

Fig. 3. Unit natural isomorphisms

!!!A

!!A !!A

!A

µ!A !µA

µA

γA⇒
µA

Fig. 4. Associativity natural isomorphism

To turn this into a pseudomonad, we must adjoin a multipli-
cation and a unit. The components of the unit are the functors

ηA : A → !A
a 7→ (a){0} = [0 · a]

with the obvious functorial action. The intuition is that the
unit transports a single resource usage from A to !A, arriving
at a singleton family. In doing so, it must select a copy index.
Any natural number will do – the rest of the paper does not
depend on this choice – but for definiteness and compatibility
with the traditional convention from AJM games, we pick 0.

For the multiplication µA : !!A → !A, we must flatten a
family of families into a family. For this purpose, we fix an
injective function ⟨−,−⟩ : N2 → N – again, the results of
this paper do not depend on that choice. Given I ⊆f N and a
family (Ji)i∈I where Ji ⊆f N for all i ∈ I , let us write

Σi∈IJi = {⟨i, j⟩ | i ∈ I, j ∈ Ji} ,

which is by definition still a finite subset of N. Then we set

µA : !!A → !A
((ai,j)j∈Ji)i∈I 7→ (ai,j)⟨i,j⟩∈Σi∈IJi

for any groupoid A, along with the obvious functorial action.
Altogether this yields η : idGpd ⇒ ! and µ : !! ⇒ !, two

(strict 2-) natural transformations. The monad laws, if they
were to hold on the nose, would mean that ⟨0, i⟩ = ⟨i, 0⟩ = i
and ⟨⟨i, j⟩, k⟩ = ⟨i, ⟨j, k⟩⟩ for all i, j, k ∈ N; and it is clear
that no injection satisfying those laws exists. Nevertheless, for
every groupoid A the coherence laws for a monad hold up to
natural isomorphisms: we have αA, βA and γA as indicated
in Figures 3 and 4. For instance, for any (aj)j∈J ∈ !A:

(αA)(aj)j∈J
: (aj)j∈J ∼=!A (aj)⟨0,j⟩∈Σi∈{0}J

reindexing along the bijection J ≃ Σi∈{0}J . The other
components act similarly – note that they are all negative
symmetries. The associated families (αA)A∈Gpd, (βA)A∈Gpd

and (γA)A∈Gpd satisfy the conditions for modifications, and
the additional coherence laws for a pseudomonad:

Proposition 4. The 2-functor ! : Gpd → Gpd along with
the components above yield a pseudomonad on Gpd.

5) Lifting functors to spans: We shall turn ! into a pseudo-
comonad on Thin by lifting the components above to spans.
In general, if F : B → A is a functor, then there is a span F̌

A
F←− B idB−−→ B ,

called the lifting of F – but we need sufficient conditions on
F for this construction to yield morphisms in Thin. For that
purpose, if A and B are thin groupoids, we say that a functor
F : A→ B is a renaming iff the following conditions hold:

(1) for all θ : a ∼=A a′, if θ is positive then so is Fθ,
(2) for all (T, ∂T ) ∈ U⊥

B , (T, F ◦ ∂T ) ∈ U⊥
A,

(3) for all (T, ∂T ) ∈ T⊥⊥
B , (T, F ◦ ∂T ) ∈ T⊥⊥

A .

Clearly, renamings compose – we consider the 2-category
Ren whose objects are thin groupoids, whose morphisms are
renamings, and whose 2-cells are negative natural transforma-
tions. As expected, lifting renamings yields thin spans (see ??).
Lifting can be extended to 2-cells: if α : F ⇒ G : A → B
is a negative natural transformation, then α̌ is the positive
morphism described by the diagram:

B

A B

B

F idB

idB
α⇒

G idB

,

noting that this is positive as negative α is in contravariant
position. Altogether, we get (see details in ??):

Proposition 5. There is a pseudofunctor −̌ : Renop → Thin.

Here, Renop is Ren with the morphisms reversed, but
the 2-cells unchanged. It can be checked that for any thin
groupoid A, the functors ηA : A→ !A and µA : !!A→ !A are
renamings, in particular for every thin groupoid A we get

η̌A ∈ Thin(!A,A) µ̌A ∈ Thin(!A, !!A)

the main components to turn ! into a pseudocomonad. Unlike
in Gpd, the families η̌ and µ̌ are not strict 2-natural transfor-
mations but only pseudonatural transformations, with 2-cells

ηS : η̌B ⊙ !S ⇒ S ⊙ η̌A
µS : µ̌B ⊙ !S ⇒ !!S ⊙ µ̌A ,

positive isomorphisms obtained for S ∈ Thin(A,B) from
the universal property of pullbacks, via the observation that
η : idGpd ⇒ ! and µ : !! ⇒ ! are cartesian natural
transormations. It may be checked that ηS and µS are natural
in S and satisfy the coherence conditions of pseudonatural
transformations. Finally, the modifications α, β, γ involved in
the pseudomonad structure of ! on Gpd lift to the modifica-
tions required for the pseudocomonad structure of ! on Thin.

Theorem 3. We have a pseudocomonad ! on Thin.

Proof. See details in ??.

We move on to studying the Kleisli bicategory Thin! whose
horizontal composition, denoted ⊙!, is defined as expected.



B. Cartesian Closed Structure

1) Finite products: First, we show that Thin! has finite
products, i.e. is a fp-bicategory in the sense of Fiore and
Saville [18] – unlike them, we work with binary products.

a) Terminal object: Write ⊤ for the empty groupoid,
made a thin groupoid with U⊤ = T⊤ = {id∅}. For any
thin groupoid A, Thin!(A,⊤) has exactly one element – the
empty groupoid. Thus, Thin! has a (strict) terminal object.

b) Binary product: If A and B are thin groupoids, then
the with A & B has underlying groupoid A + B the disjoint
union, with (A+B)− = A−+B− and (A+B)+ = A++B+.
We adjoin UA&B = (UA + UB)

⊥⊥ and TA&B = (TA +
TB)

⊥⊥⊥⊥, where as usual, UA +UB comprises the set of all
(S+T, ∂S+∂T ) for (S, ∂S) ∈ UA and (T, ∂T ) ∈ UB , using
the functorial action of + (and likewise for TA +TB).

c) Pairing and projections: The projections are simply
set as L! = ̌(ηA+B ◦ l̄) ∈ Thin!(A & B,A) and R! =

̌(ηA+B ◦ r̄) ∈ Thin!(A & B,B) for l̄ : A → A + B and
r̄ : B → A + B the obvious coprojections/renamings. The
pairing of S ∈ Thin!(Γ, A) and T ∈ Thin!(Γ, B) is

(S + T, ∂!Γ : S + T → !Γ, ∂A&B : S + T → A+B)

with ∂!Γ the co-pairing and ∂A&B = ∂SA + ∂TB . We have:

Proposition 6. For any thin groupoids Γ, A and B, there is

Thin!(Γ, A&B) ⊥ Thin!(Γ, A)×Thin!(Γ, B)

(L! ⊙!−,R! ⊙!−)

⟨−,−⟩

an adjoint equivalence.

Proof. If S ∈ Thin!(Γ, A) and T ∈ Thin!(Γ, B) there are

ωAS,T : L!⊙!⟨S, T ⟩ ∼= S ωBS,T : R!⊙!⟨S, T ⟩ ∼= T

positive isos, and for U ∈ Thin!(Γ, A&B) there is

ω̄U : U ∼= ⟨L!⊙!U,R!⊙!T ⟩

a positive iso, defined in the obvious way. Those are all natural
in S, T, U , and satisfy the required triangle identities.

See ?? for more details. Altogether, this establishes that
Thin! is a fp-bicategory in the sense of [18].

2) Cartesian closure: If A and B are thin groupoids, then
we set A ⇒ B = !A ` B. Before we describe the additional
components, we must observe the Seely equivalence:

!A⊗ !B !(A&B)

sA,B

s̄A,B

where sA,B sends (ai)i∈I , (bj)j∈J to (ck)k∈I▷◁J , with I▷◁J =
ϖ(I ⊔ J) for some chosen bijection ϖ = [ϖl, ϖr] between
N ⊔ N and N, and where cϖl(i) = ai and cϖr(j) = bj ; and
s̄A,B sends (ck)k∈K to (ai)i∈I , (bj)j∈J where I ⊆ K is the
subset of those i ∈ K such that ci = ai ∈ A, and likewise
for bj . Both functors are renamings, and the isomorphisms
witnessing the equivalence are negative.

Via the Seely equivalence, we first define the evaluation as
the span with basic groupoid !A×B, with left leg the functor

!A×B → (!A×B)× !A→ !(!A×B)× !A
sA,B−−−→ !((A⇒ B) &A)

and right leg the projection !A × B → B. This yields a thin
span evA,B ∈ Thin!((A⇒ B) &A,B). Now, we need

Λ(−) : Thin!(Γ &A,B)→ Thin!(Γ, A⇒ B)

the currying functor: given S ∈ Thin!(Γ&A,B), its currying
Λ(S) is simply S, with display map post-composed with

!(Γ +A)×B
s̄Γ,A≃ (!Γ× !A)×B ∼= !Γ× (!A×B) .

With this data in place, we may finally prove:

Proposition 7. For any groupoids Γ, A,B, there is

Thin!(Γ, A⇒ B) ⊥ Thin!(Γ &A,B)

evA,B⊙!(−&A)

Λ(−)

an adjoint equivalence.

Proof. One can first show the existence of adjoint equivalence
between the currying operation Λ(−), and a symmetric uncur-
rying operation Λ̄(−). The unit and counit of this adjunction
can be derived from the ones of the Seely (adjoint) equiva-
lence. One can then prove that Λ̄(−) is in fact isomorphic to
evA,B⊙! (−&A) in order to get the wanted equivalence.

See ?? for details. Altogether, we have:

Theorem 4. Thin! is a cartesian closed bicategory.

This entails that we can interpret types of the simply-typed
λ-calculus as thin groupoids, morphisms as thin spans and
rewrites between terms as certain positive isomorphisms [19].

V. CONCLUSION

This paper focuses on the construction of Thin!, leaving
for later its application to semantics of λ-calculi and program-
ming languages. We believe this opens multiple perspectives
for further research: firstly, we may explore the obtained
interpretation of the λ-calculus, which syntactically should
correspond to the sequence typing system of Vial [38] and to
the non-uniform λ-calculus of Melliès [15]. We should explore
links with other models of the literature, notably with the
weighted relational model recasting ideas from [37], and with
generalized species of structures and template games. Another
related direction consists in accommodating another feature
of template games, the mechanism to capture scheduling and
synchronization [34], into thin spans.

In more semantic directions, we believe that with respect to
generalized species of structures, the fact that operations on
thin spans involve no quotient may be helpful in two ways: (1)
individuals may be ordered concretely, and the model should
support continuous reasoning allowing one to deal easily with
infinite computation; and (2) adding “typed” weights coming
from an SMCC as in [24] should be a lot simpler, since those
weigths no longer have to themselves be saturated.
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within the program “Investissements d’Avenir” (ANR-11-
IDEX-0007), operated by the French National Research
Agency (ANR), and by the PEPR integrated project EPiQ
ANR-22-PETQ-0007 part of Plan France 2030.

REFERENCES

[1] J. Girard, “Linear logic,” Theor. Comput. Sci., vol. 50, pp. 1–102, 1987.
[Online]. Available: https://doi.org/10.1016/0304-3975(87)90045-4

[2] T. Ehrhard, “Finiteness spaces,” Math. Struct. Comput. Sci., vol. 15,
no. 4, pp. 615–646, 2005. [Online]. Available: https://doi.org/10.1017/
S0960129504004645

[3] D. de Carvalho, M. Pagani, and L. T. de Falco, “A semantic
measure of the execution time in linear logic,” Theor. Comput.
Sci., vol. 412, no. 20, pp. 1884–1902, 2011. [Online]. Available:
https://doi.org/10.1016/j.tcs.2010.12.017

[4] V. Danos and T. Ehrhard, “Probabilistic coherence spaces as a
model of higher-order probabilistic computation,” Inf. Comput.,
vol. 209, no. 6, pp. 966–991, 2011. [Online]. Available: https:
//doi.org/10.1016/j.ic.2011.02.001

[5] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani, “Weighted
relational models of typed lambda-calculi,” in 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2013, New Orleans,
LA, USA, June 25-28, 2013. IEEE Computer Society, 2013, pp.
301–310. [Online]. Available: https://doi.org/10.1109/LICS.2013.36

[6] M. Pagani, P. Selinger, and B. Valiron, “Applying quantitative
semantics to higher-order quantum computing,” in The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,
S. Jagannathan and P. Sewell, Eds. ACM, 2014, pp. 647–658.
[Online]. Available: https://doi.org/10.1145/2535838.2535879

[7] T. Ehrhard, M. Pagani, and C. Tasson, “Full abstraction for probabilistic
PCF,” J. ACM, vol. 65, no. 4, pp. 23:1–23:44, 2018. [Online]. Available:
https://doi.org/10.1145/3164540

[8] P. Clairambault and M. de Visme, “Full abstraction for the quantum
lambda-calculus,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp.
63:1–63:28, 2020. [Online]. Available: https://doi.org/10.1145/3371131

[9] D. de Carvalho, “Execution time of lambda-terms via denotational
semantics and intersection types,” CoRR, vol. abs/0905.4251, 2009.
[Online]. Available: http://arxiv.org/abs/0905.4251

[10] B. Accattoli, S. Graham-Lengrand, and D. Kesner, “Tight typings and
split bounds, fully developed,” J. Funct. Program., vol. 30, p. e14,
2020. [Online]. Available: https://doi.org/10.1017/S095679682000012X

[11] A. Bucciarelli, D. Kesner, and S. R. D. Rocca, “Inhabitation for
non-idempotent intersection types,” Log. Methods Comput. Sci., vol. 14,
no. 3, 2018. [Online]. Available: https://doi.org/10.23638/LMCS-14(3:
7)2018

[12] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for
PCF,” Inf. Comput., vol. 163, no. 2, pp. 409–470, 2000.

[13] J. M. E. Hyland and C. L. Ong, “On full abstraction for PCF: i, ii,
and III,” Inf. Comput., vol. 163, no. 2, pp. 285–408, 2000. [Online].
Available: https://doi.org/10.1006/inco.2000.2917

[14] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier, “Timeless games,”
in Computer Science Logic, 11th International Workshop, CSL ’97,
Annual Conference of the EACSL, Aarhus, Denmark, August 23-29,
1997, Selected Papers, ser. Lecture Notes in Computer Science,
M. Nielsen and W. Thomas, Eds., vol. 1414. Springer, 1997, pp.
56–77. [Online]. Available: https://doi.org/10.1007/BFb0028007

[15] P. Melliès, “Asynchronous games 2: The true concurrency of innocence,”
Theor. Comput. Sci., vol. 358, no. 2-3, pp. 200–228, 2006.

[16] P. Boudes, “Thick subtrees, games and experiments,” in Typed Lambda
Calculi and Applications, 9th International Conference, TLCA 2009,
Brasilia, Brazil, July 1-3, 2009. Proceedings, ser. Lecture Notes in
Computer Science, P. Curien, Ed., vol. 5608. Springer, 2009, pp. 65–79.
[Online]. Available: https://doi.org/10.1007/978-3-642-02273-9 7

[17] T. Leinster, Higher operads, higher categories. Cambridge University
Press, 2004, no. 298.

[18] M. Fiore and P. Saville, “Coherence for bicategorical cartesian closed
structure,” Math. Struct. Comput. Sci., vol. 31, no. 7, pp. 822–849,
2021. [Online]. Available: https://doi.org/10.1017/S0960129521000281

[19] ——, “A type theory for cartesian closed bicategories (extended
abstract),” in 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-
27, 2019. IEEE, 2019, pp. 1–13. [Online]. Available: https:
//doi.org/10.1109/LICS.2019.8785708

[20] M. Fiore, N. Gambino, M. Hyland, and G. Winskel, “The cartesian
closed bicategory of generalised species of structures,” Journal of the
London Mathematical Society, vol. 77, no. 1, pp. 203–220, 2008.

[21] S. Castellan, P. Clairambault, and G. Winskel, “Thin games with
symmetry and concurrent hyland-ong games,” Log. Methods Comput.
Sci., vol. 15, no. 1, 2019.

[22] H. Paquet, “Probabilistic concurrent game semantics,” Ph.D. dissertation,
2020.

[23] P. Melliès, “Template games and differential linear logic,” in LICS.
IEEE, 2019, pp. 1–13.

[24] T. Tsukada, K. Asada, and C. L. Ong, “Species, profunctors and taylor
expansion weighted by SMCC: A unified framework for modelling
nondeterministic, probabilistic and quantum programs,” in LICS. ACM,
2018, pp. 889–898.

[25] Z. Galal, “A profunctorial scott semantics,” in 5th International
Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference),
ser. LIPIcs, Z. M. Ariola, Ed., vol. 167. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 16:1–16:18. [Online]. Available:
https://doi.org/10.4230/LIPIcs.FSCD.2020.16

[26] ——, “A bicategorical model for finite nondeterminism,” in 6th
International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina
(Virtual Conference), ser. LIPIcs, N. Kobayashi, Ed., vol. 195. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 10:1–10:17.
[Online]. Available: https://doi.org/10.4230/LIPIcs.FSCD.2021.10

[27] T. Tsukada, K. Asada, and C. L. Ong, “Generalised species of rigid
resource terms,” in 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017. IEEE Computer Society, 2017, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/LICS.2017.8005093

[28] F. Olimpieri, “Intersection type distributors,” in LICS. IEEE, 2021, pp.
1–15.

[29] A. Kerinec, G. Manzonetto, and F. Olimpieri, “Why are proofs
relevant in proof-relevant models?” Proc. ACM Program. Lang.,
vol. 7, no. POPL, pp. 218–248, 2023. [Online]. Available: https:
//doi.org/10.1145/3571201

[30] G. M. Kelly and M. L. Laplaza, “Coherence for compact closed
categories,” Journal of pure and applied algebra, vol. 19, pp. 193–213,
1980.

[31] F. Lamarche, “Quantitative domains and infinitary algebras,” Theor.
Comput. Sci., vol. 94, no. 1, pp. 37–62, 1992. [Online]. Available:
https://doi.org/10.1016/0304-3975(92)90323-8

[32] M. Stay, “Compact closed bicategories,” arXiv preprint
arXiv:1301.1053, 2013.

[33] A. E. Hoffnung, “Spans in 2-categories: A monoidal tricategory,” arXiv
preprint arXiv:1112.0560, 2011.

[34] P. Melliès, “Categorical combinatorics of scheduling and synchroniza-
tion in game semantics,” Proc. ACM Program. Lang., vol. 3, no. POPL,
pp. 23:1–23:30, 2019.

[35] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier, “Believe it or not,
ajm’s games model is a model of classical linear logic,” in LICS. IEEE
Computer Society, 1997, pp. 68–75.

[36] S. Castellan, P. Clairambault, and G. Winskel, “Symmetry in concurrent
games,” in CSL-LICS. ACM, 2014, pp. 28:1–28:10.

[37] P. Clairambault and H. Paquet, “The quantitative collapse of concurrent
games with symmetry,” CoRR, vol. abs/2107.03155, 2021.

[38] P. Vial, “Infinitary intersection types as sequences: A new answer to
klop’s problem,” in LICS. IEEE Computer Society, 2017, pp. 1–12.

[39] T. Ehrhard, “The scott model of linear logic is the extensional collapse
of its relational model,” Theor. Comput. Sci., vol. 424, pp. 20–45, 2012.

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/3164540
https://doi.org/10.1145/3371131
http://arxiv.org/abs/0905.4251
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1007/BFb0028007
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.1017/S0960129521000281
https://doi.org/10.1109/LICS.2019.8785708
https://doi.org/10.1109/LICS.2019.8785708
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.4230/LIPIcs.FSCD.2021.10
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1145/3571201
https://doi.org/10.1145/3571201
https://doi.org/10.1016/0304-3975(92)90323-8

	Introduction
	Relational Models, Spans, Species
	The Relational Model
	Basic categorical structure
	The exponential modality
	Extensions of the relational model

	The Bicategory of Spans
	Spans
	A bicategory
	The exponential
	Categorifying objects

	Proof-Relevant Relational Models, and Other Related Work
	Bipullbacks
	Hoffnung's monoidal tricategory
	Melliès' template games
	Generalized Species of Structures
	Game semantics


	The Bicategory of Thin Spans
	Pullbacks and Bipullbacks in Groupoids
	Notations and terminology
	Indexed families
	Bipullbacks of groupoids

	Orthogonality and Uniform Groupoids
	Definition
	Constructions
	Uniform composition
	Horizontal composition of 2-cells

	Thin Spans of Groupoids
	Polarized sub-groupoids
	Thinness

	Thin Spans
	The thin orthogonality
	Thin groupoids
	Further structure
	Positive weak morphisms
	The bicategory Thin


	Cartesian Closed Structure
	The Pseudocomonad
	The bang of thin groupoids
	The bang of strategies
	A pseudofunctor
	A pseudomonad on groupoids
	Lifting functors to spans

	Cartesian Closed Structure
	Finite products
	Cartesian closure


	Conclusion
	References

