
École doctorale  – Sciences Mathématiques de Paris Centre

Monotonic graphs for
Parity and Mean-Payoff games
Thèse de doctorat en informatique

par

Pierre Ohlmann

Soutenue publiquement le 13 décembre 2021 devant le jury constitué de

Patricia Bouyer-Decitre Présidente
Mikołaj Bojaczyk Rapporteur
Uri Zwick Rapporteur
Thomas Colcombet Examinateur
Karoliina Lehtinen Examinatrice
Sven Schewe Examinateur
Nathanaël Fijalkow Directeur de thèse
Olivier Serre Directeur de thèse

1

Abstract

In a parity game, Eve and Adam take turns in moving a token along the edges of a directed
graph, which are labelled by integers called priorities. This interaction results in an infinite path,
and Eve wins the game if the maximal priority appearing infinitely often is even. In the more
general setting of mean-payoff games, priorities are replaced by positive or negative integers
interpreted as payoffs from Eve to Adam; Eve seeks to minimize their long-term average. Both
parity and mean-payoff games are positional: optimal decisions can be made depending only
on the current position.

The problems of determining the winner for these two games thus belong to NP X coNP,
and have attracted considerable attention since the early nineties when parity games were shown
equivalent to the model-checking problem forµ-calculus. Both games moreover find numerous
practical application, most notably they provide adequate models for synthesis problems on
reactive systems.

Despite decades of efforts toward polynomial time algorithms, it was only recently that
a breakthrough was achieved in this direction by Calude, Jain, Khoussainov, Li and Stephan,
who presented in early 2017 an algorithm running in quasipolynomial time for solving parity
games. Quickly after, several different algorithms with similar runtime were discovered, and
later unified by the separating approach proposed by Bojańczyk and Czerwiński, and identified
as value iteration algorithms.

We introduce monotonic graphs for studying structural and algorithmic aspects of such in-
finite duration games. These natural objects have numerous (more or less) implicit occurrences
in the literature.

We start by showing that the existence of universal well-ordered such graphs characterises
(half) positionality of arbitrary winning conditions. This yields a novel approach to establishing
and combining such structural results.

We then advocate that (universal) monotonic graphs provide different handles for con-
structing algorithms. Finite monotonic graphs induce value iteration algorithms, which are
shown to be roughly equivalent to Bojańczyk and Czerwiński’s separating approach in general.
This allows us to formulate lower bounds for mean-payoff games, and conclude that value iter-
ation algorithms are inadequate to improve on the current state of the art. We also study value
iteration algorithms for different well-known extensions of these games.

Monotonic graphs also give a generic formalisation for strategy improvement algorithms.
More precisely, we establish that valuations induced by monotonic graphs are fit for strategy
improvement if and only if they are positional for the opponent. This encompasses known
strategy improvement frameworks, allows us to propose new algorithms and perhaps more
importantly, introduces a new tool for their difficult study.

Surprisingly, monotonic graphs also find applications for symmetric algorithms, such as
those based on attractors. For parity as well as mean-payoff games, we find that monotonic
graphs allow us to shed light and improve on the recent state of the art.

2

Résumé

Dans un jeu de parité, Eve et Adam déplacent tour à tour un jeton le long d’un graphe
dirigé dont les arêtes sont étiquetées par des entiers appelés priorités. Cette interaction produit
un chemin infini ; Eve remporte la partie si la plus grande priorité apparaissant infiniment
souvent est paire. Dans le cadre plus général offert par les jeux à paiement moyen, les priorités
sont remplacées par des entiers potentiellement négatifs représentant des paiements d’Eve à
Adam. Eve cherche donc à minimiser leur moyenne à long terme. Les deux types de jeux sont
positionnels : des décisions optimales peuvent être prises en fonction seulement de la position
actuelle.

Le problème de déterminer le gagnant dans ces deux jeux se situe donc à l’intersection de
NP et de coNP. Ces questions algorithmiques sont l’objet d’une attention considérable depuis
le début des années 1990, au moment où il a été établi que les jeux de parité sont équivalents
au problème de la vérification pour la logique du mu-calcul. Les deux jeux ont de nombreuses
applications pratiques ; ils fournissent notamment des modèles adéquats pour le problème de
la synthèse de systèmes réactifs.

Malgré des dizaines d’années de recherche d’algorithmes fonctionnant en temps polyno-
mial, c’est seulement en 2017 que le premier algorithme quasipolynomial pour les jeux de
parité a été découvert par Calude, Jain, Khoussainov, Li et Stephan. Peu après, plusieurs autres
algorithmes quasipolynomiaux pour les jeux de parité ont été présentés, puis unifiés grâce à
l’approche de séparation proposée par Bojanczyk et Czerwinski, et enfin identifiés comme des
algorithmes d’itération de valeur.

Nous introduisons les graphes monotones dans le but d’étudier les aspects structurels et
algorithmiques des jeux à durée infinie. Ces objets naturels ont fait de nombreuses apparitions
(plus ou moins) implicites dans la littérature.

Nous montrons en premier lieu que, pour des conditions de gain arbitraires, l’existence
de graphes monotones universels bien ordonnés caractérisent la positionnalité pour Eve. Cela
donne une nouvelle technique pour établir et combiner de tels résultats structurels.

Nous avançons ensuite que les graphes monotones offrent différentes possibilités pour con-
struire des algorithmes. Les graphes monotones finis induisent des algorithmes d’itération de
valeur, dont on montre qu’ils sont équivalents dans un cadre général à l’approche (forte) de sé-
paration de Bojanczyk et Czerwinski. Cela nous permet en particulier de formuler des bornes
inférieures pour les jeux à paiement moyen, et donc d’établir que les méthodes d’itération de
valeur ne peuvent améliorer l’état de l’art. Nous étudions aussi les algorithmes d’itération de
valeur pour différentes extensions courantes de ces jeux.

Les graphes monotones donnent aussi un cadre générique pour formuler des algorithmes
d’amélioration de stratégies. Plus précisément, nous montrons que les valuations induites par
des graphes monotones permettent de tels algorithmes si et seulement si elles sont positionnelles
pour l’adversaire. Ce résultat capture les différents cadres connus, nous permet d’en proposer
d’autres, et introduit un nouvel outil à l’étude difficile de ces algorithmes.

Étonnament, les graphes monotones s’appliquent aussi à l’étude d’algorithmes symétriques,
tels que ceux qui sont fondés sur des calculs d’attracteurs. Ils permettent d’envisager sous un
nouvel angle les jeux de parité ainsi que les jeux à paiement moyen, et dans les deux cas, de
mieux comprendre et d’améliorer l’état de l’art.

3

Acknowledgments

First, I would like to thank my two PhD advisers Nathanaël Fijalkow and Olivier Serre. Nath, I
met you in my first research internship in 2016 when I had barely heard about Turing machines. We
have never really stopped interacting ever since. I am deeply grateful to you for introducing me to so
many fascinating problems (roughly, each one I know) and to so many researchers (roughly, everyone
I know and among which Olivier). Olivier, I am so grateful to you for always being so present, kind
and supportive. Experience has shown on many occasions that one should always follow an advice
from Olivier! I have learned so much from the two of you, and I cannot imagine what these years
would have been without you by my side. Special thanks also go to Thomas Colcombet for being
such a friendly, passionate and inspiring PhD grandfather.

Second, I want to thank Mikolaj Bojańczyk and Uri Zwick for accepting to evaluate my work,
and extend this gratitude to Patricia Bouyer, Karoliina Lehtinen and Sven Schewe. It is an immense
pleasure for me to have the eight of you as my jury. I have found a lot of pleasure and inspiration in
reading you; I hope that you in turn will enjoy reading my thesis, and that this will sprout further
discussions to which I am very much looking forward.

Third I would like to thank all the other people I have had the pleasure to collaborate with,
Antonio, Guillaume, Thejaswini, Sasha, Marcin, Rémi, Denis, Michał, Mahsa, Arnaud, Paweł, Joël,
Amaury, Engel and others. I deeply regret that working together was made so much more difficult
by the pandemic. I also thank my old mates Simon and Vincent (from afar), my new mate Olisti,
and all the fellow students I have met at conferences and events.

Last, I want to thank my closest friends and my family for their presence and support. Thank
you Pricou, Loulou, Mazzu, Maud, Mad, Lélé, Coll, Chan, PLFzoinzoin and the others. Special
thanks go to my grandparents for introducing me to computers as a kid, and of course to my parents
and siblings for always being there. Above all, I am grateful to Lara. In so many ways this thesis is
the fruit of your love and kindness over the years.

Table of contents

General introduction 7

Overview 9
1) Parity games . 9
2) Mean-payoff games . 17
3) Contributions and organisation of the thesis . 24

Preliminaries 29
1) Orders and graphs . 29
2) Infinite duration games on graphs . 36
3) Some classes of games . 43

I. Well-monotonic graphs and positionality 51

Introduction for Part I 53

1. Positionality from well-monotonic graphs 59
1) Monotonic graphs and universality . 59
2) Well-monotonicity and positionality . 62
3) Prefix-invariance properties and universality . 66

2. Manipulating well-monotonic graphs 69
1) Basic ω-regular objectives . 69
2) Payoff valuations . 77
3) Counter games . 83
4) Lexicographical products . 86

3. Structuration results 95
1) Statement of the results and discussion . 95
2) Closure and saturation . 98
3) Choice arenas . 101

Conclusion and perspectives for Part I 107

II. Finite monotonic graphs and value iterations 109

Introduction for Part II 111

4. Separating automata and value iterations 113
1) From finite monotonic graphs to valuations . 113
2) Determinisation of strongly separating automata 115

6 Contents

3) Value iterations . 117

5. Finite monotonic graphs for parity games 125
1) From even graphs to ordered trees . 125
2) Universal trees and their size . 130

6. Finite monotonic graphs for mean-payoff games 139
1) Universal graphs for A = [´N,N] . 140
2) Universal graphs parameterised by k = |A| . 143

7. Finite monotonic graphs for mean-payoff parity games 147
1) Constructing a monotonic graph satisfying W 148
2) Universality of LT . 150

8. Finite monotonic graphs for multi mean-payoff games 155
1) Strongly connected graphs satisfying W . 156
2) A W -universal monotonic graph . 156

Conclusion and perspectives for Part II 161

III. Beyond value iterations 163

9. Strategy improvement with fixpoint valuations 165
1) A generic framework for strategy improvement 165
2) Applications and perspectives . 169

10. Exploiting symmetry in mean-payoff games 173
1) Introduction . 173
2) Potential reductions and simplicity . 174
3) Symmetric presentation of the GKK algorithm 179
4) Pseudopolynomial upper bound . 181
5) Strong exponential upper bound . 184
6) The ESL algorithm . 189
7) Conclusion and perspectives . 198

11. Attractor-based algorithms and parity bi-progress measures 201
1) Universal attractor-based algorithm of [JM20] 202
2) Simulation by value iteration . 210
3) Accelerating iterations of parity bi-progress measures 216
4) Simulation of Zielonka’s algorithm . 220
5) Conclusion and perspectives . 225

General conclusion 227

Personal references 233

Bibliography 235

General introduction

7

Overview

We introduce parity and mean-payoff games, discuss their significance and then give a high-level
description of our approach. Although the discussion is non-technical, it is nonetheless quite dense,
with a focus on describing related works and motivations as thoroughly as possible.

We refer the reader not familiar with infinite duration games to the preliminaries below, which
provide a gentle introduction to all the concepts needed throughout the thesis. Apart from the some-
what demanding opening part, we have paid a special attention so as to make the overall exposition
self-contained and accessible.

1 Parity games

In a parity game, two players, Eve and Adam, push a token along the edges of a directed graph
(without dead-ends). This interaction goes on forever, producing an infinite path π. The edges of
the graph are coloured with integers called priorities and used by the parity winning condition defined
as follows: π is winning for Eve if and only if the largest priority appearing infinitely often in π is
even. A fundamental property of parity games, which we will discuss at length, is their bi-positional
determinacy: if either player can ensure to win then they can do so with a strategy which depends
only on the current vertex of the graph.

Figure 1: Example of a parity game. Circle vertices are controlled by Eve, and square vertices are controlled by
Adam (this convention is used throughout the thesis). The bold edges represent winning positional strategies:
from the three leftmost vertices, Eve can ensure a win, whereas Adam wins from the two vertices on the right.

A few other related winning conditions are discussed below and will be formally defined in the
preliminaries for completeness.

9

10 Contents

1.1 Origins of parity games

Parity games originate from automata theory and µ-calculus; we now give a brief history describ-
ing the context of their apparition and some of the landmark publications. We refer to [GTW02]
for a complete presentation of all results mentioned below.

Rabin’s complementation lemma. The theorem of Rabin [Rab69] states that the monadic sec-
ond order logic over infinite binary trees (S2S) is decidable. This result is of utmost importance
in modern computer science and logics, and is often referred to as the “mother of all decidability
results”. Rabin’s theorem is proved by studying infinite tree automata and most crucially, show-
ing that these admit effective complementation. The proof of Rabin is notoriously difficult, and
simplifying it has been an important challenge during several decades.

The fundamental idea of using infinite duration games in this context was first suggested by
Büchi [Büc77], then succesfully implemented by Gurevich and Harrington [GH82] and indepen-
dently by Muchnik [Muc84]. This approach relies on proving finite-memory determinacy (winning
strategies can be implemented by finite-state machines) of infinite games¹ with a Muller winning
condition, which are more general than parity games.

Simplifications of the approach of [GH82] were given by Yakhnis and Yakhnis [YY90] and
then by Zeitman [Zei94], who in particular considered the case of infinite games which are not
necessarily played over trees. Although playing over infinite graphs or trees is roughly equivalent in
this case, this suggests playing (with infinite duration) over finite graphs, which was first investigated
by McNaughton in his seminal paper [McN93] for the Muller condition.

The µ-calculus. The µ-calculus extends propositional modal logics by adding fixpoint opera-
tors. It originated in the work of Scott and de Bakker [SB69] and was subsequently developped by
many different authors; the µ-calculus as we know it today was formalised by Kozen in his seminal
paper [Koz83].

The µ-calculus is used to describe and verify properties of labelled transition systems. It is known
to be very expressive and encodes most modal logics such as Hennessy and Milner’s dynamic logic
HML [HM80] and several temporal logics (for instance CTL˚, further discussed below). At the
same time it enjoys good algorithmic properties, making it a central logic in modern verification.
Its prolific mathematical theory is rooted within (finite) model theory. A relationship between the
µ-calculus and infinite tree automata (all automata discussed below operate over infinite trees) was
first laid out in [SE84], where, in order to establish its membership in EXPTIME, the satisfiability
problem is reduced to the emptiness problem for a class of automata.

In [Niw86] and [Niw88], Niwińkski further investigated this correspondence. The articles
present a reduction from automata to µ-calculus, and a converse reduction in the absence of con-
juncts. In their celebrated publication [EJ91], Emerson and Jutla describe a complete converse
reduction establishing an (effective) equivalence in expressivity between the two formalisms, thus
giving yet an alternative proof of the complementation lemma (since the µ-calculus admits easy
complementation). The new proof consists in first translating a µ-calculus formula to an alternat-
ing automaton (as introduced by Muller and Shupp in [MS87]) with a Streett winning condition,
and then applying the co-Safra construction from [EJ89] (based on [Saf88]) which yields a non-
deterministic Rabin automaton.

Most importantly, Emerson and Jutla show that combining the two above translations yields a
Rabin automaton whose winning condition is much simpler and in fact coincides with the parity

¹Finite-memory determinacy of finite such games was established by Büchi and Landweber [BL69] and also con-
stitutes a milestone of early automata theory, discussed below.

1. Parity games 11

condition. They give a first study of parity games (over infinite trees), and present a direct de-
terminacy proof based on its µ-calculus formulation. They also formulate a concise and elegant
proof of positionality which considerably simplifies the proofs of finite-memory determinacy of
Muller games discussed above. Prior to their work, parity automata were also studied by Mostowski
in [Mos84] and shown to be equivalent in expressivity to Rabin or Muller automata without appeal-
ing to games or to the µ-calculus. Positionality of infinite parity games was also proved in [Mos91],
independently of [EJ91].

1.2 Significance and motivations

Model checking µ-calculus. The model checking problem asks, given a specification (here, a µ-
calculus formula) and a model (a finite labelled transition system), whether the formula holds over
the model. As explained above, the works of Niwiński and Emerson and Jutla together established
equivalence in expressiveness between tree automata with parity acceptance on one hand and the µ-
calculus on the other. This was made more precise by Emerson, Jutla and Sipsa in [EJS93] (see also
the full version [EJS01]) who provided a linear equivalence between the model checking problem for
the µ-calculus and the emptiness problem for automata with parity conditions, which is easily seen
to be equivalent to solving finite parity games. Positionality of finite parity games (which can already
be established as a consequence of [Eme85]) then gives membership of the problem in NPX coNP.
By reduction to discounted games, Jurdziński [Jur98] established that the problem also belongs to
UPX coUP.

The equivalence with µ-calculus model checking as well as their intriguing complexity status
give two excellent theoretical motivations for studying the complexity of solving finite parity games.
The attention of the practical model checking community has however considerably diverged from
the µ-calculus; most modern practical applications of parity games are related to synthesis rather
than verification.

Synthesis of reactive systems. Reactive systems are those which maintain an ongoing interac-
tion with their environments. Examples include embedded controllers, hardware circuits, commu-
nication protocols, distributed systems, and many more. Church was the first to pose in [Chu57]
the question of synthesis: given an input/output specification, is it possible to synthesise a pro-
gram that meets the specification? Synthesis of reactive systems is a field of its own, which has
recently seen tremendous developments; we give a few early landmarks and refer to the surveys
of Finkbeiner [Fin16] and of Bloem, Chatterjee and Jobstmann [BCJ18] for more complete and
exhaustive expositions.

Infinite duration games have quickly emerged (earliest appearances date back to the work of
McNaughton, see [McN67]) as the natural model underlying synthesis for reactive systems. In
this scenario, the two players model respectively the system, which tries to satisfy the specification,
and an adversarial environment, aimed at breaking the specification. A solution for the synthesis
problem then corresponds to a strategy for the system player which can be implemented by a finite
state machine (or program).

Decidability of the synthesis problem was established by Büchi and Landweber [BL69], while the
infinite tree automata of Rabin [Rab69; Rab72] provided an algorithmic formalism for synthesised
strategies (or programs). In this early framework, system specifications are given in monadic second
order logic which has unpractical non-elementary complexity.

Practicality of the synthesis problem became conceivable with the development of (weaker) tem-
poral specification logics initiated by Pnueli’s linear temporal logic [Pnu77] (LTL). Emergence of
LTL was quickly followed by that of the branching time computation tree logic (CTL) of Ben-

12 Contents

Ari, Manna and Pnueli [BAMP81] and (independently and roughly equivalently) of Clarke and
Emerson [CE81]. These two logics are standardly used in the synthesis and model checking com-
munity, and subsumed by the logic CTL˚ of Emerson and Halpern [EH83] and by the µ-calculus
of Kozen [Koz83].

LTL model checking can be done in PSPACE (the same applies to CTL˚) and became an im-
portant industrial technique already in the eighties in the context of hardware design. The problem
of LTL synthesis was shown to be 2EXPTIME-complete in the seminal work of Pnueli and Ros-
ner [PR89], who also defined the automata-theoretic approach (originated from Buchi and Landwe-
ber’s work [BL69]) to the synthesis problem. The difference in complexity between verification and
synthesis should be tempered by the fact that the (generally exponential) model is part of the input
in the model checking problem.

The fast-paced development and success of the field of automatic verification at that time (which
continues today) motivated a lot of research on reactive synthesis and its automata theoretic foun-
dations: see for instance the works of Nerode, Yakhnis and Yakhnis [NYY92], of Thomas [Tho95]
and of Vardi [Var95]. Despite thorough efforts, important theoretical developments and a more
and more mature underlying theory, synthesis of reactive systems started becoming a reality only in
more recent times.

Modern days. Fragments of LTL captured by parity games with a small fixed number of priori-
ties (which can be solved in polynomial time) have been studied, most prominently the generalised
reactivity GR(1) of Piterman, Pnueli and Sa’ar [PPS06], which generalises most fragments stud-
ied earlier. Formulas in GR(1) translate to games (of exponential size) which admit only three
priorities. For the first time, small industrial reactive designs (from [Spe99]) could be synthesised
(see [BJP+12]).

Another early successful approach to LTL synthesis is the bounded synthesis framework of
Schewe and Finkbeiner [SF07], which obtains tractability for many instances of the full LTL syn-
thesis (and can be applied to other formalisms). Roughly speaking their technique builds on the
safraless determinisation of Kupferman and Vardi [KV05] and explores the space of programs by
iteratively incrementing a bound on their maximal size. The framework of bounded reactive syn-
thesis has become standard, and is often used in combination with symbolic methods such as binary
decision diagrams (which proved successful in model checking) for dealing with large state-spaces,
and/or with SAT or SMT-solvers.

Perhaps surprisingly, the recent years have witnessed a resurgence of LTL reactive synthesis
tools based on novel automata theoretic translations combined with explicit parity game solving,
as opposed to combinations of bounded synthesis with symbolic approaches. Most notably, the
tool STRIX of Meyer, Sickert and Luttenberger (see [MSL18] and [LMS20]), which has won
the main synthesis competition SYNTCOMP each year since 2018, is based on such methods.
First, the LTL formula is converted (using the library Owl which implements many recent effi-
cient automata-theoretic translations, see for instance the work of Esparza, Krětínský and Sick-
ert [EKS18]) into a parity game². The game is then solved using a strategy improvement algorithm
of Luttenberger [Lut08] implemented over GPUs.

Kupferman explains in [Kup12] that the reasons for lack of practical impact (at that time) of
reactive synthesis are not only algorithmic (non-trivial algorithms implemented on implicit or ex-
plicit parity games resulting from intricate determinisation procedures), but also methodological:
standard automata theoretic approaches often lack in modularity and flexibility. Many efforts in the

²The reality is slightly more intricate: several deterministic parity games are obtained from different subformulas
in a well-chosen decomposition, which are then composed into a larger parity game.

1. Parity games 13

synthesis community have been devoted to addressing such issues, and tools and frameworks have
been developed in the recent years which are more and more robust, applicable, and scalable.

1.3 Three families of algorithms

For the reasons detailed above, and also because problems belonging to NPX coNP have (often
after considerable efforts) generally been proved to be solvable in polynomial time, finite parity
games have attracted a lot of attention since the mid-nineties; they are however still not known to be
solvable in P. The only breakthrough in this direction was obtained by Calude, Jain, Khoussainov,
Li and Stephan [CJK+17] who presented an algorithm with quasipolynomial runtime O(nlog d),
where we use n and d to respectively denote the size and number of different priorities appearing on
the game. It should be noted that in all practical applications (except model checking µ-calculus),
the size is typically exponential in the number of priorities; in this case the algorithm of [CJK+17]
runs in polynomial time.

The discussion below is far from being exhaustive and many important contributions relative
to solving parity games will not be mentioned. We focus on three well-established and important
classes of algorithms, namely value iteration, attractor-based and strategy-improvement algorithms.
These three paradigms are central to our work, and will be discussed in more depth respectively in
Chapters 4, 9 and 11.

Value iterations. The first value iteration algorithm for parity games is due to Jurdziński [Jur00].
It is based on successive updates of d/2-tuples of integers, one for each vertex, representing occur-
rences of odd priorities which can be forced by Adam, and ordered lexicographically. This tech-
nique is rooted in Walukiewicz’s signatures [Wal96] which are implicit in the work of Emerson and
Jutla [EJ91] and instrumental in the study of infinite parity games.

Its worst-case complexity is roughly nd/2, which was already obtained by earlier (arguably more
complicated) µ-calculus model checking algorithms. However its polynomial space complexity was
only matched at that time by Zielonka’s attractor-based algorithm (discussed below), making it
the most efficient algorithm in theory at the time of its introduction, as well as one of the most
conceptually simple. In practice however, it is well-known to behave badly, and even with known
optimisations exponential runtime is frequently displayed.

Schewe [Sch07] was the first to restrict the domain of the tuples in his algorithm inspired by
the big-step attractor-based approach of [JPZ06], further discussed below. This brought down the
worst-case complexity to roughly nd/3, which was (in theory) the best algorithm available until 2017
in the typical case where d = o(

?
n).

Within a few months following the breakthrough of [CJK+17], two different quasipolynomial
value iteration algorithms were given by Fearnley, Jain, Schewe, Stephan and Wojtczak [FJS+17] (see
also [FJK+19]) and by Jurdziński and Lazić [JL17]. Both algorithms reduce the space complexity to
quasilinear, and both papers provide additional analyses of their (very similar) runtime bounds. The
first one is closer to the approach of [CJK+17] and uses a similar data structure, whereas the second
one is based on an elegant tree-coding lemma and directly refines [Jur00], drastically reducing the
domain of the valuation to a quasipolynomial size of n

(logn+d/2
d/2

)
.

A year later, Lehtinen [Leh18] (see also [LB20]) presented a fourth quasipolynomial algorithm,
based on a novel notion of register-index of a parity game. Register-indices were then used by Boker
and Lehtinen [BL18], who generalised the approach to the setting of alternating parity word au-
tomata, showing that they can be turned into alternating weak automata with only quasipolynomial
blow-up³. Although more general, the algorithm of Lehtinen displayed a slightly worse quasipoly-

³When instantiated with only one letter, this yields a quasipolynomial reduction from parity to safety games, which

14 Contents

nomial runtime of roughly nlog d logn ; the above translation was later improved (using universal trees,
discussed below) by Daviaud, Jurdziński and Lehtninen [DJL19] so as to match the quasipolynomial
complexity of the other algorithms when instantiated to parity games.

Meanwhile, Bojańczyk and Czerwiński [BC18] formalised the data structure of [CJK+17] as
a deterministic (strongly) separating automaton of quasipolynomial size, and explained that any
deterministic separating automaton implies a reduction to a safety game of roughly the same size,
and therefore an efficient algorithm. Independently, Fijalkow [Fij18] presented the tree-coding
lemma of [JL17] as a construction of a universal tree, showed that any universal tree gives rise to
a value iteration algorithm, and established an almost matching (up to a polynomial factor) lower
bound on the size of universal trees.

In a combined effort, Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić and Parys [CDF+18]
unified all above results by showing that any (even non-deterministic) strongly separating automaton
includes a universal tree, and that all algorithms above implicitly or explicitly construct universal
trees. This second result was already established by [BC18] for the data structure of [CJK+17]
and thus for [FJS+17] which is closely related, and is relatively straightforward for universal trees.
However simulating Lehtinen’s algorithm register games with a separating automata turned out to
be quite technical, and produces an automaton which is not deterministic and therefore not fit for a
game reduction. The results of [CDF+18] established nonetheless a quasipolynomial combinatorial
barrier in the form of universal trees which applies to all quasipolynomial approaches known at that
time. Later, Parys [Par20] has completed the picture with its missing piece, by showing that the
separating automata implicit in Lehtinen’s algorithm can indeed be applied in a game reduction
scenario, as was claimed in [CDF+18].

Attractor-based algorithms. Attractor-based algorithms originated in McNaughton’s simplifi-
cation [McN93] of Gurevich and Harrington’s approach [GH82] when applied to the case of finite
Muller games. Zielonka⁴ [Zie98] was the first to instantiate it to parity games, which led to the
so-called Zielonka algorithm. It has a recursive nature, and is based on the following simple steps
illustrated in Figure 2. (We recall that d is the maximal priority, which is assumed to be even).

1. Determine in linear time the set A of vertices from which Eve can ensure to see the priority
d (note here that by definition, Adam can ensure from cA to remain in cA), A is called the
Eve-attractor to priority d.

2. Recursively solve the game G1 obtained by removing A and edges of priority d.

3. If Adam’s winning regionW 1
Adam inG1 is empty, thenG is everywhere winning for Eve. Oth-

erwise by the above remark the Adam-attractor B to W 1
Adam is (non-empty and) winning for

Adam in the original game G and can therefore safely be removed.

It is easy to see that the algorithm runs in time at most nd and examples of parity games dis-
playing an exponential runtime are known since at least [Jur00]. More recently in the work of
Gazda and Willemse [GW13], single-player examples were given over which the algorithm also
exhibits an exponential runtime. Despite having exponential worst-case runtime, Zielonka’s algo-
rithm is well known to perform very well in practice. In fact, it has been observed by Friedmann

can be solved in linear time. Boker and Lehtinen also considered the case of alternating tree automata for which they
provided a lower bound.

⁴Zielonka’s purpose was to present an alternative to Emerson and Jutla’s positionality proof which is given over
infinite trees [EJ91]. His proof applies to any infinite game graph, turning his induction into an algorithm for finite
graphs is transparent. Although simpler (it is, in our opinion, the simplest proof), a drawback in Zielonka’s approach
is that both players are involved in the inductive argument.

1. Parity games 15

Figure 2: Illustration of the three steps, from left to right, in the case where W 1
Adam ‰ ∅ (otherwise, the

algorithm terminates). The blue and red arrows respectively represent positional strategies for Eve and Adam.
In the second step, the strategies are winning in G1 by induction, and in the third step, Adam’s strategy is
winning is G; Eve’s strategy is discarded in this case.

and Lange [FL09] and more recently by van Dijk [Dij18b] that even with very few optimisations,
Zielonka’s algorithms consistently outperforms all others on both randomly generated games and
benchmarks from practical applications.

The strength and appeal of attractor-based algorithms lie in their simplicity and modularity. An
important example is in the approach of Jurdziński, Paterson and Zwick [JPZ06] who modified
Zielonka’s algorithm by adding a brute-force search for small dominia⁵. The obtained algorithm has
runtime roughly n

?
n, making it the first deterministic subexponential time algorithm, and the only

one available until 2017. The work of Gajarský, Lampis, Makino, Mitsou and Ordyniak [GLM+15]
presents many different adaptations of the original attractor-based algorithm to run in polynomial
time with respect to several parametrizations⁶. Other notable examples of attractor-based algorithms
include the priority promotion of Benerecetti, Dell’Erba, and Mogavero [BDM16] and the tangle-
learning scheme of van Dijk [Dij18a].

Recently, and most relevant to our work, Parys [Par19] introduced yet another quasipolynomial
time algorithm in the form of a surprisingly simple modification of Zielonka’s algorithm. Roughly,
Parys proves that it suffices to guide the recursive calls with two additional integer parameters (one for
each player), which in particular force the runtime to be only quasipolynomial. The crux of the proof
still lies in a separation result: partitions returned by the modified recursive calls no longer necessarily
correspond to the winning regions of the two players, but they separate dominia of adequate sizes,
which is sufficient to obtain correctness. Despite this fact, Parys’ approach seemingly avoids the
combinatorial barrier imposed by separating automata, because its main mechanic directly operates
on the structure of the graph ; it is not clear how to describe the algorithm as implicitly constructing
an automaton.

However the community quickly realised that universal trees still seemed hidden in the new
approach. Lehtinen, Schewe and Wojtczak [LSW19] presented another attractor based approach,
which directly combines the ideas of Parys with the (essentially optimal) universal tree of [JL17].
Besides lowering the complexity to roughly the square of the value iteration algorithm, this strongly
suggests that universal trees are inherent also to the new approach, subjecting it to the same lower
bound. Jurdzinski and Morvan [JM20] then proved that the attractor-based approach can be in-
stantiated with any universal tree, and moreover provided a symbolic description of the approach.

Unfortunately, these new quasipolynomial algorithms do not share the efficiency of Zielonka’s
on practical instances as explained by Lehtinen, Parys, Schewe and Wojtczak in their recent joint

⁵Dominia are subgames in which a player can ensure to win from everywhere.
⁶Since Obdrzálek [Obd03; Obd06; Obd07] showed fixed parameter tractability over graphs of bounded tree-width,

and later clique-width and DAG-width, such questions have attracted considerable attention, but we will not discuss
them further.

16 Contents

paper [LPS+21].

Strategy improvements. The strategy improvement paradigm has a long history, which is rooted
in stochastic processes and games. As the name suggests, starting from an arbitrary (positional)
strategy, one iteratively computes “better and better” strategies until reaching an optimal one. This
possibility of running a strategy improvement scheme relies on being able to evaluate a strategy, in
such a way that one may efficiently compute a better strategy from any non-optimal one. In a similar
way as for the simplex method in linear programming, specifying a strategy improvement algorithm
requires specifying a (potentially randomised) way of choosing an improved strategy; this is usually
called an improving policy or a switching policy.

The strategy improvement framework was introduced in the context of Markov decision pro-
cesses by Howard [How60] and later generalised to Shapley’s [Sha53] stochastic games by Hoffman
and Karp [HK66] and Rao, Chandrasekaran and Nair [RCN73]. In this context, the evaluation of
the strategy is naturally suggested by the definition: simply use the values in the process induced by
fixing the strategy. Important landmarks in the vast literature concerning strategy improvements in
stochastic contexts (often called policy iteration) include the work of Ludwig [Lud95], who adapted
Bland’s rule [Bla97] and extended Kalai’s analysis [Kal92] from linear programming to Condon’s
simple stochastic games [Con92], leading to a randomised improvement policy with subexponential
runtime 2O(

?
n). Much later, Ye [Ye11] proved a strongly polynomial upper bound for Markov de-

cision processes when the discount factor is fixed, which was improved and generalised to stochastic
games by Hansen, Miltersen and Zwick [HMZ13] (for Dantzig’s rule or “single-switch”).

The observation that the strategy improvement paradigm can be applied to parity games (via
reduction to discounted games⁷, which are a special case of stochastic games) is due to Puri [Pur95].
It was first made explicit as a completely combinatorial approach (formally removing the need to
translate to discounted games) by Vöge in his PhD thesis [Vög00] (in German), and considerably
popularised by the seminal paper of Vöge and Jurdziński [VJ00]. In this scenario, evaluations of
strategies are much more involved (at least conceptually): one should compute an optimal counter-
strategy, and precisely inspect the (ultimately cycling) paths in the induced finite graph.

Despite these technical complications, the combinatorial approach lends itself to implementa-
tions, and sparked a lot of excitement in the community. The number of iterations turned out to be
consistently sublinear on benchmarks, and strategy improvements were usually regarded (until the
surprising observation of [FL09] that Zielonka’s algorithm is actually more robust) to be the most
practical algorithms. Most importantly, the striking absence of lower bounds⁸ was what made the
approach to be widely considered as a contender for a polynomial time algorithm.

An important series of papers from Björklund, Sandberg and Vorobyov [BSV03; BSV04a;
BV05], Ludwig [Lud95]’s aforementioned work and further discussed below for mean-payoff games,
is devoted to applying both randomised pivoting rules of Kalai [Kal92] and of Matoušek, Sharir and
Welzl [MSW96] as switching policies to the strategy improvement framework. This provided the
first subexponential algorithm, which was randomised, with runtime 2O(

?
n logn).

Later, Schewe [Sch08] presented a novel (combinatorial) framework, in which improvements
are locally optimal and yet still computed in polynomial (actually, even slightly superlinear) time by
solving an adequate two-player game. This surprising development, supported by Schewe’s obser-
vation that even fewer iterations are performed, strengthened the belief that strategy improvements
could be proved to run in polynomial time. Luttenberger [Lut08] gave an alternative presentation

⁷The reduction from parity to discounted games goes through mean-payoff games; the second step (from mean-
payoff to discounted) is due to Zwick and Paterson [ZP95; ZP96].

⁸A lower bound was known [BV05] but is was unsatisfactory since switches are chosen adversarially, and not ac-
cording to one of the known natural policies.

2. Mean-payoff games 17

of Schewe’s algorithm as a non-deterministic strategy improvement scheme directly adapted from that
of Björdklund, Sandberg and Vorobyov, and showed that over the slightly particular parity games
considered by the algorithm, the formalism actually coincides with the original one of [VJ00], im-
ported from discounted games. It is also worth mentioning that a variation on Luttenberger’s algo-
rithm based on non-deterministic strategies and implemented on the GPU is a key component in
STRIX’s [LMS20] LTL synthesis tool.

Friedmann’s breakthrough result [Fri09] consists in a notoriously involved construction of a par-
ity game displaying an exponential number of iterations for the most natural improvement policy.
Friedmann also explains how to slightly modify the game so as to adapt the lower bound to Schewe’s
improvement scheme. Friedmann’s counter examples later proved to be extremely robust and mod-
ular: these were adapted (by Friedmann and co-authors) to several different scenarios, including (but
not limited to) non-oblivious policies for parity games [Fri11a; Fri13], and to the most common
randomised pivoting rules for the simplex algorithm, along with Hansen and Zwick [FHZ11].

Although this direction was still advocated by Friedmann himself [Fri11b], efforts for developing
a polynomial time strategy improvement algorithm have considerably declined since then. A notable
exception is the work of Schewe, Trivedi and Varghese [STV15] which proposes a symmetric strategy
improvement scenario, where strategies for each player are improved in parallel, and influence each
other in the chosen switches. The empirical runtime of the symmetric algorithm is encouraging,
even on different variants of Friedmann’s examples. To the best of our knowledge, no lower bounds
are known.

To date, no quasipolynomial strategy improvement algorithm is known. Crafting such an algo-
rithm appears to be an interesting but challenging endeavour for at least two reasons. First, all lower
bounds induced by Friedmann’s constructions are exponential or at least subexponential, because
based on incrementing a binary counter, and therefore a quasipolynomial algorithm would inher-
ently transcend this barrier. Second, all known strategy improvement algorithms (including the
more recent symmetric algorithm of [STV15] or the snare-based non-oblivious scheme of Fearn-
ley [Fea10a]) are applicable in the more general setting of mean-payoff games, therefore such a
quasipolynomial strategy improvement would either be specific to parity games (which would be
extremely interesting in itself), or imply a new breakthrough for mean-payoff games.

2 Mean-payoff games

We now give a similar treatment to mean-payoff games: we quickly introduce the formalism (and
the closely related energy games), then describe their origins and state of the art, their significance,
and common extensions.

Mean-payoff and energy games. In a mean-payoff game, edges are labelled by integer weights in
[´N,N], which are interpreted as payoffs from Eve to Adam; negative payoffs then correspond to
gains for Eve. Eve seeks to minimize the long term average payoff lim sup 1

k

řk´1
i=0 ti of the infinite

sequence t0, t1, . . . of weights which are seen along the visited path.
Closely related are energy games, which are played over the same kind of graphs, but inherently

refer to the evolution of a quantity which should remain non-negative, such as an amount of energy.
Starting from a given initial energy n, Adam⁹ should ensure that the accumulated energy remains
above zero (the battery is never depleted), formally all partial sums n+

řk´1
i=0 ti should be ě 0.

⁹We will later prefer to take Eve’s point of view and adopt another convention; the definition given here is better
aligned with the literature.

18 Contents

Mean-payoff and energy games are determined : an optimal value can be associated to each vertex
in the graph. For mean-payoff games, the value of a vertex belongs to [´N,N] and corresponds
to the average payoff from Eve to Adam assuming both players play optimally; in an energy game,
the value belongs to [0,8] and corresponds to the minimal n (which is 8 if there is none) such
that Eve can ensure to win the game with initial energy n. Just like parity games, finite mean-payoff
and energy games are positionally determined for both players. A complete example is discussed in
Figure 3.

Figure 3: Example of a mean-payoff game. Mean-payoff values from left to right are ´1,´1, 12 ,
1
2 , 2 and

2, and mean-payoff-optimal positional strategies for both players are identified in bold. Energy values are
8,8, 0, 9, 2 and 0, and energy-optimal strategies are given by arrows with double heads. Notice that starting
with energy 8 from v, Eve can ensure to deplete the battery.
However to do so she must take the edge towards v1, which is non-optimal with respect to mean-payoffs: it
gives Adam the possibility to ensure a long term average of 2 by forcing the rightmost cycle.
Notice also that using a mean-payoff-optimal strategy from v1 ensures a win for Adam in the energy game
with initial energy 4. Actually, mean-payoff-optimal strategies for Adam are also viable in the energy game in
general, in the sense that they achieve a win from some finite (but possibly non-optimal) energy level.

Algorithmic problems. We discuss three algorithmic problems, in increasing order of difficulty,
which can be instantiated to both variants leading to six (closely related) problems.

• Determine the set of vertices with mean-payoff valueě 0 or with finite energy-value (thresh-
old problems).

• Determine the value of each vertex (value problem).

• Construct an optimal strategy for each player (strategy synthesis).

In the case of energy games, it is not hard to synthesise optimal strategies directly from the values
of the vertices, and moreover all known algorithms for the threshold problem actually compute the
values. For this reason, we will simply say solving an energy game for the problem of computing the
values, or equivalently constructing energy-optimal strategies.

As a direct consequence of their positionality, it turns out that both threshold problems are
equivalent in a strong sense: a vertex has mean-payoff value ě 0 if and only if it has finite energy
value. Current state-of-the-art algorithms for the threshold problem actually solve the energy game.
The value and strategy synthesis problems for mean-payoff games are then generally solved by re-
ducing to many instances of the threshold problem, with techniques often involving a dichotomy
on N .

2. Mean-payoff games 19

We will later concentrate on solving the threshold problem, generally via solving the energy
game, which seem to capture the overall complexity, and state-of-the-art approaches. Moreover,
energy games offer a combinatorial handle to the resolution of mean-payoff games, which turns out
to be well-suited to our approach. As was previously mentioned, there is an easy reduction from
(finite) parity games due to Puri [Pur95], simply by replacing each priority p with the weight (´n)p,
where as always n denotes the number of vertices. This gives another motivation for focusing rather
on the threshold problem; significance of mean-payoff games is discussed in more length below.

2.1 From origins to state of the art

We will say that a runtime bound which does not depend¹⁰ on the maximal absolute value
N of a weight is combinatorial. An algorithm whose runtime is polynomial in n and N is called
pseudopolynomial. We raise the reader’s attention on the difference between quasipolynomial and
pseudopolynomial algorithms: the former have runtime nO(logc n), while the latter have runtime
O((nN)c).

Early work. Unlike parity games which come from logics, mean-payoff games are rooted within
geometry. Early appearances of related formalisms can be traced back to the work of Gilette [Gil57]
(see also rectifications made by Liggett and Lippman [LL69] to wrong claims of Gilette), who es-
tablishes existence of stationary strategies for (concurrent, stochastic) mean-payoff games as a de-
generated case of Shapley’s [Sha53] stochastic games.

Turn-based, non-stochastic finite mean-payoff games as above were first considered in the sem-
inal work of Ehrenfeucht and Mycielski [EM73; EM79], who established their positionality. Their
proof is short and elementary, and is based on interactions with so-called cyclic games, which
are finite duration and stop as soon as a cycle is closed. Cyclic games have later been considered
in [VJ00] (for parity games) and [BSV04b]. Generalisations have been studied by Karzanov and
Lebedev [KL93], who were also probably the first to state that the threshold problem belongs to
NP X coNP, as a consequence of the main result of [GKK88], discussed just below. It is worth
mentioning that Ehrenfeucht and Mycielski state that more direct proofs would be desirable.

A second study of mean-payoff games was given by Gurvich, Karzanov and Khachivan [GKK88],
who present an algorithmic proof¹¹ of the existence of ergodic potentials, which implies a positionality
proof and an algorithm for strategy synthesis. Quite notably, their approach is based on a subroutine
with exponential runtime for computing the energy values (such a terminology is anachronic) via
successive potential transformations, which is used as part of a global dichotomy. The subroutine in
question has later been called the GKK algorithm and the analysis given in [GKK88] for its termina-
tion yields a combinatorial bound of n2n iterations (which was not stated explicitly, unfortunately),
each of which has runtime O(m). We believe that the GKK algorithm, which is attractor-based, is
often overlooked in the recent literature (probably due to the low publicity of the Journal of USSR
in which it was published); more details will be given in Chapter 10.

A third great introduction to mean-payoff games is given in the seminal work of Zwick and
Paterson [ZP95; ZP96]. Relying on the previously established positionality, Zwick and Paterson
gave direct algorithms with pseudopolynomial runtime respectively O(n2mN), O(n3mN) and

¹⁰Formally, this requires a model of computation able to deal with integer operations of magnitude N in constant
time. We will always implicitly work in the RAM model with word size logN , but abstain from the use of so-called
“RAM tricks”, which encode (potentially non integral) additional data on the RAM to incur further (generally loga-
rithmic) speedup.

¹¹It is also noted in [GKK88] that (non-effective) existence of ergodic potentials follow from much more general
results of Moulin [Mou76] (in French), and also has an earlier proof by Parthasarathy and Raghavan [PR71].

20 Contents

O(n4mN log(m/n)) for the threshold, value, and strategy synthesis problems. Perhaps equally
importantly, Zwick and Paterson established a reduction from mean-payoff games to Condon’s
simple stochastic games [Con90] (via non-stochastic, turn-based discounted games), which also lie
in NPX coNP and have attracted a lot of attention.

We also mention a related work of Pisaruk [Pis99] who further studied generalisations of cyclical
games. Pisaruk established a general pseudopolynomial algorithm in this setting, which instantiates
to the GKK algorithm when the input corresponds to a mean-payoff game. In particular, Pisaruk
established¹² a runtime bound of O(n2mN) for the GKK algorithm, matching the one of Zwick
and Paterson.

The study of mean-payoff games as a simple graph-based problem lying in NP X coNP and
not known to be in P was first advocated by Zwick and Paterson [ZP96], who have considerably
participated in popularising the problem. Despite more than two decades of considerable efforts,
no substantial progress has been made on this front.

Strategy improvements. It was known from the aforementioned works of Zwick and Pater-
son [ZP95], Puri [Pur95], and Ludwig [Lud95] that mean-payoff games can be reduced to dis-
counted or simple stochastic games over which strategy improvements can be performed, and even
randomised strategy improvements with subexponentially-many iterations. However it was not un-
til almost a decade later¹³ that specific strategy improvement algorithms were given for mean-payoff
games by Björklund, Sandberg and Vorobyov [BSV04a]. Their contribution has two aspects.

First, they provided a framework for strategy improvements applied directly to mean-payoff
games. The obtained formalism is conceptually simpler than that of Vöge and Jurszinski [Vög00;
VJ00], and based on longest-shortest paths, which are in essence quite similar to energy games,
but they require so-called retreats or admissible strategies. Similar technicalities were later used in
Schewe’s optimal strategy improvement [Sch08]. These will be discussed in Chapters 9 and 10.

Second, Björklund, Sandberg and Vorobyov gave a first subexponential algorithm in the form of
a randomised switching policy in their new framework. The obtained complexity for the threshold
problem is min

(
O(mn2N), 2O(

?
n logn)); note that the first bound match the previous pseudopoly-

nomial ones. By reduction (dichotomy) they also obtain a procedure for the value problem with
complexity O(n3mN log(nN), log(N)2O(

?
n logn)), again roughly matching the one of Zwick and

Paterson, up to a logarithmic factor. The randomised subexponential bound for the value problem
was later improved to by Andersson and Vorobyov [AV06] to roughly 2O(

?
n log(m/

?
n)) (strongly

subexponential), which is the best currently available combinatorial bound (if one includes ran-
domised algorithms).

Energy games. Energy games were first studied by Chakrabarti, de Alfaro, Henzinger and
Stoelinga [CAH+03] in the context of resource interfaces and their analysis. Among other results for
several variations, a simple fixpoint algorithm with runtime O(n3N) was presented for computing
the energy values, in the setting where weights label the vertices of the game. Positionality of energy
games is not formally discussed.

Bouyer, Fahrenberg, Larsen, Markey and Srba [BFL+08] were the first to establish positionality
of energy games for both players (over finite games), and to present a connection with mean-payoff

¹²The proof of Theorem 3 therein establishes O(n2N) iterations (for mean-payoff games we have TF = O(1) in
Pisaruk’s notations) for his algorithm, which instantiates to the GKK algorithm for mean-payoff games. Moreover, each
iteration has runtime O(m) in this case.

¹³This is not entirely true: a strategy improvement algorithm was presented earlier by Cochet-Terrasson, Gaubert
and Gunawardena [CTGG99] (see also [GG98]) in the closely related context of min-max functions. However the
algorithm is presented in a completely geometric fashion; it is not clear how to derive a combinatorial framework from
their work.

2. Mean-payoff games 21

games (their intent was to provide hardness of energy games, for which they proved the NPX coNP
upper bound). However the precise threshold problems considered in [BFL+08] for both formalisms
are not “aligned” as they are here (mean-payoff value ě 0 versus energy value finite), and thus the
translation requires a logspace reduction.

Brim, Chaloupka, Doyen, Gentilini and Raskin [BCD+11] later realised (see Theorem 3 therein)
that the positionality of energy games (established by [BFL+08]) implies a direct equivalence be-
tween both threshold problems. Based on this observation, they gave a natural value iteration algo-
rithm for solving energy games in timeO(mnN), which improves on all previous pseudopolynomial
bounds for the threshold problem, and which we will refer to as the BCDGR algorithm. It is based
on a fixpoint formulation of energy values (not unlike those of [CAH+03] and [BFL+08]), and an
improved Kleene iteration (not unlike that of [Jur00]).

By a dichotomy (not unlike those proposed in [GKK88] or [BSV04a]) the authors of [BCD+11]
extended their approach to solve the value and strategy synthesis problems, obtaining the pseu-
dopolynomial boundsO(mn2N log(nN)). A subtler reduction to energy games (which also makes
repeated use of the BCDGR algorithm) was later presented by Comin and Rizzi [CR15; CR17], and
improved in [CR16], which establishes the state-of-the-art pseudopolynomial bound of O(n2mN)
for the value and strategy synthesis problems, removing the log(nN) factor from the solution
of [BCD+11].

Recently, a novel deterministic algorithm for solving energy games was presented by Dorfman,
Kaplan and Zwick [DKZ19], which implements a scaling technique on top of an acceleration of
the BCDGR algorithm. In the full version of the paper¹⁴ the need for scaling was removed, and the
accelerating subroutine simplified, leading to a runtime of O(min(mnN,m2n/2)). This is an im-
provement on the BCDGR algorithm since it adds a combinatorial upper bound, which currently
holds the state of the art for deterministic algorithms. Previously, the best deterministic combina-
torial bound was O(mn2n) which follows from the analysis of [GKK88] for their algorithm, and
was also obtained¹⁵ by Lifshits and Pavlov [LP07].

Similarities between the (attractor-based) GKK algorithm and the (accelerated value iteration)
algorithm of Dorfman, Kaplan and Zwick will be further discussed in Chapter 10. An extension
of the approach to discounted games was recently given by Kozachinskiy [Koz21b], establishing
a deterministic combinatorial nO(1)(2 +

?
2)n bound, whereas no deterministic algorithm with

runtime 2o(n logn) was previously known for discounted games with arbitrary discounts.

Practicality. We are not aware of any systematic comparison of the different algorithms for mean-
payoff games in the literature, or of benchmarks regrouping games arising from practical applications
(other than translating benchmark from parity games, which are inherently non-quantitative thus
not fit for capturing practicality of mean-payoff games). Our empirical experiments suggest that,
at least over randomly generated games, strategy improvements are more scalable than the GKK
algorithm, which itself is much more scalable than the BCDGR algorithm. This last point is not
surprising, value iterations are well-known to frequently display their worst-case complexity. We
do not exclude (but would be surprised by) the possibility that efficient implementations of the
attractor-based GKK algorithm can challenge strategy improvements in practice (as is the case for
Zielonka’s algorithm for parity game).

Similar observations have been made in the literature, see for instance [Sch08] or [DG06]. We
mention also a paper of Meyer and Luttenberger [ML16], which presents an implementation of

¹⁴It has not appeared yet, but is available on Dorfman’s webpage.
¹⁵A O(mn2n logN) bound is given for the mean-payoff value problem, but it is obtained by reduction to a proce-

dure (see Section 4 therein) which solves the energy game in time O(mn2n), matching the GKK algorithm. Lifshits
and Pavlov seem unaware of the details of the GKK algorithm which they qualify as “pseudopolynomial”, and they refer
to Gallai [Gal58] for the use of potentials.

22 Contents

the optimal strategy improvement [Sch08; Lut08] on graphical units, and reports on considerable
speed-up over large instances.

The tropical approach. An increasingly rich body of work initiated by Allamigeon, Gaubert and
co-authors, studies interactions between mean-payoff games, tropical geometry and techniques from
non-archimedean optimisation. A few pointers to the recent literature include [AGS18; AGK+18;
AGS20; AGQ+21] and Loho’s PhD thesis [Loh17]. One of these approaches, from Allamigeon,
Benchimol, Gaubert and Joswig [ABG+13], is based on rephrasing the threshold problem for the
mean-payoff valuation as a conjunction of polynomially many linear inequations in the tropical
semiring (R Y t´8u,max,+), and then importing (“tropicalising”) known methods and results
from linear programming.

The same authors established in [ABG+13] that combinatorial switching rules can be tropicalised
and in particular a combinatorial simplex algorithm with strongly polynomial complexity would
imply a strongly polynomial algorithm for mean-payoff games. Another striking outcome of this
technique, presented in [ABG14], consists in tropicalising the shadow-vertex pivoting rule from
Adler, Karp and Shamir [AKS87], leading to a deterministic algorithm for mean-payoff games which
exhibits polynomial time in average, as long as the game is drawn from a flip-invariant distribution.

Most results obtained in this line apply to the more general stochastic mean-payoff games. We
see this as indication that their geometric approach is essentially orthogonal to the one we will adopt:
energy games appear to be somewhat irreconcilable with the stochastic setting in which there seems
to be no reasonable definition for energy values.

2.2 Significance, applicability and extensions

Theoretical motivations. Several theoretical motivations for studying mean-payoff games were
described above: like parity games, which they generalise, mean-payoff games belong to NP X
coNP, and as observed by Jurdziński [Jur98], even to UP X coUP since they can be reduced to
discounted games which admit canonical strategies. We have also seen that mean-payoff games
are reducible to simple stochastic games which have attracted a lot of attention and also belong to
NPXcoNP, and its close connection to linear tropical optimisation provides yet another motivation.
Last, reductions (sometimes with large blow-up) were often described from games with more exotic
winning conditions to mean-payoff games – a notable example being the impressive (and involved)
chain of reductions established by Colcombet, Jurdziński, Lazić and Schmitz [CJL+17] – which
gives another incentive to find efficient solutions to mean-payoff games. Although mean-payoff
games find practical applications in verification (see for instance [DG06]), they are most notably
relevant in the context of reactive synthesis.

Quantitative synthesis. The introduction of energy games by Chakrabati, de Alfaro, Henziger
and Stoelinga [CAH+03] was made in the context of resource interfaces, which is related to reactive
controller synthesis. It already appeared in this work that real-life applications of quantitative spec-
ifications may require more expressive formalisms than so-called pure energy. Indeed reward energy
interfaces are introduced, modeled by conjunctions of an energy and a Büchi objective.

Integrating quantitative constraints in reactive synthesis specifications has very often been pro-
posed. We are not aware however of any framework, implemented or not, that employs a pure
mean-payoff (or energy) solver as its end-component. The focus in this context is really on deriv-
ing adequately expressive quantitative objectives, which often generalise those above. We briefly
survey a few of them, a more thorough (yet slightly outdated) overview can be found in Randour’s
thesis [Ran14], which includes stochastic generalisations, omitted here but often relevant in appli-

2. Mean-payoff games 23

cations.

Mean-payoff parity games and the like. Mean-payoff parity games are given by a conjunction
of a mean-payoff and a parity objective and were introduced by Chatterjee, Henziger and Jurdz-
iński [CHJ05] who established existence of optimal strategies, infinite memory requirement for
the conjunctive player, and gave an algorithm reducing to nd resolutions of parity and mean-payoff
games. In most well-studied extensions (see also below), it turns out that mean-payoff and energy ob-
jectives no longer coincide. Energy parity games were later studied by Chatterjee and Doyen [CD10;
CD12], who proved positionality for the disjunctive player, membership in NPXcoNP¹⁶ and poly-
nomial time equivalence with mean-payoff parity games (and thus their membership in NPXcoNP,
which was unknown), and gave an algorithm with similar complexity.

Bouyer, Markey, Olschewski and Ummels [BMO+11] later applied mean-payoff parity games
for the reactive synthesis of permissive strategies via penalties (see also [BDM+09]). In this modular
quantitative approach, non-deterministic controller strategies are sought, allowing for as many dif-
ferent desirable behaviours as possible; the obtained decision problem can be formulated as a mean-
payoff parity game. On the way, the authors of [BMO+11] propose a second study of mean-payoff
parity games, establishing their positional determinacy (for the disjunctive player), giving easier
proofs for existence of optimal strategies, and a more efficient and conceptually simpler algorithm.
Mean-payoff parity games have been integrated in several other reactive synthesis frameworks which
combine qualitative (parity) objectives for functionality, and quantitative (mean-payoff) objectives
for performance or robustness (see for instance [BBR13] or [BCG+14], which include in-depth
discussions about several related works).

Other related games have been studied, such as parity games with costs, by Fijalkow and Zim-
mermann [FZ14], generalised to parity games with weights by Schewe, Weinert and Zimmer-
mann [SWZ19], which they also proved to be polynomial-time equivalent to energy parity games,
and therefore to mean-payoff parity games. Quite notably, all algorithms presented so far are exten-
sions of Zielonka’s recursive attractor-based algorithm, and therefore inherit the exponential depen-
dency in d. We mention also the work of Chatterjee, Henzinger and Svozil [CHS17] who provided
aO(mnN) algorithm for the case where there are only two priorities, extending the state-of-the-art
bound for pure mean-payoff games to this case, which is often relevant in applications.

The state of the art for mean-payoff parity games is due to Daviaud, Jurdziński and Lazić [DJL18],
who generalised the quasipolynomial value iteration from parity to parity mean-payoff games, es-
tablishing a pseudo-quasipolynomial bound of order

mn2N

(
d/2 + logn

d/2

)
,

which matches the one for parity games up to an additional multiplicative nN . This algorithm
will be further discussed in Chapter 7. Unfortunately, the state-of-the-art algorithm inherits the
impracticability of value iteration approaches, which are known to frequently exhibit their worst-
case runtime. We are not aware of implementations of (full) mean-payoff parity solvers; actually,
solving large scale mean-payoff parity games even with a small fixed number (say, five) of priorities
appears to be elusive with the currently known techniques.

Multi mean-payoff games. A rich line of research concerns mean-payoff and energy games with
multiple dimensions, introduced by Chatterjee, Doyen, Henzinger and Raskin [CDH+10]. This

¹⁶This is surprising since the conjunctive player may require exponential memory. Such results (as is the case here)
are generally based on non-trivial decompositions for optimal strategies.

24 Contents

initial work establishes existence of optimal strategies in both cases, and even finite memory strate-
gies for multi energy games, and proves that when restricted to finite memory strategies, both for-
malisms coincide. Among other complexity results, they also established coNP-completeness for
multi energy games when the dimension is not fixed, and even when N = 1. The multidimen-
sional formalism was applied in reactive synthesis by Cerný, Gopi, Henzinger, Radhakrishna and
Totla [CGH+12] for systems modeling the evolution of several different resources, allowing to find
tradeoffs between possibly incompatible specifications.

Chatterjee and Volner [CV13] proposed a hyperplane separation technique for the multi mean-
payoff problem, establishing an upper bound inm(knN)O(k2), which is pseudopolynomial for fixed
dimension k. A similar technique was later employed by Jurdziński, Lazić and Schmitz [JLS15] to
obtain a similar bound O(nN)O(k4) for multi energy games, consequently settling several open
problems for the closely related setting of games played on vector addition systems with states. To-
gether with Colcombet in [CJL+17], the same authors gained considerable insight by formulating
the technique in game theoretic terms, moreover allowing to encompass conjunctions with par-
ity games (introduced by Abdulla, Mayr, Sangnier and Sproston [AMS+13]), with state-of-the-art
complexity O((nN)(d+p)

3 log(d+p)). A tractable variant will be discussed in Chapter 8.

Other variants and extensions. Over the last decade or so, numerous other extensions and
variants have been considered in the context of reactive synthesis; we (non-exhaustively) give a few
pointers without discussing further details. Arbitrary boolean combinations of mean-payoff games
were shown to be undecidable in [Vel15]. Energy games with bounds were studied in [FJL+11]
and [JLR13]. Average energy games were introduced in [BMR+15], while bounded and multidi-
mensional extensions are studied in [BHM+17]. Perhaps surprisingly, conjunctions of an energy
and a mean-payoff objective had not come under scrutiny until very recently [BHR+19]. These
can be seen as one-letter pushdown mean-payoff games, which are undecidable in general [CV12].
Pushdown (single and multidimensional) energy games are studied in [AAH+14].

Applications in reactive synthesis have recently called for the development of a number of (often
quantitative) game-theoretic frameworks. The two most relevant questions are then

• structural: how simple are optimal strategies (positional, finite memory, other structural in-
sight)? or

• algorithmic: can the winner be efficiently decided? better, can optimal strategies be synthe-
sised?

This motivates the study of modular and generic theoretical tools for tackling the two questions.

3 Contributions and organisation of the thesis

We introduce monotonic graphs which are totally ordered graphs in which edge relations are
monotonic, and advocate their use for the study of (finite and infinite) games which are positionally
determined for Eve¹⁷. These simple and natural objects have made numerous more or less explicit
apparitions in the literature, which will be discussed throughout.

Monotonic graphs allow to establish game-theoretic properties and algorithmically synthesise
strategies as long as they realise a graph-theoretic property, namely, universality with respect to the

¹⁷In this thesis, “positionality” always refers to positionality for Eve, which is the relevant property in synthesis,
sometimes called “half positionality”. To refer to “positionality for both players”, we will speak of “bi-positionality”.
These notions are formally introduced in the preliminaries.

3. Contributions and organisation of the thesis 25

condition under study. Our work builds on the one of Colcombet and Fijalkow [CF18; CF19]
(see also [CFG+21], currently under review) who identified graph-universality as a notion which on
one hand captures recent advances (universal trees) when instantiated to parity games, and on the
other lends itself to further generalisations. After a preliminary part introducing all needed notions
(which are mostly standard) and classical results, the thesis is organised in three parts, further split
in a total of 11 chapters. Different parts are based on collaborations with different colleagues, who
will be acknowledged in corresponding chapters.

Part I. We start by introducing monotonic graphs, and generalising the framework proposed
by Colcombet and Fijalkow by dropping the assumption of prefix-independence and moreover in-
troducing quantitative behaviours. As one of our main contributions, we establish in this general
context that positionality over arbitrary arenas is equivalent to the existence of universal well-ordered
monotonic graphs. This is the first characterization for (half) positionality.

On the way, we obtain a novel closure property: prefix-independent positional objectives are
closed under lexicographical products. As far as we are aware, no similar general closure property
is known. We also use monotonic graphs as tools to obtain various positionality results (most of
which are known). We include comparisons with related works, and discussions about structural
perspectives opened by our approach, as well as its limitations.

Part II. We then switch our focus from structural to algorithmic questions, for which mono-
tonic graphs reduce solving games to computing a (least) fixpoint. The second part revolves around
computing the fixpoint simply by Kleene iteration, which corresponds to a (generic) value iteration
algorithm that we also show to be roughly equivalent in general to the strong separation approach
of Bojańczyk and Czerwiński [BC18].

We then present a few case studies. We start with parity games, for which saturated (mono-
tonic¹⁸) graphs correspond with trees and therefore universal (monotonic) graphs can be embedded
in universal trees. For completeness, we also present the quasipolynomial construction of Jurdziński
and Lazić [JL17] and the almost matching lower bound of Fijalkow [Fij18] over universal trees.

We go on to study threshold mean-payoff games, for which a natural monotonic graph directly
follows from the connection with energy games, and the obtained value iteration algorithm coincides
with the (state-of-the-art) BCDGR algorithm. We provide additional upper and lower bounds in
this case, essentially concluding that value iterations are unlikely to yield more efficient algorithms.

We then turn to mean-payoff parity and multi mean-payoff games. For the former, we give an
alternative presentation of the value iteration algorithm of Daviaud, Jurdziński and Lazić [DJL18]
as a universal monotonic graph; the universality proof required here turns out to be non-trivial and
(we believe) interesting in its own right. For multi mean-payoff games of dimension d, we only
focus on the tractable (much easier) variant where the lim sup semantic is used, and show how to
combine monotonic graphs for parity and energy games to obtain a value iteration with runtime
O(mdn log(n)N), essentially gaining a factor n over [VCD+15].

Part III. In the third part, we explore the possibility of computing the desired fixpoint by other
means than Kleene iteration. We plead that (universal) monotonic graphs provide the right frame-
work for strategy improvements by showing that the necessary condition of being positional for Adam
is actually sufficient for running such an algorithm, for valuations induced by monotonic graphs.
Prior to our work, different abstract frameworks for performing strategy improvements subject to
different sufficient conditions have been put forth, but as far as we know such a characterisation is

¹⁸It follows from generic results from Part I that saturated graphs with respect to positional conditions are monotonic.

26 Contents

novel. We also discuss implications for parity and mean-payoff games, relations with existing work,
and perspectives.

So far, all algorithms were asymmetric: a player is chosen arbitrarily and the corresponding
fixpoint is computed. Our two final chapters propose to study symmetric attractor-based algorithms,
respectively for mean-payoff and parity games.

For mean-payoff games, it appears that there are only two (natural) monotonic graphs, corre-
sponding to the two players, to the usual order over Z and its dual, or to the energy valuation and
its dual. Therefore algorithms based on monotonic graphs are intrinsically related with potentials,
which we attribute in this context to Gurvich, Karzanov and Khachivan [GKK88] and were often
rediscovered thereafter.

We study simple mean-payoff games, which exclude zero cycles; this assumption can be lifted
in general at the cost of multiplying N by n. First, we show that for simple mean-payoff games,
the (attractor-based) GKK algorithm admits a completely symmetric presentation, and we propose a
symmetric analysis revealing a novel upper bound ofN+E++E´+1 = O(nN) on the number of
iterations (each has runtime O(m)), where E+ and E´ denote the maximal finite energy and dual-
energy values. For simple mean-payoff games, this is a substantial improvement on the BCDGR
algorithm, in which the constant nN is hardcoded, whereas N +E+ +E´ may be much smaller.
We also re-establish the recent combinatorial O(m2n/2) bound of Dorfman, Kaplan and Zwick by
adapting their method to the GKK algorithm.

Second, guided by insight gained in our study of strategy improvements, we propose a simpli-
fication of Schewe’s [Sch08] and Luttenberger’s [Lut08] optimal scheme, which is a crucial compo-
nent in the successful framework of STRIX [LMS20]. The obtained presentation naturally suggests
a symmetric variant¹⁹, who appears to be even more practical, but whose termination eludes our
current toolset.

Different monotonic graphs for Eve (or Adam) for parity games can be naturally interpreted
as different ways of measuring occurrences of odd (or even) priorities²⁰. In this regard, rather than
interpreting a single monotonic graph (namely Z) from the point of view of both players as we did
for mean-payoff games, it seems more adequate here to interleave two monotonic graphs, one for
each player. Our final chapter explores this idea, which reveals a surprising (and fascinating, we
believe) connection between value iteration and attractor-based algorithms for parity games.

Recall that attractor-based algorithms repeatedly discard considerable amounts of information
(see step 2 in Figure 2), whereas information in value-iterations is aggregated completely monoton-
ically hence it is never lost. We thus propose to use monotonic graphs as adequate data structures
for improving attractor-based algorithms.

More precisely, we first show that the recent universal attractor-decomposition algorithm of
Jurdziński and Morvan [JM20], which is parameterised by two trees T odd and T even, can be simulated
simply by (independently) running parallel value iterations (one for each player, in each of the trees).
In particular, this gives an alternative correctness proof for their algorithm.

Second, we present a natural acceleration mechanism in this setting, which uses information
computed in each monotonic graph to speedup the other iteration. This allows us to define a new
generic class of iterative algorithms, which encompasses all known quasipolynomial algorithms so
far, but also Zielonka’s algorithm, and variants of Zielonka’s algorithm (or other attractor-based

¹⁹The algorithm in question is completely different from the symmetric strategy improvement of [STV15].
²⁰We recall to the reader familiar with universal trees that these correspond to saturated monotonic graphs for

the parity condition. Monotonic graphs in general may correspond to other ways of counting occurrences, and non-
saturated monotonic graphs are relevant here.

3. Contributions and organisation of the thesis 27

algorithms) that do not discard information. The analysis of the obtained class of algorithms appears
to be both exciting and challenging; we also propose a few directions for future work on this front.

Preliminaries

Notational conventions. For clarity, we often use the notation ab,c for (ab)c, and also apply this
to superscripts, for instance ab,c stands for (ab)c. We also make use of (sometimes intelligent, but
always reasonable) completion, for instance

x0
a
ÝÑ x1

b
ÝÑ x2

a
ÝÑ x3

b
ÝÑ x4

a
ÝÑ . . .

b
ÝÑ x2k,

should be understood as “k ě 0 is such that for all i ď k ´ 1, x2i
a
ÝÑ x2i+1 and x2i+1

b
ÝÑ x2i+2”.

1 Orders and graphs

Relations. A relation overX is a subset ofX ˆX . Given a relation R Ď X ˆX and x, x1 P X
we use x R x1 to denote (x, x1) P R, and as is standard we extend this notation to sequences of
elements, for instance x R x1 R1 x2 means (x, x1) P R and (x1, x2) P R1. We will essentially
consider two types of relations: various notions of orders on one hand, and edge relations on the
other.

For edges, we will use the visual notation ÝÑ, and as our edges will generally be coloured by
c P C, we will therefore write x c

ÝÑ x1. Since we will very often consider orders and edges over
the same underlying X , we align our conventions and therefore use ě to define orders, despite the
well-established tendency of preferring ď by default. We also generally favor the use of non-strict
orders.

1.1 Orders, lattices and well-orders

We start with terminology and notations relative to orders; graphs and edges are dealt with in
the following section. Although these are omnipresent in our work, we will only require very basic
order theory, and refer to wikipedia.

Orders. A relation ě over X is said to be (below, x, x1, x2 range over X and are quantified
universally)

• reflexive if x ě x;

• transitive if x ě x1 ě x2 implies x ě x2;

• a preorder if it is both reflexive and transitive;

• antisymmetric if x ě x1 and x1 ě x imply x = x1;

29

30 Contents

• a (partial) order if it is preorder which is moreover antisymmetric;

• total if either x ě x1 or x1 ě x;

• a linear order if it is an order which is total;

• symmetric if x ě x1 implies x1 ě x (orders are not usually symmetric);

• an equivalence if it is reflexive, symmetric and transitive.

Given such a relation, we use ď to denote its dual, defined by x ď x1 if and only if x1 ě x, and ă
and ą to denote respectively the negations of ě and of its dual.

We raise the reader’s attention on the fact that

x ą x1 ðñ x ě x1 and x ‰ x1

does not hold in every case, although it does holds for linear orders. We will often consider total
preorders, for which the above is not true.

A total preorder ě induces an equivalence ” over the same set X given by

x ” x1 ðñ x ě x1 and x1 ě x.

Moreover ě naturally induces a linear order over equivalence classes²¹ of ”, which as is standard,
we also denote by ě.

Figure 4: From left to right, a (partial) order, a total preorder and a linear order. An arrow x ÝÑ x1 corresponds
to x ě x1; for clarity, we do not depict arrows which follow from transitivity, such as the one which is dashed.
The equivalence classes of the preorder are given by vertices which are aligned vertically, and these are linearly
ordered as on the right. The partial order on the left is not complete (see below), since the two leftmost
elements do not have an infimum.

Given a linear order ě over X , we let [a, b] denote the interval between a and b, which is the
set of elements x P X satisfying b ě x ě a. We use parentheses to exclude bounds, for instance
[a, b) denotes the set of x’s such that b ą x ě a. When X is not clear from context, we may add it
as a subscript for clarity, for instance [3, 4]Q denotes the set of rational numbers between 3 and 4.

Complete lattices. Fix a partial order ě over a set L and a subset S of L. An element ℓ P L is
an upper bound of S if ℓ ě s for all s P S, and it is a supremum (or least upper bound) if any upper
bound ℓ1 satisfies ℓ1 ě ℓ.

By antisymmetry there cannot be more than one supremum to a given S. A supremum ℓ P L
of S is called a maximum (or greatest element) of S if it belongs to S. If it exists, the maximum of S
is then the unique element ℓ P S satisfying ℓ ě s for all s P S. We define lower bounds, infima (or
greatest lower bounds) and minima (or least elements) dually.

²¹Since these will appear only very sporadically, we do not formally define quotients and equivalence classes.

1. Orders and graphs 31

A lattice is a partially ordered set L in which every finite set (or equivalently, every pair of
elements) S admits a supremum and an infimum in L. In this case they are unique, and respectively
denoted supS and infS. A complete lattice is a lattice in which the same property holds even for
infinite sets. Note that a complete lattice L has a maximum and a minimum, namely supL P L
and infL P L, which we generally denote J and K respectively. We say that an order ě over L is
complete if it equips L with a complete lattice structure.

Examples of complete lattices. The sets N,Z,Q,R of natural, relative, rational and real num-
bers, are all linearly ordered by the usual order ě. Their finite sets admit minima and maxima
(which are very special cases of suprema and infima) therefore the three are lattices.

None of N,Z,Q or R are complete lattices, since they do not admit maxima, but N Y t8u,
ZYt´8,+8u and RYt´8,8u are, the later being equivalent (in terms of orders) to the closed
interval [´1, 1]R, which is also a complete lattice. Infinite intervals of Q Y t´8,+8u such as
[´1, 1]Q or [0,8]Q are not complete as lattices, since they contain subsets whose suprema belong
to RzQ.

Other fundamental examples of complete lattices include powerset lattices, which are those of the
form L = P(X) where X is an arbitrary set, and where suprema and infima are given by unions
and intersections. A standard equivalent way of seeingP(X) is as the set 2X of functions fromX to
2 = t0, 1u, and in this case unions and intersections correspond to pointwise maxima and minima
of functions, with respect to the natural order on the pair. Note that the pair 2 is itself a complete
lattice, and actually replacing it above by an arbitrary complete lattice L yields a complete lattice
LX , (partially) ordered pointwise.

Stated differently ifL is a complete lattice andX is an arbitrary set thenLX is a complete lattice.
Note that even the if order over L is total, the induced pointwise order over LX is not in general
(unless X is a singleton). This observation is particularly relevant to our work in which a central
role is played by lattices LX of functions into complete lattices L which are linearly ordered.

Fixpoints and the Knaster-Tarski theorem. A function f : X Ñ X 1 between partially ordered
set is monotonic (or order-preserving) if it preserves the order, formally

x ě x1 in X ùñ f(x) ě f(x1) in X 1.

An operator is a function f : X Ñ X with matching domain and codomain. When X is par-
tially ordered, an element x P X is a prefixpoint of an operator f if x ě f(x), a postfixpoint if
f(x) ě x, and a fixpoint if f(x) = x. The following theorem was first established by Knaster and
Tarski [KT28] for powerset lattices and later extended to general complete lattices by Tarski [Tar55].
It is very well-known by logicians and finds countless applications all over computer science.

Theorem 1 (Knaster-Tarski theorem)

The set of fixpoints of a monotone operator over a complete lattice is itself a complete lattice.
In particular, it has a minimal element, which moreover coincides with its least prefixpoint.

Well-orders and ordinals. A linear orderě overX is a well-order if all non-empty subsetsS Ď X
have a minimum. Equivalently, any non-increasing infinite sequence of elements x0 ě x1 ě . . . is
stationary. Well-ordered sets are closely related to ordinal numbers. Formally, ordinal numbers are
defined to be those sets over which set membership defines a strict well-order.

What is important to us is that ordinals characterise well-orders, in the sense that any well-
ordered set is order-isomorphic to an ordinal. These should be seen as refinements of cardinals:

32 Contents

cardinals represent sets up to bijection, whereas ordinals represent well-ordered sets²² up to order-
preserving bijections.

Von Neumann’s notation of ordinals is given by λ = [0, λ), for instance 2 = t0, 1u where
1 = t0u and 0 = ∅. As is standard, we use Greek letters to denote ordinals, and ω denotes the first
infinite ordinal ω = t0, 1, 2, . . .u = [0, ω) which is equipotent to N, and order-isomorphic to N
when it is equipped with the usual order. We then have ω + 1 = [0, ω + 1) = [0, ω] = ω Y tωu,
which is order-isomorphic to N Y t8u, and followed by many subsequent ordinals, ω + 2, ω + 3
and so on. From now on, we use the ordinal notation ω to denote the set of natural numbers, and
also sometimes for finite ordinals (or natural numbers), for instance n = [0, n´ 1].

Well-orders are particularly useful in that they allow to generalise the principle of induction from
the set ω of natural numbers, to any set equipped with a well-order (equivalently, to any ordinal).
In this context, we speak of transfinite induction, which stipulates that

a property P (α) which holds whenever P (β) holds for all ordinals β ă α,
holds for all ordinals.

Stated differently, it suffices to show that a property passes on to α when it holds for all smaller
ordinals to show that it holds for all ordinals.

Well-orders which are also complete lattices will later play an important role; observe that these
correspond to ordinals which admit a maximum (often called non-limit ordinals) such as ω + 1.

Words and prefixes. A finite word w = x0x1 . . . xn´1 over a setX is a finite sequence of elements
of X , and an infinite word w = x0x1 . . . over X is an infinite sequence of elements of X . The
length |w| of a finite w = x0x1 . . . xn´1 is its number n of elements, and the length of an infinite
word is ω. When appearing in words overX , elements ofX are referred to as letters, and the number
of occurrences of a given letter x in a finite or infinite word w is denoted by |w|x ď ω.

For λ ď ω we use Xλ to denote the set of words over X of length λ, in particular Xω denotes
the set of infinite words, and likewise Xďλ denotes the set of words of length ď λ. Finally, X˚

denotes the set of finite words. Note that we have Xďω = X˚ YXω.
Finite words can be concatenated by putting them next to one another, and concatenation is

denoted multiplicatively; for instance ifw = x0 . . . xn´1 andw1 = x1
0 . . . x

1
n1´1 thenww1 is defined

to be x0 . . . xn´1x
1
0 . . . x

1
n1´1, and it has length |ww1| = n+n1 = |w|+|w1|. The concatenationww1

is also defined when w1 is an infinite word, in which case the concatenation is infinite, and lengths
behave like cardinals (hence the notation): |ww1| = n + ω = ω = |w| + |w1|. The concatenation
ww1 is not defined when w is an infinite word (we will not manipulate ordinal words). On some
rare occasions we use a dot as in w ¨ w1 to improve readability. If w is finite, we let wω = ww . . .
be the infinite word obtained by concatenating w with itself ω times.

A prefix u of a finite or infinite word w P Xďω is a finite word such that w = uw1 for some
w1 P Xďω. In words, u is a prefix of w if w starts with u. We use ε to denote the empty word,
which is a prefix of all words. Given a finite or infinite word w = x0x1 ¨ ¨ ¨ P X

ďω and a natural
number n ď |w|, we let wăn = x0x1 . . . xn´1 be the unique prefix of w of length n. Note that
wă0 = ε and wă1 = x0.

1.2 Edge-coloured graphs

We now introduce terminology relative to graphs. Graphs are based on edge relations, which
are seen with a very different eye than the relations (orders) discussed so far. First, edge relations

²²We work under the axiom of choice, which is well-known to be equivalent to the well-ordering principle, stating
that any set can be well-ordered.

1. Orders and graphs 33

are arbitrary relations, no property (such as reflexivity or antisymmetry) is imposed. Second, we
consider many edge relations at the same time which occur over the same set V , and correspond to
different colours c P C. Third, our focus is now on combining edges together to form paths, for
instance v c

ÝÑ v1 c1

ÝÑ v2 with different colourations. Such combinations were rendered trivial for
order relations because of the transitivity assumption.

Pregraphs, sinks, graphs. We fix a set C of colours. A C-pregraph G over V is a family of
relations over V indexed by C. It is given by a subset of V ˆ C ˆ V whose elements we call edges
and denote by e = v

c
ÝÑ v1 with v, v1 P V and c P C. We say that c is the colour of the edge e,

and in this case we say that e is a c-edge. The size of a pregraphG is the cardinality of |V | which we
usually denote by n or nG when it is finite. We also use m or mG to denote the cardinality of the
set of edges of G. We say that G is a finite pregraph if both nG and mG are finite.

We call V the set of vertices of G. If v c
ÝÑ v1 then v is a c-predecessor of v1 and v1 is a c-successor

of v. An edge of the form v
c
ÝÑ v is called a c-loop around v. We sometimes say that v and v1 are

the endpoints of an edge e = v
c
ÝÑ v1 and also say that v and v1 are adjacent to e.

Edges of the form v
c
ÝÑ v1 are called outgoing edges from v and we let Out(v) denote the set of

such edges. The degree of a vertex v is the cardinality of Out(v). Note that it is bounded by |C||V |.
We say that a pregraph has finite degree is all vertices have finite (possibly unbounded) degree, and
that it has bounded degree if there is a uniform finite bound on the degree of its vertices. We say that
a pregraph is finite if it has finitely many vertices and finitely many edges (equivalently, it is finite
and has finite degree).

A vertex v of degree 0 is called a sink. A C-graph is a C-pregraph which has no sink. Stated
differently, in a graph, all vertices have a successor. Note that in a finite C-graph G we have mG ě

nG in general. This terminology is a bit unusual, but well fitted to the study of infinite duration
games. We simply say graph and pregraph when C is clear from context.

Figure 5: A finite C-graph with C = tred, blue, greenu.

A subpregraph G1 of a pregraph G is a pregraph over a subset V 1 of V such that all edges in
G1 belong to G. Given a subset V 1 of V , the restriction of G to V 1 is the subpregraph of G over
V 1 comprised of all edges in G whose endpoints belong to V 1. This is often called an “induced
subgraph” in the literature. A subgraph G1 of a graph G is a subpregraph of G which is a graph.
Note that the restriction of a graph to a subset of its vertices may or may not be a graph.

Paths. We fix aC-graphG. A path π inG is a finite or infinite sequence of edges whose endpoints
match, formally

π = (v0
c0
ÝÑ v1)(v1

c1
ÝÑ v2)(v2

c2
ÝÑ v3)

34 Contents

It is very convenient to use the notation

π : v0
c0
ÝÑ v1

c1
ÝÑ v2

c2
ÝÑ . . .

for paths. We say that π starts in v0 or that it is a path from v0. By convention, the empty path ε
starts in every vertex.

We say that vertices v0, v1, v2, . . . as well as edges v0
c0
ÝÑ v1, v1

c1
ÝÑ v2 . . . appear in π or are

visited by π. The colouration of a path π is the finite or infinite sequence of colours of edges of π,
denoted col(π) = c0c1c2 . . . for which we usually use the symbol w P Cďω. We also say in this
case that w is a colouration from v0 in G.

A non-empty finite path of length i ą 0 is of the form π : v0
c0
ÝÑ v1

c1
ÝÑ . . .

ci´1
ÝÝÑ vi and we say

in this case that π is a path from v0 to vi, and that vi is the last vertex of π. We use the notation

π : v
w

ù v1

to say that π is a finite path from v to v1 with (finite) colouration w in G; we sometimes omit w if
it is irrelevant. We also say π : v

w
ù V 1 where V 1 Ď V to refer to a finite path starting in v with

colourationw and whose last vertex belongs to V 1. A cycle is a non-empty path of the form v ù v.
We say that a pregraph is acyclic if it has no cycle.

We use the notation
π : v

w
ù

for an infinite path from v with colouration w P Cω. We stress the fact that such diagrams with
no last vertex always refer to infinite paths; a finite path with an unspecified last vertex would be
denoted by v ù V . When G is not clear from context, we add “in G”, for instance we may write

π : v
c
ÝÑ v1 w1

ù v2 w2

ù in G.

Finite prefixes of infinite paths define finite paths in general. Since graphs have no sinks any
finite path can be extended into an infinite path therefore the converse holds: any finite path is the
prefix of an infinite path. We use the notation Πv0 Ď E˚ for the set of finite paths from v0.

We say that a path is simple if no vertex is visited twice. Note that a simple path in a finite graph
of size n is finite and has length ď n ´ 1 (a path of length one v0

c
ÝÑ v1 visits two vertices). An

infinite path π is a simple lasso if it is of the form π = π0(π1)
ω where πă|π0π1|´1 is simple.

Graph-morphisms. Given two C-pregraph G and G1 respectively over vertices V and V 1, a
morphism ϕ from G to G1 is a map ϕ : V Ñ V 1 such that

v
c
ÝÑ v1 in G ùñ ϕ(v)

c
ÝÑ ϕ(v1) in G1.

If there exists such a morphism we say that G maps into G1 or that G1 embeds G. We will always be
concerned with morphisms of pregraphs which are graphs, which is why we call ϕ a graph-morphism,
even though strictly speaking it is rather a notion of pregraphs.

As an example, if G is a subgraph of G1 then the inclusion V Ñ V 1 defines a graph-morphism.
In general, a morphism need not be injective (see Figure 6). Two graphs G,G1 over V and V 1 are
isomorphic if there is a bijection ϕ : V Ñ V 1 such that both ϕ and ϕ´1 define a graph-morphism.
Stated differently, edges in G and G1 are the same, up to renaming the vertices.

Note that if ϕ defines a morphism from G to G1 then

v0
c1
ÝÑ v1

c1
ÝÑ . . . in G ùñ ϕ(v0)

c1
ÝÑ ϕ(v1)

c2
ÝÑ . . . in G1,

therefore any colouration from v in G is a colouration from ϕ(v) in G1.

1. Orders and graphs 35

Figure 6: Two tred, blueu-graphs and a graph-morphism. Note that it is not colouration-preserving: ϕ(u)
has redω as a colouration but u does not.

We say that ϕ is colouration-preserving if the converse holds: for all v P V and any colouration
w from ϕ(v) in G1, w is a colouration from v in G. This is a strong assumption on ϕ, which will
later be relaxed.

Unordered trees, paths-graphs. A (rooted) unordered tree is a pregraph with a designated vertex
v0 called the root, and such that for every vertex v there is a unique path from v0 to v. A sink in an
unordered tree is usually called a leaf. Note that unordered tree are acyclic. The following theorem
has numerous applications in logics and recursion theory.

Theorem 2 (König’s tree lemma [Kön27])

An infinite unordered tree with finite degree has an infinite path.

Given an arbitrary graph G and a vertex v0 we define the paths-tree Gv0,unfold of G from v0 as
the graph over the set Πv0 of finite paths from v0 in G and comprised of all edges of the form

(π : v0 ù v)
c
ÝÑ (π1 = π(v

c
ÝÑ v1)),

where v c
ÝÑ v1 is an edge in G. Paths-trees are trees: Gv0,unfold is rooted at the empty path ε, and for

each vertex (π : v0
c0
ÝÑ v1

c1
ÝÑ v2

c2
ÝÑ . . .

ci´1
ÝÝÑ vi) there is a unique path, namely

ε
c0
ÝÑ (v0

c0
ÝÑ v1)

c1
ÝÑ (v0

c0
ÝÑ v1

c1
ÝÑ v2)

c2
ÝÑ . . .

ci´1
ÝÝÑ π

in Gv0,unfold from ε to π. Note that paths-trees are infinite and have no leaf since graphs have no
sinks.

The map Πv0 Ñ V which assigns v0 to the empty path and their last vertex to non-empty path
defines a graph-morphism from Gv0,unfold to G which is colouration-preserving.

Graph classes. We consider collections of C-graphs, where C is fixed, which are always closed
under taking subgraphs. Formally, we say that C is a graph class if for allG P C and all subgraphsG1

of G it holds that G1 P C. Most often we will consider classes defined by cardinality bounds over
their sets of vertices and their degree, for instance countable graphs of finite degree.

Given a class of graphs C, we let Cpaths denote the class of subgraphs of paths-trees of graphs in
C. For instance, if C is the class of all graphs of finite degree, then Cpaths is the class of all trees of
finite degree with no leaf, and therefore in this case Cpaths Ď C. If however C is the class of all graphs
of size at most 12 then Cpaths is not contained in C since it contains (only) infinite graphs.

36 Contents

Figure 7: On the left, a graph G with a designated vertex v0. On the right, the paths-tree Gv0,unfold.

2 Infinite duration games on graphs

2.1 Games

We now define our main object of study, which are perfect-information, zero-sum, infinite
duration, non-stochastic, graph-based, two-player, quantitative, edge-coloured games that we will
simply call games for short.

Arenas. A C-arena is a C-graph together with a bipartition of its vertices. We will always use
the notations V for its set of vertices. We name the players Eve (for existential D, and which will
always be the minimiser) and Adam (for universal @, which will always be the maximiser) and use
VEve \ VAdam = V to denote the bipartition of the vertices.

We always take the point of view of Eve, and see Adam as the opponent. For instance, winning
means winning for Eve. We often identify graphs with Adam-controlled arenas (formally, V =
VAdam) therefore we use the notationG both for graphs and arenas. Given a class of graphs C, we let
Car denote the class of all arenas whose graphs belong to C.

We sometimes refer to vertices in VEve as Eve-vertices, and likewise for Adam. Intuitively, a game
is played in a succession of moves, where a move consists in pushing a token along an edge of the
arena. The choice of the edge to follow is given to the player who controls the current vertex. This
interaction produces an infinite path π.

Figure 8: A tred, blueu-arena. The circle vertices a and c belong to Eve, and the two other to Adam. An
example of a game played on this arena is the following: “Eve wins if eventually, the two colours alternate”.
If the game starts from a, b or c, Eve can ensure a win, using the following strategy: from a, Eve alternates
between the two colours, and from c, Eve plays to the left. However, Adam wins if the game starts in d, by
always playing the loop. We will say that ta, b, cu is Eve’s winning region. How to devise an algorithm which,
given such a tred, blueu-arena, determines the winning region?

Studying a game amounts to asking whether some player can enforce a given property of the
produced path, which will be defined according to its colouration. Before discussing exactly what

2. Infinite duration games on graphs 37

properties we are interested in we formally introduce what it means to enforce, which requires the
fundamental notion of strategies.

Strategies. Intuitively, a strategy for Eve specifies, for each possible way of reaching an Eve-vertex,
what edge should be followed next.

A prestrategy σ for Eve (or Eve-prestrategy) from v0 is a partial map which assigns to some paths
v0 ù v with v P VEve an edge v c

ÝÑ v1 in G. In words, σ picks an additional edge for some paths
from v0 which end in Eve-controlled vertices.

A finite or infinite path
π : v0

c0
ÝÑ v1

c1
ÝÑ . . .

is consistent with an Eve-prestrategy σ from v0 if for all i ă |π| such that vi P VEve, σ is defined over
πăi and

σ(πăi) = (vi
ci
ÝÑ vi+1).

We use the notation π : v0
w

ùσ to say that a π is an infinite path consistent with σ with colouration
w, and π : v0

w
ùσ v for such a finite path.

An Eve-prestrategy σ is a strategy if it is defined on all finite paths π : v0 ùσ VEve which are
consistent with it. We refer to Figure 8 for an illustration of these important notions.

Adam-prestrategies, their consistent paths, and Adam-strategies are defined symmetrically. We
generally use σ and τ respectively for strategies of Eve and of Adam. Given a pair σ, τ of strategies
for each player and a starting vertex v0, there is a unique infinite path π : v0

c0
ÝÑ v1

c1
ÝÑ . . . from v0

which is consistent with both strategies, which is given by

(vi
ci
ÝÑ vi+1) =

#

σ(πăi) if vi P VEve

τ(πăi) if vi P VAdam

for all i P ω. We use πσ,τ to denote this path.
We let Σv and Tv denote the sets of strategies from v respectively for Eve and Adam. We also

use Σ =
Ť

v Σv and T =
Ť

v Tv.
The set of consistent paths with an Eve-strategy σ actually coincides with the set of paths realised

by counter strategies τ , and vice versa.

Lemma 1 (Consistent paths and counter-strategies)

Let σ be an Eve-strategy from v0 and let π be an infinite path starting in v0. Then π is consistent
with σ if and only if there exists an Adam-strategy τ from v0 such that π = πσ,τ .

This offers two slightly different points of view, both of which are helpful for intuition.

Proof. The converse implication holds trivially since πσ,τ is consistent with σ by definition.
Let π : v0

c0
ÝÑ v1

c1
ÝÑ . . . be a path consistent with σ in G. Let τ be any Adam-prestrategy

defined over all paths v0 ù VAdam (in particular, it is a strategy) and satisfying τ(πăi) = (vi
ci
ÝÑ

vi+1) for all i P ω such that vi P VAdam. Then we have πσ,τ = π.

Given an Eve prestrategy σ from v0 we let Πσ denote the set of paths from v0 consistent with
σ, and define its pregraph Gσ,unfold as the restriction of the paths-graph Gv0,unfold of G to Πσ. Paths
in Gσ,unfold from ε coincide with paths in G from v0 which are consistent with σ (see Figure 9).

A vertex π : v0 ùσ VEve of Gσ,unfold has an outgoing edge if and only if σ is defined over π,
and a vertex π : v0 ùσ v P VAdam always has outgoing edges which correspond to all those of v

38 Contents

in G. Therefore, Gσ,unfold is a graph if and only if σ is a strategy. The graph of a strategy σ contains
exactly the same data as σ, and therefore provides a good way of representing (visually and mentally)
an arbitrary strategy.

Figure 9: On the left, the tred, blueu-arena from Figure 8. We start from c, and consider the strategy described
above, formally given by σ(π) = e5 if π = ε or ends in c, and otherwise σ(π) = e1 if π has even length,
and σ(π) = e2 otherwise. Note that no path consistent with σ visits d; infinite paths consistent with σ
are exactly of the form (e5e4)

ne3(e1e2)
ω for n P ω together with (e4e5)

ω. On the right, the paths-graph
Gσ,unfold, which allows to visualise these paths.

Although we will often ultimately be concerned with qualitative properties of paths, it is instru-
mental in our work to consider more general quantitative evaluations of paths.

Valuations and games. A valuation over C, assigns a value to any path colouration, formally

val : Cω Ñ X,

where X is a complete lattice, which we call the set of values. For short, we say that val is a C-
valuation with values in X . A game G is an arena together with a valuation val.

Eve always seeks to minimise val while Adam seeks to maximise it over the produced path.
Reversing the order over X produces a valuation val1 which we call the dual of val. This operation
correspond to reversing the roles of both players.

We now formalise what it means for the players to optimize a valuation in a given game. We
first extend valuations from infinite words to paths by considering their colourations, formally we
let val(π) = val(col(π)).

Given an Eve-strategy σ from v we define the value achieved by σ by

val(σ) = sup
τPTv

val(πσ,τ) = sup
v

w
ùσ

val(w)

where the equality holds thanks to Lemma 1.
Optimizing over Eve-strategies allows to define the Eve-value of v, formally

val˚(v) = inf
σPΣv

val(σ).

This should be regarded as the optimal value of a path which Eve can guarantee, in the scenario
where she should announce her strategy in advance.

2. Infinite duration games on graphs 39

Symmetrically, and with a slight abuse of notations, an Adam-strategy τ achieves at a vertex v
the value

val(τ) = inf
σPΣv

val(πσ,τ) = inf
v

w
ùτ

val(w)

and we define Adam-values of vertices by optimizing over Adam-strategies:

val˚(v) = sup
τPTv

val(τ).

Note that the terminology refers to which player is the first to announce the strategy. We sometimes
addG as a subscript when the arena is ambiguous. We say that an Eve-strategy or an Adam-strategy
from v is (val-) optimal if its value coincides with the Eve-value or respectively with the Adam-value
of v. In general, games need not have optimal strategies.

Qualitative games. When X = tK,Ju is the ordered pair, we say that val is qualitative, and by
extension that G is a qualitative game. Qualitative valuations are identified via W = val´1(K) to
subsets of Cω, and in this context, we callW Ď Cω the winning condition, or the objective (for Eve).

It is more convenient to work with objectives W Ď Cω than qualitative valuations val : Cω Ñ

tK,Ju therefore we generally take this point of view. Dualising a qualitative valuation corresponds
to complementing the objective W .

Intuitively only two outcomes may arise, which we interpret as winning or losing; Eve wins if
and only if she can guarantee to produce a path evaluated to K. We say that an infinite path π
satisfies W if its colouration belongs to W , that a vertex v satisfies W if all paths from v satisfy W ,
and finally that a graph satisfies W if all its vertices satisfy W .

We say that an Eve strategy σ is winning if it has value K, or equivalently all paths consistent
with σ satisfy W . Note that qualitative valuations have optimal strategies in general: a vertex v has
value K, in which case we say that it is winning, if and only if there is a winning strategy from v.

2.2 Determinacy and positionality

The following result formalises the intuition that announcing one’s strategy in advances gives a
disadvantage in general: Eve achieves a better (smaller) value when Adam is to announce his strategy.

Lemma 2 (Comparing val˚ and val˚)

We have for all v P V ,
val˚(v) ď val˚(v).

Proof. Let σ0 and τ0 be strategies respectively for Eve and Adam from v P V . We have

val(τ0) = inf
σPΣv

val(πσ,τ0) ď val(πσ0,τ0) ď sup
τPTv

val(πσ0,τ) = val(σ0),

which concludes with the announced result by taking a supremum on the left and an infimum on
the right.

Determinacy. We say that a game is determined if the converse inequality holds in Lemma 2, in
which case

val˚(v) = val˚(v).

40 Contents

In games which we know to be determined we refer to val˚(v) = val˚(v) as the (optimal) value of
v which we denote by val(v).

Roughly a game is determined if it does not matter which player announces their strategy first.
An alternative intuition is that a game is determined if both players can agree on the outcome before
even playing. An intuitive example is tic-tact-toe: if both players play optimally, the game can only
end in a draw; therefore, good players can agree in advance that the game is a draw. As we will see
below,in our setting, any reasonable game is determined.

We say that a valuation val is determined if all games with valuation val are determined. For
studying determinacy, quantitative games can essentially be reduced to qualitative games. Given
a valuation val : Cω Ñ X and x P X , the x-cut of val is the qualitative valuation associated to
val´1

tXďxu.

Lemma 3 (Reduction to qualitative case)

A valuation is determined if and only if all of its x-cuts are.

Proof. We have the following chain of implications, where G is quantified over C-arenas, v over
vertices of G, and x over X .

val is determined ðñ @G, @v, val˚(v) ď val˚(v)
ðñ @G, @v, @x, (val˚(v) ď x ùñ val˚(v) ď x)
ðñ @x, @G, @v, (val˚(v) ď x ùñ val˚(v) ď x)
ðñ @x, the x-cut is determined.

Determinacy of (qualitative) winning conditions W is a fundamental set-theoretic question,
and thus has received a lot of attention since its introduction by [GS53], who proved determinacy
for open and closed W . This result was later progressively extended to higher levels of the Borel
hierarchy, until the seminal result of Martin [Mar75]. We do not formally introduce the Borel
hierarchy but still state the theorem.

Theorem 3 (Martin’s theorem)

Borel winning conditions are determined.

The theorem is essentially tight: no larger²³ topological class of conditions is determined. This
result goes well beyond our needs as all examples we will consider lie within the third level of the
Borel hierarchy.

Determinacy of a qualitative game rephrases as the fact that from each vertex exactly one of the
players is winning. Stated differently a determined qualitative objective induces a partition corre-
sponding to winning and losing vertices. We call this bipartition the winning regions respectively of
Eve and Adam.

Solving a game. Solving a finite determined qualitative game means determining the winning
regions. Solving a determined quantitative game either means determining the values of the vertices,
or comparing with some value x, which amounts to solving the x-cut. By default, we take the first
point of view.

²³This can be made precise using notions that are beyond our scope. Determinacy of Gale-Stewart games plays an
important role in set-theory and metamathematics.

2. Infinite duration games on graphs 41

Different extensions to infinite (but finitely presented) arenas have been considered, most promi-
nently pushdown arenas (see the seminal work of [Wal96] and Serre’s PhD thesis [Ser04], in French).

Positional determinacy. As we have seen above, arbitrary strategies are quite complicated objects
(roughly, infinite trees) and in particular are often hard to describe. In many cases, such as chess,
players need only to know the current configuration to make a decision; the path which led to the
configuration, sometimes called history, is irrelevant. This allows to considerably simplify the space
of strategies which are then simply (partial) maps assigning to, say, Eve-configurations an outgoing
edge.

Formally, we say that a partial map σ : VEve Ñ E satisfying σ(v) P Out(v) where it is defined
is a uniform positional prestrategy. Given such a σ together with a starting vertex v P V , we use σv
to denote the corresponding prestrategy, formally given by

σv(ε) = σ(v) and σv(π : v ù v1) = σ(v1)

when σ is defined in the right-hand side. We say that such a prestrategy σv is a positional prestrategy.
Positional prestrategies correspond to those prestrategies which depend only on the last vertex of the
path.

Note that consistency of a path with a positional prestrategy σv dos not depend on the starting
vertex v, hence we simply say that a path is consistent with σ and denote such paths using ùσ.

A positional prestrategy σv induces a subpregraph Gσv of G comprised of all vertices and edges
that appear in paths from v consistent with σ. We raise the reader’s attention on the important
distinction between the graph of a positional prestrategy (over a subset of V) and the graphGσ1,unfold
of an arbitrary prestrategy σ1. Nevertheless, it is again simple to verify that σv is a strategy if and
only if Gσv is a graph.

A uniform positional strategy σ : VEve Ñ E is a uniform positional prestrategy which is defined
over all VEve (equivalently, it is a uniform positional prestrategy all of whose induced prestrategies
are strategies). Given such a strategy σ, we letGσ denote the union of theGσv ’s, which is the graph
over V comprised of all edges outgoing from Adam-vertices inG and of edges in σ(VEve). Note that
paths in Gσ coincide with paths consistent with σ in G.

We say that a game is positionally determined from v0 if there exists a positional strategy σv0 for
Eve from v0 which is optimal. This corresponds with the intuition described above: Eve is able to
play optimally with only the knowledge of the current configuration (or vertex), independently of
the rest of the history (or path from v0). We will study this concept in quite some depth, and many
examples will arise throughout the manuscript.

We insist on the fact that the above notion is asymmetric; some authors prefer to say “position-
ally determined for Eve” or “half-positionally determined”. We say that a game is co-positionally
determined from v or that it is positionally determined for Adam from v if its dual is positionally
determined from v.

We say that a game is uniformly positionally determined if there exists a uniform positional strategy
σ for Eve which is optimal from all vertices: for all v P V it holds that val(σv) = val(v). We say
that a valuation val is uniformly positionally determined over a class of arenas if this is the case for
all arenas of the class.

By a common abuse and only in informal discussions, we often omit the phrase “uniformly”
and simply say that a given valuation is positionally determined (over a given class of arenas). This is
largely justified by usage. We also use the phrase “positionality” for short to refer informally to po-
sitional determinacy. Some authors use “memoryless” strategies and valuations, which is essentially
a synonym.

The question of positionality of the valuation is particularly relevant when considering the al-
gorithmic resolution of a given finite game. Indeed a positional strategy σ can be represented over

42 Contents

polynomially many bits and computing its values amounts to studying a graph-property over its
graph Gσ, which can usualy be done in polynomial time. Therefore the problem of solving a game
when the valuation is positionally determined is in NP (unless the valuation is already intractable
over graphs) and likewise solving games with co-positionally determined valuations is in coNP.

Different relaxations of positionality have often been considered, among which the most natural
is finite-memory determinacy (see for instance [Tho96]) which also guarantees good algorithmic
properties and can be declined in several ways. Intuitively, a valuation is determined with finite
memorym P ω over a given arena if there is a machine withm states which implements an optimal
strategy. Since our focus will only be on positional strategies (which correspond to the degenerate
m = 1 case), we abstain from giving a formal definition. Note also that solving finitely presented
games over infinite arenas (usually) requires finite presentations of optimal strategies, which is not
guaranteed by positional (or even finite-memory) determinacy.

Infinite duration games on graphs are also sometimes defined with colours on the vertices. Al-
though this might make a difference in some precise complexity statements the two models are often
interreducible, and algorithms can often be directly transcribed from one to the other. For proper-
ties such as positional (or finite memory) determinacy however there are a few cases where the two
models differ, for instance (min-) parity games with priorities in ω are bi-positionally determined
only in the vertex-coloured setting, as was established by Grädel and Walukiewicz [GW06]. We
will however always work in the edge-coloured setting, which is a bit more general (which is not
always desirable): vertex-coloured arenas correspond to edge-coloured arenas where for all vertices,
outgoing edges have the same colour.

Note that if σv and τv are positional strategies from v in a finite arena then πσv ,τv is a simple
lasso. Therefore optimal values in finite arenas which are positionally determined for both players
are reached over simple lassos.

Prefix-invariance properties. We say that a valuation val is prefix-increasing if for all c P C and
u P Cω we have

val(cu) ě val(u).

Stated otherwise adding a prefix increases the valuation. We say that it is prefix-decreasing if the other
inequality holds (adding a prefix decreases the valuation), and that it is prefix-independent if there is
an equality. Note that a qualitative valuation given by the objective W Ď Cω is prefix-increasing
if and only if for all colours c we have W Ě cW ; it is prefix-decreasing if the converse inclusion
holds, and prefix-invariant if there is an equality.

The following result if folklore; we will not use it but state it for completeness.

Lemma 4 (Uniformity of positionality for prefix-increasing objectives)

LetW Ď Cω be a prefix-increasing objective. IfW is positionally determined over a finite arena
G then it is also uniformly positionally determined over G.

With some more care, the proof can be extended to infinite arenas.

Proof. Let v0 P V and let σv0 be an optimal positional strategy from v0, and consider any infinite
path π in Gσ,v0 . Then there is a path π1π from v0 consistent with σ, thus col(π1π) P W hence by
prefix-increasingness, col(π) P W . Therefore, σ defines a winning strategy over all of Gσ,v0 , which
contains at least one vertex, v0. We remove Gσ,v0 from the arena, and conclude by induction.

3. Some classes of games 43

3 Some classes of games

We now define a number of different valuations which will be studied throughout the manuscript.
Almost all games discussed in this manuscript fall into two important categories: ω-regular games
and geometrical games. All games introduced and discussed below are determined, and most are
positionally determined for Eve. Determinacy, at least for arenas of countable degree, always fol-
lows from Martin’s theorem (Theorem 3) and will therefore not be discussed. Proofs of (uniform)
positional determinacy, and of other results discussed below are postponed to Chapter 2.

3.1 Some ω-regular objectives

We now define a very important class of qualitative games, namely ω-regular games, which are
obtained from valuations defined by ω-regular subsets of Cω (or languages). These are a very robust
and well-studied class of languages, which admit several equivalent definitions. We refer to [PP04]
for an excellent introduction to ω-regular languages, we will only discuss a few basic ones therefore
we omit a general definition.

Safety and reachability games. Safety and reachability games are in some sense the simplest non-
trivial example of infinite duration games on graphs. We define the safety objective over tsafe, badu
by

Safety = tsafeωu Ď tsafe, baduω.

In a safety game Eve simply aims to avoid seeing the letter bad.

Figure 10: A finite safety game. Safe edges are depicted in blue whereas bad edges are red. The partition into
winning regions is represented by the dotted line: vertices on the left are winning for Adam whereas those on
the right are winning for Eve. Uniform positional winning strategies for both players are given by the bold
edges.

We now define the reachability objective over tgood,waitu, by

Reachability = tw P tgood,waituω | |w|good ě 1u = tgood,waituωztwaitωu.

When playing a reachability game Eve seeks to see the letter good at least once.
Up to renaming the letters these objectives are complements of one another. Stated differently

the two objectives are dual: when Eve plays a safety game, Adam plays a reachability game, and
vice-versa.

44 Contents

Safety and reachability games are positionally determined. Finite safety and reachability games
can be solved in linear time O(m). The safety objective is prefix-increasing whereas the reachability
objective is prefix-decreasing.

Co-Büchi and Büchi games. Co-Büchi games can be seen as a more resilient variant of safety
games where Eve is allowed to see bad but only finitely many times. Formally they are given by the
objective

Co-Büchi = tw P tsafe, baduω | |w|bad ă ωu.

On the tsafe, badu-arena of Figure 10, the winning region for Eve in the Büchi game moreover
includes the leftmost vertex, from which Eve can ensure that at most 1 occurrence of bad is seen.
However the two vertices in the bottom are winning for Adam: infinitely many occurrences of
bad-edges can be forced.

Dually, Büchi games are a harder variant of reachability games: Eve wins if she can guarantee to
see the colour good infinitely many times, formally

Büchi = tw P tgood,waituω | |w|good = ωu.

Büchi and co-Büchi games are also known to be positionally determined. Finite Büchi and co-
Büchi games can be solved in quadratic time, but no strongly subquadratic algorithm is known (see
for instance [CHP08]).

If we rename colours safe, bad,wait and good respectively by 0, 1, 1 and 2, then the co-Büchi
objective is language given by words with finitely many 1’s (and thus infinitely many 0’s), and the
Büchi objective is comprised of words with infinitely many 2’s.

Parity games. Parity objectives can be seen as generalisations of Büchi and co-Büchi objectives.
Colours in parity games are integers, usually called priorities.

What matters is the parity of the largest priority which is seen infinitely often. We will always
takeC to be a finite interval of integers [a, b] in which case for each word inCω there exists a priority
which has infinitely many occurrences. In a parity game, Eve should enforce that the maximal
priority which is seen infinitely often is even.

Formally, we let
Parity[a,b] = tw P [a, b]

ω | lim supw is evenu.

For convenience, the parity game from the introduction is depicted again in Figure 11 Observe
that the parity objective is invariant under adding the same even integer to all priorities, therefore
without loss of generality we may assume that [a, b] is of the form [0, d] or [1, d]. We usually take d
to be even for convenience.

Adding the same odd number to all priorities however complements the objective, in particular
duals of parity objectives are also parity objectives. This is illustrated with the Co-Büchi and Büchi
objectives, which respectively correspond to Parity[0,1] and Parity[1,2].

Parity games are positionally determined over all arenas. Moreover the parity objective is tractable
over graphs and therefore the problem of solving a parity game lies in NP and also by duality in
coNP.

Muller games. Muller conditions are a generalisation of parity conditions, which are defined by
a subset S of P(C) where C is finite. Eve should now ensure that the set of colours which are seen
infinitely often belong to S. Formally, we let Adh(w) denote the set of colours which have infinitely
many occurrences in w, and put

MullerS = tw P Cω | Adh(w) P Su.

3. Some classes of games 45

Figure 11: The parity game from the introduction.

Muller games are not positionally determined in general, but admit strategies with (fixed) finite
memory even over arbitrary arenas, by the celebrated result of Gurevich and Harrington [GH82].

The problem of solving a finite Muller game is known to be PSPACE-complete from the work
of Hunter and Dawar [HD05]. Note that parity conditions are special cases of Muller conditions
over C = [a, b] where S is set to be

S[a,b] = tS Ď [a, b] | maxS is evenu.

Observe that in general,
Muller cS = cMullerS ,

and that S is closed under unions if and only if cS is closed under intersections. Now S[a,b] is clearly
closed under unions, and so is its complement.

Rabin and Streett games. Rabin objectives are Muller objectives where S is closed under inter-
section, whereas their dual (by the above), Streett objectives, are those for which S is closed under
union. Among all Muller conditions, Rabin objectives are exactly those which are positionally de-
termined (and Streett conditions are thus co-positionally determined) over all arenas. Solving finite
Rabin games is an NP-complete problem, while solving finite Streett games is coNP-complete as
was established by Emerson and Jutla [EJ88].

Rabin conditions can also be expressed [Zie98] more conveniently as disjunctions of the form

Rabin =
k
ď

i=1

tw | |w|goodi = 8 and |w|badi ă 8u,

over the set of colours C = tgood1, bad1, . . . , goodk, badku. In words, Eve should ensure that for
some i, goodi is seen infinitely many times and badi only finitely many times.

Likewise, Streett conditions can be rephrased over colours treq1, grant1, . . . , reqk, grantku by

Streett =
k
č

i=1

tw | |w|reqi = 8 ùñ |w|granti = 8u.

In words, Eve should ensure that for all i, if the i-th request reqi is seen infinitely often, then it must
be granted infinitely often.

Note that Muller conditions, and therefore co-Büchi, Büchi, parity, Rabin and Streett objec-
tives, are all prefix-independent. It is not the case that prefix-independent ω-regular objectives are
Muller objectives; for instance the objective “eventually alternate between blue and red” is prefix-
independent and ω-regular but not Muller.

46 Contents

Figure 12: A Streett game modelling a simple reactive synthesis scenario. Note that Eve wins (a two-state
controller can be synthesised) however there is no winning positional strategy.

3.2 Payoff games

Unlike ω-regular games which are inherently qualitative, payoff games naturally arise as arenas
equipped with quantitative valuations. Here colours are real numbers, called weights or payoffs,
which we denote by t P R. We often restrict to subsets of the reals, which we indicate on valuations as
subscripts, for instance valZ, and very often consider bounded integer weights, thus for convenience
we will write valN for val[´N,N]Z , where N P ω.

Mean-payoff games. Mean-payoff games are arenas over bounded sets of weights equipped with
the valuation

MP(t0t1 . . .) = lim sup
k

1

k

k´1
ÿ

i=0

ti.

Here, weights are seen as payoffs from Eve to Adam, and Eve seeks to minimize the average payoff
in the long run. Mean-payoff games are positionally determined for both players over finite arenas
(we refer to the introduction for more discussion and references). A finite mean-payoff game is
discussed in Figure 15. Over infinite arenas there might be no optimal strategy for either player (see
Figure 13).

Over finite games values are reached with positional strategies for both players [EM73; EM79],
which produce paths that are ultimately cycling. Now the colourationw of such a path has the mean
value of the cycle as its mean-payoff, and in particular the lim sup in the definition can equivalently
be replaced by a lim inf.

Stated differently, thanks to positionality and only over finite games, dualising the mean-payoff
valuation simply amounts to inverting the signs of the weights

maximizing MP(w) ðñ minimizing ´MP(w)
ðñ minimizing MP(´w),

where the second equivalent holds by the above discussion (lim sup can be replaced with lim inf for
optimal paths). Therefore, just like parity games, mean-payoff games over finite games are symmet-
ric: up to changing the signs, the two players play the same role. They are moreover tractable over
graphs hence the problem of solving a mean-payoff game lies in NPX coNP.

Energy games. Energy games are arenas equipped with the valuation

Energy+(t0t1 . . .) = sup
k

k´1
ÿ

i=0

ti P [0,8].

In words, Eve aims to minimize the highest value reached by the profile. Note that although they are
antagonistic (as always), the roles of the two players are asymmetric. Energy games with weights inZ

3. Some classes of games 47

Figure 13: Two infinite mean-payoff game of degree 2. For vertices with only one outgoing edge it does not
matter whether they belong to Eve or Adam; therefore we write them as graph vertices for readability (we
often use this notational convention throughout the thesis). For the game in the top, all vertices have value 0,
and there exists an optimal strategy ensuring it (go further and further away to the right), however positional
strategies have positive values.
For the game in the bottom, the value of v0 is 0 however there is no optimal strategy: any (even non-positional)
strategy has positive value.
As mentionned above, non-existence of optimal strategies is not possible for quantitative games. In the bottom
arena, Eve actually loses the threshold mean-payoff game MPď0 even though v0 has value 0.

are positionally determined in general and co-positionally determined over finite arenas [BFL+08];
this is illustrated in Figure 14. (Arbitrary energy games with weights in Q are not positionally
determined, an example is given by a single Eve vertex with all (0, 1]-loops.) Finite energy games
are therefore solved in NPX coNP [BFL+08].

We like to interpret edge weights as changes in temperature: positive weights make the temper-
ature warmer, whereas negative weights make it colder. Eve’s goal is then to keep to temperature
bounded along the game. The optimal value is the least temperature upper bound Eve can guarantee.
A finite energy game is discussed in Figure 15.

A more common analogy which justifies the name is that of a battery: starting from some energy
level, and interpreting positive weights as battery depletion and vice-versa, Adam seeks to empty the
battery while Eve wants to keep it running. The optimal value then corresponds to the smallest
initial energy level from which Eve can guarantee to keep the battery above zero, and 8 if there is
none.

Threshold mean-payoff. We refer to the objective MPď0 as the threshold mean-payoff objective.
Note that any word with positive MP has an unbounded profile, or in the contrapositive

Energy+(w) ă 8 ùñ MP(w) ď 0.

In a finite arena of size n, a simple lasso has non-positive mean-payoff if and only if it has bounded

48 Contents

Figure 14: Two infinite arenas. The one on the left has infinite degree and infinitely many different weights
whereas the one on the right has degree 2 and weights in t´2,´1, 0, 1, 2u. Both energy games are similar:
Adam has strategies to ensure value 8 from all vertices (always do more than Eve), however all positional
strategies have finite value.

energy, if and only if it has energy ď (n´ 1)N .
Therefore (thanks to positionality) threshold mean-payoff games are closely related with energy

games: over finite arenas, the winning region for MPď0 coincides with the set of vertices with finite
Energy+.

Figure 15: The example from the introduction, adapted so as to fit our working convention. We re-
peat and adapt the explanation for convenience and readability. Mean-payoff values from left to right are
´2,´2,´1

2 ,´
1
2 , 1 and 1, and mean-payoff-optimal positional strategies for both players are identified in

bold. Energy values are 0, 2, 9, 0,8 and 8, and energy-optimal strategies are given by arrows with double
heads. Notice that from v, Adam can ensure that the temperature reaches at least 9.
However to do so he must take the edge towards v1, which is non-optimal with respect to mean-payoffs: it
gives Eve the possibility to ensure a long term average of ´2 by forcing the leftmost cycle.
Notice also that using a mean-payoff-optimal strategy from v1 ensures a finite upper bound, namely 4, on the
temperature; it is however not optimal. Actually, mean-payoff-optimal strategies for Eve are also viable in the
energy game in general, in the sense that they achieve a finite (but possibly non-optimal) energy-value.

Finite parity games of size n can be reduced to threshold mean-payoff games simply by replacing
each priority p by the weight (´n)p+1. The validity of this reduction again follows simply from
positional determinacy since a simple lasso has even lim sup if and only if if has positive mean-
payoff.

Discounted games and reductions. Discounted games are arenas with bounded weights equipped

3. Some classes of games 49

with the valuation

Discλ(w) =
8
ÿ

i=0

λiwi,

where 0 ă λ ă 1 is a fixed parameter. Intuitively, more importance is now given to weights
which are visited sooner. Discounted games of finite degree are positionally determined for both
players, as can be derived from the Shapley’s seminal paper [Sha53] on stochastic games. If λ is
fixed, discounted games can be solved in strongly polynomial time O((m

1´λ
log(n

1´λ
))2) by strategy

improvement (even in the stochastic setting) as was recently established by Hansen, Miltersen and
Zwick [HMZ13], building on the results of Ye [Ye11].

If λ is taken to be close enough to one (details in Chapter 2), positivity of the discounted value
of a simple lasso is equivalent to the positivity of its mean-payoff; therefore finite threshold mean-
payoff games can be reduced to finite discounted games. Combined with the reduction discussed
above, one may also reduce finite parity games to discounted games.

The mean-payoff valuation is prefix-invariant (and therefore so is MPď0) but energy and dis-
counted valuations are not.

Part I

Well-monotonic graphs and positionality

51

Introduction

Understanding memory requirements – and in particular positionality – of given valuations or objec-
tives has been a deep and challenging endeavour dating back at least to the work of Shapley [Sha53]
(for finite concurrent stochastic games) and then of Büchi and Landweber [BL69], Büchi [Büc77]
and Gurevich and Harrington [GH82] which are more closely related to our setting. Among oth-
ers, the seminal works of Shapley [Sha53], Ehrenfeucht and Mycielski [EM73], and later Emerson
and Jutla [EJ91], Klarlund [Kla92], McNaughton [McN93] and Zielonka [Zie98], have given us a
few important ideas and tools, which were later redigested, enhanced and extended on numerous
occasions.

Very roughly speaking (more details are provided below), these early efforts culminated in Gim-
bert and Zielonka’s [GZ05] complete characterisation of bi-positionality over finite arenas on one
hand (see also Gimbert’s PhD thesis [Gim07], in French), and Kopczyński’s [Kop06] general results
and conjectures on positionality on the other. In the recent years, increasingly expressive and di-
verse valuations and objectives have emerged from the fast-paced development of reactive synthesis,
triggering more and more interest in these questions.

By now, bi-positionality is well understood, and the frontiers of finite-memory determinacy are
becoming clearer. However, recent general approaches to finite-memory determinacy often behave
badly when instantiated to the degenerated case of positionality (memory one), for different reasons
which are detailed below. Therefore, and walking in the footsteps of Klarlund, Kopczyński and
others, we propose a generic tool for (half) positionality, and moreover present a new characterisa-
tion result. Before discussing our approach, we briefly survey the state of the art, with a focus on
integrating several recent and successful works in different related settings.

Bi-positionality. The celebrated result of Gimbert and Zielonka [GZ05] characterises valuations
which are bi-positional over finite arenas (including parity objectives, mean-payoff, energy, and
discounted valuations, and many more). The characterisation is most useful when stated as follows
(one-to-two player lift): a valuation is bi-positional if (and only if) each player has optimal positional
strategies on arenas which they fully control. Therefore, bi-positionality is reduced to a property of
graphs. In this regard, our main result in Part I is analogous.

Bi-positionality over infinite arenas is also well understood thanks to the work of Colcombet and
Niwiński [CN06], who established that any prefix-independent objective which is bi-positional over
arbitrary arenas is, up to renaming the colours, a parity condition (with finitely many priorities).
Two remarks are in order here. First, this result was already known¹ for Muller objectives from
the work of Zielonka [Zie98], discussed below. Second, this gives a sharp contrast with the vertex-
coloured case, in which Grädel and Walukiewicz [GW06] have established bi-positionality of several
other prefix-independent conditions, most notably the min-parity condition with ω priorities.

¹For finite arenas, even from McNaughton [McN93]. Also, Zielonka formally proves the result only for arenas of
finite degree, but notes that the assumption is not required.

53

54 Contents

Very recently, Kozachinskiy [Koz21a] has given a thorough study of the particular case of contin-
uous valuations Aω Ñ R over finite arenas. Intuitively, the assumption of continuity is orthogonal
to prefix-independence: here, values are obtained as limits over finite prefixes. Among the valuations
evoked so far, the discounted valuation is the only one that is continuous. Although the charac-
terisation of [GZ05] applies here, Kozachinskiy provides several novel insights which we will later
relate to our work on different occasions.

Finite-memory determinacy. For applications in synthesis, establishing finite-memory deter-
minacy as well as determining minimal finite-memory requirements are fundamental since such
strategies correspond to programs. Finite-memory determinacy of Muller games over finite arenas
was first established by Büchi and Landweber [BL69], and the result was extended to infinite arenas
by Gurevich and Harrington [GH82]. Zielonka [Zie98] was the first to investigate precise memory
requirements and he introduced what Dziembowski, Jurdziński and Walukiewicz [DJW97] later²
called the Zielonka tree of a given Muller condition, a data structure which they used to precisely
characterise its memory requirement.

Another general characterisation of finite memory requirements was given by Colcombet, Fi-
jalkow and Horn [CFH14] for generalised safety conditions over arenas of finite degree, which are
those defined by excluding an arbitrary set of prefixes of colours (topologically, Π1). This character-
isation is orthogonal to the one for Muller conditions (which are prefix-independent); it provides in
particular a proof of positionality for (threshold) generalisations of energy objectives, and different
other results.

Le Roux, Pauly and Randour [RPR18] identified a sufficient condition ensuring that finite
memory determinacy over finite arenas is preserved under boolean combinations. Although they
encompass numerous cases from the literature, the obtained bounds are generally not tight, and in
particular no generic result for combinations of positional objectives can be extracted from their
work.

We mention also a recent general result of Bouyer, Le Roux and Thomasset [BLT21], in the much
more general setting of (graph-less) concurrent games given by a condition W Ď (A ˆ B)ω: if W
belongs to ∆0

2 and residuals form a well-quasi order³, then it is finite-memory determined⁴. We will
also rely on well-founded orders (although ours are total), but stress that our results are incomparable:
to transfer the result of [BLT21] to game on graphs, one encodes the (possibly infinite) arena in the
winning condition W , and therefore strategies with reduced memory no longer have access to it.
This is not an issue if G is finite (and if one complies with having memory bounds depending on
n) for the case of finite memory, but positionality results cannot be transferred. Moreover, we will
often care about infinite arenas.

Chromatic and arena-independentmemories. Kopczyński [Kop06] proposed to consider strate-
gies implemented by memory-structures that depend only on the colours seen so far (rather than on
the path), which he called chromatic memory – as opposed to usual chaotic memory. His motiva-
tions for studying chromatic memory are the following: first, it appears that for several (non-trivial)
conditions, chromatic and chaotic memory requirements actually match; second, any ω-regular
conditionW admits optimal strategies with finite chromatic memory, implemented by a determin-
istic (parity or Rabin) automaton recognising W ; third, such strategies are arena independent, and
one may even prove (Proposition 8.9 in [Kop06]) that in general, there are chromatic memories

²It appears that technical reports of Zielonka’s work were accessible as early as 1994.
³We will abstain from giving formal definitions for these two notions. Since the inclusion relation is antisymmetric,

it is a well-quasi order if and only if it is a well-partial order (the notion used by the authors).
⁴In the concurrent setting, games are often not even determined (even when Borel). This is not an issue for con-

sidering finite-memory determinacy, which means “if a winning strategy exists, then there is one with finite memory”.

3. Some classes of games 55

of minimal size which are arena-independent. Kopczyński therefore poses the following question:
does it hold that chromatic (or equivalently, arena-independent) and chaotic memory requirements
match in general?

This turns out not to be the case, a (non ω-regular) counterexample being given by multi en-
ergy objectives, which have finite chaotic memory strategies but require infinite chromatic memory.
A very recent work of Casares [Cas21], studies this question for Muller games, for which an el-
egant characterisation of chromatic memory is given: it coincides with the size of the minimal
transition-coloured deterministic Rabin automaton recognising it. Comparing with the charac-
terisation of [DJW97] via Zielonka trees reveals a gap between arena-dependent and independent
memory requirements already for Muller conditions.

Arena-independent (finite) memory structures have independently been investigated recently
by Bouyer, Le Roux, Oualhadj, Randour and Vandenhoven [BLO+20] over finite arenas. In this
context, they were able to generalise the characterisation of [GZ05] (which corresponds to mem-
ory one), to arbitrary memory structures. As a striking consequence, the one-to-two player lift
of [GZ05] extends to arena-independent finite memory: if both players can play optimally with
finite arena-independent memory respectively nEve and nAdam in one-player arenas, then they can
play optimally with finite arena-independent memory nEve ¨ nAdam in general. A counterexample is
also given in [BLO+20] for one-to-two player lifts in the case of arena-dependent finite memory.

Many valuations and objectives considered for synthesis admit arena-independent finite mem-
ory. This characterisation was more recently generalised to pure arena-independent strategies in
stochastic games by Bouyer, Oualhadj, Randour and Vandenhoven [BOR+21], and even to con-
current games on graphs by Bordais, Bouyer and Le Roux [BBR21]. Unfortunately, none of these
result carry over well to (half) positionality, since they inherit from [GZ05] the requirement that both
players rely on the same memory structure. For instance, in a Rabin game, the antagonist requires
finite memory ą 1 in general, and therefore the results of [BLO+20] cannot establish positionality.

Positionality. Unfortunately, there appears to be no⁵ characterisation similar to Gimbert and
Zielonka’s for (half) positionality. In fact, there has not been much progress in the general study of
positionality since Kopczynśki’s work, on which we now briefly comment.

Kopczyński’s main conjecture [Kop06] on positionality is the following:

“Prefix-independent positional objectives are closed under finite union.”

which we will call Kopczyński’s conjecture. It can be instantiated either for positionality over arbi-
trary arenas, or only finite arenas, leading to two incomparable variants both of which are open, even
for countable unions. An elegant counterexample to a stronger statement is presented in [Kop06]:
there are uncountable unions of Büchi conditions which are not positional over some countable
arenas. Kopczyński introduces two classes⁶ of prefix-independent objectives which are positional
and closed under finite unions: concave objectives and monotonic objectives.

Concave objectives are complements of convex objectives, which are those closed under shuffles
(not defined here). It is immediate that convex objectives are closed under arbitrary intersection,
and therefore concave ones under arbitrary unions. Examples include the parity objective, and the
threshold mean-payoff objective (here, the lim sup semantics is important). The main result is that
concave objectives are positional in general over finite arenas; of course this is not true for infinite
arenas, for instance because of mean-payoff objectives. This result was later extended to also encom-
pass some non-prefix independent objectives by Bianco, Faella, Mogavero and Murano [BFM+11],
but closure under union is lost.

⁵A formal statement can be found in [Kop06], page 34.
⁶Actually, there are more, but we only discuss these two here.

56 Contents

Monotonic objectives are those of the formCωzLω, whereL Ď C˚ is a (regular) language recog-
nised by a linearly ordered deterministic automaton⁷ whose transitions are monotonous. Mono-
tonic objectives are prefix-independent, closed under finite unions, and shown to be positionally
determined over arbitrary arenas [Kop06]. Our work builds on Kopczyński’s suggestion to con-
sider well-ordered automata; however to obtain a complete characterisation we crucially replace the
automata-theoretic semantic of recognisability by the graph-theoretical universality which is more
adapted to the fixpoint approach we pursue. We discuss in the conclusion of Part I how our notions
instantiates to Kopczyński’s.

Our approach. We introduce well-monotonic graphs, which are well-ordered graphs over which
each edge relation is monotonic, and prove in a general setting that existence of universal well-
monotonic graphs implies positionality. The idea of using adequate well-founded (or ordinal) mea-
sures to fold arbitrary strategies into positional ones is very natural, and far from being novel: it
appears in the works of Emerson and Jutla [EJ91] (see also Walukiewicz’ presentation [Wal96], and
Grädel and Walukiewicz’ extensions [GW06]), but also of Zielonka [Zie98] (and in a completely
different way! More discussion about this in Chapter 11) for parity games, and was even formalised
by Klarlund [Kla91; Kla92] in his notion of progress measures for Rabin games.

In this context, the universality assumption is transparent: it simply states the existence of a
progress measure. For instance, the impressive proof of Klarlund and Kozen [KK91] can be some-
what artificially rephrased as a universality result for an (involved) monotonic graph with respect to
the Rabin condition, which was later used by Klarlund [Kla92] to establish their positionality.

Our first contribution here is simply conceptual and consists in streamlining the argument, and
in particular expliciting the measuring structure as a (well-monotonic) graph⁸. We believe that this
has two advantages.

(i) Separating the strategy-folding argument from the universality argument improves conceptual
clarity. In particular, we believe that known proofs are seen in a new light, and we also extend
a few known results.

(ii) Perhaps more importantly, well-monotonic graphs then appear as concrete and manageable
witnesses for positionality. One can imagine many different ways of combining them (we re-
call that ordinals can be added, multiplied or even exponentiated). Moreover, different mean-
ingful subclasses of well-monotonic graphs leading to as many interesting classes of positional
objectives (among them, Kopczyński’s monotonic objectives) can be envisaged.

We supplement (ii) with our main technical novelty: any positional valuation which has a neutral
letter⁹ admits universal well-monotonic graphs. Stated differently, for valuations with a neutral
letter, existence of universal well-monotonic graphs characterises (half) positionality. Such a charac-
terisation result is completely novel; it holds in the qualitative setting, with no prefix-independence
assumption.

Finally, as a proof of concept and inspired by Walukiewicz’s presentation [Wal96] of Emerson
and Jutla’s proof [EJ91], we show that universality of well-monotonic graphs is preserved by finite

⁷The automaton is assumed to be finite, but Kopczyński points out (page 45 in [Kop06]) that the main results still
hold whenever the state space is well-ordered and admits a maximum (stated differently, it is a non-limit ordinal).

⁸The recent line of work of Bouyer and co-authors discussed above is analogous in this regard: the finite mem-
ory structure M is considered externally, independently of the arena. However, their scope (bi-finite determinacy),
techniques and results are different.

⁹This notion is defined in Chapter 3.

3. Some classes of games 57

lexicographical products of prefix-independent objectives¹⁰. Thanks to our characterisation result,
this implies that prefix-independent positional objectives with a neutral letter are closed under lex-
icographical product. (In this scenario, the parity condition can be obtained as a lexicographical
product of Büchi or of co-Büchi conditions.) Our hope, which will be further discussed in the con-
clusion of Part I, is that similar constructions can be employed to make progress on Kopczyński’s
conjecture.

Organisation of Part I. In Chapter 1 we introduce monotonic graphs and universality, then
present the positionality result and its proof. We include a discussion on how the framework in-
stantiates to the important case of prefix-independent objectives.

Chapter 2 is concerned with manipulating well-monotonic graphs. We first illustrate the new
notions over several examples (safety, reachability, Büchi, co-Büchi and energy), for which we give
general positionality proofs and templates for proving universality. Second, we turn to discounted
and mean-payoff games, which are not positional over arbitrary arenas, and discuss their positionality
(which falls out of the scope of our technique; we see this in a positive light). Third, we study
general variants of counter games for which well-monotonic graphs are available, establishing their
positionality. Last, we provide a generic construction for lexicographical products.

Chapter 3 presents our main novelty in terms of a structuration result: roughly, if val is positional,
then any graph can be equipped with a well-monotonic structure simply by adding edges, and –
crucially – without increasing val. This implies the wanted converse statement, therefore establishing
the characterisation.

We actually prove two different structuration results. The first one relies on saturation and is
inspired by Colcombet and Fijalkow’s work [CF19], but it only works for finite graphs; it will be
used in subsequent Chapters, but is not helpful for the wanted characterisation. The second result
requires a stronger hypothesis on the neutral letter, and relies on a natural object we called multiple
choice arenas, which exploit the positionality hypothesis in a much more efficient fashion.

Before turning to algorithms for the remainder of the thesis, we conclude the first part by dis-
cussing our perspectives for the study of positionality.

We express our gratitude to Thomas Colcombet for several important insights, in particular the
“need for non-uniformity” and “limits of saturation”, which turned out to be instrumental for this
first part.

¹⁰This requires a construction for lexicographical combinations of well-monotonic graphs, which is naturally sup-
ported by ordinal multiplication.

1Positionality from well-monotonic
graphs

This chapter lays the foundations for Part I and the rest of the thesis. More precisely, Section 1
introduces monotonic graphs and universality, our two most important concepts. In Section 2, it
is shown how positionality results can be deduced from the existence of universal well-monotonic
graph. Last, Section 3 discusses how these notions instantiate to the important special case of prefix-
independent objectives.

1 Monotonic graphs and universality

1.1 Monotonic graphs

Definition. A C-graph L is monotonic if its vertex set L is equipped with a linear order ě which
is well behaved with respect to the edge relation in the sense that in L,

• if ℓ ě ℓ1 c
ÝÑ ℓ2 then ℓ c

ÝÑ ℓ2, and

• if ℓ c
ÝÑ ℓ1 ě ℓ2 then ℓ c

ÝÑ ℓ2 .

The first item states that the order is well behaved “at the left” of edges, while the second refers to
its behaviour “at the right”; we thus refer to the first property as left composition, and to the second
one as right composition. See Figure 1.1 for an illustration.

Note that monotonicity is preserved by taking induced subgraphs, with the induced linear order.
Observe also that in a monotonic graph L, if ℓ ě ℓ1 then ℓ has more colourations than ℓ1: a path
ℓ1 c
ÝÑ ℓ2 w1

ù with colouration w = cw1 from ℓ1 in L induces by left composition a path, namely
ℓ

c
ÝÑ ℓ2 w1

ù, with the same colouration from ℓ. We refer to this property as colouration-monotonicity.

Successors, predecessors, completeness. Let ℓ P L and c P C, and consider

∆(ℓ, c) = tℓ1 P L | ℓ
c
ÝÑ ℓ1 in Lu,

the set of c-successors of ℓ in L. Right composition states exactly that ∆(ℓ, c) is downward-closed.
Likewise, for any ℓ1 P L and c P C, the set¹

P(ℓ1, c) = tℓ P L | ℓ
c
ÝÑ ℓ1 in Lu

¹We read P as a capital rho.

59

60 Positionality from well-monotonic graphs

Figure 1.1: On the left, a finite monotonic graph with two colours, the order is increasing from left to right
(this convention is adopted throughout the thesis). Note that it is rather dense; monotonic graph often
have a quadratic number of edges. When depicting them, we generally omit many edges which follow from
composition. Two examples representing the same monotonic graph while displaying fewer edges are given
on the right (they correspond to max-successors and min-predecessors); for example the green dashed edge
follows from the green loop by right composition.

is upward-closed, thanks to left composition.
We say that a monotonic graph L is completely monotonic if ď defines a complete linear order

over L and moreover the maximal elementJ P L is such thatJ c
ÝÑ ℓ for all ℓ P L and c P C. Stated

differently, all vertices have a predecessor for each colour, namely J. In a monotonic graph with a
maximal element J, since P(ℓ1, c) is upward closed, having a predecessor amounts to having J as a
predecessor: completeness of a monotonic graph thus corresponds to order-completeness of ě and
automata-theoretic co-completeness of the graph (each vertex has a predecessor for each colour).

For a completely monotonic graph L over L, and for ℓ, ℓ1 P L and c P C, we define

δ(ℓ, c) = sup∆(ℓ, c) P L and ρ(ℓ1, c) = inf P(ℓ1, c) P L,

which we respectively call the sup-successor and inf-predecessor tables of L. Note that δ(ℓ, c) needs
not be a c-successor of ℓ and likewise for ρ.

Figure 1.2: The successor and predecessor tables of the monotonic graph displayed in Figure 1.1 for each of
the two colours. Sup-successors and inf-predecessors are in bold.

1. Monotonic graphs and universality 61

Given any C-graph L equipped with a complete linear order, we say that δ is defined if the
∆(ℓ, c)’s are downward-closed, and that ρ is defined if the P(ℓ1, c)’s are upward-closed. For the
purpose of stating the lemma below, we let δc and ρc be given by δc : ℓ ÞÑ δ(ℓ, c) and ρc : ℓ1 ÞÑ

ρ(ℓ1, c) from L to L.

Lemma 1.1 (Monotonicity in complete graphs)

Let L be equipped with a complete linear order. Then

L is monotonic ðñ δ is defined and the δc’s are monotonic
ðñ ρ is defined and the ρc’s are monotonic.

The conditions on the right are often easier to verify than left and right composition and provide
an alternative point of view.

Proof. We prove the first equivalence, the second one is dual. We have already seen that δ is defined
if and only if L has right composition.

Let c P C and ℓ ě ℓ1 in L. left composition states that c-successors of ℓ1 are also c-successors
of ℓ, or stated differently ∆(ℓ, c) Ě ∆(ℓ1, c). Thus if L is monotonic, we have sup∆(ℓ, c) ě
sup∆(ℓ1, c), which proves the monotonicity of δc. Conversely, since δ is defined,∆’s are downward-
closed, hence sup∆(ℓ, c) ě sup∆(ℓ1, c) implies ∆(ℓ, c) Ě ∆(ℓ1, c) which rephrases left composi-
tion. This proves the first equivalence, and the second holds by symmetry.

Progress measures. We now fix a C-arena G over V and a completely monotonic graph L over
L. A progress measure (over G in L) is a map ϕ : V Ñ L. Progress measures are (partially) ordered
pointwise:

ϕ ě ϕ1 ðñ @v, ϕ(v) ě ϕ1(v).

We define the (global) backpropagation operator (for Eve) over progress measures by

UpdL
G(ϕ)(v) =

$

’

&

’

%

inf
v

c
ÝÑv1 in G

inftℓ P L | ℓ c
ÝÑ ϕ(v1) in Lu if v P VEve

sup
v

c
ÝÑv1 in G

inftℓ P L | ℓ c
ÝÑ ϕ(v1) in Lu if v P VAdam

=

$

’

&

’

%

inf
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) if v P VEve

sup
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) if v P VAdam,

where the equality holds by definition of ρ. We usually drop the subscript and/or the superscript
when G and L are fixed and clear from context.

The intuition behind the definition is rooted in the idea of simulating paths in the arenaG using
paths in the monotonic graph L: Upd(ϕ)(v) represents the smallest position ℓ in L such that Eve
can ensure that the next edge which is visited in the arena belongs to L. Note that this intuition
directly suggests a positional strategy (assuming the inf is met) where, from v, Eve chooses an edge
minimising ρ(ϕ(v1), c).

Since L is complete, the pointwise order over LV equips the set of progress measures with the
structure of a complete lattice. By monotonicity of ρ, the above operator is monotonic. Hence by
the Knaster-Tarski theorem (Theorem 1), its set of fixpoints forms a complete lattice, and its least
fixpoint coincides with its least prefixpoint.

62 Positionality from well-monotonic graphs

1.2 Morphisms preserving val and universality

Fix a valuation val : Cω Ñ X . Recall that values of vertices in a graph G are defined by seeing
them (as always) as Adam-controlled arenas, formally

valG(v) = sup
v

w
ù in G

val(w).

Given two graphsG andG1 with a graph morphism ϕ : GÑ G1, since there are more colourations
from ϕ(v) in G1 than from v in G we have in general

valG(v) ď valG1(ϕ(v)).

Preservation of val. We say that ϕ preserves val or that it is a val-preserving morphism if the
converse inequality holds: for all v P V , valG1(ϕ(v)) ď valG(v). Note that a colouration-preserving
morphism is always val-preserving; stated differently, being val-preserving is a natural val-dependent
relaxation of being colouration-preserving.

If val is a qualitative valuation associated to W Ď Cω then a morphism ϕ from G to G1 is
val-preserving if and only if vertices satisfying W in G are mapped to vertices satisfying W in G1.
For simplicity, we say that ϕ is W -preserving in this case.

Universality. Given a class of graphs C and a graphG, we say thatG is universal for C with respect
to val if every graph of C has a val-preserving morphism into G. We also say for convenience that
G is (C, val)-universal, or simply C-universal when val is clear from context. We say that a graph is
uniformly val-universal if it is val-universal for the class of all graphs.

2 Well-monotonicity and positionality

2.1 Well-monotonicity and universality

Well-monotonicity. A well-monotonic graph L is a monotonic graph such that ě is a well-order
overL. Stated differentlyL is monotonic and moreover non-empty sets of vertices have a minimum.
A completely well-monotonic graph is a well-monotonic graph which is completely monotonic.

Completely well-monotonic graphs can be obtained from well-monotonic graphs simply by
adding a J element.

Lemma 1.2 (Completion of a well-monotonic graph)

LetL be a well-monotonic graph overL and letJ R L. LetLJ be the graph overLJ = LYtJu
where J R L obtained from L by adding all edges from J to LJ. Then LJ is completely well-
monotonic and moreover the inclusion LÑ LJ is colouration-preserving.

Proof. We extend the well-order from L to LJ by setting J ą ℓ for all ℓ P L. It is well known
that this produces a complete order over LJ. Given ℓ P L and c P C, c-predecessors in LJ are
exactly c-predecessor in L together with J. In particular, every vertex has a c-predecessor in LJ.
There remains to prove monotonicity ofLJ, which follows from monotonicity of the inf-predecessor
table.

There is no edge inLJ from L toJ, hence paths from L are the same inL andLJ and therefore
the inclusion is colouration-preserving.

2. Well-monotonicity and positionality 63

In a completely well-monotonic graph L the infimum defining ρ is met therefore we say that ρ
is the min-predecessor table of L. It entirely describes the structure of L since we have

ℓ
c
ÝÑ ℓ1 in L ðñ ℓ ě ρ(ℓ1, c).

Note that since L is complete its maximal element J has c-loops for all c thus any graph has
a morphism into L, obtained by mapping all vertices to J. This morphism is of course not val-
preserving in general, since the image of any vertex has all colourations.

In general graph-morphisms into a completely well-monotonic graph can be rephrased as pre-
fixpoints of the backpropagation operator.

Lemma 1.3 (Morphisms in L are prefixpoints)

Let G be a graph over V , let L be a completely well-monotonic graph and let ϕ : V Ñ L be a
progress measure. Then

ϕ defines a graph-morphism ðñ Upd(ϕ) ď ϕ.

Proof. We have

ϕ defines a graph-morphism ðñ @v, c, v1, [v
c
ÝÑ v1 in G ùñ ϕ(v)

c
ÝÑ ϕ(v1) P L]

ðñ @v, [v
c
ÝÑ v1 in G ùñ ϕ(v) ě ρ(ϕ(v1), c)]

ðñ @v, ϕ(v) ě sup
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) = Upd(ϕ)(v).

Evaluations. Completely well-monotonic graphs are used to evaluate graphs (which often rep-
resent Eve-strategies) and more generally arenas. Given an arena G, we use ψL

G to denote the least
fixpoint of UpdL

G which we call the L-evaluation of G. We often drop the subscript and/or super-
script when G and/or L are clear from context.

Lemma 1.3 allows to rephrase universality for completely well-monotonic graphs.

Lemma 1.4 (Universality of a completely well-monotonic graph)

Let L be a completely well-monotonic graph, let C be a class of graphs and let val : Cω Ñ X
be a valuation. Then

L is (C, val)-universal ðñ @G P C, ψG preserves val.

Proof. The left-to-right implication is direct. Conversely, a morphism ϕG : G Ñ L is ě ψG by
Lemma 1.3 and by the Knaster-Tarski theorem, hence if ϕG is val-preserving then so is ψG.

2.2 Positionality from universality

Completely well-monotonic graphs provide a robust tool for showing positional determinacy
(for Eve) on a given class of graphs C. Below is our main theorem in this chapter. The proof is based
on Emerson and Jutla’s technique [EJ91], and its presentation by Walukiewicz [Wal96]; a similar

64 Positionality from well-monotonic graphs

proof can also be found in the work of Klarlund [Kla92]. We recall that Cpaths and Car respectively
denote the class of subgraphs of path-trees of graphs in C, and the class of arenas whose underlying
graph belong to C.

Theorem 1.1 (Positionality from universal graphs)

Let val be a valuation and let C be a class of graphs. If val has a (Cpaths, val)-universal completely
well-monotonic graph L, then it is uniformly positionally determined over Car.

Two ingredients are needed for the proof. First, we show that any (possibly non-positional)
strategy σ from v can be used to define a prefixpoint ϕ satisfying valL(ϕ(v)) ď val(σ). Second, we
show that any prefixpoint ϕ defines a uniform positional strategy σϕ satisfying for all vertices v that
val(σϕ,v) ď valL(ϕ(v)). This implies the theorem: the strategy induced by the L-evaluation ψ of
G is positional and optimal since it is the least prefixpoint.

At the level of intuition, the first step uses the well-order to fold a non-positional strategy into
a prefixpoint, and the second step shows that a prefixpoint defines a positional strategy. We fix a
(Cpaths, val)-universal completely well-monotonic graph L and an arena G P Car over V .

From arbitrary strategies to prefixpoints. Consider a strategy σ for Eve from v0 P V , and its
unfolded graph Gσ,unfold P Cpaths. We let ψ : Πσ Ñ L denote the L-evaluation of Gσ,unfold. We
have

val(σ) = valGσ,unfold(ε) ě valL(ψ(ε)).

where the first equality holds by definition, whereas the second one follows from Cpaths-universality
of L and Lemma 1.4 (it is actually an equality, but this is the meaningful inequality).

We let ϕ : V Ñ L be the progress measure defined by

ϕ(v) = inftψ(π) | π : v0 ùσ v in Gu.

Note that vertices v which are not reached from v0 by paths consistent with σ are mapped to inf∅ =
J, the maximal element in L. For other vertices however, the infimum defining ϕ(v) is a minimum
thanks to well-orderedness, which is crucial for the result below.

Lemma 1.5 (First ingredient for Theorem 1.1)

The progress measure ϕ is a prefixpoint of UpdL
G satisfying

valL(ϕ(v0)) ď val(σ).

Proof. Since ε defines a path from v0 to v0 in G it holds that

ϕ(v0) ď ψ(ε) in L,

therefore by colouration-monotonicity, valL(ϕ(v0)) ď valL(ψ(ε)) ď val(σ).
Let v P V , we aim to prove that UpdG(ϕ)(v) ď ϕ(v). If ϕ(v) = J, the maximal element in L,

then there is nothing to prove. Otherwise, there exists by well-orderdness of L a path π : v0 ùσ v
in G satisfying ϕ(v) = ψ(π) P L and then there are two similar cases according to the player
controlling v in G.

2. Well-monotonicity and positionality 65

• If v P VEve, then π has a unique successor in Gσ,unfold, namely π1 = πσ(π), and we let
(v

c0
ÝÑ v1

0) = σ(π) which is an edge in G. Then we have

UpdG(ϕ)(v) = min
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) ď ρ(ϕ(v1
0), c0)

(˚)

ď ρ(ψ(π1), c0)

= UpdGσ,unfold
(ψ)(π) = ψ(π) = ϕ(v),

where the marked inequality follows from the fact that π1 : v0 ù v1
0 in G and therefore

ϕ(v1
0) ď ψ(π1) by definition of ϕ, together with monotonicity of ρ.

• If v P VAdam, then π c
ÝÑ π1 inGσ,unfold if and only if π1 = π(v

c
ÝÑ v1) with v c

ÝÑ v1 inG. Thus
we now obtain

UpdG(ϕ)(v) = sup
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) ď sup
v

c
ÝÑv1 in G

ρ(ψ(π(v, c, v1), c) = UpdGσ,unfold
(ψ)(π) = ϕ(v),

concluding the proof.

As a rephrasal of Lemma 1.5 via Lemma 1.3, we also have the following useful result, which is
not formally required for the proof of Theorem 1.1.

Corollary 1.1 (From Cpaths to C)

Let C be a class of graphs, let L be a completely well-monotonic graph and let val be a valuation.
If L is (Cpaths, val)-universal then it is (C, val)-universal.

From prefixpoint to positional strategy. We now consider a prefixpoint ϕ of UpdG. For all
v P VEve we have

UpdG(ϕ)(v) = min
v

c
ÝÑv1

ρ(ϕ(v1), c) ď ϕ(v).

We say that a uniform positional strategy σ : VEve Ñ E respects ϕ if for each v P VEve the edge
σ(v) = v

c
ÝÑ v1 meets the above minimum.

Lemma 1.6 (Second ingredient for Theorem 1.1)

Assume that σ respects ϕ and let π : v
w

ùσ v
1 be a finite path consistent with σ in G. Then

ϕ(v)
w

ù ϕ(v1) in L and therefore for all v P V we have

val(σv) ď valL(ϕ(v)).

Note that the proof below does not require well-foundedness.

Proof. We prove the first statement by induction on the length of π. For paths of length 0 there is
nothing to prove. Now let πG be a path consistent with σ inG of length ě 1 and assume the result
known for shorter paths.

We write πG : v
w1

ùσ v
1 c
ÝÑ v2 and by induction we have π1

L : ϕ(v)
w1

ù ϕ(v1) in L. We show
that ϕ(v1)

c
ÝÑ ϕ(v2) in L.

• If v1 P VEve then (v1, c, v2) = σ(v1) thus ρ(ϕ(v2), c) ď ϕ(v1) and therefore ϕ(v1)
c
ÝÑ ϕ(v2).

66 Positionality from well-monotonic graphs

• If v1 P VAdam then we have

ρ(ϕ(v2), c) ď sup
v1

c
ÝÑu2

ρ(ϕ(u2), c) = UpdG(ϕ)(v
1) ď ϕ(v1),

and again the result follows, concluding the induction.

By a transfinite step this proves that colourations of infinite paths from v consistent with σ in
G are colourations in L from ϕ(v), thus

val(σv) = sup
v

w
ù in G

val(w) ď sup
ϕ(v)

w
ù in L

val(w) = valL(ϕ(v)).

This concludes the proof of Theorem 1.1: combining the two lemmas, any strategy can be folded
into a positional one whose value is not greater.

3 Prefix-invariance properties and universality

We discuss some generalities about monotonic graphs and universality in the case of objectives
with prefix-invariance properties.

3.1 Prefix-increasing objectives

The following result is sometimes useful. It can be seen as being analogous to Lemma 4 (see pre-
liminaries), which states that in the prefix-increasing case positional strategies can always be chosen
to be uniform.

Lemma 1.7 (Graph valuations in prefix-increasing case)

Assume that val is prefix-increasing and consider a graph G over V . If two vertices v and v1

satisfy valG(v) ă valG(v1) then there is no edge in G from v to v1.

Proof. By contradiction, let e = v
c
ÝÑ v1 be an edge inG and pick a path π1 from v1 with valG(π1) ą

valG(v). Then eπ1 is a path from v and we have

val(eπ1) ě val(π1) ą val(v),

which is a contradiction since eπ1 is a path from v in G.

We now consider the case of a prefix-increasing qualitative valuation, given by the objective
W Ď Cω, withW Ď cW for all colours c. We consider a completely well-monotonic graph which
we call L̄, over vertices L̄. We let L be its restriction to the set L of vertices which satisfy W ; by
definition, L satisfies W . The above lemma states in this case that there are no edges in L̄ from L
to L̄zL.

By colouration monotonicity in L̄,L is a downward-closed subset of L̄, thusď is a well-ordering
over L. Therefore L is a well-monotonic graph, which is not complete in general. Recall from
Lemma 1.2 that LJ defines a completely well-monotonic graph obtained from L by adding a J-
element to L with all outgoing edges. The three monotonic graphs are depicted on Figure 1.3.

3. Prefix-invariance properties and universality 67

Lemma 1.8 (Universality for prefix-increasing W)

Let C be a class of graphs, and let CW be the class of all graphs in C which satisfy W . The
following are equivalent.

(i) L̄ is (C,W)-universal,

(ii) LJ is (C,W)-universal,

(iii) L embeds all graphs from CW .

Figure 1.3: The three monotonic graphs in Lemma 1.8. Since there is no edge going fromL to its complement
in L̄, one can safely shrink together vertices with value J (and add more outgoing edges if needed), leading
to the completion LJ of L, which in turn carries no more information than L.

Proof. We show that (iii) ùñ (ii) ùñ (i) ùñ (iii) in this order.
Given a graph G P C over V , we let VW denote the set of vertices which satisfy W . By

Lemma 1.7, there is no edge in G from VW to GzVW , hence the restriction GW of G to W is
a graph, and by definition it belongs to CW . Since there are all edges from J to L in LJ, a mor-
phism ϕ : VW Ñ L extends to a morphism ϕJ : V Ñ LJ by setting ϕJ(v) = J for v R VW . It is
W -preserving by definition: if v satisfies W then v P VW thus ϕJ(v) P L which satisfies W . This
gives the first implication.

For G P C over V , if ϕJ : V Ñ LJ is a W -preserving morphism, then ϕJ maps GW to L and
its complement to J. Now the map LJ Ñ L̄ which coincides with the identity over L and maps J
to the maximal element of L̄ is also W -preserving since there are no edges leaving L in L̄, and it is
a morphism since J̄ has all c-loops in L̄. We conclude with the second implication by composition
of W -preserving morphism.

For the third implication, it suffices to see that if G satisfies W then a W -preserving morphism
in L̄ embeds G in L.

Therefore, the notion of being universal in the prefix-increasing qualitative case corresponds to
the one of Colcombet and Fijalkow [CF18]: we are looking for a well-monotonic L which needs
not be complete, but

(i) satisfies W , and

(ii) embeds all graphs from C which satisfy W .

By a slight abuse, we will say, in the qualitative prefix-increasing case, that a graph L is C-
universal if the two above conditions are met. This bypasses the need for systematically introducing

68 Positionality from well-monotonic graphs

the completion LJ. For statements about the cardinality it makes a difference of at most 1 which
can generally be ignored.

3.2 Pregraphs and prefix-decreasingness

We now discuss mapping of pregraphs, which we recall are non-necessarily sinkless graphs, and
we fix a pregraph G and a valuation val : Cω Ñ X . We use KX to denote the minimal element of
X , given by KX = infX = sup∅.

Even though it does not technically correspond to an Adam-controlled arena (since it may have
sinks), one can define the values over G by the same formula,

valG(v) = sup
v

w
ù in G

val(w),

which takes value KX by definition over sinks. Note that finite paths are not taken into account in
the supremum; this corresponds to the convention that Adam loses if he ends up in a sink. According
to val, this may or may not be satisfactory. For instance if one considers the safety objective over
tsafe, badu one may want that a finite path which contains bad is winning for Adam even if it leads
to a sink, but this is not captured by the above definition. However one may very well work with
this definition as long as val is prefix-decreasing (which is not the case of the safety objective) which
is the object of this discussion.

Given an completely monotonic L, one may likewise define the backpropagation operator, and
therefore the evaluation of G as its least fixpoint, by using the same formula

UpdL
G(ϕ)(v) = sup

v
c

ùv1 in G

ρ(ϕ(v1), c)

which is sup∅ = KL if v is a sink, where KL denotes the minimal element in L.
We now assume that val is prefix-decreasing and that it is non-trivial in the sense that there is

u P Cω such that val(u) = KX . If val is qualitative this means that there are paths which are
winning for Eve. We also assume that L has an element such that

valL(ℓ) = KX ,

which is necessary for instance if there is a graph G with a vertex of value KX with a val-preserving
morphism in L. This will always be the case if L is val-universal for a non-trivial class of graphs. By
colouration-monotonicity we therefore have valL(KL) = KX .

Now since L is a graph KL has a successor for some colour which we will denote by c´ P C. By
right composition we have KL

c´

ÝÑ KL. Given a pregraph G over V we construct a graph G1 over
V simply by appending a c´-loop to all sinks. The following relies on prefix-decreasingness of val.

Lemma 1.9

The identity from G to G1 is val-preserving.

Proof. Any infinite path in G1 which is not in G ultimately cycles in a c´-loop from a sink, and
its colouration is therefore of the form u(c´)ω. By prefix-decreasingness of val its valuation is thus
ď val((c´)ω) ď valL(KL) = KX , since there is a path of colouration (c´)ω from KL in L.

Hence if G1 has a val-preserving morphism in L then so does G (it is actually easy to see that
evaluations of G and G1 in this case are equal, but we will not use this fact). A consequence which
will be useful in Section 4 in the next chapter is that assuming val is prefix-decreasing and L is val-
universal over the class of all graphs of a given cardinality, then it also val-embeds such pregraphs.

2Manipulating well-monotonic graphs

Our aim in this second chapter is to manipulate well-monotonic graphs, and give some intuition
by working on different examples. Here, by default “positional” means “positional over arbitrary
arenas”.

Section 1 discusses a few basic ω-regular objectives, namely safety game, a variant, reachability
games, Büchi and co-Büchi games. For each case, natural constructions are given and discussed.
Each time, we also make a digression about existence of uniformly universal graphs (which turns
out to be quite rare), and discuss the cardinality growth of the C-universal graphs when C grows
larger (for small infinite classes of graphs). Although this is completely non-essential, we believe
that it gives interesting insights about these different objectives (for instance, the growth is more
important for Co-Büchi than Büchi objectives).

In Section 2, we focus on payoff valuations. The energy valuation immediately corresponds
(almost, by definition) to a well-monotonic graph over ω, and therefore it is positional. The dis-
counted valuation is not positional over arbitrary arenas, but only over those of finite degree. It
actually eludes our technique and admits no universal well-monotonic graph, however it does ad-
mit a natural universal monotonic graph overR, and the standard argument due to Shapley [Sha53]
allows to circumvent the need for well-foundedness. We take this occasion to discuss positionality
proofs for mean-payoff games, and provide one for completeness.

In Section 3, we propose two general variants of counter games, establish their positionality and
briefly discuss their significance.

Last, in Section 4, we introduce (finite) lexicographical products of arbitrary prefix-independent
objectives. The main result is that if the conditions each have universal well-monotonic graphs, then
so does their lexicographical product.

1 Basic ω-regular objectives

1.1 Safety games and a variant

Safety games. The safety objective, given over C = tsafe, badu by

Safety = tsafeωu,

is the simplest in terms of winning strategies: Eve is guaranteed to win as long as she follows a
safe-edge which remains in the winning region. Note that it is prefix-increasing, and thus (see
Lemma 1.8) we are looking for a well-monotonic graph L satisfying Safety and which embeds all
graphs satisfying Safety.

69

70 Manipulating well-monotonic graphs

Now satisfying safety for a graph simply means not having a bad-edge therefore we have the
following result.

Lemma 2.1 (Construction for Safety)

The well-monotonic graph comprised of a single vertex with a safe-loop is uniformly Safety-
universal.

This proves thanks to Theorem 1.1 that safety games are positionally determined (which of
course has much simpler proofs).

A variation. For the sake of studying a simple example with no prefix-invariance property we
consider the objective over C = timm, safe, badu defined by

W = immṫimm, safeuω.

In words, Eve should immediately see the colour imm, and then avoid bad forever. Here, bad ¨W Ę

W and W Ę safe ¨W . Consider the graph L depicted in Figure 2.1.

Figure 2.1: A monotonic timm, safe, badu-graph L over L = t0, 1, 2u. Edges which follow from composi-
tion are not depicted. Note that neither 1 nor 2 satisfy W .

Lemma 2.2

The completely well-monotonic graph L is uniformly W -universal.

Therefore W is positionally determined over all arenas. Note that in this case several vertices in
L do not satisfy W , and contracting them into one results in losing W -universality since the first
would no longer satisfyW . Such a phenomenon is excluded by Lemma 1.8 in the prefix-increasing
case.

Proof. Monotonicity of L is straightforward, order-completeness and well-foundedness are always
true for finite sets, and (edge) co-completeness is direct: L is indeed completely well-monotonic.

Consider any C-graph G over V , and let V0, V1, V2 Ď V be the partition of V defined by

• v P V2 if and only if v has a path which visits a bad-edge, and

• v P V0 if and only if v R V2 and all edges outgoing from v have colour imm.

Note that V0 is precisely the set of vertices which satisfy W . It is immediate that mapping V0 to 0,
V1 to 1 and V2 to 2 defines a W -preserving morphism from G to L.

1. Basic ω-regular objectives 71

1.2 Reachability games

We now consider the reachability objective over C = twait, goodu, given by

Reachability = tw P Cω | |w|good ě 1u = Cωztwaitωu.

A key difficulty. Perhaps surprisingly, constructing universal completely monotonic graphs for
the reachability objective turns out to be more involved (and much more interesting) than for the
two previous examples: a key difficulty now arises.

Lemma 2.3 (Need for non-uniformity)

There is no graph uniformly Reachability-universal graph.

Proof. Given an ordinal α, we let Gα be the graph over Vα = α = [0, α) given by

λ
c
ÝÑ λ1 in Gα ðñ c = good or λ ą λ1.

It is illustrated in Figure 2.2. Note that Gα satisfies Reachability by well-foundedness: there is no
infinite path of colouration waitω.

Assume for contradiction that there exists a Reachability-universal graph G over V for the class
of all graphs and let α be an ordinal of greater cardinality |α| ą |V |. Consider a Reachability-
preserving morphism ϕ : Gα Ñ G. By our assumption over cardinalities ϕ is not injective and we
pick λ ą λ1 be such that ϕ(λ) = ϕ(λ1).

Since λ wait
ÝÝÑ λ1 in Gλ and ϕ is a morphism, we have ϕ(λ) wait

ÝÝÑ ϕ(λ1) = ϕ(λ) in G. But
then ϕ(λ) wait

ÝÝÑ ϕ(λ)
wait
ÝÝÑ . . . defines an infinite path in G which does not satisfy Reachability,

contradicting Reachability-preservation of ϕ.

Figure 2.2: The graphs Gα and Lα (defined below); good-edges are represented in blue and wait edges are
red. Some edges which follow by composition are omitted for clarity (for instance, good-edges pointing from
right to left), from now on we no longer mention the use of this convention. Note that in Lα, the vertex α
does not satisfy Reachability.

Hopefully our notion allows for non-uniform constructions. Note that Reachability is not
prefix-increasing therefore elements which do not satisfy the objective in L may play a non-trivial
role.

A non-uniform construction. Given an ordinal α, we let Lα denote the graph over Lα =
α + 1 = [0, α] given by

λ
c
ÝÑ λ1 in Gα ðñ c = good or λ ą λ1 or λ = α.

72 Manipulating well-monotonic graphs

Note that Lα is similar but not identical to the completionGJ
α ofGα: there are good-edges towards

the maximal element.

Lemma 2.4 (Non-uniform construction for Reachability)

For any ordinal α, Lα is completely well-monotonic and it is Reachability-universal for the class
of all graphs of cardinality ă |α|.

The proof provides a template which will later be adapted to other objectives hence we break
it into well-distinguished steps. It explicits the Kleene iteration which defines the evaluation of a
graph G in Lα, for a large enough α. This explains the fact that a few steps are generic.

Proof. Monotonicity of Lα follows from the formulas

ρ(λ,wait) = min(λ+ 1, α) and ρ(λ, good) = 0.

Completeness and well-orderdness are direct, and again by well-foundedness we have

λ satisfies Reachability in Lα ðñ λ ă α.

We now fix an arbitrary graph G over V .

(i) We construct by transfinite recursion an increasing ordinal-indexed sequence of subsets of V
by setting for each ordinal λ

Vλ =
␣

v P V | v
c
ÝÑ v1 in G ùñ [c = good or Dβ ă λ, v1 P Vβ]

(

.

(ii) We let U =
Ť

λ Vλ and prove that if v satisfies Reachability in G then v P U . We proceed by
contrapositive and assume that v0 R U : for any ordinal λ, v0 R Vλ. Then v0 has a wait-edge
towards some vertex v1 such that for all λ, v1 R Vλ. By a quick induction we build an infinite
path v0

wait
ÝÝÑ v1

wait
ÝÝÑ . . . in G, which guarantees that v0 does not satisfy Reachability.

(iii) We show that if Vλ = Vλ+1 then for all λ1 ě λ we have Vλ1 = Vλ. This is direct by transfinite
induction: assume the result known for all β such that λ ď β ă λ1 and let v P Vλ.

Then any edge from v is either a good-edge or points towards v1 P Lβ for some β ă λ1, and
the result follows since Vβ Ď Vλ.

(iv) We now let α be such that |α| ą |V | and prove that Vλ = Vλ+1 for some λ ă α. Indeed, if
this were not the case, then any map (obtained using the axiom of choice)

α Ñ V
λ ÞÑ v P Vλ+1zVλ

would be injective, a contradiction.

(v) Therefore U =
Ť

λăα Vα and we let ϕ : V Ñ Lα = [0, α] be given by

ϕ(v) =

#

mintλ | v P Vλu if v P U
α if v R U.

By the second item and since λ satisfies Reachability provided it isă α, it holds that ϕ preserves
Reachability.

1. Basic ω-regular objectives 73

(vi) We verify that ϕ defines a graph-morphism, which follows from the definitions of Vλ and of
Lα. First, good-edges are preserved independentely of ϕ since they all belong to Lα. Second,
wait-edges from cU are preserved since α has all outgoing wait-edges in Lα. Third if v wait

ÝÝÑ v1

is such that v P U then ϕ(v1) ă ϕ(v) by definition of ϕ thus ϕ(v) wait
ÝÝÑ ϕ(v1).

Recovering uniformity over finite degree graphs. We finish our study of the reachability con-
dition with a quick side-result of independent interest.

Lemma 2.5 (Uniform Reachability-universality for finite degree graphs)

The completely well-monotonic graphLω is Reachability-universal for all graphs of finite degree.

Proof. Let C be the class of graphs of finite degree and Cacyclic be its restriction to acyclic graphs. We
have

Cpaths Ď Cacyclic Ď C,

thus Cacyclic-universality implies Cpaths-universality, which implies C-universality by Corollary 1.1.
LetG be an acyclic graph of finite degree over V and let v P V be a vertex satisfying Reachability.

Consider the tree T rooted at v obtained by restricting G to vertices v1 such that v has a wait-path
to v1. Then T has finite degree and no infinite paths, it is therefore finite by König’s lemma.

Consider the ordinal sequence V0 Ď ¨ ¨ ¨ Ď Vα Ď Vα+1 Ď . . . from the proof of Lemma 2.4.
By a direct induction, a vertex of height h in T belongs to Vh, which concludes.

1.3 Büchi games

The Büchi condition is defined over the same set of colours C = twait, goodu by

Büchi = tw P Cω | |w|good = 8u.

It is prefix-independent so we aim to construct (non-necessarily completely) well-monotonic graphs
which satisfy Büchi and embed graphs satisfying Büchi.

Non-uniform construction. Given an ordinal α, we consider the graph Lα over Lα = α =
[0, α) given by

λ
c
ÝÑ λ1 in Lα ðñ c = good or λ ą λ1.

Note that this graph is identical to the graph Gα defined in the context of reachability games, and
thus we refer to Figure 2.2.

The difference between the completion (Lα)J of the graph defined just above for Büchi and the
graph LR we used for Reachability is that in the latter there are good-edges towards the maximal
element. This reflects the fact that in a reachability game there may be good-edges from the winning
region to its complement, which is of course false in a Büchi-game (precisely because they are prefix-
independent).

It is a direct check that Lα is a well-monotonic and that it satisfies Büchi.

Lemma 2.6 (Non-uniform construction for Büchi)

For any ordinal α, Lα is Büchi-universal for the class of all graphs of cardinality ă |α|.

74 Manipulating well-monotonic graphs

We follow the same steps as those of the proof of Lemma 2.4.

Proof. Fix a graph G over V which satisfies Büchi.

(i) We construct by transfinite recursion an ordinal-indexed increasing sequence of subsets of V
by the formula

Vλ =
␣

v P V | v
c
ÝÑ v1 ùñ [c = good or Dβ ă λ, v1 P Vβ]

(

.

Note that the definition is identical to that of the proof of Lemma 2.4, thus we may skip a few
steps below which were already proved.

(ii) We let U =
Ť

λ Vλ and prove that U = V : from v0 R U , we may construct a path v0
wait
ÝÝÑ

v1
wait
ÝÝÑ . . . in G, which contradicts the fact that G satisfies Büchi.

(iii) It again holds that Vλ = Vλ+1 implies Vλ1 = Vλ for λ1 ą λ.

(iv) We let α such that |α| ą |V | and we have Vλ = Vλ+1 for some λ ă α.

(v) Therefore U =
Ť

λăα Vα = V and we let ϕ : V Ñ Lα = [0, α) be given by ϕ(v) = mintλ |
v P Vλu.

(vi) We verify that ϕ defines a graph morphism, which follows directly from the definitions.

Uniformity for Büchi games. Regarding uniform constructions, the proofs of Lemmas 2.3
and 2.5 are very easily adapted to the Büchi objective.

Lemma 2.7 (Uniformity for Büchi)

There is no graph which is Büchi-universal for the class of all graphs. However, Lω is Büchi-
universal for the class of all graphs of finite degree.

Proof. For the first statement, we have seen that if LR
α = Gα embeds into some graph G of cardi-

nality ă |α| then G has a waitω-path.
For the second statement, we may again reduce to universality for acyclic graphs of finite degrees.

In such a graph G satisfying Büchi and given a vertex v, we again consider the tree comprised of
vertices v1 with a wait-path from v. It is finite thanks to König’s lemma which concludes.

1.4 Co-Büchi games

Recall the co-Büchi condition over C = tsafe, badu given by

Co-Büchi = tw P Cω | |w|bad ă 8u.

Non-uniform construction. It is prefix-independent, thus we aim to construct well-monotonic
graphs which satisfy Co-Büchi and embed graphs satisfying Co-Büchi. Given an ordinal α consider
the graph Lα given over Lα = α = [0, α) by

λ
c
ÝÑ λ1 in Lα ðñ

c = bad and λ ą λ1 or
c = safe and λ ě λ1.

1. Basic ω-regular objectives 75

Figure 2.3: The tsafe, badu-graph Lα defined with respect to the co-Büchi condition; safe-edges are repre-
sented in blue and bad edges are red.

It is straightforward to verify that Lα is well-monotonic and satisfies Co-Büchi.

Lemma 2.8 (Non-uniform construction for co-Büchi)

For any ordinal α, Lα is Co-Büchi-universal for the class of all graphs of cardinality ă |α|.

We follow the now familiar template introduced for reachability games.

Proof. Fix a graph G over V which is assumed to satisfy Co-Büchi.

(i) We construct by transfinite induction an ordinal-indexed increasing sequence of subsets of V
by the formula

Vλ = tv P V | v
safe˚bad
ù v1 in G ùñ Dβ ă λ, v1 P Vβu.

(ii) We let U =
Ť

λ Vλ and prove that U = V . Assume that v0 R U : for any ordinal λ, v0 R Vλ.
Then v0 has a safe˚bad-path towards some vertex v1 such that for all λ, v1 R Vλ. By a quick
induction we build an infinite path v0

safe˚bad
ù v1

safe˚bad
ù . . . in G, which guarantees that v0

does not satisfy Co-Büchi, a contradiction.

(iii) We show that if Vλ = Vλ+1 then for all λ1 ě λ we have Vλ1 = Vλ. Again this is direct by
transfinite inducion.

(iv) We let α be such that |α| ą |V |, and again we have Vλ = Vλ+1 for some λ ă α.

(v) Therefore U =
Ť

λăα Vα = V and we let ϕ : V Ñ Lα = [0, α) be given by ϕ(v) = mintλ |
v P Vλu.

(vi) We verify that ϕ defines a graph-morphism which is direct from the definitions of Vλ and
Lα.

Uniformity for Co-Büchi. Regarding uniform universal graphs, the situation is still the same
when considering the class of all graphs but not in case of smaller degrees.

Lemma 2.9 (Uniformity for Co-Büchi)

There is no graph which is uniformly Co-Büchi-universal and Lω is not Co-Büchi-universal for
the class of graphs of bounded degree. However Lω1 is Co-Büchi-universal for the class of all graphs
of countable degree, were ω1 denotes the first uncountable ordinal.

76 Manipulating well-monotonic graphs

The fact that there exists a well-monotonic graph of cardinality ℵ1 which is universal for graphs
of countable degree is actually general and follows from the forthcoming structuration results of
Chapter 3.

Proof. The first statement is easily adapted from the proof of Lemma 2.3, we give the details for
completeness. Let G be a graph over V which we assume to be Co-Büchi-universal for the class of
all graphs. Let α be an ordinal with cardinality ą |V |, and consider an embedding ϕ of Lα into G.
It cannot be injective, and we let λ ą λ1 in Lα be such that ϕ(λ) = ϕ(λ1). We have λ bad

ÝÑ λ1 in
Lα thus ϕ(λ) bad

ÝÑ ϕ(λ1) = ϕ(λ) in G, which contradicts the fact that G satisfies Co-Büchi. Note
that the family of graphs used for the lower bound (namely, Lα) has unbounded (and even infinite)
degree.

To show that Lω1 is Co-Büchi-universal for all graphs of countable degree it suffices by Corol-
lary 1.1 it suffices to prove the result for subgraphs of paths-graphs of countable degree. Now such
a graph is countable, thus if it satisfies Co-Büchi then it embeds in Lω1 since |ω1| is uncountable.

There remains to see that Lω is not Co-Büchi-universal for the class of all graphs of bounded
degree. Consider the graph G over elements of the form nÒ and nÓ where n P ω and given by
exactly the edges

nÒ
safe
ÝÑ (n+ 1)Ò, nÒ

safe
ÝÑ nÓ, (n+ 1)Ó

bad
ÝÑ nÓ and 0Ó

safe
ÝÑ 0Ó .

See Figure 2.4 for an illustration.

Figure 2.4: The tsafe, badu-graph G for the second lower bound in Lemma 2.9.

It is immediate that G is countable, has degree 2 and satisfies Co-Büchi. Let ϕ : V Ñ Lω1 be
the morphism constructed in the proof of Lemma 2.6. By a direct induction, we have ϕ(nÓ) = n.
Thus we obtain ϕ(nÒ) = ω for all n. Stated differently there is no embedding of G in Lω.

With some more effort we may generalize the above lower bound to any countable graph.

Lemma 2.10 (No countable Co-Büchi-universal graph for bounded degree)

There is no countable graph which is Co-Büchi-universal for the class of all graphs of bounded
degree.

Therefore Lω1 is the first graph in the family to be Co-Büchi-universal for the class of all graphs
of bounded degree (and it is even universal for the much larger class of graphs of countable degree).

2. Payoff valuations 77

Proof. LetG be a countable graph over V which satisfies Co-Büchi and embeds all bounded degree
graphs satisfying Co-Büchi. Consider the ordinal-indexed sequence of subsets Vλ of V constructed
in the proof of Lemma 2.8. By item (iv) in the proof, and since |ω1| ą |V |, there is some α ă ω1

such that Vα = Vα + 1, or stated differently G embeds in Lα+1. Note that α + 1 ă ω1 as it is
countable.

Fix a bijection e : ω Ñ α+2 = [0, α+1], and consider the graphH over vertices in (α+2)ˆω
given by

@λ, n, (λ, n)
safe
ÝÑ (λ, n+ 1) and e(n) ă λ ùñ (λ, n)

bad
ÝÑ (e(n), 0).

Note that H has degree 2.

Figure 2.5: The graph H in the proof of Lemma 2.10.

It satisfies Co-Büchi since whenever a bad-edge is seen, the first coordinate decreases, which can
happen only finitely many times since it never increases. Now for each λ, λ1 P α+ 2, with λ ą λ1,

(λ, 0)
safe
ÝÑ (λ, 1)

safe
ÝÑ . . .

safe
ÝÑ (λ, e´1(λ1))

bad
ÝÑ (λ1, 0)

defines a path with colouration in safe˚bad from (λ, 0) to (λ1, 0) (it is represented in Figure 2.5).
It follows that

λ ą λ1 ùñ (λ, 0) R Vλ1

and thus H does not embed in Lα+1, contradicting the fact that H embeds in G.

Natural objectives to study next would be parity objectives. However we prefer to present the
constructions relative to parity games as obtained by generic lexicographic combinations of Büchi
or co-Büchi conditions, which is why we now move to quantitative valuations.

2 Payoff valuations

We now discuss constructions for energy, discounted, and mean-payoff games.

78 Manipulating well-monotonic graphs

2.1 Energy games

Recall the energy valuation over C = Z defined by

Energy+(t0t1 . . .) = sup
k

k´1
ÿ

i=0

ti P [0,8],

Consider the graph L over L = ω given by

ℓ
t
ÝÑ ℓ1 in L ðñ t ď ℓ´ ℓ1 P Z.

Note that only non-positive weights are outgoing from 0 in L. See Figure 2.6.

Figure 2.6: The monotonic Z-graphL corresponding to the Energy+ valuation. The names of the vertices are
displayed in blue to improve readability. Not all edges are depicted, we simply write ďt

ÝÑ for the conjunction
of t1

ÝÑ for all t1 ď t.

The usual order defines a well-order over L and we have

ℓ
t
ÝÑ ℓ1 in L ðñ ℓ ě max(0, ℓ1 + t)

thus the min-predecessor table is defined and given by

ρ(ℓ1, t) = max(0, ℓ1 + t)

therefore L is well-monotonic. For each ℓ P ω the path ℓ ℓ
ÝÑ 0

0
ÝÑ 0

0
ÝÑ . . . has value ℓ, therefore

Energy+L(ℓ) ě ℓ.
Conversely consider an infinite path from ℓ0 P ω. It is of the form ℓ0

t0
ÝÑ ℓ1

t1
ÝÑ ℓ2

t2
ÝÑ . . . with

for all i, ti ď ℓi ´ ℓi+1. Hence its profiles define a telescoping sum and we have for all n,

n´1
ÿ

i=0

ti ď ℓ0 ´ ℓn ď ℓ0.

Therefore it holds that for all ℓ P ω we have

Energy+L(ℓ) = ℓ.

Energy games are similar to safety games in the sense that they have a uniformly universal well-
monotonic graph.

2. Payoff valuations 79

Lemma 2.11 (Uniform construction for energy games)

The completely well-monotonic graph LJ is Energy+-universal for the class of all graphs.

Proof. Consider a graph G over V . We see the values in G as defining a map from V into LJ,
formally

Energy+G : V Ñ LJ

v ÞÑ Energy+G(v),

where we identify J to8.
The fact that it is Energy+-preserving follows from the fact that Energy+L(ℓ) = ℓ, proven above.

We prove that it is a morphism: consider an edge e = v
t
ÝÑ v1 in G. If Energy+G(v

1) = J then
Energy+G(v)

t
ÝÑ Energy+G(v

1) in LJ since J has all predecessors.
We assume otherwise and let π1 a path from v1 in G with maximal value Energy+(π1) =

Energy+G(v
1) which we denote by x1 P ω for simplicity. Then eπ1 defines a path from v in G,

therefore
Energy+G(v) ě Energy+(eπ1) = max(0, t+ x1) ě t+ x1,

which rewrites as
t ď Energy+G(v)´ Energy+G(v

1),

the wanted result.

This implies thanks to Theorem 1.1 that energy games over arbitrary arenas are positionally
determined. Somewhat ironically, it appears that this result had not been formally established before,
Lemma 10 in [BFL+08] is stated over finite arenas¹, whereas Corollary 8 in [CFH14] applies only
to arenas of finite degree.

Recall however that the opponent in an energy game can require arbitrary memory even over
countable arenas of degree 2 and with bounded weights (see Figure 14). It is well known that no
memory is required for the opponent over finite arenas (energy games are bi-positional), this can
easily be proved using the one-to-two player lift of Gimbert and Zielonka [GZ05].

2.2 Discounted games

We now consider the discounted valuation over C = R given by a fixed parameter λ P (0, 1)
and defined by

Discλ(t0t1 . . .) =
8
ÿ

i=0

λiti.

We let L be the graph over L = R given by

ℓ
t
ÝÑ ℓ1 in L ðñ t ď ℓ´ λℓ1

Note that ℓ ℓ
ÝÑ 0

0
ÝÑ 0

0
ÝÑ 0

0
ÝÑ . . . defines an infinite path from ℓ in L with discounted payoff ℓ.

Conversely given an infinite path ℓ0
t0
ÝÑ ℓ1

t1
ÝÑ . . . we have

n´1
ÿ

i=0

λiti ď
n´1
ÿ

i=0

λiℓi ´ λ
i+1ℓi+1 = ℓ0 ´ λ

nℓn´1 ÝÝÝÑ
nÝÑ8

ℓ0,

¹Otherwise, the result would not hold in any case, because it includes the opponent.

80 Manipulating well-monotonic graphs

and therefore we have for all ℓ P L,
Discλ(ℓ) = ℓ.

Note that ℓ t
ÝÑ ℓ1 if and only if ℓ ě t+ λℓ1 therefore L has minimal predecessors given by

ρ(ℓ1, t) = t+ λℓ1.

Hence L is a completely monotonic graph. However it is not well-ordered by ě (R has infinite de-
creasing sequences) and therefore Theorem 1.1 cannot be applied; discounted games are of different
nature than the ones discussed so far.

However they enjoy a much simpler fixpoint proof of positionality from Shapley [Sha53] which
does not require to fold a given non-positional strategy as in Theorem 1.1 (which is where well-
foundedness is used). To be more specific L has a very nice property: operators associated to arenas
of finite degree are λ-contracting.

Lemma 2.12 (Operators are contracting)

Let G be an arena of finite degree over V . Then UpdL
G is λ-contracting with respect to the

infinity norm over RV , formally

||Upd(ϕ1)´Upd(ϕ2)|| ď ||ϕ1 ´ ϕ2||,

where ||ϕ|| = maxvPV |ϕ(v)|.

Proof. Let v P VEve. We have

Upd(ϕ1)(v)´Upd(ϕ2)(v) = min
v

t
ÝÑv1

[
t+ λϕ1(v

1)
]
´ min

v
t
ÝÑv1

[
t+ λϕ2(v

1)
]

ď t2 + λϕ1(v
1
2)´ t2 ´ λϕ2(v

1
2)

ď λ||ϕ1 ´ ϕ2||,

where v t2
ÝÑ v1

2 minimises t + λϕ2(v
1). We obtain ||Upd(ϕ1)(v) ´ Upd(ϕ2)(v)|| ď λ||ϕ1 ´ ϕ2||

by symmetry and the case of v P VAdam is similar.

Therefore Banach’s theorem [Ban22] in the metric space RV states that UpdL
G has a unique

fixpoint, even with arbitrary V . We obtain positionality as a consequence.

Corollary 2.1 (Positionality of finite degree discounted games)

Discounted games of finite degree are positionally determined for both players.

Proof. Consider the unique fixpoint ψ of UpdL
G, and let σ be a uniform positional strategy which

respects ψ. Lemma 1.6 yields for all v

Discλ(σv) ď DiscλL(ψ(v)) = ψ(v).

Inverting the roles of the two players gives the same operator and therefore the same fixpoint, and
thus a uniform positional strategy τ for Adam which respects ψ is such that

Discλ(τv) ě ψ(v)

which implies that Discλ(v) = ψ(v) and that it is uniformly reached by both positional strategies
σ and τ .

2. Payoff valuations 81

2.3 Mean-payoff games and equivalence over finite arenas

We have seen that energy and discounted valuations have uniformly universal monotonic graphs
(and even well-monotonic in the case of energy games). In this regards mean-payoff games are
different, and positionality proofs are less straightforward.

Techniques for proving their bi-positionality over finite arenas are the following (in chronological
order).

(i) Ehrenfeucht and Mycielski [EM79] studied interactions with cyclic games (see also [AR17]
for extensions), which are over as soon as a cycle is closed.

(ii) Gurvich, Karzanov and Khachiyan [GKK88] observed that positionality follows from existence
of ergodic potentials, which is a consequence of much more general results of Moulin [Mou76].
They also provided an algorithmic proof, essentially by reduction to energy games (although
this terminology was introduced only much later).

(iii) Puri [Pur95] observed that a direct proof can be given using the reduction to discounted games
established by Zwick and Paterson [ZP95].

(iv) The one-to-two player lift of Gimbert and Zielonka [GZ05] gives a quick and easy proof.

(v) Mean-payoff games (with lim sup semantic, as ours) are concave therefore Kopczyński’s re-
sult [Kop06] applies.

For completeness, we will give a proof, and we choose the technique of Puri which is self-contained.
This also gives us the occasion to present the reduction to discounted games, and on the way we also
formally prove the equivalence with energy games over finite arenas.

The sum of a word w P Z˚ is simply the sum of its letters, and we say that w is negative, non-
positive, zero, non-negative or positive if its sum is. As always, this terminology is extended to finite
paths by considering their colouration. Here is the key technical result.

Lemma 2.13

Let n and N be natural numbers. There exists λ ă 1 such that for any w,w1 P [´N,N]ďnZ ,

w1 is positive ùñ Discλ(w(w1)ω) ą nN.

The choice of nN here is motivated by what follows, but any value can be achieved with λ
sufficiently close to 1.

Proof. We denote w = t0 . . . tr´1, s = t0 + ¨ ¨ ¨ + tr´1, sλ = t0 + λt1 + ¨ ¨ ¨ + λr´1tr´1 and put
w1 = t10t

1
1 . . . t

1
r1´1 and define s1 and s1

λ likewise. We assume that s1 ą 0 therefore s1 ě 1 (and
r1 ě 1). We have

|s1 ´ s1
λ| = |(1´ λ)t

1
1 + (1´ λ2)t12 + ¨ ¨ ¨+ (1´ λr

1´1)t1r1´1| ď nN(1´ λn´1)

therefore if λ is close enough to 1 the above is ď 1/2 thus s1
λ ě 1/2 and we have

Discλ(w(w1)ω) =
r´1
ÿ

i=0

λiti + λr
8
ÿ

i=0

λir
1

s1
λ = sλ +

λrs1
λ

1´ λr1 ě ´nN +
λn

2(1´ λn)

which grows arbitrarily large independently of w or w1 when λ tends to 1.

82 Manipulating well-monotonic graphs

We now give a very useful result which we will also be refered to in later chapters. Recall that
graphs are identified to arenas fully controlled by Adam: their values are suprema over paths.

Lemma 2.14 (Equivalence over finite graphs)

Let G be a finite [´N,N]Z-graph of size n and let v be one of its vertices. The following are
equivalent.

(i) All cycles reachable from v are non-positive.

(ii) It holds that MPG(v) ď 0.

(iii) It holds that Energy+G(v) ă 8.

(iv) It holds that Energy+G(v) ď (n´ 1)N .

(v) It holds that DiscλG(v) ď nN where λ is close enough to 1 as given by Lemma 2.13.

Proof. We first show the following chain of implications

␣(i)
1
ÝÑ ␣(ii)

2
ÝÑ ␣(iii)

3
ÝÑ ␣(iv)

4
ÝÑ ␣(i),

and finish with the equivalence (i) 5
ÝÑ (v)

6
ÝÑ (i).

1. If v w
ù v1 w1

ù v1 where w1 has positive sum then v w
ù v1 w1

ù v1 w1

ù . . . defines an infinite
path from v with mean-payoff ě 1/|w1| ą 0.

2. Any path of positive mean-payoff has unbounded profile.

3. This is trivial.

4. A path π : v0
t0
ÝÑ v1

t1
ÝÑ . . . with Energy+(π) ą (n ´ 1)N has by definition r P ω such that

řr´1
i=0 ti ą (n ´ 1)N . Let π0 be a path with minimal such r. Since all ti’s are ď N it must be

that r ě n, and therefore there is a repetition in v0, v1, . . . , vr. This defines a cycle, which has
positive weight by minimality of r since otherwise removing it would produces a shorter path
with a greater sum.

5. By positional determinacy for Adam there is a path of the form v
w

ù v
w1

ù v1 w1

ù . . . with
|w| ď n´1which has a maximal discounted-payoff. Sincew1 has non-positive sum we have with
the notations of Lemma 2.13 that s1

λ ď 1/2 therefore Discλ(v) = sλ+λ
|w|s1

λ ď (n´1)N+1/2.

6. If v w
ù v1 w1

ù v1 where w1 has positive sum then the discounted-payoff of v is larger than that
of w(w1)ω which concludes thanks to Lemma 2.13.

We are now ready to prove the sought result.

Theorem 2.1 (Positionality of finite threshold mean-payoff games)

The objective MPď0 is uniformly positionally determined for both players over finite [´N,N]Z-
arenas.

3. Counter games 83

Proof. Let G be such an arena of size n over V and let λ be given by Lemma 2.13. Let σ, τ be
optimal uniform positional strategies for each players with respect to Discλ in G.

Let v P V and assume that DiscλG(v) ď nN . Applying Lemma 2.14 inGσ,v yields MP(σv) ď 0.
Assume conversely that DiscλG(v) ą nN . Then applying Lemma 2.14 in Gτ,v yields MP(τv) ą 0.

Therefore the winning regions of MPď0 inG coincide with those of (Discλ)ďnN , and moreover
σ and τ are optimal with respect to MPď0.

This implies positionality of the mean-payoff valuation via a standard reduction.

Corollary 2.2 (Positionality of mean-payoff valuation)

The valuation MP is uniformly positionally determined for both players over finite Q-arenas.

Proof. First observe that positional determinacy of MPď0 over finite Q-arenas follows from the
theorem simply by multiplying by a common denominator.

Let G be such an arena and let t P Q. Consider the arena Gt obtained from G by adding t to
all weights. A path with mean-payoff x in G corresponds to a path with mean-payoff x+ t in Gt.

Now let v P V , let x P R denote the mean-payoff value of v in G and let ε ą 0 be such that
x + ε P Q. Then v has mean-payoff value ´ε ď 0 in the Q-arena G´x´ε and therefore there is a
positional strategy σϵ from v with value ď 0 in G´x´ε and hence ď x+ ε in G.

Since there are only finitely many positional strategies, one of them achieves valueď x+ ε for ε
arbitrarily small therefore it achieves valueď x. This gives positional determinacy for Eve, the result
for the other player is obtained by symmetry. Uniform positional determinacy in this case follows
from prefix-independence as we proved in the preliminaries.

Besides a positionality proof for finite mean-payoff games via reduction to discounted games,
Lemma 2.14 implies the following result which is important for its algorithmic consequences (see
Chapter 6). We let L denote the well-monotonic graph over ω introduced for energy games, and
L[0,(n´1)N] denote its restriction to [0, (n´ 1)N].

Corollary 2.3 (A small MPď0-universal monotonic graph)

The finite well-monotonic graph L[0,(n´1)N] is MPď0-universal for the class of all [´N,N]-
graphs of cardinality ď n.

The proof of the corollary is direct from (ii) ðñ (iv) in Lemma 2.14 and the fact that
Energy+G defines a morphism from G to L if G satisfies MPď0, see Lemma 2.11.

3 Counter games

We now discuss two variants of counter games. The set of colours C is the set of all monotonic
functions f : ω Ñ ω, which are seen as acting on a (non-negative) counter. This makes for quite
a general class of games as it includes the possibilities of incrementing, decrementing, setting the
counter to any value (including resetting to zero), halving, multiplying, raising n to 22n or to the next
prime number, or even applying non-computable monotonic functions. We first discuss backward
counter games which are less natural but a bit easier as they directly generalise energy games.

84 Manipulating well-monotonic graphs

3.1 Backward counter games

Consider the backward counter valuation given by

BackwardSup(f0f1 . . .) = sup
n

f0(f1(. . . (fn(0)) . . .)) P [0,8].

It is not hard to see that Energy+ coincides with the above valuation if each weight t is replaced by
the monotonic function n ÞÑ max(0, n+ t).

We extend the well-monotonic graph considered for the energy valuation to the current setting
by letting L be the C-graph defined over L = ω by

ℓ
f
ÝÑ ℓ1 in L ðñ ℓ ě f(ℓ1).

The study of L is not harder than for the special case of energy games. Monotonicity of L follows
from monotonicity of its min-predecessor tables given by

ρ(ℓ1, f) = f(ℓ1).

Given n P ω we let n̄ P C denote the (monotonic) constant n function. Given ℓ P ω = L the path
ℓ

ℓ̄
ÝÑ 0

0̄
ÝÑ 0

0̄
ÝÑ . . . has value ℓ̄(0) = ℓ therefore the value of ℓ is ě ℓ.

Conversely given an infinite path π : ℓ0
f0
ÝÑ ℓ1

f1
ÝÑ . . . , we have by definition for all i that

ℓi ě fi(ℓi+1). Therefore it follows from a direct induction (thanks to monotonicity of the fi’s) that
for all n we have

ℓ0 ě f0(f1(. . . (fn(ℓn+1)) . . .)) ě f0(f1(. . . (fn(0)) . . .)),

hence by taking a supremum over n we have ℓ0 ě BackwardSup(π) and therefore the value of ℓ0 is
exactly ℓ0.

Lemma 2.15 (Universal well-monotonic graph for BackwardSup)

The completely well-monotonic graph L is uniformly BackwardSup-universal.

The proof follows the same lines as that of Lemma 2.11.

Proof. Let G be a C-graph over V and consider the map BackwardSupG : V Ñ LJ where 8 is
identified with J. It is BackwardSup-preserving as shown above so we are left with proving that it
is a morphism.

Let e = v
f
ÝÑ v1 in G. If v1 has value 8 there is nothing to prove since J has all predecessors

in LJ. Therefore we assume otherwise, let π1 define a maximal path from v1 in G and let x1 denote
the value of π1 (which is also the value of v1). Then eπ1 defines a path from v in G thus

BackwardSup(v) ě BackwardSup(eπ1) = f(x1),

and hence
BackwardSup(v) f

ÝÑ BackwardSup(v1) P LJ.

3. Counter games 85

This implies positionality over arbitrary arenas for the backward counter valuation.

A class of valuations. Note that L has a very strong universality property: for any monotonic
C 1-graph L1 over L1 = ω with the usual order, there is a renaming C 1 Ñ C of the colours such
that the identity L1 Ñ L = ω embeds L1 in L. In other words, any valuation which admits a
uniformly universal monotonic graph over (a subset of) ω can be reduced to BackwardSup, which
could therefore be called complete for this class of valuations. Can this natural class of valuations,
which gives a broad generalisation of safety objectives, be better understood, or characterised?

Continuous bi-positional valuations. A surprising parallel can be made with the recent work
of Kozachinskiy, who proved (see Theorem 22 in [Koz21a]) that any continuous valuation Aω Ñ R
which is bi-positional over finite arenas, has a similar form (involving contracting monotonic maps
f : K Ñ K where K Ď R is compact, and replacing sup with lim). In particular, bi-positionality
of such valuations can be established in general via existence of a unique fixpoint, as for discounted
games (see Section 2.2); it does not hold in general however that these can be reduced to (even
multi) discounted games [Koz21a].

3.2 Boundedness games

We now discuss boundedness games, which are C-arenas equipped with the objective

BoundedN = tw P Cω | @n, fn(fn´1(. . . (f0(0)) . . .)) ď Nu,

whereN P ω is a fixed bound. In contrast with backward counter games, the maps are now applied
in chronological order (first f0, then f1 and so on) which corresponds to the natural intuition of
updating a counter in place.

Colcombet, Fijalkow and Horn [CFH14] have established that BoundedN is positionally deter-
mined over arenas of finite degree, we extend this result to arbitrary arenas. Note that BoundedN is a
prefix-increasing objective by monotonicity of the maps in C, therefore we are looking to construct
a well-monotonic graph which satisfies BoundedN and embeds such graphs.

We let L be the graph over L = [0, N] given by

ℓ
f
ÝÑ ℓ1 in L ðñ f(ℓ) ď ℓ1.

The graph L is monotonic with respect to the inverse order over L = [0, N], with minimal element
N and maximal element 0. It is well-monotonic since all finite orders are well founded. Note that
fixing the bound N is required for well foundedness; defining L over ω as we did before fails when
considering the dual ordering.

Theorem 2.2 (Uniform construction for boundedness games)

The graph L is uniformly BoundedN -universal.

Note that therefore, boundedness games with fixedN belong to the class mentioned above. This
however fails if for instance N is quantified existentially.

Proof. We first show that L satisfies BoundedN : let π : ℓ0
f0
ÝÑ ℓ1

f1
ÝÑ . . . be an infinite path in L.

By definition it holds for all i that fi(ℓi) ď ℓi+1 which implies by monotonicity that for all n,

fn(fn´1(. . . (f0(0)) . . .)) ď ℓn+1 ď N,

86 Manipulating well-monotonic graphs

the wanted result.
We define a valuation²

val : Cω Ñ [0, N]Y tKu
f0f1 . . . ÞÑ maxti P [0, N] | @n, fn(fn´1(. . . (f0(i)) . . .)) ď Nu.

The (complete) linear order over [0, N] Y tKu is again the reverse order, in particular K should
be thought of as “after zero”. For clarity, we still use ě, min and max for the usual ordering over
integers ; it is understood above that max∅ = K.

Consider aC-graphG over V which satisfies BoundedN , we prove that valG : V Ñ [0, N] = L

which assigns minv w
ù

val(w) to v P V defines a morphism. Let e0 = v0
f0
ÝÑ v1 in G and let π1 =

v1
f1
ÝÑ v2

f2
ÝÑ . . . be an infinite path from v1 inGwith minimal valuation i1 = val(π1) = valG(v1).

Then π0 = e0π1 is a path from v0 in G thus valG(v) ď val(π0) which we denote by i0. Note
that both i0 and i1 are ě 0 since G satisfies BoundedN . We have by definition

i0 = maxti P [0, N] | @n, fn(fn´1(. . . (f0(i)) . . .)) ď Nu,

hence for all n it holds that fn(fn´1(. . . (f0(i0)) . . .)) ď N . Since

i1 = maxti P [0, N] | @n, fn(fn´1(. . . (f1(i)) . . .)) ď Nu,

we have in particular that f0(i0) ď i1 = valG(v1). By monotonicity of f0, this implies f0(valG(v0)) ď
valG(v1), thus

valG(v0)
f0
ÝÑ valG(v1)

belongs to L, which concludes the proof.

4 Lexicographical products

4.1 Definitions

Product of objectives. We assume given two prefix-independent objectivesW1 Ď Cω
1 andW2 Ď

Cω
2 , where C1 and C2 are disjoint. We let C = C1 \ C2 and for w P Cω we let w1 P C

ďω
1 and

w2 P C
ďω
2 be the finite or infinite words obtained by restricting w to colours of in C1 and C2. Note

that if w2 is finite then w1 is infinite.
We define the lexicographical product of W1 and W2 by

W = W1 bW2 =

"

w P Cω

ˇ

ˇ

ˇ

ˇ

w2 is infinite and w2 P W2 or
w2 is finite and w1 P W1

*

.

We stress the fact that this operation is not commutative; intuitively, more importance is given
here toW2. The lexicographical product is however associative, and given three prefix-independent
objectives W1,W2 and W3 over disjoint sets of colours we have

(W1 bW2)bW3 = W1 b (W2 bW3).

²It is straightforward to see that LJ is in fact universal with respect to this valuation, which is a bit more precise
than the statement of the theorem.

4. Lexicographical products 87

More generally, given a finite sequence of prefix-independent objectives W1, . . . ,Wd respectively
over disjointC1, . . . , Ch we letC =

Ůh
p=1Cp and define the lexicographical product ofW1, . . . ,Wh

by
h
â

p=1

Wp =
␣

w P Cω | wp0 P Wp0 where p0 = maxtp | wp is infiniteu
(

.

Given c P C we say that p P t1, . . . , hu is its priority if c P Cp, and we let P = t1, . . . , hu denote
the set of priorities. In aC-graph, we also say for convenience that an edge has priority p if its colour
has priority p. Note that given w P Cω, c P C and p P P it holds that wp is infinite if and only if
(cw)p is, and therefore W is prefix-independent.

Since we will later manipulate lexicographical products of more than two objectives we give all
definitions and proofs in this context.

Product of monotonic graphs. We now assume given a monotonic graph Lp over Lp for each
p P P and we let

L = ΠpPPLp,

be their cartesian product. The order ě over L is defined by lexicographically extending the orders
over the Lp’s, formally for all ℓ ‰ ℓ1,

ℓ ą ℓ1 ðñ ℓp0 ą ℓ1
p0

where p0 = maxtp P P | ℓp ‰ ℓ1
pu.

It is well-known that if the orders over the Lp’s are well-orders then so is ě.
Given p0 P P we also let Lěp0 denote the cartesian product of the Lp’s for p ě p0. Just like L,

all Lěp0 ’s ordered lexicographically. Now given ℓ P L, we let ℓěp P Lěp be obtained via the natural
projection. This allows us to define a sequence of preorders ěp for p P P over L given by

ℓ ěp ℓ
1 ðñ ℓěp ě ℓ1

ěp.

Intuitively, this corresponds to first restricting to the first few most important coordinates, and then
comparing lexicographically. These preorders have often been considered in the literature for parity
games and were first introduced in this setting by Emerson and Jutla [EJ91] (similar notions were
also considered for Rabin games by Klarlund [Kla91; Kla92] and Dexter and Klarlund [KK91]).

Note thatě1 coincides withě and if p1 ď p then ℓ ěp1 ℓ1 ùñ ℓ ěp ℓ
1: the smaller the index,

the finer the preorder. We let ąp and =p respectively denote the associated strict preorders (which
correspond to ęp) and equivalence classes; note that ℓ =p ℓ

1 if and only if ℓěp = ℓ1
ěp.

We now define L to be the graph over L given by

@cp P Cp, ℓ, ℓ
1 P L, ℓ

cp
ÝÑ ℓ1 in L ðñ ℓ ąp+1 ℓ

1 or (ℓ =p+1 ℓ
1 and ℓp

cp
ÝÑ ℓ1

p in Lp).

See Figure 2.7 for an example.
Note that if ℓ cp

ÝÑ ℓ1 then ℓ ěp+1 ℓ
1 holds in general.

Lemma 2.16

The graph L is a monotonic.

Proof. Let us verify left composition in L. Let ℓ, ℓ1, ℓ2 P L and let cp P Cp be such that

ℓ ě ℓ1 cp
ÝÑ ℓ2 in L.

There are two cases.

88 Manipulating well-monotonic graphs

Figure 2.7: A lexicographical product of two monotonic graphs. An edge B c
ÝÑ B1 between two boxes

B,B1 Ď V depicts the presence of all edges from B to B1 (this notational convention is used throughout
the thesis).

• If ℓ ąp+1 ℓ
2 then by definition ℓ cp

ÝÑ ℓ2 in L.

• Otherwise we have
ℓ2 ěp+1 ℓ ěp+1 ℓ

1 cp
ÝÑ ℓ2,

thus it cannot be that ℓ1 ąp+1 ℓ
2, and therefore we have ℓ1 =p+1 ℓ

2, therefore the inequalities
above are equivalences, and ℓ1

p

cp
ÝÑ ℓ2

p P Lp. Since moreover ℓp ě ℓ1
p, the wanted result

follows by left composition in Lp.

The proof of right composition follows exactly the same lines and we omit it.

We say that L is the lexicographical product of L1, . . . ,Lh and denote it by

L =
h
â

p=1

Lp.

Again this operation is associative but not commutative. If L1, . . . ,Lp are well-monotonic, then so
is L.

4.2 Statement of the result and examples

We may now state our main theorem in this section. We recall that prefix-independence of the
Wp’s is assumed when considering their lexicographical product. We use the notations introduced
above.

Theorem 2.3 (Universality of lexicographical product)

Let κ be a cardinal number, and assume that for each p P P , Lp is well-monotonic and Wp-
universal for the class of all Cp-graphs of cardinality ď κ. Then L is W -universal for the class of all
C-graphs of cardinality ď κ.

Before going on to the proof, we give a few motivational examples.

Adding a neutral letter. Consider the trivial objective W1 = t0ωu over C = t0u: Eve always
wins. It is prefix-independent, and we letW2 be another prefix-independent objective. ThenW1b

W2 is the objective obtained by adding 0 as a strongly neutral letter (this terminology is introduced
in the next chapter).

4. Lexicographical products 89

The graph with a single 0-loop is a well-monotonic graph which is W1-universal for the class
of all graphs and therefore if L2 is a well-monotonic graph which is W2-universal for C-graphs of
cardinalityď κ, then so isL1bL2 forW1bW2 and (C\t0u)-graphs. The lexicographical product
L1 b L2 is simply obtained by appending 0-edges to L2 such that 0

ÝÑ coincides with ě.

Parity games. Let P = t1, . . . , hu and for each p P P we let Wp be the (prefix-independent)
co-Büchi objective over Cp = t2p, 2p+ 1u given by

Wp = tw P C
ω
p | |w|2p+1 ă 8u.

Their lexicographical product W =
Âh

p=1Wp is given by

W =
␣

w P [1, 2h]ω | |w|2p0+1 ă 8 where p0 = maxtp P P | wp is infiniteu
(

,

which coincides with the parity objective over C = [1, 2h]. We fix an ordinal α with |α| ą κ, and
for each p P P we let Lα,p denote the well-monotonic graph over Lα,p = α introduced in the first
section for co-Büchi objectives translated to Cp, formally

λp
c
ÝÑ λ1

p P Lα,p ðñ
c = 2p+ 1 and λp ą λ1

p or
c = 2p and λp ě λ1

p.

Then the lexicographical product Lα of the Lα,p’s is the graph over Lα = αh given by

λ
2p
ÝÑ λ1 in Lα ðñ λ ěp λ

1 and
λ

2p+1
ÝÝÝÑ λ1 in Lα ðñ λ ąp λ

1,

which coincides with Walukiewicz’s [Wal96] well-known notion of signatures assignments. Combin-
ing Lemma 2.8 and Theorem 2.3, Lα is Parity[1,2h]-universal for the class of all graphs of cardinality
ă |α|. This proves via Theorem 1.1 that arbitrary parity games are positionally determined, and the
proof essentially coincides with that of [EJ91]. A more direct proof is given in [Kop06], which is
inductive on h as is ours.

An extension of the signature-based proof priorities in ω with the min-parity condition was
presented by Grädel and Walukiewicz [GW06], over countable vertex-coloured arenas. Their paper
focuses on bi-positionality, and the counter-example they provide for edge-coloured arenas applies
only to the player who is declared a winner when no priority is seen infinitely often; it is thus not
ruled out that the opponent has positional strategies. In this vein it would be very interesting to
understand whether Theorem 2.3 can be extended from finite to ordinal lexicographical product,
with an adequate definition, but we leave this to future work. Such an extension is also suggested
by general results of Büchi [Büc83].

Here, the choice of co-Büchi rather than Büchi is completely arbitrary, and the graph obtained
by lexicographical combination of the construction given in Section 1 for Büchi conditions yields a
Parity[0,2h´1]-universal graph which coincides with the one above when the colours are restricted to
[1, 2h´ 1].

This also shows that lexicographical products of montonic graphs which are universal over graphs
of finite or bounded degree do not have this property, otherwise one could obtain a countable graph
which is Co-Büchi-universal for graphs of finite or bounded degree, contradicting Lemma 2.10. In
the proof of Theorem 2.3 below, closing G to obtain G0 may produce a graph of large degree even
if G is not.

Lexicographicalmean-payoff games. We now quickly discuss lexicographical products of thresh-
old mean-payoff games. Fix n andN in ω. For p P P = t1, . . . , huwe letCp be a copy of [´N,N],

90 Manipulating well-monotonic graphs

whose elements we denote by tp for t P [´N,N], and we let C be the disjoint union of the Cp’s.
We letWp denote the (prefix-independent) threshold mean-payoff objective MPď0 over Cp and Lp
be a copy of the finite monotonic graph L[0,(n´1)N] from Corollary 2.3 for each p, whose elements
we denote by ℓp for ℓ P ω,

ℓp
tp
ÝÑ ℓ1

p in Lp ðñ tp ď ℓp ´ ℓ
1
p.

Then the lexicographical product L of the Lp’s is defined over [0, (n´ 1)N]h by

ℓ
tp
ÝÑ ℓ1 in L ðñ ℓ ąp+1 ℓ

1 or (ℓ =p+1 ℓ
1 and tp ď ℓp ´ ℓ

1
p).

The lexicographical product W of the Wp’s is interpreted as

W =
␣

w P Cω | MP(wp) ď 0 where p = maxtp P P | wp is infiniteu
(

.

In words, Eve should ensure that the dimension which corresponds to the largest index p that has
infinitely many occurrences, has non-positive mean-payoff (profiles corresponding to indices with
lower priority are allowed to diverge arbitrarily).

Combined with Corollary 2.3 the theorem yields that the finite well-monotonic graph L isW -
universal for the class of all [´N,N]-graphs of size ď n. This gives a value iteration algorithm (see
Chapter 4) with runtime O(m(nN)h) for lexicographic mean-payoff games. Several different for-
malisms have been considered for lexicographic mean-payoff games [BCH+09; BMR14; CJL+17].
Ours is similar to the one in the third paper (which also mentions an unpublished related work of
Colcombet and Niwiński on lexicographic energy games), and displays the same complexity; we do
not know to what extent the two notions are interreducible.

4.3 Proof of Theorem 2.3

We fix a cardinal κ, and a familly of well-monotonic graphs Lp which are Wp-universal for the
class of all Cp-graphs of cardinalityď κ. Recall that theWp’s are assumed to be prefix-independent,
and so is W . There are two things to show: that L satisfies W and that L embeds all graphs of
cardinality ď κ which satisfy W . We start with the first property.

Lemma 2.17

It holds that L satisfies W .

The fact that the Lp’s are well-ordered is crucial here.

Proof. Consider an infinite path π : ℓ0
c0
ÝÑ ℓ1

c1
ÝÑ in L, let w = c0c1 . . . be its colouration, for all

i let pi P P denote the priority of ci and let p0 denote the maximal priority that appears infinitely
often. We aim to prove that wp0 belongs to Wp0 . We decompose π as

π : ℓ0
w0

ù ℓi0
ci0
ÝÑ ℓi0+1 w1

ù ℓi1
ci1
ÝÑ ℓi1+1 w2

ù . . . ,

for all j which ranges over ω, cij has priority p0 and for all j ě 1, wj has only colours of priority
ă p0.

In particular, for all i ě i0 it holds that ci has priorityď p0, and therefore ℓi ěp0+1 ℓ
i+1. Recall

that ěp0+1 defines a well-order over Lěp0+1 thus ℓiěp0+1 is ultimately constant, and we let j0 be
such that

@i ě ij0 , ℓi =p0+1 ℓ
ij0 .

4. Lexicographical products 91

Now for all j ě j0, and for all i P [ij + 1, ij+1], ci is of priority ă p0 thus ℓi ěp0 ℓi+1, and since
moreover ℓi =p0+1 ℓ

i+1 it holds that ℓip0 ě ℓi+1
p0

. Hence by transitivity, ℓij+1
p0 ě ℓ

ij+1
p0 .

Moreover, again for j ě j0 and since cij has priority p0 and ℓij =p0+1 ℓ
ij+1 , we have ℓijp0

cij
ÝÑ

ℓ
ij+1
p0 in Lp0 . Therefore

ℓ
ij0
p0

c
ij0
ÝÝÑ ℓ

ij0+1
p0 ě ℓ

ij0+1
p0

c
ij0+1

ÝÝÝÑ ℓ
ij0+1+1
p0 ě ℓ

ij0+2
p0

c
ij0+2

ÝÝÝÑ . . .

holds in Lp0 , and thus by monotonicity of Lp0 ,

ℓ
ij0
p0

c
ij0
ÝÝÑ ℓ

ij0+1
p0

c
ij0+1

ÝÝÝÑ ℓ
ij0+2
p0

c
ij0+2

ÝÝÝÑ . . .

defines a path in Lp0 . Hence (wp0)ěij0
= cij0cij0+1 ¨ ¨ ¨ P Wp0 since Lp0 satisfiesWp0 and therefore

wp0 P Wp0 since it is prefix-decreasing, and we conclude that w P W .

We now show the second property, namely that under the assumption of the theorem,L embeds
all graphs of cardinality ď κ which satisfy W . For clarity, we break the proof into a few steps.

Given p0 P P we let Cďp0 = Yp0p=1Cp, Lďp0 = bp0p=1Lp and Wďp0 = bp0p=1Wp. Note that for
p0 ě 2 we have Lďp0 = Lďp0´1 b Lp0 and likewise for Wďp0 .

We prove by induction on p0 P P that Lďp0 embeds all Cďp0-graphs of cardinality ď κ which
satisfy W . This is clear for p0 = 1 since we have Lďp0 = L1 which is Wď1 = W1-universal for the
class of graphs of cardinality ď κ. We now let p0 ě 2, assume the result known for p0 ´ 1 and let
G denote a Cďp0-graph over V of cardinality ď κ which satisfies Wďp0 . The proof is illustrated in
Figure 2.9.

We let G0 denote the Cp0-pregraph over V given by for all v, v1 P V and c0 P Cp0 ,

v
c0
ÝÑ v1 in G0 ðñ Dv1, v2 P V,w1, w2 P C

˚
ďp0´1, v

w1
ù v1

c0
ÝÑ v2

w2
ù v1 in G.

Intuitively, we have closed inG important edges (those of maximal priority p0) on both sides under
paths comprised of less important edges, and then restricted to important edges.

Figure 2.8: Illustrating the definition of G0: a c0-edge connects v to v1 in G0 if and only if there is a path in
G from v to v1 containing a c0-edge.

Note that G0 is not a graph in general: vertices which do not have a path visiting an edge of
priority p0 in G are sinks in G0. This is not an issue thanks to prefix-decreasingness of Wp0 (see
Chapter 1).

Lemma 2.18

The pregraph G0 satisfies Wp0 .

92 Manipulating well-monotonic graphs

Proof. Consider an infinite path in G0. It is of the form

π0 : v0
c1
ÝÑ v3

c4
ÝÑ v6

c7
ÝÑ . . .

where c1, c4, c7, ¨ ¨ ¨ P Cp0 , and there exist v1, v2, v4, v5, v7, v8, ¨ ¨ ¨ P V andw0, w2, w3, w5, w6, w8, ¨ ¨ ¨ P
C˚

ďp0´1 such that

π : v0
w0

ù v1
c1
ÝÑ v2

w2
ù v3

w3
ÝÑ v4

c4
ÝÑ v5

w5
ù v6

w6
ù v7

c7
ÝÑ v8

w8
ù . . .

defines a path inG. Therefore π satisfiesW , and since p0 is the maximal priority appearing infinitely
often on π, this means that wp0 P Wp0 , where w = w0w1 . . . is the colouration of π. This yields
the wanted result since wp0 is the colouration of π0.

We let ψ0 : G0 Ñ Lp0 denote the evaluation of G0 which is well defined thanks to the lemma.
Now comes the crucial claim.

Lemma 2.19 (No small edge goes up in ψ0)

If v, v1 P V are such that ψ0(v) ă ψ0(v
1) then there is no edge v c

ÝÑ v1 inG with priorityă p0.

Proof. Assume for contradiction that there is such an edge. Then in G0 for all c0 P Cp0 , any c0-
successor of v1 is also a c0-successor of v. Therefore,

ψ0(v) = UpdLp0
G0

(ψ0)(v) = sup
v

c0ÝÑu1 in G0

ρ(ψ0(u
1), c0) ě sup

v1
c0ÝÑu1 in G0

ρ(ψ0(u
1), c0) = ψ0(v

1),

a contradiction.

Now for each ℓp0 P Lp0 , we let Gℓp0 denote the restriction of G to V ℓp0 = ψ´1(ℓp0) and to
edges of priorityă p0. Again,Gℓp0 is only a pregraph in general, which is not an issue sinceWďp0´1

is prefix-decreasing. Also it may be empty for some ℓp0 ’s which is not an issue either.
For each ℓp0 P Lp0 , the graph Gℓp0 satisfies Wďp0 since G does, and it even satisfies Wďp0´1

since it has only edges of priorityă p0 andWďp0XCďp0´1 = Wďp0´1. Therefore, by our induction
hypothesis, there exists for each ℓp0 P Lp0 a morphism ϕℓp0 from Gℓp0 to Lďp0´1.

We now define a map ϕ : V Ñ Lďp0 by

ϕ(v)ďp0´1 = ϕψ0(v)(v) and ϕ(v)p0 = ψ0(v).

The following result concludes the proof of Theorem 2.3.

Lemma 2.20

The map ϕ defines a morphism of G in Lďp0 .

Proof. We first recall that by definition of Lďp0 = Lďp0´1 b Lp0 , we have for c0 P Cp0 ,

ℓ
c0
ÝÑ ℓ1 in Lďp0 ðñ ℓp0

c0
ÝÑ ℓ1

p0
in Lp0 ,

and for c P Cďp0´1,

ℓ
c
ÝÑ ℓ1 in Lďp0 ðñ ℓp0 ą ℓ1

p0
or (ℓp0 = ℓ1

p0
and ℓďp0´1

c
ÝÑ ℓ1

ďp0´1 in Lďp0´1).

We have to verify that

v
c
ÝÑ v1 in G ùñ ϕ(v)

c
ÝÑ ϕ(v1) in L,

and we separate two cases.

4. Lexicographical products 93

Figure 2.9: An illustration for the proof. The graph G is first turned into a Cp0-graph G0 by closing by
transitivity with other edges. Then Gp0 is mapped into Lp0 by universality. This defines components in G,
which are treated separately by induction.

• If c has priority p0 then v c
ÝÑ v1 in G0 thus ψ0(v)

c
ÝÑ ψ0(v

1) in Lp0 which yields the result.

• Otherwise we know by Lemma 2.19 that ψ0(v) ě ψ0(v
1). If this inequality is strict then

the definition of Lďp0 (recalled above) gives the result. Otherwise the fact that ϕψ0(v) is a
morphism from Gψ0(v) to Lďp0´1 concludes.

3Structuration results

We have seen in Chapter 1 that if a valuation admits well-monotonic universal graphs, then it is
positional. We now study converse statements: can we guarantee that a given positional valuation
admits well-monotonic universal graphs?

Existence of arbitrary universal graphs (even colouration-universal) for a given class of graphs
(of bounded cardinality) is straightforward: it suffices to consider a disjoint union of all graphs
from the class, up to isomorphism. Our main results in this chapter state that if val is positionally
determined over large enough arenas, then one can turn any graph into a well-monotonic one by
adding sufficiently many edges and quotienting, while preserving val. This establishes the wanted
converse.

Section 1 introduces colour neutrality, states our two structuration results, discusses their con-
sequences and gives an overview of the proofs, which are broken in two steps. Section 2 deals with
the second step which is easier and common to both proofs. Finally, Section 3 gives the core of the
proofs, which rely on two different variants of choice arenas, one for each result.

1 Statement of the results and discussion

Before stating our structuration results we need to introduce neutral colours.

Colour neutrality. Given two infinite words w,w1 P Cω, we say that w1 is obtained from w by
adding c’s if there exist a sequence of natural numbers n0, n1 ¨ ¨ ¨ P N such that

w1 = w0c
n0w1c

n1w2c
n2

For example, both 0111010ω and (01)ω are obtained from 0ω by adding 1’s, but 01ω is not. We
say that w1 is obtained from w by weakly adding c’s if the sequence n0n1 . . . is bounded. For
convenience, we also say in this case that w is (weakly) obtained from w1 by removing c’s.

Fix aC-valuation val and let c P C. We say that c is good for Eve (with respect to val) if whenever
w1 is obtained from w by adding c’s, it holds that val(w1) ď val(w). In words, adding occurrences
of c’s does not increase the valuation. We define being good for Adam symmetrically. We say that c is
neutral if it is good for both players: if w1 is obtained from w by adding c’s then val(w1) = val(w).
These notions have weak counterparts, for instance c is weakly good for Adam if weakly adding c’s
does not decrease the valuation. Note that being neutral says nothing about the value of words of
the form ucω.

We say that a colour c is ultimately good for Eve (with respect to val) if for all finite words u P C˚

it holds that
val(ucω) = inf

vPCω
val(uv),

95

96 Structuration results

and that it is strongly neutral if it is neutral and ultimately good for Eve. Note that weakly neutral,
neutral, and strongly neutral, are three different stronger and stronger notions.

We discuss a few examples.

• For a parity condition, even priorities are good for Eve and odd priorities are good for Adam.
The smallest priority is neutral, and it is ultimately good for Eve (and therefore strongly neu-
tral) if and only if it is even.

• For the energy valuation, non-positive weights are good for Eve and non-negative weights
are good for Adam. Therefore 0 is the only neutral colour, and 0 is ultimately good for Eve,
hence strongly neutral.

• For the threshold mean-payoff objective MPď0, non-positive weights are good for Eve and
positive weights are good for Adam. But 0 is not neutral since 101001000 ¨ ¨ ¨ P MPď0 is
obtained from 111 ¨ ¨ ¨ R MPď0 by adding 0’s therefore 0 is not good for Adam. However it
is weakly good for Adam and thus weakly neutral (it is also ultimately good for Eve but this
has no importance in this case).

• For an arbitrary lexicographical product W of W1 Ď C1 and W2 Ď C2, all properties are
preserved from W1 to W for colours in C1. This is not always the case for colours in C2,
however it does hold that if c2 P C2 is (weakly) good for Eve and ultimately good for Eve for
W2 then the same holds with respect to W .

Given a valuation val over C and a fresh letter 0 R C, there is a unique extension val1 of val over
C 1 = CYt0u for which 0 is strongly neutral, defined in the obvious way. It is not known in general
whether val1 is positionally determined for Eve when val is, even for prefix-independent objectives
W (see [Kop06] and also [Cas21] for further discussion).

Stated differently, we do not know whether the existence of a (weakly) neutral letter imposes a
meaningful restriction on the class of objectives which are positionally determined or not. We know
however by the previous chapter that if W is prefix-independent and has well-monotonic universal
graphs over given classes of graphs, then so does W 1, by lexicographical product with the trivial
objective. Our results motivate further investigation for this question.

Structuration results and consequences. Given a graph G over V and a valuation val, a val-
structuration of G is a well-monotonic graph G1 over V 1 such that |V 1| ď |V | and G has a val-
preserving morphism into G1.

Our first structuration result is easier to prove but fails for infinite graphs.

Theorem 3.1 (Finite structuration via saturation)

If val has a weakly neutral colour and is uniformly positionally determined over finite arenas
then any finite graphs admits a val-structuration.

The second result drops the finiteness hypothesis, at the price of strengthening the hypotheses
on the neutral colour and the positionality requirement.

1. Statement of the results and discussion 97

Theorem 3.2 (Strong structuration via multiple choice arenas)

Fix a (possibly infinite) graph G and assume that val has a strongly neutral colour and
that it is uniformly positionally determined over arenas of cardinality |V | + 2|V | and degree
max(|V |, deg(G)). Then G has a val-structuration.

We now give two (structural) corollaries of Theorem 3.2, (algorithmic) consequences of Theo-
rem 3.1 will appear in the next chapter. We first state our main contribution.

Corollary 3.1 (Existence of universal well-monotonic graphs characterise positionality)

Let val be a valuation with a strongly neutral colour. Then val is uniformly positionally deter-
mined over all arenas if and only if for any cardinal κ there exists a well-monotonic graph which is
val-universal for all graphs of cardinality ď κ.

Proof. The converse implication follows from Theorem 1.1. Let κ be a cardinal and let G be the
disjoint union of all C-graphs of cardinal κ up to isomorphism. By Theorem 3.2 G has a val-
preserving morphism into a well-monotonic graph L. Now L is val-universal for all graphs of
cardinal κ since G is, by composition of val-preserving morphisms.

Our second corollary provides a nice closure property, which we like to see as a proof of concept
for our approach.

Corollary 3.2 (Closure under lexicographical product)

The class of objectives which are positionally determined over all arenas, prefix-independent,
and have a strongly neutral colour is closed under lexicographical product.

As far as we know this result is novel, and we do not know if it admits a more direct proof.

Proof. Let W1 and W2 be such objectives. By Corollary 3.1 they admit well-monotonic graphs Lκ1
and Lκ2 which are universal with respect to their respective objectives for graphs of cardinality ď κ.
By Theorem 2.3 L1 b L2 is W1 bW2-universal for graphs of cardinality ď κ, and therefore W
is positionally determined. It is easy to see that the strongly neutral colour 01 P C1 for W1 is also
strongly neutral for W .

Overview of the proofs. Both constructions we propose are done in two steps. We fix a colour
c (which will be chosen to be neutral) and

(i) add many c-edges to G while preserving val; then

(ii) add even more edges by closing around c-edges (this will be made precise below), and quotient
by c
ÝÑ-equivalence.

The second step is generic: such a closure does not increase val as long as c is good for Adam. For it
to produce a well-structured graph however, we need to guarantee that there are already sufficiently
many c-edges, which were added in the first step (see Lemma 3.2 for formal statement).

The first step is harder and differs for both constructions; we need ways of introducing many c-
edges. In the case whereG is finite, one may simply add c-edges arbitrarily as long as val is preserved.
This process terminates and produces a c-saturationG1 ofG, which one can show has good properties

98 Structuration results

(many c-edges) when val is positional over finite arenas. The crucial fact that c-saturated graphs have
many c-edges, which relies on the fact that c is (weakly) good for Eve, is shown using single choice
arenas, and it can be generalised to infinite graphs (see Theorem 3.3 for details).

However, existence of a c-saturation ofG is no longer guaranteed ifG is infinite which is why we
need another means of introducing many c-edges to obtain Theorem 3.2. For this we use multiple
choice arenas, which generalise single choice arenas but require a strongly neutral colour. Multiple
choice arenas appear to be a robust tool to exploit positionality for Eve, and we believe that they
may be of independent interest besides the proof of Theorem 3.2.

Section 2 discusses the second step and introduces saturation. In Section 3 we present single
and multiple choice arenas, and exploit them to prove the two theorems. From now on, we fix a
valuation val : Cω Ñ X .

2 Closure and saturation

We start by giving details for the second step which is common to both proofs.

c-closures. Given a C-graph G and a colour c P C we define the c-closure G1 of G to be the
C-graph over V given by

v
c1

ÝÑ v1 in G1 ðñ Dn1, n2, P N, Dv1, v2 P V, v
cn1

ù v1
c1

ÝÑ v2
cn2

ù v1.

In words, G1 is obtained from G by closing c
ÝÑ by transitivity and with other edges on both sides.

Note that if G has finite size n then n1 and n2 can equivalently be chosen bounded by n.

Figure 3.1: An illustration of the c-closure G1 of G. Note that the situation is similar, but different, from
that of Figure 2.8: here,G1 is a C-graph (in particular, no edge is removed), and moreover the closure is done
with respect to only one colour, namely c.

Lemma 3.1 (Preservation of val)

If c is good for Adam then the identity morphism from G to its c-closure G1 is val-preserving.
The same result holds for finite G if c is only weakly good for Adam.

Proof. It is clear that the identity is a morphism since G1 is obtained from G by adding edges.
Consider a path

π1 : v0
c1
1
ÝÑ v3

c1
4
ÝÑ v6

c1
7
ÝÑ . . .

in G1. By definition there exist v1, v2, v4, v5, v7, v8, . . . in V and n0, n2, n3, n5, n6, n8, ¨ ¨ ¨ P N
such that

π : v0
cn0

ù v1
c1
1
ÝÑ v2

cn2

ù v3
cn3

ù v4
c1
4
ÝÑ v5

cn5

ù v6
cn6

ù v7
c1
7
ÝÑ v8

c
1n8

ù . . .

2. Closure and saturation 99

is a path inG. Now observe that col(π1) is obtained from col(π) by removing c’s, and thus val(π1) ď
val(π). For the second statement, it suffices to choose the ni’s smaller than the size of G.

Sufficiently many edges. We say that G has sufficiently many c-edges if it holds that

@S Ď V,
[
S ‰ ∅ ùñ Ds P S, @s1 P Sztsu, s1 c

ÝÑ s in G
]
.

Stated differently the relation “having a c-edge” over V is well-founded.

Lemma 3.2 (Sufficiently many edges implies structuration)

If G has sufficiently many c-edges then its c-closure G1 has a structuration.

Proof. We study the relation ě induced over V by the reflexive closure of c
ÝÑ in G1, formally

v ě v1 ðñ
[
v = v1 or v c

ÝÑ v1 in G1].

Let v, v1, v2 P V and c1 P C be such that v ě v1 c1

ÝÑ v2 in G1. If v = v1 then v c1

ÝÑ v2 in G1.
Otherwise there exist v1, v2, v3, v4 P V and n1, n2, n3, n4 P N such that

v
cn1

ù v1
c
ÝÑ v2

cn2

ù v1 cn3

ù v3
c1

ÝÑ v4
cn4

ù v2 in G,

thus
v
cn1+1+n2+n3

ù v3
c1

ÝÑ v4
cn4

ù v2 in G

and therefore v c1

ÝÑ v2 inG1. This proves left composition inG1, and the proof of right composition
is omitted since it follows exactly the same lines. As the particular case where c = c1 this also
shows transitivity of ě, which makes it a preorder. It is even total since G (and therefore G1) has
sufficiently-many c-edges: pairs have a minimal element.

We let „ denote the associated equivalence relation over V , which is given by v „ v1 if and
only if v = v1 or v c

ÝÑ v1 c
ÝÑ v in G1. Observe that by left composition in G1 equivalent vertices

have the same successors, and by right composition they have the same predecessors. Therefore the
graph G2 over V / „ given by

[v]„
c1

ÝÑ [v1]„ in G2 ðñ v
c1

ÝÑ v1 in G

is well defined, and it is monotonic with respect to ě. Well-orderedness of ě over V / „ holds
by definition since G (and thus G1) has sufficiently many c-edges. The map v ÞÑ [v1]„ defines a
morphism from G1 to G2 which is colouration-preserving by definition.

Combining the two previous lemmas gives the following result.

Corollary 3.3 (Second step)

If c is good for Adam and G has sufficiently many c-edges then it has a structuration. This is
also true if G is finite and c is only weakly good for Adam.

100 Structuration results

Saturation. Given a graph G over V and an edge e P V ˆ C ˆ V we let Ge denote the game
obtained by adding e to G (if e belongs to G then Ge = G). We say that a graph G is c-saturated
with respect to val if it holds that for all c-edges which do not belong to G there exists a vertex v
such that

valGe(v) ą valG(v).

In words, the addition of any new c-edge to G entails an increase in val.

Lemma 3.3 (c-saturation of a finite graphs)

For all finite graphs G over V , there exists a c-saturated graph G1 over V such that G has a
val-preserving morphism into G1.

Informally, we simply add arbitrary c-edges to G until it becomes saturated.

Proof. Let E Ď V ˆ C ˆ V denote the set of edges of G. The set of all graphs obtained by adding
c-edges to G and which have the same val-values as G is finite since V is. Note that for all e R E
and for all v P V it holds that valGe(v) ě valG(v), or stated differently val is monotonous with
respect to the operation of adding edges. Therefore a maximal element G1 of the above set exists by
finiteness and is c-saturated by definition.

Note that this proof fails for infinite graphs; we do not know if they admit saturations in general,
even with further assumption on val (see Figure 3.2).

Figure 3.2: Illustrating the limits of saturation with the Co-Büchi condition over safe (blue) and bad (red).
We start with an infinite graph G satisfying Co-Büchi, and iteratively add bad-edges leading to an increasing
chainG0, G1, G2 . . . of graphs satisfying Co-Büchi. Any upper bound to this chain contains an infinite bad
path, and therefore does not satisfy Co-Büchi. Stated differently, it is not clear how to saturate infinite graphs
in a val-preserving way in general.

We may now state our main result about saturation.

Theorem 3.3 (Saturating adds sufficiently many edges)

Let c P C be weakly good for Eve (with respect to val) and consider a graph G over V which is
c-saturated (with respect to val). If val is positionally determined for Eve over arenas of size |V |+1
and degree max(|V |, deg(G)) then G has sufficiently-many c-edges.

3. Choice arenas 101

Together with Lemma 3.3 and Corollary 3.3 this implies the finite structuration result in The-
orem 3.1.

Another way to interpret the theorem is that in general, given a colour cwhich is weakly good for
Eve (and under the right positionality assumption), and given two vertices v, v1 in a graph, one can
always add a c-edge either from v to v1 or the other way, while preserving val. This even generalises
to (potentially infinite) subsets S in infinite graphs: they all have an element towards which c-edges
can be added from all s P S (except the chosen element, unless c is also ultimately good for Eve in
which case c-loops can safely be added).

We now introduce choice arenas for proving Theorems 3.3 and 3.2.

3 Choice arenas

Fix aC-graphG over V which we see as a val-game fully controlled by Adam. We will construct
a game which is not harder for Eve with respect to val, but where the natural strategy guaranteeing
this fact requires memory. This will allow to use uniform positional determinacy of val as a lever:
an optimal positional strategy yields a set of edges which can be added to G without increasing val.

We introduce two similar yet incomparable variants.

• Single choice arenas require a colour which is weakly good for Eve, they have cardinality |V |+1
and a single Eve vertex. They are used to prove Theorem 3.3.

• Multiple choice arenas require a colour which is good for Eve and ultimately good for Eve,
and they have cardinality |V | + 2|V | among which 2|V | Eve vertices. They are used to prove
Theorem 3.2.

3.1 Single choice arenas

Fix a non-empty subset S of vertices of G, and a colour c P C which is weakly good for Eve
with respect to val. The single choice arena given by G,S and c is the arena Gsch(S) over V Y tSu
with VAdam = V and VEve = tSu given by

v
c1

ÝÑ v1 in Gsch(S) ðñ v
c1

ÝÑ v1 in G
v

c1

ÝÑ S in Gsch(S) ðñ Ds P S, v
c1

ÝÑ s in G
S

c1

ÝÑ v in Gsch(S) ðñ c1 = c and v P S.

It is illustrated in Figure 3.3.
Intuitively Adam follows a path inG with the additional possibility from any c1-predecessor v of

a vertex v1 of S to instead go to S, seeing colour c1. It is then left to Eve to choose a successor from
S, seeing colour c. A natural choice is v1 which guarantees a smaller val-value by our assumption
on c.

Lemma 3.4 (Single choice arenas are easy)

For all v P V , it holds that valGsch(S)
(v) ď valG(v).

The converse inequality is (not important and) obvious : any path inG1 can be realised by Adam
in Gsch(S), simply by never visiting VEve = tSu.

102 Structuration results

Figure 3.3: On the left, a tblue, red, grayu-arena G. On the right, the single choice arena given by c = gray
and S = tv, v1u.

Proof. Let v0 P V . Consider an arbitrary Eve-strategy σ from v0 satisfying

σ(π (v, c1, S)) = (S, c, v1),

where v c1

ÝÑ v1 in G, for all finite paths π. In words, when arriving in S from v with colour c1, Eve
picks a c1-successor v1 of v in G.

Let π1 be a path in Gsch(S) consistent with σ. It is of the form

π1 : v0
w0

ù v1
c1
1
ÝÑ S

c
ÝÑ v2

w2
ù v3

c1
3
ÝÑ S

c
ÝÑ v4

w4
ù . . .

for some (possibly empty, finite, or infinite) sequence of vertices v1, v2, v3, v4, . . . satisfying for all
i even

vi
wi

ù vi+1 in G, vi+1

c1
i+1
ÝÝÑ vi+2 in G and vi+2 P S

Moreover if the sequence is finite, its last index ℓ is even and such that vℓ
wℓ

ù in G.
Thus the path obtained by-passing the occurrences of S, formally

π : v0
w0

ù v1
c1
1
ÝÑ v2

w2
ù v3

c1
3
ÝÑ v4

w4
ù . . .

defines an infinite path inGwhich moreover satisfies thatw1 = col(π1) is obtained fromw = col(π)
by weakly adding c’s. Hence we have val(w1) ď val(w) since c is good for Eve and thus

valGsch(S)
(v0) ď valGsch(S)

(σ) = sup
v0

w1
ùσ in Gsch(S)

val(w1) ď sup
v0

w
ù in G

val(w) = valG(v0).

The strategy which is used above to achieve a small value is not positional. However the existence
of a positional strategy, which corresponds to a choice of s P S, is guaranteed by assumption on val.

Lemma 3.5 (Adding edges consistent with a single choice)

Let σ : tSu Ñ E be a uniform positional strategy for Eve in Gsch(S), let σ(S) = (S, c, s), and
letG1 be the graph over V obtained fromG by adding all c-edges from vertices in Sztsu to s. Then
for all vertices v P V it holds that

valG1(v) ď valGsch(S)
(σv).

3. Choice arenas 103

Again, the converse inequality is clear and irrelevant. This will of course be used when σ is
optimal in which case the right-hand side is valGsch(S)

(v) ď valG(v) by Lemma 3.4.

Proof. Let v0 P V and let π1 be a path in G1; it is of the form

π1 : v0
w0

ù v1
1

c
ÝÑ s

w1
ù v1

2
c
ÝÑ s

w2
ù . . .

for some (possibly empty, finite, or infinite) sequence of vertices v1
1, v

1
2, . . . satisfying

v0
w0

ù v1
1 in G and @j ě 1, v1

j P Sztsu and s
wj

ù v1
j+1 in G

and where |wj| ě 1 for j ě 1 since edges from s in G1 belong to G. Again, if there are finitely
many such vertices, it also holds that v1

ℓ

wℓ
ù in G for the last index ℓ (or v0

wℓ
ù if the sequence is

empty).
We let i0 be equal to 1 if |w0| ě 1 and to 2 otherwise. Now for all i ě i0, we let vi be the

predecessor of v1
i in π1, and we have

vi
c1
i
ÝÑ v1

i P S in G thus vi
c1
j
ÝÑ S

c
ÝÑ s in Gsch(S),

and moreover the right-hand side is consistent with σ. Therefore the path

π :

#

v0
w1

0
ù v1

c1
1
ÝÑ S

c
ÝÑ s

w1
1

ù v2
c1
2
ÝÑ S

c
ÝÑ s

w1
2

ù . . . if |w0| ě 1

S
c
ÝÑ s

w1
1

ù v2
c1
2
ÝÑ S

c
ÝÑ s

w1
2

ù . . . if |w0| = 0,

where w1
j is obtained by removing the last letter of wj , is consistent with σ in Gsch(S) and has the

same coloration as π1.

We may now prove Theorem 3.3.

Proof of Theorem 3.3. Let S Ď V and consider the finite single choice arena Gsch(S) given by G, S
and c. Note that it has size |V | + 1 and degree max(|V |, deg(G)) therefore Eve has a uniformly
optimal positional strategy σ, and we let s P S be given by σ(S) = (S, c, s).

It follows from Lemmas 3.4 and 3.5 that the graph G1 obtained from G by adding all c-edges
from Sztsu to s satisfies for all v,

valG1(v) ď valG(v),

and therefore since G is c-saturated it must contain all these edges.

3.2 Multiple choice arenas

As their name suggests, multiple choice arenas extend single choice arenas by forcing Eve to
make many consistent choices simultaneously. The construction is nevertheless very similar, and
Lemmas 3.6 and 3.7 proved below are direct analogues to Lemmas 3.4 and 3.5 from the previous
subsection. Apart from introducing all subsets as Eve-vertices, we need to slightly simplify the main
mechanic (this is required for Lemma 3.7), which now requires a c which is (not only weakly) good
for Eve and ultimately good for Eve.

The multiple choice arena given by G and c is the arena Gmch over V Y P(V) with VAdam = V
and VEve = P(V) given by

v
c1

ÝÑ v1 in Gmch ðñ v
c1

ÝÑ v1 in G
v

c1

ÝÑ S in Gmch ðñ c1 = c and v P S
S

c1

ÝÑ v in Gmch ðñ c1 = c and v P S.

104 Structuration results

Figure 3.4: On the left, a tblue, red, grayu-arena G, and on the right, the multiple choice arena given by
c = gray. For readability, only three of the 26 Eve-vertices are depicted.

An example is depicted in Figure 3.4.
We call vertices S P VEve = P(V) choice vertices. Intuitively, Adam follows a path in G with

the additional possibility at any point from a vertex v P V = VAdam to enter a choice vertex S Q v,
seeing a c. It is then left to Eve to choose a successor from S, seeing another occurrence of c. A
natural choice is to go back to v, which guarantees a small value by our assumption on c.

Since Adam can now ensure to see arbitrarily many consecutive c’s (that we have introduced), or
even infinitely many, we must now assume that the colour c we use is good for Eve and ultimately
good for Eve.

Lemma 3.6 (Multiple choice arenas are easy)

For all v P V it holds that valGmch(v) ď valG(v).

The proof is similar to that of Lemma 3.4.

Proof. Let v0 P V . Consider the (non-positional) Eve-strategy σ from v0 satisfying

σ(π (v, c, S)) = (S, c, v),

for all finite paths π and all choice vertices S Q v. In words, when arriving in S from v (necessarily
with colour c) Eve picks the opposite edge.

Let π1 be a path in Gmch consistent with σ. It is of the form

π1 : v0
w0

ù v1
c
ÝÑ S1

c
ÝÑ v1

w1
ù v2

c
ÝÑ S2

c
ÝÑ v2

w2
ù . . .

for some (possibly empty, finite, or infinite) sequence of vertices and subsets v1, S1, v2, S2 . . . sat-
isfying for all i ě 0 that

vi
wi

ù vi+1 in G and vi+1 P Si+1.

Moreover if the sequence is finite then its last index ℓ is such that vℓ
wℓ

ù in G.

3. Choice arenas 105

If
ř

i |wi| is bounded then col(π1) is of the form ucω for some finite word u, thus val(π1) =
minwPCω(uw) ď valG(v0). Otherwise consider the path obtained by-passing the occurrences of
choice vertices, formally

π : v0
w0

ù v1
w1

ù v2
w2

ù

It defines an infinite path in G which moreover satisfies that w1 = col(π1) which is obtained from
w = col(π) by adding c’s. Hence we have w1 ď w since c is good for Eve and we conclude as
previously that

valGmch(v0) ď valGmch(σ) = sup
v0

w1
ùσ in Gmch

val(w1) ď sup
v0

w
ù in G

val(w) = valG(v0).

Now a uniform positional strategy for Eve in the multiple choice arena Gmch is given by

σ : P(V) Ñ EGmch

S ÞÑ σ(S) = (S, c, s) with s P S,

and for simplicity we abusively write σ(S) = s P S, identifying uniform positional strategies in
Gmch with choice functions P(V)Ñ V . In contrast to the case of single choice arenas we may now
simultaneously add a very large number of edges to G.

Lemma 3.7 (Adding edges consistent with a choice function)

Let σ : P(V)Ñ V be a uniform positional strategy for Eve in Gmch and let G1 be obtained by
adding to G all edges of the form s1 c

ÝÑ σ(S) for s1 P S Ď P(V). Then for all vertices v P V it
holds that

valG1(v) ď valGmch(σv).

It is important for the proof below that the simpler “back-and-forth” mechanic is used. It is not
clear whether the same result can be obtained by combining the mechanic of single choice arenas
(which makes a weaker assumption on c) with multiple choices: the proof of Lemma 3.5 uses the
fact that no edge outgoing from s = σ(S) is added in G1, which fails in the context of multiple
choices.

Proof. Let v0 P V and let π1 be a path in G1. Then

π1 : v0
w0

ù v1
c
ÝÑ σ(S1)

w1
ù v2

c
ÝÑ σ(S2)

w2
ù . . .

for some (possibly empty, finite, or infinite) sequence of vertices and subsets v1, S1, v2, S2 . . . sat-
isfying

v0
w0

ù in G and @i ě 1, vi P Si and σ(Si)
wi

ù vi+1.

Once again, if there are finitely many such vertices, it also holds that σ(Sℓ)
wℓ

ù in G for the last
index ℓ (or v0

w0
ù if the sequence is empty).

Then
π : v0

w0
ù v1

c
ÝÑ S1

c
ÝÑ σ(S1)

w1
ù v2

c
ÝÑ S2

c
ÝÑ σ(S2)

w2
ù . . .

defines a path in Gmch which is consistent with σ, and whose colour is obtained by adding c’s to
col(π). Hence

val(π1) ď val(π) ď valGmch(σv0),

and as usually the result follows by taking a supremum.

106 Structuration results

Lemmas 3.6 and 3.7 together precisely state that one may add sufficiently many c-edges to G
without increasing val, provided there is an optimal Eve strategy over the multiple choice arena,
which corresponds to the cardinality hypotheses in Theorem 3.2. Since moreover the given letter is
assumed to be good for Adam, we conclude with the theorem by applying Corollary 3.3.

Conclusion and perspectives for Part I

We have introduced well-monotonic graphs, and shown that they characterise positionality over
arbitrary arenas, in the presence of a strongly neutral letter. We have also discussed many exam-
ples, illustrating the modularity of our approach. In particular, we could establish a novel closure
property for positional objectives by studying a natural construction over well-monotonic graphs.
Such a proof technique is novel, and we believe that it provides (much needed) handles for attack-
ing Kopczyński’s conjecture (closure under union for prefix-closed positional objectives). We now
(informally) discuss two concrete directions on this front, and also discuss other perspectives.

Extending K-monotonicity. Kopczyński proposed to study monotonic conditions (which we
will call K-monotonic to avoid ambiguity), which he showed to be positionally determined and
closed under unions. We explain how this notion instantiates to our setting.

Given an ordinal α, we let L∅
α denote the unique ∅-graph over α (it has no edge). Then we

claim (without proof) thatK-monotonic conditions can be understood as those which admit (non-
uniform) well-monotonic universal graphs of the formL∅

αbL0, whereL0 is a fixed well-monotonic
graph (see Figure 3.5 for an illustration). An example is the co-Büchi condition: the construction
presented in Chapter 2 is of this form, with L0 is the tsafe, badu-graph comprised of a single vertex
with a safe-loop.

Figure 3.5: An illustration of the monotonic graphs corresponding to K-monotonic conditions and their
interleaving.

Closure under finite unions is then naturally supported, as suggested by Kopczyński’s proof, by
simply interleaving (see Figure 3.5) the building blocks, formally setting L = L∅

α b (L1 ‘ L2)
where ‘ is obvious (a formal definition is also given in Chapter 8). Can we better understand this

107

108 Structuration results

fact? Can we generalise a similar easy construction to larger classes of valuations (which, ideally,
have would have nice characterisations)?

Colour-disjoint unions. Taking a small step back, what we did for lexicographical products can
be seen as

(i) formalising parity games as (colour-disjoint) products of Co-Büchi conditions, and then

(ii) extending Emerson and Jutla’s inductive universality proof [EJ91] from co-Büchi to arbitrary
(prefix-independent) well-monotonic graphs as building blocks.

Now observe that the Rabin condition is precisely a colour-disjoint union of co-Büchi conditions,
when these are defined in general by

h
ğ

p=1

Wp = tw P C
ω | Dp, wp is infinite and wp P Wpu,

where C =
Ůh
p=1Cp. Therefore we have (i). Fortunately, Klarlund and Kozen [KK91] give an

analogous (much more involved) template for Rabin progress measures, providing the needed basis
(and well grounded hope) for (ii). Can we complete the proof of (ii), confirming Kopczyński’s
conjecture?

Positionality over finite arenas. The case of bi-positionality indicates that there are many more
valuations which are positional when restricting to finite arenas. Notorious examples include mean-
payoff and discounted games, whose positionality eludes the well-founded strategy-folding tech-
nique (Theorem 1.1).

Still, universal monotonic graphs are available for threshold mean-payoff games over finite arenas
(Corollary 2.3) via energy games, and likewise for discounted games. Actually, the finite structura-
tion result (Theorem 3.1) gives such a construction whenever there is a weakly neutral colour (which
is the case of threshold mean-payoff, but not (threshold) discounted valuations).

We have shown that well-foundedness in (universal) monotonic graphs is a structural imple-
mentation of the strategy-folding technique, and in some way this technique appears to be complete
for positionality over arbitrary arena, however not adapted to finite arenas. Can we find such a struc-
tural implementation (in monotonic graphs) of techniques which are adapted to finite arenas? In
this hopeful scenario, can we characterise valuations which admit such universal monotonic graphs?

An easy (but not uninteresting) instantiation of this framework is suggested by Shapley’s tech-
nique (based on Banach’s theorem) and the case of discounted games: if fixpoints can be guaranteed
to be unique, then positionality (for both players) follows. Remarkably, Kozachinskiy [Koz21a]
essentially proved that this technique is complete for continuous valuations Aω Ñ R which are
bi-positional over finite arenas.

Another very promising candidate technique is given by Ehrenfeucht and Mycielski’s cyclic
games [EM79]. Aminof and Rubin [AR17] have given sufficient conditions for the technique to
apply to a given objectiveW . Can we find a structural counterpart (over corresponding monotonic
graphs), and apply the proposed framework?

Part II

Finite monotonic graphs and value iterations

109

Introduction

For the remainder of the thesis, the focus is on designing algorithms for solving games by relying
on finite monotonic graphs. The main insight we build on, which is not hard to prove (see The-
orem 4.3), is that when given a (C, val)-universal monotonic L, one may reduce the problem of
solving a val-game over an arena G P Car to the computation of the L-evaluation ψ of G – which
we recall to be defined as a least fixpoint over the space LV of progress measures.

Generally, we will choose the class of graphs C to consist of all graphs of cardinality ď n. For
simplicity, we will say that L is (n, val)-universal, or n-universal when val is clear from context, if
it is val-universal for all graphs of cardinality ď n. We also recall (Lemma 1.8) that in the case
where val corresponds to a prefix-independent objective W , a monotonic graph L is n-universal if
it satisfies W and embeds all graphs of size ď n which satisfy W .

Value iteration algorithms. Assuming operations relative to L (essentially, access to the min-
predecessor table ρ) can be carried out in constant time, Upd(ϕ) can be computed inO(m) from ϕ.
Therefore, ψ can be computed by Kleene iteration with runtimeO(mn|L|) and spaceO(n log |L|).
Using a standard technique inherited from the resolution of safety games, on may reduce the runtime
to O(m|L|) in general.

This simple algorithm belongs to the general paradigm of value iterations. Chatterjee and Hen-
zinger [CH08] presented a survey of value iteration algorithms with a broad (informal) definition,
applying to computations of nested fixpoints and to the more general settings of concurrent and
stochastic games. We prefer to work with the more specific (and formal) definition via finite mono-
tonic graphs, sacrificing over some generality which is not needed for us.

Part II is only concerned with value iteration algorithms. Designing an efficient value iteration
algorithm amounts to exhibiting small universal graphs, and therefore the focus here will be only on
the size ofL. We will always assume that the valuation under study is positional and admits a weakly
neutral letter, and therefore our finite structuration result (Theorem 3.1) implies that monotonicity
is not restrictive: universal graphs of minimal size can be chosen monotonic.

Our work in this second part has a significant bibliographical component; our purpose is often
to give an alternative presentation of recent elements of the literature in the unifying vocabulary of
monotonic graphs. In many important cases, the state-of-the-art runtime bound is given by such an
approach. However, these are not practical: the worst-case upper boundO(mn|L|) is generally met
with simple (size one) examples, and an exponential behaviour over practical (or random) instances
is generally observed.

Organisation of Part II. We start in Chapter 4 by relating our approach with the separating
technique of Bojańczyk and Czerwiński [BC18] by showing that strongly separating automata can
be determinised or turned into universal monotonic graph with no blow-up. This essentially follows
from the finite structuration result (Theorem 3.1) and requires a weakly neutral letter. A similar

111

112 Structuration results

result was established in [CDF+18] in the case of parity games. We also introduce, discuss, and
compare two generic variants of value iteration, concluding that they are essentially equivalent.

Chapter 5 studies the case of parity games. We show that in this case, saturated graphs cor-
respond to ordered trees, and hence universality of such graphs reduces to tree universality. We
present the quasipolynomial construction of Jurdiński and Lazić [JL17], and the (almost) matching
lower bound of Fijalkow [Fij18].

We then study threshold mean-payoff games in 6. As we have seen (Corollary 2.3), the connec-
tion with energy games immediately leads to an n-universal graph of size (n´1)N , and thus a value
iteration algorithm with state-of-the-art quasipolynomial runtime O(mnN). This corresponds ex-
actly to the BCDGR algorithm [BCD+11]. We give a lower bound of O(N1´1/n) on the size of
n-universal graphs and a matching construction, up to a polynomial factor.

From the observation that there are restricted sets of weights (namely,A = t(´n)p | p P [0, d]u,
which corresponds to parity games) for which there are quasipolynomial universal graphs, one could
hope that such a result hold whenever the cardinality k of A is bounded. We show that this is not
the case, by giving a Ω(nk´1) lower bound. Our informal conclusion for this chapter is that value
iteration algorithms cannot significantly improve the state of the art for mean-payoff games.

Chapter 7 is concerned with mean-payoff parity games. We show how the construction of
Daviaud, Jurdziński and Lazić [DJL18] instantiates to the vocabulary of monotonic graphs, and we
reobtain their main result. We believe that the universality proof is of independent interest.

Finally, Chapter 8 studies multi mean-payoff games, in the lim sup semantics for which they
are concave in the sense of Kopczyński. We show that in this case, one may succinctly combine
universal graphs for mean-payoff games. This leads to a value iteration algorithm with runtime
O(mdn log(n)N), saving a factor n/ log(n) from the approach of [VCD+15].

In a brief conclusion we collect a few questions which are left open, and future directions for
value iterations.

All of Part II was derived in collaboration with Nathanaël Fijalkow. The results on value itera-
tion, saturation (including Theorem 3.1 from Part I) and parity games are also joint with Thomas
Colcombet. Results on mean-payoff games and universality (Chapter 6) are also the fruit of discus-
sions with Paweł Gawrychowski, and were published in [FGO20].

Chapters 7 and 8 are (loosely) based on a joint work with Ashwani Anand, Nathanaël Fijalkow,
Aliénor Goubault-Larrecq and Jérôme Leroux [AFGL+21] in which we proved similar results by
using separating automata.

A journal version compiling roughly all results of Part II and co-authored with Thomas Colcom-
bet, Nathanaël Fijalkow and Paweł Gawrychowski is under currently under review, and available
at [CFG+21].

4Separating automata and value
iterations

Our purpose in this chapter is twofold: connecting universal monotonic graphs to Bojańczyk and
Czerwiński’s separating automata [BC18] (which were introduced for parity game but immediately
instantiate to any positional objective), and introducing a generic framework for value iteration
algorithms.

In the first section, we take a small detour and study valuations induced by monotonic graphsL,
establishing that these correspond to evaluations whenever L is finite. This allows us in Section 2 to
show that strongly separating automata can be turned into universal monotonic graphs with no blow
up, and also determinised. Section 3 introduces two different generic variants of value iterations in
monotonic graphs, and compares their runtime.

1 From finite monotonic graphs to valuations

Fix a completely well-monotonic graph L over L. We have seen that monotonic graphs are
colouration-monotonous thanks to left composition: if ℓ ě ℓ1 then ℓ has more colourations than
ℓ1. Moreover, we have seen that the maximal element J P L has all c-loops, and therefore all
colourations. This naturally suggests the definition of a valuation associated to L, given by

valL : Cω Ñ L

w ÞÑ mintℓ P L | ℓ w
ù in Lu.

Note that we have by right composition

valL(w) ď ℓ ðñ @n P ω, ℓ
wďn
ù K,

therefore (valL)ďℓ is a countable intersection of open subsets of Cω hence valL is determined in
general by Martin’s theorem (and it is topologically weaker than for instance the parity objective).

Given a finite arenaG, we have thus defined two different maps from V Ñ L: on one hand the
valL-values over G and on the other the L-evaluation of G. These have different nature, the former
is defined via a game whereas the latter is defined as a fixpoint. In particular, they do not coincide
in general even over finite graphs; two examples are discussed in Figure 4.1.

However these two notions do coincide over all arenas as soon as L is finite.

Valuation versus evaluation. We fix a completely well-monotonic graphL and an arbitrary arena
G. Recall from Chapter 1 that a uniform positional strategy σ can be obtained from the evaluation
ψ of G in L, simply by following from v P VEve an edge v c

ÝÑ v1 which minimises ρ(ψ(v1), c). We

113

114 Separating automata and value iterations

Figure 4.1: An example where valL and ψ do not coincide.

proved in Lemma 1.6 (second ingredient for Theorem 1.1) that finite paths v w
ùσ v

1 in G satisfy
that ψ(v) w

ù ψ(v1) is a path in L and therefore it holds in general that for all v,

valLG(v) ď valLG(σ) ď ψL
G(v).

The converse inequality holds if L is finite.

Theorem 4.1 (Identity over finite L)

If L is finite then valLG and ψL
G coincide. In particular, valL is uniformly positionally determined

over all arenas.

Proof. We will show that valLG is a prefixpoint of UpdG, which concludes by Knaster-Tarski since ψ
is its smallest prefixpoint. Note that since L is finite, any infimum or supremum is met over L.

We first show that for any w1 P Cω and c P C we have

ρ(valL(w1), c) ď valL(cw1).

Indeed, we have

valL(w1) = maxnPN mintℓ P L | ℓ
w1

ďn
ù K in Lu

= mintℓ P L | ℓ
w1

ďn0
ù K in Lu = ℓ1

0,

for some n0 P N and ℓ1
0 P L. Now let ℓ P L be such that ℓ

cw1
ďn0

ù K in L. Then for some ℓ1,

ℓ
c
ÝÑ ℓ1

w1
ďn0

ù K therefore ℓ1 ě ℓ1
0 and thus by monotonicity ℓ ě ρ(ℓ1, c) ě ρ(ℓ1

0, c). Now we have
valL(cw1) ě ℓ ě ℓ0 which concludes with the wanted inequality.

• Let v P VEve, let σ be an optimal Eve strategy from v, let σ(ε) = (v, c, v1) = e and let σ1 be
the prestrategy from v1 given by σ1(π1) = σ(eπ). It is straightforward to check that v w

ùσ

in G if and only if w = cw1 and v1 w1

ùσ1 in G. Therefore σ1 is indeed a strategy and we
obtain

valLG(v) = valL(σ) = max
v

w
ùσ

valL(w) = max
v1 w1

ùσ1

valL(cw1) ě

ě max
v1 w1

ùσ1

ρ(valL(w1), c) = ρ(valL(σ1), c) ě ρ(valL(v1), c) ě Upd(valLG)(v).

2. Determinisation of strongly separating automata 115

• Let v P VAdam, let v c
ÝÑ v1 in G, let τ be an optimal Adam strategy from v1, and let τ be

the prestrategy from v defined by τ(π) = τ((v, c, v1)π1). Again, v w
ùτ in G if and only if

w = cw1 and v1 w1

ùτ 1 and thus τ defines a strategy from v. We now obtain similarly

valLG(v) ě valL(τ) = max
v

w
ùτ

valL(w) = max
v1 w1

ùτ 1

valL(cw1) ě

ě max
v1 w1

ùτ 1

ρ(valL(w1), c) = ρ(valL(τ 1), c) = ρ(valLG(v1), c)

and the result follows by maximizing over outgoing edges v c
ÝÑ v1 in G.

For convenience especially in the context of prefix-independent objectives, we also define valL

when L is not complete by considering the completion LJ of L which is given by

valL(w) = valL
J

(w) =

#

J if there is no w-path in L
mintℓ P L | ℓ w

ù in Lu otherwise.

Since all finite linear orders are well-orders, a finite well-monotonic graph is simply a finite mono-
tonic graph. Theorem 4.1 states that solving the valL-game if L is finite is equivalent to computing
the L-evaluation.

2 Determinisation of strongly separating automata

n-approximations and n-universality. Fix an arbitrary winning condition W Ď Cω. For
n P ω, we define the n-approximationWn Ď Cω ofW to be the set of colourations of infinite paths
from vertices satisfying W in graphs of size ď n.

Lemma 4.1 (Rephrasing n-universality for finite monotonic graphs)

A finite monotonic graph L over L is (n,W)-universal if and only if there is a vertex ℓ0 P L
such that ℓ0 satisfies W and has all colourations from Wn in L.

Proof. Assume L is (n,W)-universal, let ℓ0 be the largest vertex in L which satisfies W and let
w P Wn: there is a graph G over V of size |V | ď n and a vertex v P V satisfying W with a path
v

w
ù. Consider the evaluation ψ of G in L.

Since L is (n,W)-universal ψ isW -preserving, therefore ψ(v) satisfiesW in L thus ψ(v) ď ℓ0.
Now w is a colouration from ψ(v) in L and by colouration-monotonicity, it is also a colouration
from ℓ0.

Conversely, assume that there exists ℓ0 P L which satisfiesW and has all colourations fromWn

in L and let G be a graph of size ď n. Consider the evaluation ψ of G in L, which is a morphism
in general (see Chapter 1); we show that it is W -preserving.

Let v P G and assume that v satisfies W . By Theorem 4.1 ψ(v) coincides with valLG(v) which
rewrites as

ψ(v) = mintℓ P L | v w
ù in G ùñ ℓ

w
ù in Lu.

Since G has size ď n and v satisfies W , all colourations from v in G belong to Wn and therefore
ψ(v) ď ℓ0 by minimality. Hence ψ(v) satisfiesW by colouration-monotonicity in L since ℓ0 does,
which concludes.

116 Separating automata and value iterations

Determinisation of finite monotonic graphs. A graph is deterministic if for every vertex v and
every colour c, v has at most one c-successor. There is a natural way of making a finite monotonic
graphL deterministic without increasing its size: from vertex v with colour c keep only the maximal
successor of v (if there is any). This is not possible in general (see for instance the construction for
Büchi games in Chapter 2) if L is not finite, since maximal successors may not be well defined.

Formally, for a finite monotonic graph L over L, we let det(L) be the graph over L given by

ℓ
c
ÝÑ ℓ1 in det(L) ðñ ℓ1 = max∆(ℓ, c).

Note that ∆(ℓ, c) may be empty, in which case ℓ has no c-successor in det(L) since the maximum
is not defined. It is easy to see that det(L) is indeed a graph: if ℓ were a sink in det(L) then it would
have no c-successor in L for any c and it would therefore be a sink in L which is excluded.

Note that det(L) is a subgraph of L, stated differently the identity defines a graph-morphism
from det(L) to L. The following lemma states that one does not lose any colouration when going
from L to det(L).

Lemma 4.2 (No fewer colours in det(L))

The identity morphism from det(L) to L is colouration-preserving.

Proof. Let π : ℓ0
c0
ÝÑ ℓ1

c1
ÝÑ . . . be an infinite path in L. We construct by induction a path

π1 : ℓ1
0
c0
ÝÑ ℓ1

1
c1
ÝÑ . . . from ℓ1

0 = ℓ0 in det(L) with the same colouration c0c1 . . . and such that for
all i, ℓ1

i ě ℓi. The initialisation is trivial, and assume constructed π1 up to ℓ1
i.

Since ℓ1
i ě ℓi we have by left composition in L that ∆(ℓ1

i, ci) Ě ∆(ℓi, ci). Therefore ∆(ℓ1
i, ci)

is non-empty since ℓi+1 belongs to ∆(ℓi, ci) and ℓ1
i+1 = max∆(ℓ1

i, ci) is larger than ℓi+1 and such
that ℓ1

i
ci
ÝÑ ℓ1

i+1, concluding the induction and the proof.

Separating automata. An (n,W)-separating automaton is a finite graph with a vertex v0 which
has all colourations fromWn and excludes all colourations from (cW)n. Such an automata is strongly
separating if v0 even excludes all colourations from cW , or stated differently v0 satisfies W . This is
illustrated in Figure 4.2.

strong separator separator

Figure 4.2: An illustration of the definition of separators. The universe is the set Cω of infinite words.

Bojańczyk and Czerwiński [BC18] introduced separating automata specifically for parity games,
and showed that a deterministic separating automaton A allows to reduce a gameG to an equivalent
safety game G Ź A of size nGnA and with mGnA edges. Intuitively, G Ź A is played just like G
where additionally, colours are read in A from v0; the bad colour (which corresponds to Eve losing)
is seen when no transition exist in A with the current colour. IfW is positionally determined, then

3. Value iterations 117

G and GŹA are equivalent; we refer to [BC18] (see also [CFG+21]) for formal details which will
be omitted here.

For parity games, it was established in [BC18; CDF+18; Par20] that the four earlier quasipoly-
nomial algorithms from [CJK+17; FJS+17; JL17; Leh18] all correspond to constructions of (non-
deterministic) strongly separating automata. To date, no construction of a (quasipolynomial) non-
deterministic separating automaton which is not strongly separating is known. We note however
that the quasipolynomial lower bound established from universal trees [CDF+18] or equivalently
universal (monotonic) graphs [CF18; CFG+21], applies only to strongly separating automata: there
might exist (weakly) parity-separating automata of polynomial size. Finding such an automaton, if
it is moreover deterministic (or at least, good-for-small-games as in [Par20] or [CFG+21]), would
lead to a polynomial algorithm for parity games. The determinisation result below, as well as the
connection to (inherently asymmetric) monotonic graphs, holds only for strong separators.

Determinisation of strongly separating automata. We actually already have all the tools in
hands to determinise separating automata.

Theorem 4.2 (Determinisation of strongly separating automata)

Assume thatW has a weakly neutral colour and is uniformly positionally determined over finite
arenas, let n P ω and let A be a (n,W)-separating automaton. There exists a finite monotonic
graphL no larger thanAwhich is (n,W)-universal. In particular, det(L) is a deterministic (n,W)-
separating automaton.

Streamlining the application of the finite saturation result (Theorem 3.1), L is obtained from
A by first saturating with respect to the neutral colour, then closing around other edges, and finally
quotienting with respect to 0

ÝÑ.

Proof. We simply let L be a W -structuration of A, obtained via Theorem 3.1. Then v0 P A has all
colourations from Wn in A therefore also in L, and its image in L satisfies W by W -preservation,
so L is (n,W)-separating thanks to Lemma 4.1. The last claim then follows from Lemma 4.2.

Therefore, we will only concentrate on solving games when given a family of n-universal fi-
nite monotonic graphs, which have much more structure than arbitrary deterministic separating
automata. We note however that the complexity of solving the safety game GŹA is O(mGŹA) =
O(mnA), which matches the complexity of the value iteration approach. Actually, it is not hard
to see that the value iteration algorithm is nothing but a symbolic implementation of standard
(Kleene iteration) algorithms for solving the product safety game G Ź L, saving on space com-
plexity by taking advantage of the linear order over L. This was already observed by Bernet, Janin
and Walukiewicz [BJW02] for parity games, and later by Brim, Chaloupka, Doyen, Gentilini and
Raskin for energy games [BCD+11]; full details in our generic setting can be found in [CFG+21],
but we omit them here.

3 Value iterations

We fix a C-valuation val which is assumed to be positionally determined over finite arenas, an
arena G over V of size |V | = n and a finite completely monotonic graph L over L which should
be thought as being (much) larger than n (for instance quasipolynomial or exponential). We let tL

118 Separating automata and value iterations

denote the required runtime for the two elementary operations in L: comparing two vertices, and
computing ρ(ℓ1, c).This is usually polynomial in n. We have the following result.

Theorem 4.3 (Solving G by evaluation)

If L is n-universal with respect to val, then for all v P V we have valG(v) = valL(ψG(v)). In
particular, if val is a qualitative valuation given by W Ď Cω, then v P V is winning if and only if
ψG(v) satisfies W in L.

Since this easy but important result holds even for infiniteL, we prefer to prove it directly rather
than via Theorem 4.1.

Proof. Given a uniform positional strategy σ for Eve in G and a progress measure ϕ : V Ñ L, we
have in general

UpdG(ϕ) ď UpdGσ
(ϕ).

Indeed, recall that by definition,

UpdG(ϕ) =

$

’

&

’

%

min
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) if v P VEve

max
v

c
ÝÑv1 in G

ρ(ϕ(v1), c) if v P VAdam,

which is smaller in G than in Gσ: nothing changes for v P VAdam while the min is restricted for
v P VEve. Therefore ψG ď ψGσ in general. Now if σ is chosen to be positional and optimal from
a given vertex v, then we have valG(v) = valGσ(v) and thus by val-preservation ψGσ(v) has value
valG(v) in L and therefore valL(ψG(v)) ď valG(v) by colouration monotonicity.

Moreover, this inequality cannot be strict otherwise by Lemma 1.6 we would have a (positional)
strategy achieving a better value.

Hence to solve the W -game over G it suffices to compute the L-evaluation ψ; the winning
region is the set of vertices whose image satisfiesW in L, which rephrases as being ď ℓ0 where ℓ0 is
the maximal vertex satisfyingW inL. In all further applications,W is prefix-increasing, thereforeL
can be taken of the form LJ where L satisfiesW (see Lemma 1.8), and the above condition rewrites
as ψ(v) ă J.

3.1 Local and global value iterations

The simplest way of computing the evaluation ψ of G is by Kleene iteration: start with the
minimal progress measure ϕ0 = ϕK : V Ñ L which assigns to each vertex v the minimal element
K = minL, and iteratively compute ϕi+1 = Upd(ϕi) until reaching the least fixpoint. The number
of iterations itglob is upper bounded by n|L| since in each iteration at least one vertex has a strict
increase. In a naive implementation, computing ϕi+1 from ϕi requires runtime O(mtL), which
gives a first worst-case runtime upper bound of O(nmtL|L|).

In the case of a safety game (see Chapter 2) both tL and L can be taken constant, therefore this
gives runtime O(nm). It is folklore that safety games can be solved in linear time O(m) with two
slightly different enhanced implementations of the Kleene iteration, which we will call the local and
global iterations (see Figure 4.3).

Adapting the algorithms from safety games to the more general fixpoint iteration described above
yields two simple variants of the value iteration algorithm both of which have worst-case runtime

O(mtL|L|),

3. Value iterations 119

Figure 4.3: An example of a safety game with a single winning vertex (at the top). Blue edges are safe and red
edges are bad. Two different algorithms for solving it are illustrated.
The global iteration, in orange, corresponds to the natural Kleene iteration: at the i-th iteration, vertices from
which Adam can ensure to see a bad-edge in i step are added to his winning region.
The local iteration corresponds to a variant in which vertices are added non-deterministically to Adam’s win-
ning region until it is no longer possible; a possible execution is represented in green. Both algorithms can be
implemented in linear time O(m) by storing for each Eve-vertex the number of outgoing -edges which do
not lead to the current reachability region.

saving a linear factor from the naive implementation. We now give more details and introduce the
standard terminology.

Validity in ϕ. Fix a progress measure ϕ : V Ñ L. Given an edge e = v
c
ÝÑ v1 in G, we let

ϕ(e) = ϕ(v)
c
ÝÑ ϕ(v1) and we say that e is valid in ϕ if ϕ(e) belongs to L. Given a vertex v P V ,

we say that it is valid in ϕ if either v P VEve and it has a valid outgoing edge, or v P VAdam and all
outgoing edges are valid. The following comes directly from the definition of Upd since v c

ÝÑ v1 is
valid if and only if ρ(ϕ(v1), c) ď ϕ(v).

Lemma 4.3 (Rephrasing vertex-validity)

For all v in V , v is valid in ϕ if and only if Upd(ϕ)(v) ď ϕ(v).

A vertex or an edge which is not valid is invalid. Given a progress measure ϕ we let Invϕ Ď V
denote its set of invalid vertices and we let Cntϕ : VEve Ñ ω assign to each v P VEve its number of
outgoing invalid edges.

Global value iteration. Recall that all points visited in a Kleene iteration are postfixpoints: we
have ϕ1 = Upd(ϕK) ě ϕK since it is the minimal element and this inequality propagates to the
whole sequence by induction thanks to monotonicity of Upd.

Given a subset V 1 Ď V of vertices, we let mV 1 denote the number of edges adjacent to vertices
in V 1, and we let mv = mtvu be the number of edges adjacent to v P V . In the statement below,
the data is updated in place.

120 Separating automata and value iterations

Lemma 4.4 (A step of global iteration)

Given a postfixpoint ϕ and assuming that Invϕ and Cntϕ are known, ϕ1 = Upd(ϕ) as well as
Invϕ1 and Cntϕ1 can be computed with runtime O(mInvϕtL).

Proof. Sinceϕ is a postfixpoint and by Lemma 4.3 a vertex v is invalid inϕ if and only if Upd(ϕ)(v) ą
ϕ(v). Therefore ϕ1 coincides with ϕ over cInvϕ.

We now compute (without erasing ϕ yet) ϕ1 over Invϕ which performs for each v P Invϕ an
access to ρ and a comparison for each outgoing edge, requiring runtime ď O(mInvϕtL).

There remains to compute Cntϕ1 and Invϕ1 . First, for vertices v P Invϕ X VEve, we compute
Cntϕ1(v) from scratch in time O(mvtL), and add them to Invϕ1 if (and only if) Cntϕ1(v) is zero.
Then we inspect all predecessors of vertices v1 P Invϕ.

• If e = v
c
ÝÑ v1 in G is such that v P VAdam and e is invalid in ϕ1, then v is added to Invϕ1 .

• If e = v
c
ÝÑ v1 in G is such that v P VEvezInvϕ then we determine if e went from being valid

to invalid in which case we decrement Cntϕ. Again, if zero is reached v is added to Invϕ1 .

Both steps above can be done with runtime O(tL), which concludes: we may now replace values of
ϕ over Invϕ.

The global value iteration computes the least fixpoint ψ by repeated applications of the lemma.
Each vertex v is updated at most |L| times and induces each time a runtime of O(mvtL) which
concludes with the announced complexity. Note that the space complexity for storing ϕ,Cnt and
Inv is

O(nsL + n logm),

where sL is the size of the representation used for vertices of L.

Local value iteration. The local value iteration algorithm is a non-deterministic variant which
successively chooses an invalid vertex, updates it, and updates the data structured comprised of
Inv and Cnt. This corresponds to the more usual variant (for instance the algorithms presented
in [Jur00] and [BCD+11]), which is also a bit easier to implement. The non-deterministic aspect
however makes it a bit harder to study.

Formally for each vertex v we define a corresponding lifting operator Liftv at v over progress
measures, by

Liftv(ϕ)(v) = Upd(ϕ)(v)
Liftv(ϕ)(v1) = ϕ(v1) for v1 ‰ v.

In words the lifting operator at v updates v and leaves v1 ‰ v untouched. It is clear that for each v
the operator Liftv is monotonous, and moreover ϕ is a fixpoint of Upd if and only if it is a fixpoint
of Liftv for all v.

Note that if ϕ is a postfixpoint of Upd then by monotonicity of ρ, so it Liftv(ϕ). Therefore
the Kleene iteration can be generalised: starting from ϕK, successive applications of Liftv at invalid
vertices preserve being a postfixpoint, and converges to the least fixpoint.

Again in the statement below, the data structures are updated in place.

Lemma 4.5 (A step of local iteration)

Given a postfixpoint ϕ and assuming that Invϕ and Cntϕ are known, for any v P Invϕ, ϕ1 =
Liftv(ϕ) as well as Invϕ1 and Cntϕ1 can be computed with runtime O(mvtL).

3. Value iterations 121

The proof is roughly the same as in the global case. It is a bit easier since we only care for one
vertex.

Proof. We first compute inO(mvtL) the value of ϕ1 over v. If v P VEve then Cntϕ1(v) is recomputed
from scratch in time O(mvtL) by inspecting validity of outgoing edges. We then update Inv and
Cnt over predecessors of v.

• If e = u
c
ÝÑ v in G is invalid in ϕ1 and u P VAdam then u is added to Inv.

• If e = u
c
ÝÑ v in G is invalid in ϕ1 and u P VEve then Cnt(u) is decremented and if zero is

reached, u is added to Inv.

Again, each vertex is updated at most |L| times, and each update induces time O(mvtL). We
conclude with the same worst-case complexity by summing over V :

runtime: O(mtL|L|) space required: O(nsL + n logm).

3.2 Comparison of runtimes

The analysis we have provided above reports a worst-case runtime of O(mtL|L|) for both the
local and global iteration. In applications the linear dependency in |L| is typically reached (for all
executions of the local iteration, as well as for the global iteration) with very simple examples of
constant size such as a vertex with a self-loop.

We now carry a more precise discussion comparing the runtimes of the two variants when the
arena is fixed. We use itglob to refer to the number of Kleene iterations of Upd, which is also the
number of iterations of the global value iteration. Different executions of the local value iteration
algorithm may lead to different numbers of iterations and different runtimes over the same arena.

Figure 4.4: A game G and a completely monotonic graph L with colours C = tgreen, blue, redu; as
always some edges which follow from composition (for instance the dotted ones) are not represented on L.
If ϕ(u) = 0 and ϕ(v) = 1, updating at u sets it to J and updating at v sets it to 2. Starting from the initial
progress measure, the global iteration terminates in two steps, and so does the fastest local iteration (update
u and then v). However, there is a local iteration (update v five times and then u) requiring six steps.

122 Separating automata and value iterations

Lemma 4.6 (Optimality of the global iteration)

Any execution of the local iteration requires at least itglob iterations.

We let ϕ0 denote the initial progress measure.

Proof. Consider an execution of the local algorithm, and let ϕi be the progress measure obtained just
after the i-th iteration. We show by induction that ϕi ď Updi(ϕ0), which implies the result. The
equality holds for i = 0. Assume ϕi ď Updi(ϕ0) for some i. Then for some v, ϕi+1 = Liftv(ϕi) ď
Upd(ϕi) by definition of the lift operators and Upd(ϕi) ď Updi+1(ϕ0) by induction hypothesis
and monotonicity of Upd.

Hence, in terms of number of iterations, there is no gain in applying the local iteration. Now
performing a global update requires a number of operations which is proportionnal to the number
of edges adjacent to invalid vertices, whereas the cost of a local update to v is proportionnal to the
number of edges adjacent to v.

So there might still be a gain (of a multiplicative factor of at most m) in applying the local
iteration rather than the global one. However, there is a risk (see Figure 4.4) of a poor choice in the
way the updates are performed, which can lead to (greatly) suboptimal runtime. We now propose a
simple way to perform the local iteration which avoids such bad scenarios.

Lemma 4.7 (A policy for local value iteration)

Consider a local iteration which always updates the invalid vertex v1 P Invϕ which was last
updated. It performs ď n ¨ opt iterations.

Proof. Let ϕ be a postfixpoint obtained during an execution of the policy under study, and Invϕ =
tv0, . . . , vru be its set of invalid vertices, ordered such that vi was updated prior to vj if i ă j.
For each i P [1, r + 1], we let ϕi denote the progress measure obtained i steps after ϕ. Then ϕ1

is obtained from ϕ by updating v0, and moreover v1, v2, . . . , vr are invalid in ϕ1 since we have for
i P [1, r],

Upd(ϕ1)(vi) ě Upd(ϕ)(vi) ą ϕ(vi) = ϕ1(vi).

It follows that ϕ2 is obtained from ϕ1 by updating v1, and by repeating the above argument in an
inductive step for all i P [0, r], ϕi+1 is obtained from ϕi by updating vi (it is understood here that
ϕ0 = ϕ, and we apologize for the conflict in notations).

Now, for all i P [0, r], we have

ϕr+1(vi) ě ϕi+1(vi) = Upd(ϕi)(vi) ě Upd(ϕ)(vi),

and we conclude that ϕr+1 ě Upd(ϕ), since vertices not in Iϕ satisfy Upd(ϕ)(v) = ϕ(v).
It follows by induction that the sequence ϕ0, ϕ1, . . . of postfixpoints obtained along the execu-

tion satisfy that if ij is given by i0 = 0 and ij+1 = ij + |Iϕij | ď ij + n we have for all j

ϕij ě Updj(ϕ0),

which yields the wanted result.

Note that the proof applies to any “round-based” updating policy, where it is forbidden to update
the same vertex twice if another vertex, which was already invalid at first, has not been updated since.

3. Value iterations 123

It is not hard to see that in such an execution, the runtime (in terms of total number of elemen-
tary operations) is better than that of the global iteration, but by at most a multiplicative factor of
V . We do not expand on this for the sake of brevity.

Summing up the discussion,

(i) no local execution is much faster than the global iteration,

(ii) some local executions may be much worse,

(iii) “round-based” local executions are at least as good (but not much better thanks to (i)).

5Finite monotonic graphs for parity
games

Throughout this chapter we fix an even number d and study the parity objective over C = [0, d]
given by

Parity[0,d] = tw P [0, d]
ω | lim supw is evenu.

We denote it Parity for short, and often simply say n-universal instead of (n, Parity)-universal.
We have obtained in Chapter 2 an n-universal monotonic graph of size nd/2, by lexicographical

combination of Co-Büchi (or Büchi) objectives. This corresponds to the signatures extracted by
Walukiewicz [Wal96] from the proof of Emerson and Jutla [EJ91], and the induced value iteration
algorithm is the one of Jurdziński [Jur00], with runtime O(mnd/2).

Organisation of Chapter 5. The first section simplifies the quest for parity-universal graphs
by establishing a bijection¹ between parity-saturated graphs and ordered trees. Therefore, parity-
universal graphs of minimal size correspond to universal trees of minimal size, which are easier to
handle. Our presentation relies on relevant occurrences which were introduced in [BJW02].

The second section presents the Jurdziński and Lazić’s construction of a quasipolynomial uni-
versal tree [JL17], and Fijalkow’s almost matching lower bound [Fij18].

1 From even graphs to ordered trees

Even cycles. We say that a finite graph satisfying Parity is an even graph. Being even for a finite
graph is a property of its cycles, and we say that a cycle is even if its maximal priority is even. We fix
a finite graph G over V of size |V | = n.

Lemma 5.1 (Cycles in even graphs)

It holds that G is even if and only if all cycles in G are even.

Proof. Assume thatG is even. Let π0 be a cycle inG. Repeating π0 induces an infinite path π = πω0
in G with col(π) = col(π0)ω. Then lim sup col(π) = max col(π0) is even thus π0 is even.

Conversely, assume G has only even cycles, and pick an infinite path π in G. Then there is
a vertex v visited infinitely often by π, and then π may be decomposed into an infinite sequence

¹This is a slight approximation: parity-saturated graphs may have 0
ÝÑ-equivalent vertices which one should quotient

to obtain an ordered tree (see below).

125

126 Finite monotonic graphs for parity games

of cycles π = π0π1 . . . which all start and end in v. Then lim sup col(π) = lim supi max col(πi),
which is even since for all i, max col(πi) is even.

Relevant occurrences. Consider a finite or infinite word of priorities w = p0p1 ¨ ¨ ¨ P [0, d]ďω.
We say that an occurrence i of the priority pi is relevant in w if for all j ď i we have pj ď pi. Below,
a word w of priorities in which we have underlined the relevant occurrences:

w = 201323154512352222

For each odd priority p P t1, 3, . . . , d ´ 1u, we let occp(w) P ω + 1 denote the (possibly infinite)
number of relevant occurrences of p in w, and we define the vector of odd relevant occurrences of v by

occ(w) = (occd´1(w), occd´3(w), . . . , occ1(w)) P (ω + 1)d/2.

For the word w above, we have occ(w) = (3, 2, 0), if d = 6.
Occurrences are extended from words of priorities to paths in graphs simply by considering

the colouration of the path. The following statement adds precision to Lemma 5.1 by a pumping
argument.

Lemma 5.2 (Odd occurrences in even graphs)

It holds that G is even if and only if occ(π) is bounded for all paths π of G. Moreover in this
case, all coordinates of occ(π) are bounded by n´ 1.

Proof. IfG does not satisfy even, then it has an odd cycle, say with maximal priority p P t1, 3, . . . , d´
1u. Repeating the odd cycle produces a path π with occp(π) = ω.

Conversely assume that G has a path π = v0
p0
ÝÑ v1

p1
ÝÑ . . . such that occp(w) ě n for some

odd p, and let i1 ă i2 ă ¨ ¨ ¨ ă in denote the first n relevant occurrences of p in π: pij = p for
all j, and we have pi ď p for all i ď in. Then the n + 1 vertices v0, vi1+1, vi2+1, . . . , vin+1 in this
order, all have a path with maximal priority p to the next one. There must be a repetition in this
sequence, which induces an odd cycle, therefore G does not satisfy Even.

Assuming G is even and ordering tuples of integers lexicographically, we may define a map

occG : V Ñ ωd/2

v ÞÑ occG(v) = max
v

w
ù in G

occ(w)

which takes values in [0, n´1]d/2. It is actually easy to see that occ coincides with valLn
G where Ln is

the universal well-monotonic graph for parity games of size n introduced in Chapter 2 (this is also
true with Lα for any ordinal α ě n).

In particular, occG(V) is a finite subset of tuples of ωd/2 and we shall see such tuples as represent-
ing occurrences of odd priorities, and in particular denote them by u = (ud´1, ud´3, . . . , u3, u1) P
ωd/2. We let h = d/2. It is natural in this context to consider over ωh an increasing sequence of
h+ 1 total preorders

ě1 Ď ě3 Ď ¨ ¨ ¨ Ď ěd´1 Ď ěd+1

defined by lexicographically comparing the truncations up to index p, formally

(ud´1, ud´3, . . . , u1) ěp (u
1
d´1, u

1
d´3, . . . , u

1
1) ðñ (ud´1, . . . , up) ělex (u

1
d´1, u

1
d´3, . . . , u

1
p).

1. From even graphs to ordered trees 127

As always, we use the standard notations relative to total preorders: =p denotes the equivalence
relation associated with ěp, whose equivalence classes are strictly ordered by ąp. Note that ěd+1

is the full relation, it has one equivalence class. The order ě1 is antisymmetric; it is a total order
which coincides with ělex, and =1 coincides with the equality over T .

Ordered trees. A (finite, ordered) tree of height h ě 0 is a finite subset T of ωh. In this context,
we think of elements of a tree as representing occurrences of odd priorities and thus use the same
notation as above u = (ud´1, ud´3, . . . , u3, u1) P T .

Figure 5.1: The tree T = t000, 010, 011, 100, 111u = tu, v, w, x, yu. It has height h = 3. The three
levels, indexed with odd integers, are represented in orange. We have u =5 v =5 w ă5 x =5 y, and
u ă3 v =3 w ă3 x ă3 y.

Note that there is a unique tree of height 0 which we call the empty tree, and that trees of height
1 are identified with sets of integers equipped with ě.

Tree-morphisms and universality. What matters to us in a tree is the induced sequence of
preorders. Given two trees T1 and T2 of height h, we say that a map ϕ : T1 Ñ T2 is a tree-morphism
if it preserves all preorders:

@p P t1, 3, . . . , d´ 1u, @u, u1 P T1, u ěp u
1 ðñ ϕ(u) ěp ϕ(u

1).

As for graphs, we say in this case that T1 maps into T2 or that T2 embeds T1. Note that such a
morphism is necessarily injective: if u ą u1 then ϕ(u) ą ϕ(u1) since ą coincides with ą1.

Two trees are isomorphic if there is a morphism in both ways, which means intuitively that T1
and T2 are the same up to renaming. Morphisms therefore correspond to what is sometimes called
“tree-pruning”: T1 maps into T2 if and only if T1 can be obtained (up to isomorphism) by removing
elements of T2.

A tree T of height h is n-universal if it embeds all trees of height h and size ď n. We also say in
this case that T is (h, h)-universal.

From trees to monotonic graphs. A tree T of height h induces a [0, d]-graph LT over T given
by²

u
p
ÝÑ u1 in LT ðñ

p is even and v ěp+1 v
1 or

p is odd and v ąp v
1.

Note that u p
ÝÑ u1 in LT implies in general u ěp1 u1 for odd p1 ě p.

²Again, note the similarity with Chapter 2.

128 Finite monotonic graphs for parity games

Figure 5.2: On the right, a tree of height 2 and size 11. This tree is (2, 5)-universal, and is actually of minimal
size. On the left, a tree of size 5 and one possible embedding in the universal tree.

Figure 5.3: Two examples; each time the graph on the left correspond to the tree which is depicted on the
right. For the bottom one, we use boxes to represent edges more efficiently.

Lemma 5.3 (Graphs of trees)

Let T be a tree of height h = d/2. Its graph LT is an even Parity-saturated monotonic graph.

Proving that LT ’s are saturated is not technically required but we believe it to be an impor-
tant feature. Actually, it is not hard to see that (up to contracting vertices which have the same
predecessors and successors) all Parity-saturated graphs are of this form.

Proof. We first show that LT satisfies Parity. Let π : u0
p0
ÝÑ u1

p1
ÝÑ . . . be an infinite path in LT

and assume by contradiction that p = lim supi pi is odd: for all i ě i0 P ω we have pi ď p and
for infinitely many i’s pi = p. Then for all i ě i0 we have ui ěp u1

i and this inequality is strict for
infinitely many i’s, a contradiction.

1. From even graphs to ordered trees 129

We now show that adding any edge to LT yields a graph which does not satisfy Parity. Let
e = u

p
ÝÑ u1 be an edge that does not appear in LT . If p is even, then u1 ąp+1 u, so the edge

u1 p+1
ÝÝÑ u belongs to LT hence (LT)e contains an odd cycle. If p is odd, then u1 ěp u, which

implies that the edge u1 p´1
ÝÝÑ u belongs to LT , and again (LT)e contains an odd cycle.

Finally, monotonicity of LT with respect to ď1 follows simply from the inclusions ě1 Ď ěp
for each p; we prove it below for completeness and there are four similar cases.

• Left composition. Let u, u1, u2 P T and p P [0, d] be such that u ě1 u
1 and u1 p

ÝÑ u2. If p is
odd we have u ěp u1 and u1 ąp u

2 which yields u ąp u2 thus u p
ÝÑ u2. If p is even we have

u ěp+1 u
1 and u1 ěp+1 u

2 implying u ěp+1 u
2 and u p

ÝÑ u2.

• Right composition. Let u, u1, u2 P T and p P [0, d] be such that u p
ÝÑ u1 and u ě1 u

2. If p
is odd we have u ąp u1 and u1 ěp u

2 which implies the wanted result. If p is even we have
u ěp+1 u

1 ěp+1 u
2 and again, the result follows.

Tree of relevant occurrences. We have seen that occG(V) defines a tree if and only if G is even,
and that trees can be equipped with a monotonic even graph structure. We now close the cycle.

Lemma 5.4 (Parity-structuration)

Let G be an even graph and let T = occG(V). Then occG : V Ñ T defines a graph-morphism
from G to LT .

This corresponds to a structuration result since LT is even and smaller than G. This is really an
explicit version of Theorem 3.1: LT can be obtained from G by saturation (with all colours). Note
however that there are other³ saturations of G in general, which correspond to other trees.

Proof. Let e = v0
p0
ÝÑ v1 be an edge in G and consider a path π1 : v1

p1
ÝÑ v2

p2
ÝÑ . . . such

that occ(π1) = occ(v1). Then π0 = eπ1 is a path from v0 in G therefore occ(v0) ě occ(π0).
Any relevant occurrence of a priority ě p0 in π1 is relevant in π0. Therefore if p0 is even then
occ(π0) ěp0+1 occ(π1), and if p0 is odd then occ(π0) ąp0 occ(π1) since 0 is an additional occur-
rence of p0 in π0.

RephrasingParity-universality. To move from Parity-universality over graphs to tree-universality,
there remains to see that the notions of morphisms coincide.

Lemma 5.5 (Morphisms of graphs and trees)

Let T1 and T2 be two trees of height d/2, and let ϕ : T1 Ñ T2. Then ϕ is a tree-morphism if
and only if it is a graph-morphism from LT1 to LT2 .

³To be more precise, any prefixpoint of UpdLω

G defines such a structuration ofG, where Lω is the well-monotonic
graph from Chapter 2 (which also corresponds to Lωd/2 if ωd/2 is seen as an (infinite) tree). In this regards occG(V) is
minimal; it is the smallest prefixpoint.

130 Finite monotonic graphs for parity games

Proof. Recall that by definition, u ąp u1 is the negation of u ďp u1. Hence we have

ϕ is a tree-morphism ðñ @u, u1 P T1 and p odd, (u ěp u1 ðñ ϕ(u) ěp ϕ(u
1))

ðñ @u, u1 P T1

"

@p even (u ěp+1 u
1 ùñ ϕ(u) ěp+1 ϕ(u

1))
@p odd (u ąp u

1 ùñ ϕ(u) ąp ϕ(u
1))

ðñ @u, u1 P T1 and p, u p
ÝÑ u1 P LT1 ùñ ϕ(u1)

p
ÝÑ ϕ(u1) P LT2

ðñ ϕ is a graph-morphism.

We may finally present our main result in this section: Parity-universality is equivalent to tree-
universality.

Theorem 5.1 (Equivalence between universalities)

If G is (Parity[0,d], n)-universal then occG(V) is (d/2, n)-universal as a tree. Conversely, if T is
(h, n)-universal then LT is (Parity[0,d], n)-universal.

Proof. Assume that G is n-universal and let T be a tree of height d/2 and size ď n. Then LT has a
morphism into G, which gives a morphism in LoccG(V) by Lemma 5.4. By Lemma 5.5 this gives a
tree-morphism from T to occG(V) which concludes.

Conversely, assume that T is n-universal and let G be an even graph of size ď n over V . Then
occG(V) is a tree of sizeď n therefore it maps into T . Lemma 5.5 transfers this as a graph morphism
from LoccG(V) to LT , which gives by Lemma 5.4 and composition on the left a morphism from G
to LT .

This shifts our focus from constructing n-universal (monotonic) graphs to constructing n-
universal trees.

2 Universal trees and their size

Throughout this section, we let d = 2h, and still use odd integers as indexes for tree elements,
keeping in mind the connexion to parity games. We will show almost matching quasipolynomial
upper and lower bounds on the size of universal trees.

2.1 A quasipolynomial construction

We now present the very elegant construction of [JL17], which relies on encoding tree-elements
with bitstrings.

Theorem 5.2 (A quasipolynomial upper-bound)

Let n, h ě 1. There exists a (h, n)-universal tree of size

2n

(
tlognu + h´ 1

h´ 1

)
.

2. Universal trees and their size 131

It is convenient to present the construction when n is of the form nk = 2k+1 ´ 1, and thus
tlog(nk)u = k. Note that we have n0 = 1 and nk+1 = 2nk + 1. We will define for all k a
(nk, h)-universal tree Th,k of size

nk

(
h+ k ´ 1

h´ 1

)
,

which implies the theorem in general by rounding n up to the next integer of the form nk.

Infix ordering of bitstrings. We call bitstrings the set t0, 1u˚ of finite words of bits. Consider the
infix ordering ě over bitstrings s P t0, 1u˚ which is the linear order defined by the two equations

1s ą ε ą 0s1

and
ss1 ě ss2 ðñ s1 ě s2

for all bitstrings s, s1, s2 P t0, 1u˚.
Algorithmically, two bitstrings can be compared in linear time by scanning from left to right

to determine their longest common prefix and then comparing the remainder using the first above
equation.

Figure 5.4: The infix ordering, read from left to right and symbolised with the green line, over bitstrings of
length ď 4.

We will only consider bitstrings of lengthď k and for technical reasons we need to fix an integer
encoding of bitstrings ι : t0, 1uďk Ñ ω, satisfying

s ě s1 ðñ ι(s) ě ι(s1).

Using ι is required only because we have defined trees via integers and not arbitrary linear orders.
It can generally be ignored below and should really be thought as an inclusion of strings in ω which
respects ď.

The construction. We define Th,k to be (recall that h = d/2)

Th,k = t(ι(sd´1), ι(sd´3), . . . , ι(s1)) P ω
h | sd´1sd´3 . . . s1 P t0, 1u

ďku.

In words, elements of Th,k are obtained by splitting a bitstring s of lengthď k into a concatenation
sd´1sd´3 . . . s1 of h smaller bitstrings. Elements of Th,k can then be compared via ěp for odd

132 Finite monotonic graphs for parity games

priorities p by comparing the first few smaller bitstrings, where bitstring are compared via ě and
the overall comparison is performed lexicographically.

Elements of Th,k are described with a bitstring of length ď k and a split of the integer k into
h non-negative summands k1, k2, . . . , kh such that k1 + ¨ ¨ ¨ + kh = k. There are nk = 2k+1 ´ 1
such bitstrings, and

(
h+k´1
h´1

)
such splits, hence the announced size.

Theorem 5.3 (Universality of Th,k)

For all h, k P N, the tree Th,k is (h, nk)-universal.

Stated differently, given a tree of sizeď nk = 2k+1´1 and height hwe aim to label its branching
directions with bitstrings in an order-preserving fashion, and so that all branches use at most a total
of k bits. This is achieved top-down via the recursive algorithm illustrated in Figure 5.5.

Figure 5.5: On the left, illustration of a recursive algorithm producing the wanted labelling. First identify
Tleft, Tmiddle and Tright such that |Tleft| and |Tright| are ď nk´1 (there may be several options). Then define the
first bit of the first string of elements in Tleft to be 0, in Tright to be 1, and the first string to be ε over Tmiddle.
Finally, recurse on the three trees. On the right, an example on a tree of size 15. Such a labelling corresponds
to a tree-morphism into Th,k.

Formal details are provided below.

Proof of Theorem 5.3. We prove the result by induction on h and k. For h = 0, Th,k is the empty
tree which is trivially (h, n)-universal for all n : the empty tree is the only tree of height 0, and it
embeds in itself, via the empty map. For k = 0 we have nk = 1 and Th,k is the unique (up to
isomorphism) tree of height h and size 1, and it embeds all trees of height h and size ď 1. We now
fix h, k ą 0 and assume the result known for smaller values.

Let T be a tree of height h and of size ď nk. Let i1 ă i2 ă ¨ ¨ ¨ ă iℓ be such that

T = i1Ti1 Y i2Ti2 Y ¨ ¨ ¨ Y iℓTiℓ ,

where the Tij ’s are (necessarily disjoint) non-empty trees of height h ´ 1, and let tj = |Tij |. Since
t1 + t2 + ¨ ¨ ¨ + tℓ ď nk = 2nk´1 + 1, there is an index j0 such that both tleft = t1 + ¨ ¨ ¨ + tj0´1

and tright = tj0+1 + ¨ ¨ ¨+ tℓ are ď nk´1.
We now let (see Figure 5.5)

Tleft = i1Ti1 Y ¨ ¨ ¨ Y ij0´1Tij0´1 and Tright = ij0+1Ti0+1 Y ¨ ¨ ¨ Y iℓTiℓ .

Since Tleft and Tright have size ď nk´1 we obtain by induction tree-morphisms ϕleft and ϕright re-
spectively from Tleft and Tright to Th,k´1. Likewise the induction hypothesis provides us with a

2. Universal trees and their size 133

tree-morphism ϕmiddle from Tmiddle = Tij0 to Th´1,k. We let ϕ : T Ñ Th,k be given by

ϕ(u) =

$

&

%

(ι(ε), sd´3, . . . , s1) where (sd´3, . . . , s1) = ϕmiddle(u
1) if u = ij0u

1 P ij0Tmiddle
(ι(0ι´1(sd´1)), sd´3, . . . , s1) where (sd´1, . . . , s1) = ϕleft(u) if u P Tleft
(ι(1ι´1(sd´1)), sd´3, . . . , s1) where (sd´1, . . . , s1) = ϕright(u) if u P Tright.

We now prove that ϕ defines a tree-morphism. Let u1, u2 P T and let p be an odd priority, we aim
to prove that

u1 ěp u2 ðñ ϕ(u1) ěp ϕ(u2).

We let α1, α2 P tleft,middle, rightu be the respective types of u1 and u2, where the type of u is
defined to be left if u P Tleft, middle if u P ij0Tmiddle and right otherwise. Types are of course
linearly ordered by right ě middle ě left. Observe that for p = d´ 1, we have on one hand,

u1 ěp u2 ðñ α1 ěp α2.

On the other hand, since ι is increasing and since 0r ą ε ą 1r1 whatever the bitstrings r, r1 we also
have,

ϕ(u1) ěp ϕ(u2) ðñ α1 ěp α2.

Now assume p ă d´ 1. If u1 and u2 have different types, then

u1 ěp u2 ðñ u1 ěd´1 u2,

and we conclude as above.
Thus we assume that u1 and u2 have the same type α. If α = left then we have

u1 ěp u2 ðñ ϕleft(u1) ěp ϕleft(u2) ðñ ϕ(u1) ěp ϕ(u2),

where the equivalence on the right follows from monotonicity of ι and the second property defin-
ing ě. The proof is analogous for α = right.

Finally if α = middle then we have u1 = ij0u
1
1 and u2 = ij0u

1
2 and

u1 ěp u2 ðñ u1
1 ěp u

1
2 ðñ ϕmiddle(u

1
1) ěp ϕmiddle(u

1
2) ðñ ϕ(u1) ěp ϕ(u2).

Note that the above procedure labels a given tree of size nk in polynomial time. This does not
really matter however for running value iterations in LTh,k which require to perform comparisons,
and computations of min-predecessors.

Efficient navigation in Th,k. Fix h and k to be positive integers. We assume that an element
u = (ι(sd1), ι(sd´3), . . . , ι(s1)) P Th,k is represented by the string⁴

s(u) = sd´1#sd´3# . . . #s1 P t0, 1, #uďk+h´1.

We say that 0, 1 and # are characters, which we order by 1 ą # ą 0.
We show that the required operations can be computed in linear time O(k + h). Locally to

this section, given u P Th,k and an odd integer p P t1, 3, . . . , d + 1u we use umin,=p and umin,ąp

to denote respectively the smallest elements in Th,k Y tJu which are =p u and ąp u. Note that
umin,=p P Th,k while umin,ąp P Th,k Y tJu.

⁴This is not always optimal (see discussion below), but more convenient.

134 Finite monotonic graphs for parity games

Lemma 5.6 (Navigation in Th,k)

• One can compare u1, u2 P Th,k (with respect to ě1) from their string representation in time
O(h+ k).

• One can compute s(umin,=p) from s(u) in time O(h+ k).

• One can compute s(umin,ąp) from s(u) (or determine that umin,ąp is J) in time O(h+ k).

Proof. • This is done simply by scanning s1 = s(u1) and s2 = s(u2) until finding the first
character that differs. If either s1 or s2 is a strict prefix of the other then it is smaller. Other-
wise, we have s1 = sb1s

1
1 and s2 = sb1s

1
2, and in this case u1 ě u2 if and only if b1 ě b2.

• We let s(u) = sd´1#sd´3# . . . #s1 and let x = |sd´1|+ ¨ ¨ ¨+ |sp|. Then we have

s(umin,=p) = sd´1# . . . #sp#0k´x#tp/2u´1.

• Using the notations from the previous item, we distinguish two cases.

– If x ă k, then we have

s(umin,ąp) = sd´1# . . . #sp10y#tp/2u,

where y = max(0, k ´ x´ 1).

– If x = k, then we let p1 be the smallest odd integer ě p such that sp1 ‰ ε.

* If sp1 has a 0, we write sp1 = s1
p101y with y ě 0 and then we have

s(umin,ąp) = sd´1# . . . #sp1+2#s1
p1# . . . #0y+1#tp/2u.

* Otherwise, sp1 = 1y for some y ą 0.
· If p1 = d´ 1 then umin,ąp = J, and
· If p1 ă d´ 1 then

s(umin,ąp) = sd´1# . . . #sp1´210
y´1#tp/2u+1.

This is sufficient for our algorithmic needs in terms of navigating LTh,k .

Lemma 5.7 (Navigation in LTh,k)

One can compare elements of LTh,k and compute min-predecessors in time O(h+ k).

Max-successors and min-predecessors in LT for a given T are represented in Figure 5.6.

Proof. Linear-time comparison is already presented in Lemma 5.6. Then for all u P Th,k and
p P [0, d] we have

ρ(u, p) =

"

umin,=p+1 if p is even
umin,ąp if p is odd

and the wanted result follows via Lemma 5.6.

2. Universal trees and their size 135

Figure 5.6: Depiction of max-successors (on the left) and min-predecessors (on the right) for priorities 2 and
3 in LT where T = t00, 01, 10, 11u.

Summing up, performing the (local or global) value iteration algorithms in the monotonic graph
L = LTh,k can be done with quasilinear runtime and quasilinear space requirement, and more
precisely

runtime: O

(
m (d+ tlognu)
loooooomoooooon

tL

n

(
tlognu + d/2´ 1

d/2´ 1

)
loooooooooooomoooooooooooon

|L|

)
space req.: O(n (d+ logn)

loooomoooon

sL

+n logm).

If d is polylogarithmic in n, the expression on the left is polynomial in n.
Note that elements of Th,k can also be encoded overO(log d logn) bits by writing, for each non-

empty string, the string followed by an log d integer identifying the height. Lemmas 5.6 and 5.7 can
easily be adapted to this encoding, and we obtain the alternative expressionO(log d logn), replacing
O(d+ logn) for both tL and sL. This is the point of view adopted in [JL17]. It is better when d is
superlogarithmic, and worse when d is sublogarithmic.

In any case, |L| remains by far the dominating term. We refer to [JL17] (Lemma 6 and Theo-
rem 7 therein) for precise expressions in different tsuper, sub, εu ¨ logarithmic regimes. To date, this
is the most efficient algorithm for solving parity games in the worst case; similar bounds are given
in [FJS+17] for their algorithm, which also apply to the one of [CJK+17].

2.2 An almost matching lower bound

We now present the lower bound of [Fij18] which matches the upper bound up to a factor of
2n.

Theorem 5.4 (Lower bound on size of universal trees)

Any (h, n)-universal tree has at size at least(
tlognu + h´ 1

h´ 1

)
.

We separate the combinatorial argument with the analysis of the recursion it leads to.

136 Finite monotonic graphs for parity games

Combinatorial argument. Fix a tree T of height h ě 1, and let T 1 be the tree of height h ´ 1
obtained by removing the lowest level of T , formally

T 1 = tu1 P ωh´1 | Dr P ω, u1r P T u.

Moreover for each u1 P T 1 we let su1 ą 0 be the number of such r, that is su1 = tr P ω | u1r P T u.
Note that |T | =

ř

u1PT 1 su1 . Given n1 P ω, we let T 1
n1 be the tree of height h´ 1 obtained from T 1

by restricting to its elements u1 satisfying su1 ě n1. (For instance, T 1
1 = T 1.)

Figure 5.7: In black a tree T and in green the tree T 1
4.

The lower bound relies on the following result.

Lemma 5.8 (Combinatorial argument)

Let n, h ě 1 and assume that T is (h, n)-universal. Then for all n1 P [1, n] it holds that T 1
n1 is

(h´ 1, tn/n1u)-universal.

Proof. Let n1 P [0, k] and let T̃ 1 be a tree of height h´1 withď tn/n1u leaves. We let T̃ be obtained
from T̃ 1 by appending n1 children at each leaf, formally

T̃ = T̃ 1 ˆ |n1|.

Note that T̃ has size n1|T̃ 1| ď n and height h therefore there is a tree-morphism ϕ from T̃ to T .
Now, for each u1 P T̃ 1, it holds that u10, u11, . . . , u1(n1 ´ 1) P T̃ are pairwise distinct and =3-

equivalent (that is, they share all but the last coordinates), hence so must be their image by ϕ in T .
Stated differently let ϕ1(u) P Zh´1 defined over u P T̃ 1 by restricting to all but the last coordinate
of ϕ1(u ¨ 0), formally

ϕ1(u) = (ϕ(u10)d´1, . . . , ϕ(u
10)3).

It satisfies that there exist n1 pairwise distinct integers r P ω such that ϕ1(u1)r P T and thus
sϕ(u1) ě n1. Hence, ϕ1 maps T̃ 1 in T 1

n2 and the fact that ϕ1 defines a tree-morphism follows directly
from the fact that ϕ does.

Now observe that we have

|T | =
ř

u1PT 1 su1 =
řn
n1=1

ř

u1PT 1 1su1 ěn1 =
řn
n1=1 |T

1
n1 |,

2. Universal trees and their size 137

where 1x equals 1 if x holds and 0 otherwise. We let g(h, n) denote the size of the smallest (h, n)-
universal tree.

Analysis of the recursion. The above equation together with the lemma translate into the recur-
sion

g(h, n) ě
řn
n1=1 g(h´ 1, tn/n1u),

with base case g(0, n) = 1 for all n. By restricting to powers of 2 and setting n = 2k, we obtain

g(h, 2k) = G(h, k) ě
řk
k1=1G(h´ 1, k1). (˚)

Developing the recursion h times yields

G(h, kh) ě
řkh
kh´1=1G(h´ 1, kh´1) =

řkh
kh´1=1

řkh´1

kh´2=1Gh´2,kh´2
= ¨ ¨ ¨ =

ř

khěkh´1ě...k0
1.

Therefore, G(h, k) is at least the number of non-decreasing sequences in [1, k]h, which is(
h+ k ´ 1

h´ 1

)
.

This yields the theorem by truncating n down to 2tlognu.

6Finite monotonic graphs for
mean-payoff games

Reminders from Chapter 2. We now consider the threshold mean-payoff objective over finite
Z-arenas, given by

MPď0 = tt0t1 ¨ ¨ ¨ P Zω | lim sup
n

1

n

n´1
ÿ

i=0

ti ď 0u.

We also recall the definition of the energy valuation

Energy+(t0t1 . . .) = sup
n

n´1
ÿ

i=0

ti P [0,8],

which we proved (Lemma 2.14) to be intimately linked to the threshold mean-payoff objective over
finite graphs since we have

MP(v) ď 0 ðñ Energy+(v) ă 8 ðñ Energy+(v) ď (n´ 1)N

over [´N,N]-graphs of size n. We say that a finite graph is bounded if it satisfies the threshold
mean-payoff objective, which is therefore equivalent to having Energy+G ď (n´1)N or having only
non-positive cycles.

Recall that we denote MPď0
A for the restriction of the objective to weights in A Ď Z. A finite

(MPď0
A , n)-universal graph is simply a bounded graph which embeds all bounded A-graphs of size

ď n. When A = [´N,N], we use MPď0
N for simplicity.

Recall the well-monotonic graph L over L = ω introduced for energy games given by

ℓ
t
ÝÑ ℓ1 in L ðñ t ď r ´ r1.

Given B Ď ω we let LB denote the restriction of L to B.
We have seen that all paths in L have bounded profile, and therefore non-positive mean-payoff,

hence L satisfies MPď0. We have also seen that Energy+G defines a graph morphism from any graph
G to LJ. Therefore ifG is finite and bounded, Energy+G embedsG in L[0,(n´1)N], which was stated
as Corollary 2.3: L[0,(n´1)N] is (MPď0

N , n)-universal.
The associated value iteration algorithms have complexity

runtime: O(n mN
loomoon

|L|

log(nN)
looomooon

tL

) space required: O(n (log(nN))
loooomoooon

log |L|

+n logm),

and the local variant corresponds exactly to the BCDGR algorithm [BCD+11].

139

140 Finite monotonic graphs for mean-payoff games

Organisation of Chapter 6. The first section studies upper and lower bounds for (MPď0, n)-
universal (monotonic) graphs. We start by showing a N1´1/n lower bound, and complement this
result with a subtler construction with matching size, up to a polynomial factor. Using our con-
struction rather than the simple one above is meaningful only in the regime where nn = O(N), in
which we dispose of better algorithms (see Chapter 10).

It is easy to see that one may restrict in general to arenas with at most n2 edges. Therefore if
the absolute value N of the largest weight is much larger (for instance exponential) than n, the set
of weights A used on a given arena if a very sparse subset of [´N,N]. As an important example
consider A = t´(´n)p | p P [0, d]u in which case MPď0

A coincides with Parity over arenas of size
ď n (see preliminaries). In this case we know from the previous chapter that there is a universal
graph of quasipolynomial size O(nlog d), which is much smaller than nN = nd+1.

This raises the following question: can we find general bounds on the size of (MPď0
A , n)-graphs

which are parameterised on the cardinality k of A? This question is tackled in the second section,
where we show that there is always a universal (monotonic) graph of size O(nk) but (for some
well-chosen A) it may be that the smallest universal graphs have size Ω(nk´1).

1 Universal graphs for A = [´N,N]

We show in this section upper and lower bounds for (MPď0
N , n)-universal monotonic graphs (or

equivalently, universal graphs, by the structuration results of Chapter 3). We start with a very useful
lemma.

Zero-cycles. Note that in a bounded graph the two suprema in

Energy+G(v) = sup
v
t0t1...

ù

sup
nPN

n´1
ÿ

i=0

ti

are reached since the value is finite. Therefore for each v there exists a finite path from v whose sum
coincides with the value of v, and we say that such a path is tight.

We say that a cycle whose sum is zero is a zero-cycle.

Lemma 6.1 (Zero-cycles and values)

Let π : v0
t0
ÝÑ v1

t1
ÝÑ . . .

tk´1
ÝÝÑ v0 be a cycle of length k in a bounded graph. Then for all

i P [0, k ´ 1], Energy+(vi)´ Energy+(v0) coincides with the sum t0 + ¨ ¨ ¨+ ti´1 of πăi
.

Proof. Let π1 be a tight path from vi. Then πăiπ
1 defines a path from v0 therefore

Energy+(v0) ě Energy+(vi) + (t0 + ¨ ¨ ¨+ ti´1).

Applying the same result to the cycle vi
ti
ÝÑ . . .

tk´1
ÝÝÑ v0

t0
ÝÑ . . .

ti´1
ÝÝÑ vi yields

Energy+(vi) ě Energy+(v0) + (ti + . . . tk´1)
= Energy+(v0)´ (t0 + ¨ ¨ ¨+ ti´1),

the wanted converse inequality.

1. Universal graphs for A = [´N,N] 141

Figure 6.1: The paths in the proof of Lemma 6.1.

We will rather use a consequence of the lemma which is the following.

Corollary 6.1 (Preservation of differences)

Let G and G1 be two bounded graphs and let ϕ be a morphism from G to G1. If there is a
zero-cycle visiting both v1 and v2 then

Energy+G(v1)´ Energy+G(v2) = Energy+G1(ϕ(v1))´ Energy+G1(ϕ(v2)).

This result simply follows from the lemma and the fact that paths and their sums (and in par-
ticular, zero-cycles) are preserved.

Lower bound. We start with a lower bound.

Theorem 6.1 (Lower bound for A = [´N,N])

Any (MPď0
N , n)-universal graph has size at least N1´1/n.

Proof. Let H = [0, N]n´1, and for each h = h1 . . . hn´1 P H consider the [´N,N]-graph Gh

over [0, n´ 1] given by exactly the edges

i
hi
ÝÑ i´ 1 and i

´hi
ÝÝÑ i´ 1.

for i P [1, n´ 1]. See Figure 6.2.

Figure 6.2: The graph Gh.

Note that Energy+Gh
(i) = h1 + ¨ ¨ ¨+ hi for all i P [0, n´ 1], and in particular Gh is bounded.

Note moreover that

0
´h1
ÝÝÑ 1

´h2
ÝÝÑ . . .

´hn´1
ÝÝÝÝÑ n´ 1

hn´1
ÝÝÝÑ n´ 2

hn´2
ÝÝÝÑ . . .

h1
ÝÑ 0

142 Finite monotonic graphs for mean-payoff games

defines a zero-cycle in Gh which visits all vertices.
Let G be a (MPď0

N , n)-universal graph over V and fix for each h P H a morphism ϕh from Gh

to G. Consider the map

f : H Ñ V n

h ÞÑ (ϕh(0), . . . , ϕh(n´ 1)).

By Corollary 6.1 we have for all h and for all i P [1, n´ 1] that

Energy+G(ϕh(i))´ Energy+G(ϕh(i´ 1)) = Energy+Gh
(i)´ Energy+Gh

(i´ 1) = hi

and therefore f is injective. We conclude that |V |n ě |H| = (N + 1)n´1 which yields the an-
nounced lower bound.

Therefore there is no hope in finding a monotonic graph which is (MPď0
N , n)-universal and

implies a value iteration algorithm which is (strongly) sublinear in N .

Upper bound. We have already seen a (MPď0
N , n)-universal monotonic graph of size O(nN),

which yields the value iteration algorithm of [BCD+11]. We now describe a more subtle construc-
tion.

Theorem 6.2 (A slightly more succint construction)

There exists a (MPď0
N , n)-universal monotonic graph of size

2
(
(n´ 1)N ´

[
((n´ 1)N)1/n ´ 1

]n)
ď 2n ¨ (nN)1´1/n.

Note that the expression on the left is ď 2nN . The majoration on the right gives an improve-
ment over O(nN) when N is much greater than n, for instance if nn = o(N). We do not know
of an analysis of the left-hand side which gives a bound better than O(nN) for smaller values ofN .
We now give a high-level explanation of the construction.

We have seen that any bounded graph maps into the restriction LS(G) of L, where S(G) is the
set of Energy+-values of vertices in G. Note that LS(G) is smaller than G and therefore we may
restrict our attention to graphs of the form LA where A Ď ω. Indeed, a graph of this form LB is
(MPď0

N , n)-universal if and only if it embeds all LA’s where A = S(G) for some G of size ď n:
such graphs must be embedded, and it is sufficient to embed them by composition.

For the first construction L[0,(n´1)N] we have used the fact that A = S(G) in this case is always
included in B = [0, (n ´ 1)N], and therefore the identity maps LA into LB. What we exploit
now is that an embedding of LA into LB is not necessarily an inclusion of A into B; it suffices
that A + p Ď B for some p P Z. This will allow us to remove some unnecessary values from
B = [0, (n ´ 1)N] while remaining universal. As a small drawback, we have to double the range
to [0, 2(n´ 1)N].

We fix b = ((n´ 1)N)1/n, and write integers a P [0, 2(n´ 1)N) in basis b, hence using n+1
digits written a[i] P [0, b), formally

a =
n
ÿ

i=0

a[i]bi =
n
ÿ

i=0

a[i]((n´ 1)N)i/n.

Note that since a P [0, 2(n´ 1)N) the (n+ 1)-th digit is either 0 or 1.

2. Universal graphs parameterised by k = |A| 143

We let B be the set of integers in [0, 2(n´ 1)N) which have at least one zero digit among the
first n digits in this decomposition. Note that B is obtained by removing 2(b´ 1)n elements from
[0, 2(n´ 1)N] which explains the left-hand side in the theorem.

Lemma 6.2 (Main ingredient for Theorem 6.2)

Let A = td0, d1, . . . , dn´1u Ď ω be such that 0 = d0 ă d1 ă ¨ ¨ ¨ ă dn´1 ď (n´ 1)N . There
exists p P ω such that A+ p Ď B.

It is not hard to see that the lemma implies the theorem: given a bounded [´N,N]-graph G
of size n, its set S(G) of Energy+-values satisfies the hypotheses of the lemma, and therefore LS(G)

embeds into LB.

Proof of the lemma. We choose p of the form
řn´1
i=0 aib

i for ai P [0, b). Note that the (n+1)t digit
is 0, or equivalently p ă (n´ 1)N . Let us write pi = p+ di, for i P [0, n´ 1]. We need to choose
p such that for every i P [0, n ´ 1] we have pi P B. Note that for all i P [0, n ´ 1] it holds that
di P [0, (n´ 1)N) so whatever the choice of p P [0, (n´ 1)N] we have pi P [0, 2(n´ 1)N).

We show how to choose a0, a1, . . . , an´1 in order to ensure that p0, p1, . . . , pn´1 P B, that
is, each have at least a zero digit among the first n ones. More precisely, we show by induction on
k P [0, n´1] that there exist a0, . . . , ak P [0, b) such that for any choice of ak+1, . . . , an´1 P [0, b)
and for all i P [0, k], the i-th digit pi[i] of pi is 0. For k = 0, we let a0 = 0, which yields p0[0] = 0
independently of the values of a1, . . . , an´1.

Let a0, . . . , ak´1 be such that for any choice of ak, . . . , an´1 and for any i P [0, k ´ 1] we
have pi[i] = 0. Let ak P [0, b) be the unique value such that

(
řk
i=0 aib

i + dk

)
[k] = 0. Let

ak+1, . . . , an´1 P [0, b). By induction hypothesis for any i P [0, k) we have pi[i] = 0. Now

pk[k] = (p+ dk) [k] =

(
n´1
ÿ

i=0

aib
i + dk

)
[k] =

(
k
ÿ

i=0

aib
i + dk

)
[k]+

(
bk+1

n´1
ÿ

i=k+1

aib
i´k

)
[k] = 0,

since both terms are zero.

2 Universal graphs parameterised by k = |A|

We now fix a subset of weights A Ď Z and we let k = |A|. This section is devoted to finding
upper and lower bounds over the size of (MPď0

A , n)-universal graphs parameterised by k.

Upper bound. We start with an easy construction which requires a slight variation on Lemma 2.14.
We say that a path is simple if it does not contain any cycle.

Lemma 6.3 (Existence of tights paths which are simple)

In a bounded graph all vertices have simple tight paths.

Note that a simple path has length ď n ´ 1 therefore this gives another (similar) proof of
(i) ùñ (iv) in Lemma 2.14.

Proof. Let v0 P V and let π be a tight path from v0 of minimal size. If π is not simple, it is of the
form π = π0π1π2 where π1 is a cycle. Thus π1 has non-positive sum therefore π0π2 is a tight path
from v0 which is smaller than π, a contradiction.

144 Finite monotonic graphs for mean-payoff games

Let B be the set of non-negative sums of w P Aďn´1. Note that |B| is bounded in general by
(n ´ 1)k since the sum of a word is invariant under permutation of its letters. Now we know that
values of a bounded graphs coincide with sums of simple paths and therefore belong to B, which
yields the following result.

Theorem 6.3 (Upper bound paramterised by k)

The monotonic graph LB is (MPď0
A , n)-universal and has size ď (n´ 1)k.

It is not immediate however how to compute min-predecessors in LB in general, therefore some
more work is required for turning this construction into a value iteration when given a set of weights
A.

Lower bound. We now present a last lower bound result. Fix n and k, assume that k´ 1 divides
n´ 1 and let T = t1 + n+ n2 + ¨ ¨ ¨+ nk´2u and consider

A = t1, n, n2, . . . , nk´2,´
n´ 1

k ´ 1
T u.

Note that A has cardinality k. We match the above upper bound up to a linear factor for this
particular A.

Theorem 6.4 (Lower bound for A of small size)

Any (MPď0
A , n)-universal graph has size Ω(nk´1).

The proof is similar to that of the lower bound in the first section (Theorem 6.1): we construct a
family of graphs which have a zero-cycle and achieve many different Energy+-values, which implies
an injective map thanks to Corollary 6.1.

Proof. We let q = n´1
k´1

and let¹

C =
␣

c0 . . . ck´2 P ω
k´1 |

ř

i ci = q
(

be the set of sequences of k ´ 1 non-negative integers who sum to q. Note that C has cardinality

|C| =

(
q + k ´ 1

k ´ 1

)
.

We let H = Ck´1 be the set of square matrices with columns in C, whose elements we denote
by h = (hi,j)i,jP[0,k´2] with for all j,

ř

i hi,j = q. We fix h P H . Given (i0, j0) P [0, k ´ 2]2 we
let si0,j0 denote the partial sum of the matrix up to (and excluding) (i0, j0) when it is read row by
row, formally

si0,j0 =
ÿ

(i,j)ălex(i0,j0)

hi,j.

We now define a graphGh (see Figure 6.3) over [0, n´1] comprised of a unique cycle and given
by the edges 0 ´qT

ÝÝÑ n´ 1 and

r + 1
nj0

ÝÝÑ r where (i0, j0) = maxt(i, j) | si,j ď ru.

¹We apologize for the notation clash. Here C is of course not a set of colours but a set of columns.

2. Universal graphs parameterised by k = |A| 145

In words, Gh is constructed from h P H by reading the matrix row by row, each time adding hi,j-
many nj-edges pointing to the left, and closing the cycle with a´qT -edge. For convenience we also
define sk´1,0 = n´ 1.

Figure 6.3: Depiction of Gh when h is the matrix on the left. Here, we have k ´ 1 = 2, n ´ 1 = 8 and
q = 4; both columns sum to q.

Since all columns in h sum to q the cycle in Gh has sum 0 thus Gh is bounded and moreover
by Lemma 6.1 we have for all i P [0, k ´ 2] that

Energy+Gh
(si+1,0)´ Energy+Gh

(si,0) =
k´2
ÿ

j=0

hi,jn
j.

Note that since the hi,j ’s are ď q ď n ´ 1 ă n, one may recover the i-th row from the above
right-hand side: they are the digits in the decomposition in basis n.

Let G be a (MPď0
A , n)-universal graph over V and fix a morphism ϕh from Gh to G for each

h P H . Then we have by Corollary 6.1 that for all h P H and i P [0, k ´ 2],

Energy+G(ϕh(si+1,0))´ Energy+G(ϕh(si+1,0)) =
k´2
ÿ

i=0

hi,jn
j

and therefore
f : H Ñ V k´1

h ÞÑ (ϕh(s0,0), ϕh(s1,0), . . . , ϕh(sk´2,0)

is injective since each of the hi,j ’s can be recovered from f(h).
Hence we have |V | ě |H|1/(k´1) = |C| which rewrites as

|C| =

(n´1
k´1

+ k ´ 1

k ´ 1

)
ě

(
n´1
k´1

+ k ´ 1

k ´ 1

)k´1

ě

(
n´ 1

(k ´ 1)2

)k´1

and implies |V | = Ω(nk´1) for k constant.

7Finite monotonic graphs for
mean-payoff parity games

We fix an even integer d and a non-negative integer N , in this chapter the set of colours is C =
[0, d] ˆ [´N,N]. We denote words by w = (p0, t0)(p1, t1) . . . , and use wprio = p0p1 . . . and
wwei = t0t1 . . . to denote the projections of w over each coordinate, which are of different nature.

The mean-payoff parity objective is given by

W = tw P Cω | wprio P Parity[0,d] or wwei P MPď0
N u

We refer to the introduction for a survey of the literature relative to mean-payoff parity games.
We note that (0, 0) P C is weakly neutral, and that positionality of W over finite arenas follows
from the concavity of Parity[0,d] and MPď0

N , in the sense of Kopczyński [Kop06].

Our approach versus [DJL18]. In this chapter, we reobtain the main result of Daviaud, Jurdz-
iński and Lazić [DJL18]: a value iteration algorithm for mean-payoff parity games with (pseudo-
quasipolynomial) runtime O(mnNSn,dt), where Sn,d is the size of a universal tree and t is the
runtime for computing min-predecessors in the corresponding graph. There is a technical caveat
here: the construction requires taking into account inner nodes of the tree, which is not a serious
issue, but we no longer have a closed expression for Sn,d.

Our approach however differs from that of [DJL18] in that we present the algorithm using a
universal monotonic graph. There are slight technical differences between the two constructions,
most notably our graph is of the form T ˆ [0, nN] Y tJu, whereas theirs rather looks like T ˆ
([0, nN]Y tJu).

More importantly, our approach revolves around the study of graphs satisfying W , whereas
theirs relies on strategy decompositions. This allows to significantly factor the argumentation, since
our strategy decomposition (for Eve) is contained directly in the construction: we implicitly con-
sider positional strategies σ described by morphisms Gσ Ñ L. This avoids a tedious¹ additional
definition, and non-trivial proofs² for equivalence between progress measures and strategy decom-
positions. At the same time, our notions roughly coincide, in particular our proofs of soundness
(Lemma 1 in [DJL18] versus our Lemma 7.2) are somewhat similar.

But the difference lies not only in the presentation: their argument for existence of strategy
decompositions follows the recursive template laid out by Zielonka [Zie98] (which is usual for
mean-payoff parity games), and in particular it involves the opponent. Therefore in addition to the
(already difficult) inductive argument, the framework requires understanding the structure of Adam

¹Their definition uses 9 different cases, and introduces a number of new symbols, see page 6 in [DJL18].
²Pages 13-16 in [DJL18] establish the equivalence between progress measures and strategy decompositions.

147

148 Finite monotonic graphs for mean-payoff parity games

strategies³. In particular, membership in coNP is derived, whereas it is not at all implied by our
method. This is to be compared to our proof of universality (Lemmas 7.3 and 7.4) which is self-
contained, combinatorial and might be of independent interest.

In the first section, we introduce our monotonic graph and prove that it satisfies W . In the
second section, we prove its n-universality.

In [AFGL+21], we took a completely different approach by using deterministic separating au-
tomata. This leads to a much more direct 1 page proof, which moreover has the advantage of using
separating automata for parity and mean-payoff games as black boxes. Two drawbacks: it is not
clear how to obtain a value iteration algorithm (the construction is not naturally monotonous), or
a universality proof (we believe that there is value in designing templates for such proofs).

1 Constructing a monotonic graph satisfying W

Trees and their preorders. We need a slight variation on the definition of trees presented in
Chapter 5. Hopefully the notion of tree universality is robust and easily adapts, we give some
details below. In this chapter, a (rooted, ordered) tree of height h is a finite subset T of ωďh. Stated
differently, trees are now comprised of tuples of potentially different sizes. This is the point of view
which was adopted in [JL17] and makes more sense when parity games are vertex-coloured; it is also
used in [DJL18].

The lexicographical order is defined over ω˚ as usually: u ďlex u
1 when u is a prefix of u1. We

still let h = d/2, index elements of ωd/2 with odd integers from d´1 to 1, and define the increasing
sequence of preorders

ě1 Ď ě3 Ď ¨ ¨ ¨ Ď ěd+1

over ωd/2 by first (potentially) truncating up to index p and comparing the two obtained tuples
lexicographically. Note that as previouslyě1 coincides with the lexicographical order (no truncation
is performed).

Tree morphisms are those maps which preserve all preorders, and still correspond to tree-pruning.
Note that a tree T Ď ωďh can be padded into a tree pad(T) Ď ωh by adding zeros at the end of
tuples of length ă h. It is easy to see that |pad(T)| ď |T | and that T1 embeds into T2 if and only
if pad(T1) embeds into pad(T2).

This allows to reduce to the definition of Chapter 5, and in particular the tree comprised of all
prefixes of Th,k embeds (with respect to the new notion of morphisms) all trees of size ď n = 2k

and height h, it has quasipolynomial size as in [JL17] and is efficiently navigable.
Given an element u = (ud´1, ud´3, . . . , up) in a tree of height d/2 we let pu = p denote its last

index, which is always odd by definition.

The construction. We fix n and let B = (n ´ 1)N . We introduce a notation which is often
convenient: given a priority p, we let

rpsodd =

#

p if p is odd
p+ 1 if p is even,

be obtained by rounding up to the nearest odd number.

³Understanding Adam’s strategies corresponds to Section 2.3 (pages 7-9) in [DJL18], adds 10 slightly different
cases, and another hard proof.

1. Constructing a monotonic graph satisfyingW 149

We now let L be the graph over ωďd/2 ˆ [0, B] given by

(u, r)
(p,t)
ÝÝÑ (u1, r1) ðñ either

(1a) : p+ 1 ě pu and p even and u ěp+1 u
1

(1b) : p ě pu and p odd and u ąp u1

(2a) : rpsodd ă pu and u ą u1

(2b) : rpsodd ă pu and u = u1 and t ď r ´ r1.

We say that an edge is of type (1a), (1b), (2a) or (2b) if the corresponding condition is fulfilled.
Intuitively this combines the constructions of the two previous chapters: the global structure of

the graph responds to large priorities and is inherited from the preorders over ωďd/2, whereas small
priorities are “absorbed” and weights are read instead.

Elements in L = ωďd/2 ˆ [0, B] are well-ordered lexicographically.

Lemma 7.1

The graph L is well-monotonic.

Proof. We have to prove left and right composition in L. Right composition is direct: in each case
the condition over u’s and r1s composes with the lexicographical order when p and t are fixed. Left
composition is much more tedious since pu changes from one edge to the other (see below) and
therefore we have many similar cases to examine. We let (u, r) ě (u1, r1)

(p,t)
ÝÝÑ (u2, r2) in L, we

let e1 = (u1, r1)
(p,t)
ÝÝÑ (u2, r2) and aim to show that e = (u, r)

(p,t)
ÝÝÑ (u2, r2) belongs to L.

• If u = u1. Then r ě r1 and in all cases e has the same type as e1.

• If u ą u1 and pu = pu1 . Then again in all cases e has the same type as e1.

• If u ą u1 and pu ą pu1 .

– If rpsodd ě pu ą pu1 . Then e1 has type (1a) or (1b) and we have u ěrpsodd u1 therefore
e has the same type as e1.

– If pu ą rpsodd ě pu1 then again e1 has type (1a) or (1b) and we now have u ąrpsodd u1

therefore u ą u2 and e is of type (2a).
– If pu ą pu1 ą rpsodd then u ą u1 ě u2 therefore e is of type (2a).

• If u ą u1 and pu1 ą pu.

– If rpsodd ě pu1 ą pu then e1 has type (1a) or (1b) and u ěrpsodd u1 therefore e has the
type of e1.

– If pu1 ą rpsodd ě pu then e1 has type (2a) or (2b) therefore u1 ě u2 and we have
u ąrpsodd u1 thus e has type (1a) or (1b) according to the parity of p.

– If pu1 ą pu ą rpsodd then e1 has type (2a) and (2b) and e has type (2a) since we have
u ą u1 ě u2.

Note that in every cases if (u, r) (p,t)
ÝÝÑ (u1, r1) belongs to L then it holds that u ěrpsodd u1, and

therefore by inclusion of the preorders u ěp1 u1 if p1 is an odd priority ě p. This property is crucial
in the proof below.

150 Finite monotonic graphs for mean-payoff parity games

Lemma 7.2

It holds that L satisfies W .

Proof. Consider an infinite path

π : (u0, r0)
(p0,t0)
ÝÝÝÝÑ (u1, r1)

(p1,t1)
ÝÝÝÝÑ . . .

in L, assume that p = lim supi pi is odd and let i0 P ω be such that for all i ě i0 we have pi ď p.
It follows that for all i ě i0 we have ui ěp ui+1. Now by well-foundedness of ąp it must be that
for some i1 ě i0 all ui’s for i ě i1 are =p-equivalent.

Consider i2 ě i1 such that pi2 = p which is odd. The corresponding edge e = (ui2 , ri2)
(p,ti2)
ÝÝÝÑ

(ui2+1, ri2+1) cannot be of type (1b) since ui2 =p ui2+1, therefore it is of type (2a) or (2b) and
thus rpsodd = p ă pui2 . But observe that a tuple u with pui2 is alone in its =p-equivalence class: if
u1 =p u then u1 = u.

Therefore we have for all i ě i1 that ui is identical to ui2 , and we denote it by u. Since moreover
they have priority ď p ă pu, all edges in

πěi1 : (u, ri1)
(pi1 ,ti1)
ÝÝÝÝÝÑ (u, ri1+1)

(pi1+1,ti1+1)
ÝÝÝÝÝÝÝÑ . . .

are of type (2b), and therefore for all i ě i1 we have

ti ď ri ´ ri+1.

Therefore we have a telescoping sum, and for all k ě i1 it holds that

řk´1
i=i1

ti ď ri ´ rk ď ri,

which implies that r0r1 . . . is bounded, and therefore π has non-positive mean-payoff.

Given a tree T Ď ωd/2 of height d/2, we let LT denote the restriction of L to LT = T ˆ [0, B].
By the above lemmas LT is a finite monotonic graph which satisfies W . We now show that if T is
(d/2, n)-universal then LT is (W,n)-universal. This requires defining a morphism from G to LT
whenever G satisfies W , which is non-trivial and the object of the second section.

2 Universality of LT

Recall from Chapter 5 that we obtained a morphism from an even graph G to an adequate
monotonic graph by considering relevant odd occurrences over paths in G. We extend this idea to
the current setting by defining a notion of relevant occurrences which take the weights (and their
boundedness) into account. We recall that B is fixed to B = (n´ 1)N .

Window decompositions. A window decomposition I (of ω) is a finite or infinite sequence I =
I0I1 . . . of disjoint intervals of the form Ij = [aj, bj] with bj+1 = aj + 1 if it is defined, and
Ť

j Ij = ω. Stated differently, it is a partition of ω into intervals (ordered naturally). Given a word
of weights wwei = t0t1 ¨ ¨ ¨ P Zω, we say that it is B-bounded over I if for each interval Ij ,

@i0, i1 P Ij,
ři1´1
i=i0

ti ď B.

2. Universality of LT 151

Given a window decomposition I and an infinite word of priorities wprio = p0p1 . . . , we define its
I-occurrences as the finite or infinite word (according to finiteness of I) by

wprio,I = (max
iPI0

pi)(max
iPI1

pi) . . .

Recall from Chapter 5 that in a finite even graph relevant odd occurrences are bounded by
n ´ 1, via a simple pumping argument (Lemma 5.2). The following is an analogous result in the
more difficult setting of mean-payoff parity games.

Lemma 7.3 (Bounded windows in finite graphs satisfying W)

Let G be a graph of size ď n over V which satisfies W and let π : v0
w

ù be an infinite path
in G. There exists a window decomposition I such that wwei is B-bounded over I and moreover
wprio,I has at most 2n relevant occurrences of each odd priority.

The bound 2n could probably be reduced to n by a more careful examination but this will have
no influence: it only matters that there is such a bound.

Proof. We denote π : v0
(p0,t0)
ÝÝÝÝÑ v1

(p1,t1)
ÝÝÝÝÑ . . . and therefore w = (p0, t0)(p1, t1) We build

I greedily by taking intervals as large as possible such that wwei = t0t1 . . . is B-bounded over I.
Stated differently, we pick I = I0I1 . . . to be the unique window over which wwei is B-bounded
and satisfying for each interval Ij = [aj, bj] where bj is finite that there exists ij,0 P Ij such that

řb
i=ij,0

ti ą B,

or in words: bj + 1 could not be added to Ij without breaking B-boundedness. Note that I could
be finite or infinite.

By a straightforward pumping argument, since
řbj
i=ij,0

ti ą B and since B = (n ´ 1)N and
weights are upper-bounded by N , there are for each j such that Ij is finite two indices ij,1 and ij,2
belonging to [ij,0, bj] Ď Ij such that π[ij,1,ij,2] is a cycle of positive sum.

We assume towards contradiction that wprio,I has 2n + 1 relevant occurrences of some odd
priority p: there exist j0 ă j1 ă ¨ ¨ ¨ ă j2n such that for all k P [0, 2n],

max
iPIjk

pi = pik = p

for some indices pik P Ijk , and moreover for all i ď i2n it holds that pi ď p. There must be two
indices k0, k1 P [0, 2n] with k0 + 1 ă k1 such that vjk0 = vjk1 . For simplicity, we let u and u1

denote respectively vjk0 and vijk0+1,1
defined above. We have

π[jk0 ,jk1] : u
w1

ù u1 w2
ù u1 w3

ù u,

where w2,wei has positive sum. Therefore for some large enough s the cycle obtained by repeating s
times the cycle around u1, formally

π1
s : u

w1
ù u1 w2

ù u1 w2
ù . . .

w2
ù u1

looooooooooooomooooooooooooon

s times

w3
ù u

has positive sum. Moreover its first priority is p which is odd and all priorities areď p and therefore
(π1

s)
ω does not satisfy W .

152 Finite monotonic graphs for mean-payoff parity games

Truncated vector of odd occurrences. Note that in a (finite or infinite) word of priorities w =
p0p1 . . . there are only relevant occurrences of priorities ě p0. Therefore in the current setting it
is natural to consider the truncated vector of odd occurrences which is defined over w = p0p1 . . . by
restricting to occurrences of odd priorities greater than p0, formally

occtr(w) = (occd´1(w), occd´3(w), . . . , occrp0sodd(w)).

Note in particular that its last index is given by pocctr(w) = rp0s
odd.

Definition of ϕ. Given a word w = (p0, t0)(p1, t1) ¨ ¨ ¨ P C
ω and a window decomposition

I = I0I1 . . . we let ϕ(w, I) P (ω + 1)ďd/2 ˆ (ω + 1) be given by

ϕ(w, I) =
(
occtr(wprio,I), supi1PI0

ři1´1
i=0 ti

)
.

In words ϕ(w, I) is comprised of two components: the first gives (truncated) relevant odd occur-
rences among those which are maximal for the Ij ’s, and the second gives the peak of the profile
within the first window. Note that both of these may be infinite (or have infinite coordinates) in
general.

On the example word below (which belongs to W),

w = (3, 4)(1,´4)(6, 5)(2,´1)(3, 8)
loooooooooooooooooomoooooooooooooooooon

I0

(2, 3)(5,´12)
loooooomoooooon

I1

(9,´1)(8, 2)(9,´4)(7, 18)(9, 0)(9, 0)(9, 0) . . .
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

I3

where I = [0, 4][5, 6][7, ω] and if d = 10, we have

ϕ(w, I) =
(
occtr(659), supt4, 0, 5, 4u

)
=
(
(1, 0), 5

)
.

Indeed in this case, maxiPI0 pi = 6 therefore only relevant occurrences of 9 and 7 are accounted for;
there is only one occurrence of 9 as the maximum priority over I3 and no occurrence of the priority
7; and lastly 5 = 4´ 4 + 5 is the peak of the profile over I0 (note that 4´ 4 + 5´ 1 + 8 is not a
profile of I0 by definition, since the sum ranges over integers up to i1 ´ 1).

Note that if wwei is B-bounded over I then in particular the second component of ϕ(w, I) is
ď B.

Lemma 7.4 (Main technical ingredient for universality)

Let w = (p0, t0)w
1 and let I be a window decomposition over which wwei is B-bounded and

such that occtr(wprio,I) is finite. There exists a window decomposition I 1 such that w1
wei is B-

bounded over I 1 and the edge e given by

e = ϕ(w, I) (p0,t0)
ÝÝÝÝÑ ϕ(w1, I 1)

belongs to L.

In the proof below I 1 is always naturally defined from I simply by restricting to coordinates
ě 1. The formal definition differs according to whether I0 = t0u or not which is why the proof is
slightly tedious.

Proof. We let w = (p0, t0)(p1, t1) . . . and we use pI,j to denote maxiPIj pi. We also let w1 =
(p1, t1)(p2, t2) ¨ ¨ ¨ = (p1

0, t
1
0)(p

1
1, t

1
1) . . . and use the same notation p1

I1,j once I 1 = I 1
0I

1
1 . . . is

fixed. We let (u, r) = ϕ(w, I) and (u1, r1) = ϕ(w1, I 1) (again, once I 1 is fixed this makes sense).
We distinguish three cases according to I.

2. Universality of LT 153

• If there is i ě 1 such that i P I0 and pi = pI,0. Then we let I 1 be given by

I 1
0 = (I0 ´ 1)X ω ‰ ∅ and I 1

j = Ij ´ 1

where it makes sense (meaning Ij is defined). It is clear that w1
wei is B-bounded over I 1 since

wwei is B-bounded over I.

Then we have wprio,I = w1
prio,I1 therefore u = u1. Now let i11 P I 1

0 be such that r1 =
ři11´1

i1=0 t
1
i1 =

ři11
i=1 ti. Then i11 + 1 P I0 therefore

r = maxi1PI0

ři1´1
i=0 ti ě t0 + r1

hence e is an edge of type (2b).

• If |I0| ě 2 and for all i P I0 with i ě 1 we have pi ă p0. In this case we let I 1 be defined just
like above, and we have wprio,I = p0w

2 and w1
prio,I1 = p1w2 for some finite or infinite word

of priorities w2 and with p0 ą p1. Note that u = occtr(p0w
2) is such that pu = rp0s

odd.

All relevant occurrences of priorities ě p0 in p1w2 are also relevant in p0w2. Therefore if p0
is even we have u ěp0+1 u

1 and e is of type (1a). If p0 is odd, 0 is an additional occurrence
of p0 in p0w2 therefore u ąp u1 and e is of type (1b).

• If I0 = t0u. Then we let I 1 be given by I 1
j = Ij+1 that is I 1 = I1I2 . . . and it is clear thatw1

wei
is B-bounded over I 1. In this case we have wprio,I = p0w

1
prio,I1 thus all relevant occurrences

of priorities ě p0 in w1
prio,I1 are also relevant in wprio,I , and again pu = rp0s

odd: we conclude
just like in the previous case.

We now let
ϕ(w) = mintϕ(w, I) | wwei is B-bounded over Iu

where the minimum is taken lexicographically. By Lemma 7.3 it holds that ϕ(w) P [0, 2n]ďd/2 ˆ
[0, B] for colourations w of graphs of size ď n which satisfy W .

Given a vertex v in such a graph we naturally let

ϕG(v) = max
v

w
ù in G

ϕ(w).

We define T (G) Ď [0, 2n]ďd/2 as the projection of ϕG(V) on its first coordinate; note that ϕG(v) P
LT (G) by definition.

Universality. We now have all the tools in hands to prove our main result in this chapter.

Theorem 7.1 (Universality of the construction)

If G is a finite graph of size ď n satisfying W then ϕG defines a graph morphism from G to
LT (G). In particular if T is an n-universal tree then LT is a (W,n)-universal monotonic graph.

Proof. For the second statement it suffices to compose on the right with the natural morphism of
LT (G) into LT therefore we concentrate on the first statement: let G be such a finite graph and let

e = v
(p,t)
ÝÝÑ v1 in G.

Let v1 w1

ù inG be such that ϕG(v1) = ϕ(w1) and let I be a window decomposition over which
wwei isB-bounded and which is minimal in the sense that ϕ(w) = ϕ(w, I). Then Lemma 7.4 gives

154 Finite monotonic graphs for mean-payoff parity games

a window decomposition I 1 such that w1 is B-bounded over I 1 and ϕ(w, I) (p,t)
ÝÝÑ ϕ(w1, I 1) is an

edge in L.
Now we have in L

ϕ(v) ě ϕ(w, I) (p,t)
ÝÝÑ ϕ(w1, I 1) ě ϕ(w1) = ϕ(v1),

and therefore by left and right composition in L, ϕ(v) (p,t)
ÝÝÑ ϕ(v1) belongs to L and thus also to its

restriction LT (G) to T (G).

8Finite monotonic graphs for multi
mean-payoff games

Context and contribution. In this short chapter, we study the lim sup variant of multi mean-
payoff games which was introduced by Velner, Chatterjee, Doyen, Henzinger, Rabinovich and
Raskin [VCD+15]. We refer to the introduction for a survey of multi mean-payoff games.

The lim sup variant (formally defined below) is well-known to be tractable, and a O(mn2dN)
algorithm was presented in [VCD+15], essentially by reduction to nd calls to a procedure for MPď0.
The lim inf variant however is NP-complete¹ [VCD+15], and known techniques [CV12; CJL+17]
for solving it are more involved.

We give a simple construction of a universal monotonic graph, improving the runtime bound to
O(mn log(n)dN), thus removing a multiplicative n/ log(n) factor. The first section gives the main
technical result, which roughly states that two quantifiers can be exchanged. The second section
shows how combine (universal) monotonic graphs to build on such a result. The approach we took
in [AFGL+21] is exactly the same, but in the vocabulary of separating automata.

Notations. We fix non-negative integers N and d. The set of colours is C = [´N,N]d. We
write letters as t = (t0, t1, . . . , td´1) = (tj)jP[0,d´1] P C and words as w = t0t1 Given a
word w = t0t1 . . . and j P [0, d ´ 1] we write wj = tj0t

j
1 . . . for the projection of w on the j-th

coordinate.
We let MPj,ď0 denote the threshold mean-payoff objective over the j-th coordinate, formally

MPj,ď0 = tt0t1 ¨ ¨ ¨ P C
ω | lim supn

1
n

řn´1
i=0 t

j
i ď 0u

= tt0t1 ¨ ¨ ¨ P C
ω | wj P MPď0u.

The multi mean-payoff objective is the union of the MPj,ď0’s, formally

W =
Ťd´1
j=0 MPj,ď0

= tw P Cω | Dj, lim supn
1
n

řn´1
i=0 t

j
i ď 0u.

It is positionally determined for Eve by concavity of MPď0 in the lim sup semantic, as proved by
Kopczyński [Kop06]. It turns out that satisfyingW for a finite C-graph is quite easy to understand.

Given a C-graph G, we let Gj denote the [´N,N]-graph obtained by projecting on the j-th
coordinate, formally

v
t
ÝÑ v1 in Gj ðñ Dt1 P C, t1j = t and v t1

ÝÑ v1 in G.

The mean of a finite word w P Z is its sum divided by its length, and the terminology is extended
to paths.

¹In [VCD+15], coNP-completeness is established, but the point of view taken is that of the opponent.

155

156 Finite monotonic graphs for multi mean-payoff games

1 Strongly connected graphs satisfying W

A graph is strongly connected if for any v, v1 P V there is a path from v to v1. The following states
a collapse result for strongly connected graphs: if W is satisfied then one of the MPj,ď0 is satisfied.

Theorem 8.1 (Collapse for strongly connected graphs)

Let G be a finite strongly connected graph satisfyingW . There exists j P [0, d´ 1] such that G
satisfies MPj,ď0.

A similar result was given in [VCD+15] (Lemma 8 therein), our proof is a bit simpler.

Proof. Let n = |V | and assume for contradiction that for each j P [0, d ´ 1], G does not satisfy
MPj,ď0, or equivalentelyGj is not bounded: it has a positive cycle which gives a cycle πj : vj

wj
ù vj

in G such that wjj has positive sum.
Let j P [0, d´ 1] and let π : v0

w
ù v in G be any finite path. Thanks to strong connectedness

there is a path from v to vj , and we consider

π1
k : v0

w
ù v

w1

ù vj
wj

ù vj
wj

ù . . .
wj

ù vj
loooooooooooooomoooooooooooooon

k times

for r P ω, whose coloration is uk = ww1(wj)
k. The sum of ujk is s + s1 + ksj and its length is

r+r1+krj with obvious notations, and therefore its mean goes to sj/rj ě 1/nwhen k grows large.
Therefore k can be picked large enough so that the mean of π1

k on the j-th coordinate is ě 1/(2n).
Starting from the empty path and iterating this process cyclically for j = 0, 1, . . . , d´1, 0, 1, . . .

constructs an infinite path whose mean-payoff is ě 1/(2n) on every coordinate, which contradicts
the assumption.

We now exploit this property to construct succint (W,n)-universal monotonic graphs.

2 A W -universal monotonic graph

Direct sum of graphs. Given a finite sequence of graphsG0, . . . , Gr´1 over V0, . . . , Vr we define
their direct sum G to be the C-graph over t0u ˆ V0 Y ¨ ¨ ¨ Y tr ´ 1u ˆ Vr´1 given by

(i, v)
c
ÝÑ (i1, v1) in G ðñ i ą i1 or (i = i1 and v c

ÝÑ v1 in Gi).

This is illustrated in Figure 8.1. We denote G by G0 ‘ ¨ ¨ ¨ ‘Gr´1 or
Àr´1

i=0 Gi.
Informally, G is obtained by putting copies of theGi’s next to one another and adding all edges

from right to left.
Note that this operation is associative up isomorphism.

Lemma 8.1 (Closure properties of ‘)

(i) If G0, . . . , Gr´1 satisfy a prefix-decreasing objective W then so does their direct sum.

(ii) If L0, . . . ,Lr´1 are monotonic then so is their direct sum.

(iii) If G embeds in Gi0 for some i0 then it embeds in
À

iGi.

2. AW -universal monotonic graph 157

Figure 8.1: Illustrating the direct sum. Many edges are not depicted for clarity.

Proof. (i) A path in
À

iGi eventually remains in some Gi therefore it satisfies W by prefix-
decreasingness.

(ii) The order over L =
À

i Li is naturally given by

(i, ℓ) ě (i1, ℓ1) ðñ i ą i1 or (i = i1 and ℓ ě ℓ1 in Li).

We show-left composition: assume (i, ℓ) ě (i1, ℓ1)
c
ÝÑ (i2, ℓ2) in L. If i ą i2 the edge

(i, ℓ)
c
ÝÑ (i2, ℓ2) belongs to L by definition and otherwise i = i2 therefore i = i1 = i2 and

left composition in Li concludes. The proof of right composition follows the same lines.

(iii) Let ϕi0 : V Ñ Vi0 be a morphism from G to Gi0 . We extend it to a morphism ϕ into the
direct sum by the formula ϕ(v) = (i0, ϕi0(v)). If v c

ÝÑ v1 in G then ϕi0(v)
c
ÝÑ ϕi0(v

1) in Gi0

therefore ϕ(v) c
ÝÑ ϕ(v1) in the direct sum.

Therefore if L0, . . . ,Lr´1 are finite monotonic graphs satisfying W then so is their direct sum.
Note that this can be directly extended to ordinal-indexed direct sums of (potentially infinite) well-
monotonic graphs, but doing so is not required here.

Lemma 8.2 (Construction for strongly connected graphs)

For each n there is a monotonic graph Lsc
n of size d(n´ 1)N which satisfies W and embeds all

strongly connected graphs of size ď n satisfying W .

Proof. For each j P [0, d´ 1] we let Ljn be the monotonic graph over [0, (n´ 1)N] given by

ℓ
t
ÝÑ ℓ1 ðñ tj ď ℓ´ ℓ1.

We know by Chapter 6 that Lj embeds any C-graph of size ď n satisfying MPj,ď0, and that it
satisfies MPj,ď0 therefore it satisfies W .

We conclude thanks to Theorem 8.1 and Lemma 8.1 that the direct sum Lsc
n =

Àd´1
j=0 Ljn

embeds all strongly connected C-graphs of size ď n which satisfy W .

From there we may already obtain a (W,n)-universal monotonic graph of size dn(n ´ 1)N
by considering the direct product of n copies of Lsc

n . We will actually give a slightly more succint
construction which replaces the quadratic dependency in n with n logn by applying the technology
developped for parity games.

Universal words. We consider finite words of non-negative integers u P ω˚. The sum of such a
word is the sum of its letters. A morphism from u to u1 is² an increasing f : |u| Ñ |u1| such that for
all i P |u| we have ui ď u1

f(i).
²Recall that |u| denotes the length of the word u, not its sum.

158 Finite monotonic graphs for multi mean-payoff games

Observe a strong parallel with Chapter 5: words and their morphisms are exactly equivalent to
trees of height 2 and their morphisms³ by the bijection

u0u1 . . . ur´1 Ø (t0u ˆ |u0|)Y (t1u ˆ |u1|)Y ¨ ¨ ¨ Y (tr ´ 1u ˆ |ur´1|).

(Any tree of height 2 can be written in this form up to isomorphism.) The correspondence is
illustrated in Figure 8.2.

Figure 8.2: On the left, two sequences and a morphism between them. On the right, corresponding trees of
height 2 and a tree morphism.

A word w P ω˚ is n-universal if it embeds all words with sumď n. Instanciating the quasipoly-
nomial construction of a universal tree from [JL17] (see Chapter 5) to height 2 gives a succint
construction of a nk-universal word uk for nk = 2k+1 ´ 1 which can also be described inductively
by

u0 = 1 and uk = uk´1nkuk´1.

The first few values are given by

u0 = 1 u1 = 1.3.1 u2 = 1.3.1.5.1.3.1 u3 = 1.3.1.5.1.3.1.9.1.3.1.5.1.3.1

One may prove directly by induction over k that uk is nk-universal. First, this is clear for u0. Now
if u has sum ď nk = 2k+1 ´ 1 then u can be written as u = u1uiu

2 for some i where u1 and u2

have sum ď nk. Therefore both u1 and u2 embed via f 1 and f2 in uk´1 and these embeddings are
easily merged into a morphism from u to uk.

It is also easy to see by induction that the sum of nk is upper bounded by k2k+1 ď nk lognk.
We write uk = uk,0uk,1 We are now ready to state the main result.

Theorem 8.2 (Succint universal monotonic graph for multi-energy games)

For each k P ω the monotonic graph

L =
à

iP|uk|

Lsc
uk,i

is (W,nk)-universal. It has size ď dnk log(nk)N .

³Existence of a morphism between sequences is equivalent to existence of a morphism between the corresponding
trees (number of morphisms however differ).

2. AW -universal monotonic graph 159

This implies for all n a (W,n)-universal monotonic graph of size ď 2dn log(n)N simply by
rounding n up to the next integer of the form 2k+1 ´ 1.

Proof. The facts that L is monotonic and that it satisfiesW follow from Lemmas 8.1 and 8.2. LetG
be a graph over V satisfyingW of sizeď nk and consider a topological ordering g : V Ñ [0, r´ 1]
of its strongly connected components, formally[
v ÝÑ v1 in G ùñ g(v) ě g(v1)

]
and

[
g(v) = g(v1) ùñ v ù v1 ù v in G

]
.

For each i P [0, r´1], the restrictionGi ofG to Vi = f´1(i) is a strongly connected graph satisfying
W and therefore it embeds in Lsc

p provided p ě |Vi| by Lemma 8.2.
Now by universality of uk there is a word-morphism f from |V0||V1| . . . |Vr´1| to uk, which is

a map f : [0, r´ 1]Ñ |uk| satisfying for all i P [0, r´ 1] that |Vi| ď uk,f(i). Thus there is for each
i a graph-morphism ϕi from Gi to Lsc

uk,f(i)
.

Hence the morphism ϕ : V Ñ L defined over Vi by ϕ(v) = (f(i), ϕi(v)) defines a graph
morphism: the image of an edge Vi

V
ÝÑi1 belongs to the f(i)-th component of the sum if i = i1 and

it otherwise i ą i1 by definition of g therefore the edge belongs to L.

We conclude that multi mean-payoff games can be solved by value iteration inLwith complexity

runtime: O(mdn log(n)N) space required: O
(
n log(dnmN)

)
.

This saves a factor n/ logn in the runtime over the algorithm of [VCD+15].

Conclusion and perspectives for Part II

We have studied value iteration algorithms, which solve games by Kleene iteration when given a
monotonic universal graph. We have seen that such graphs may be obtained without blow-up from
strongly separating automata, and studied two different variants of the value iteration algorithm.

We showed that graphs satisfying parity (or equivalently, winning positional strategies) naturally
induce ordered trees obtained by counting maximal numbers of relevant odd priorities along their
paths. This allowed to connect to universal trees, for which we presented the known upper and
lower bounds. There remains a linear gap between the two bounds, we would expect that the lower
bound might be improved because of the somewhat brutal minoration indicated by (˚) on page 137;
however we have not been able to close this gap so far.

For mean-payoff games, we saw that the BCDGR algorithm, which has state-of-the-art quasipoly-
nomial O(mnN) runtime, is easily described in our framework. We gave a N1´1/n lower bound,
and aO(nN) construction which matches this dependency inN when n is fixed. Again, this leaves
a linear n multiplicative gap, which we have not been able to close. We also studied the case where
the set of weights is fixed with cardinality k, and gave upper and lower bounds of roughly nk.

For mean-payoff parity games, we showed how to formulate the state-of-the-art value iteration
algorithm of [DJL18] in our framework. We also explained differences between the two approaches:
ours is completely asymmetric and therefore more direct. Finally, for multi mean-payoff games in
the lim sup semantic, we showed how to combine universal monotonic graphs, and imported an
idea from parity games (universal sequences) to improve on the bound of [VCD+15].

Which structures are modular? We would like to further study what structural properties of
the natural construction L[0,(n´1)N] for mean-payoff games enables the combinations with parity
games⁴ (Chapters 7) and/or with other such structures (Chapter 8). Can these constructions be
generalised to other meaningful subclasses of monotonic graphs?

Note that we know from the work of Chatterjee, Henzinger and Piterman [CHP07] that solving
disjunctions of two parity conditions is NP-complete, therefore one cannot expect to come up with
such direct constructions for combining quasipolynomial constructions for parity games.

⁴One can easily imagine using a similar construction for a disjunctions with an arbitrary lexicographical product.
Can we start with the union of MPď0 and a lexicographical product?

161

Part III

Beyond value iterations

163

9Strategy improvement with fixpoint
valuations

The three chapters of Part III are more independent and exploratory, and we make no general discussion:
each has its own introduction and/or conclusion.

This chapter is concerned with strategy improvement algorithms; we refer to the general intro-
duction for additional context. Our main result is the following: a valuation which is computed by
a monotonic graph is fit for strategy improvement if and only if it is positional for Adam. The first
section introduces the necessary definitions, proves the theorem, and compares with existing related
work. The second section discusses concrete applications and perspectives.

1 A generic framework for strategy improvement

In this section, we first define strategy improvement algorithms, then introduce fixpoint valu-
ations and prove our main theorem, and finally compare with other generic frameworks from the
literature.

1.1 Strategy improvement

In our framework, it is crucial that Adam is the improver: the algorithm iterates over Adam
positional strategies τ0, τ1, . . . , which induce graphs Gτ0 , Gτ1 , . . . controlled by his opponent Eve.

Graphs controlled by Eve. In contrast with the rest of the thesis, we therefore now see (finite)
graphs as arenas which are controlled by Eve in this chapter.

Consequently given a valuation val and a graph G we now let

valG(v) = inf
v

w
ÝÑ in G

val(w),

and given a completely monotonic graph L, a finite graph G over V and a progress measure ϕ we
now have

UpdL
G(ϕ)(v) = min

v
c
ÝÑv1 in G

ρ(ϕ(v1), c).

Definitions over general arenas remain unchanged.

Switches. Fix a finite arena G over V . We describe strategy improvement algorithms from the
point of view of Adam; the algorithm iteratively improves on a uniform positional strategy τ :

165

166 Strategy improvement with fixpoint valuations

VAdam Ñ E for Adam. Given such a strategy τ0, and given an edge e1 = v
c1
ÝÑ v1

1 in G, we let τ1
denote the uniform positional Adam strategy given by

τ1(v) = e1 and @v1 ‰ v, τ1(v
1) = τ0(v

1).

We say that τ1 is obtained from τ0 by switching with e1.
We now let val : Cω Ñ X be an arbitrary valuation. Given a uniform positional strategy τ for

Adam, we say that e1 defines an improving switch for τ if the strategy τ 1 obtained by switching with
e1 satisfies

valGτ ă valGτ 1 .

Axioms. We say that val is fit for strategy improvement if the three following conditions are satis-
fied.

(A) Graph tractability: given a graph G (controlled by Eve) one may compute valG efficiently.

(B) Co-positionality: the valuation is uniformly positionally determined for Adam.

(C) Existence of improving switches: for any uniform positional strategy τ which is not val-optimal,
there exists an edge e1 which defines an improving switch.

Graph tractability corresponds to efficient computation of an optimal counter strategy σ, and co-
positionality with the existence of an optimal uniform positional strategy τ for Adam. The exis-
tence of improving switches is key for applying the precise mechanism of strategy improvement
algorithms.

Strategy improvement. If the three conditions hold, one may run a strategy improvement algo-
rithm over a finite arena G, which is described as follows.

1. Initialise τ as an arbitrary uniform positional strategy for Adam.

2. For each edge e1, check if it defines an improving switch for τ .

3. If there is no such edge, then τ is necessarily optimal by (C) and the iteration stops.

4. Otherwise, choose an improving switch e1 for τ , replace τ with the strategy τ 1 obtained by
switching with e1, and iterate from step 2.

Thanks to graph tractability, each iteration is effective. The choice of the improving switch in step 4
is often called a switching policy. For known valuations which are fit for strategy improvement, it is
generally the case that improving switches are combinable, in the sense that applying several at the
same time always improves the valuation.

Moreover, step 2 can usually be performed with only a single call to the procedure for solving
graphs: one may determine improving switches directly from valGτ , without having to explicitly
compute valGτ 1 . This allows to save a factor m in the complexity of performing an iteration.

If the set of values X is finite, then n|X| provides an upper bound on the number of itera-
tions, which is usually very large; strategy improvement algorithms generally display a much faster
convergence.

1. A generic framework for strategy improvement 167

1.2 Fixpoint valuations

We say that val : Cω Ñ L is a fixpoint valuation if L is the set of vertices of a completely
monotonic graph L such that for any finite arena G,

valG = ψL
G.

In words, val coincides with the L-evaluation ψL
G (which is defined to be the least fixpoint of UpdL

G,
see Chapter 1) over finite arenas. In particular, a fixpoint valuation is always positional for Eve.

Theorem 4.1 states that if L is finite then valL is a fixpoint valuation (in this case, the above
identity even holds over arbitrary arenas). We have seen many other examples of fixpoint valuations;
we refer to the next section for a discussion. Our main technical result in this chapter is the following.

Theorem 9.1 (Strategy improvement with fixpoint valuations)

A fixpoint valuation which is uniformly positionally determined for Adam over finite arenas has
improving switches.

Stated differently any fixpoint valuation which is tractable over graphs and co-positionally de-
termined is fit for strategy improvement.

Proof. Let val : Cω Ñ L be a fixpoint valuation associated to the completely monotonic graph L
over L, and consider a finite arena G over V . Let τ0 : VAdam Ñ E be a uniform positional strategy
for Adam which is not optimal, which rewrites as

ψL
Gτ0

ă ψL
G.

For convenience we let ψ0 and ψ respectively denote the left hand-side and right hand-side and
G0 = Gτ0 (which is controlled by Eve). By Knaster-Tarski ψ0 is not a prefixpoint of UpdG (it is
smaller than the least fixpoint) : there is v P V such that

UpdG(ψ0)(v) ą ψ0(v) = UpdG0
(ψ0)(v).

Now if v P VEve then UpdG(ϕ)(v) and UpdG0
(ϕ)(v) coincide for any progress measure ϕ (and in

particular for ψ0), therefore it must be that v P VAdam and the above rewrites as

max
v

c1ÝÑv1
1

ρ(ψ0(v
1
1), c1) ą ψ0(v) = ρ(ψ0(v

1
0), c0),

where e0 = v
c0
ÝÑ v1

0 = τ(v). We let e1 = v
c1
ÝÑ v1

1 be such that

ρ(ψ0(v
1
1), c1) ą ρ(ψ0(v

1
0), c0),

and prove that it defines an improving switch for τ0. We let τ1 be obtained from τ by switching
with e1 and let ψ1 = ψGτ1

. We consider the switching arena (see illustration in Figure 9.1) G1 over
V whose partition is given by V 1

Adam = tvu and V 1
Eve = V ztvu, with outgoing edges e0 and e1 from

v and which is everywhere else identical to G0 (and therefore also to G1 = Gτ1).
There are only two uniform positional strategies τ 1

0 and τ 1
1 for Adam inG1, respectively given by

τ 1
0(v) = e0 and τ 1

1(v) = e1, and their graphs G1
τ 1
0

and G1
τ 1
1

respectively correspond to G0 and G1.
Therefore the values of τ 1

0 and τ 1
1 are equal to those of τ0 and τ1 respectively, namely ψ0 and ψ1.

168 Strategy improvement with fixpoint valuations

Figure 9.1: An example of switching arena G1 in the proof of Theorem 9.1. Note that many vertices have a
single outgoing edge: these correspond to Adam vertices in G.

Now

UpdG(ψ0)(v) = max(ρ(ψ0(v
1
0), c0), ρ(ψ0(v

1
1), c1)) = ρ(ψ0(v

1
1), c1) ą ρ(ψ0(v

1
0), c0) = ψ0(v),

and thus τ 1
0 is not optimal in G1. By co-positional determinacy of val τ 1

1 is therefore uniformly
optimal in G1 and thus

ψ1 ą ψ0,

the sought result.

Note from the proof that for fixpoint valuations, one may determine improving switches directly
from Gτ , saving a factor m in the complexity of each iteration as explained above.

1.3 Comparisons with other generic frameworks

Frameworks similar to ours have been discussed on several occurrences. The axioms usually
correspond to tractability, existence of a unique optimum, and of improving switches, and are proved
by hand. The third is often the most tedious to prove. Thorough expositions can also be found in
Fearnley’s or Friedmann’s PhD theses [Fea10b; Fri11b].

We elaborate on a paper of Costan, Gaubert, Goubault, Martel and Putot [CGG+05] which
proposes a general formalism tailored for direct applications in static analysis. Their approach is
more general, and their focus is different. For this discussion, we write LFP(h) for the least fixpoint
of a given monotonous operator h. In their setting, they dispose of an operator f over an (arbitrary)
complete lattice X , which is given by f = infG, where each g P G is a monotonous operator (and
therefore, so is f), and such that LFP(g) can be computed efficiently. Here, G is typically expo-
nential, and a partial algorithm is given for computing LFP(f) = infgPG LFP(g) without explicitly
computing each LFP(g).

To instantiate our formalism into theirs, one would set X = LV , the set of progress measures,
and G = tUpdL

Gτ
, τ Adam positional strategyu. We would then have f = UpdL

G = supG, a
supremum rather than an infimum (dualising the order does not help here since we wish to compute
a least fixpoint and not a greatest fixpoint; the greatest fixpoint is the constant J progress measure).
The alternation LFP(supG) in our framework seems irreconcilable with theirs, where LFP(infG) is
computed.

2. Applications and perspectives 169

Their working assumption of “lower selection” which allows to run their algorithm is trivially
verified in our case, and moreover no general condition is given which guarantees convergence
towards a fixpoint (only a postfixpoint is guaranteed in general). With additional assumptions (of
geometrical nature; roughly, f is non-expansive), it is also proved that provided the algorithm reaches
a fixpoint, it reaches the least fixpoint. All in all, the two frameworks are completely incomparable.

We wonder if there exist generic algorithms for computing arbitrary LFP(supG), and would be
curious to compare. However, we believe that exploiting the structure of X = LV is instrumental
in our approach, and allows to state co-positionality as a natural necessary condition, which in our
case turns out to be sufficient (Theorem 9.1), assuming the LFP(g)’s can be computed efficiently
(graph tractability).

Last, we comment on Kozachinskiy’s recent paper [Koz21a] which establishes that strategy im-
provements may be run with any bi-positional continuous valuation val : Aω Ñ R. Actually, it
can be inferred from Theorem 22 in [Koz21a] that any such valuation is a fixpoint valuation, and
moreover with an operator that admits a unique fixpoint. In this sense, our framework generalises
Kozachinskiy’s (although establishing Theorem 22 is still required, and difficult), by allowing for
fixpoint valuations which do not admit unique fixpoints.

2 Applications and perspectives

2.1 Discounted valuations

We have seen in Chapter 2 that discounted valuations are fixpoint valuations, and moreover they
are co-positional over finite arenas (actually even over arenas of finite degree). By the result of [Ye11],
when the discount factor is fixed, one may compute values over graphs in strongly polynomial time
O
(
mn
1´λ

log(n
1´λ

)
)
; this was improved toO

(
m

1´λ
log(n

1´λ
)
)

by [HMZ13]. Therefore the discounted
valuation is fit for strategy improvement. It was actually shown in [HMZ13] that there are at most
the same number O

(
m

1´λ
log(n

1´λ
)
)

of iterations, and thus the strategy improvement is strongly
polynomial when λ is fixed.

As it was shown in [ZP96], finite mean-payoff games can be reduced to discounted games by
taking λ sufficiently close to 1 (see also Chapter 2). Puri [Pur95] was the first to suggest running
strategy improvements for mean-payoff games or parity games by reduction to discounted games.
However Puri’s algorithm requires using rational numbers with high precision; each iteration re-
quires solving a linear program involving large numerical values.

Vöge [Vög00] and Vöge and Jurdziński [VJ00] overcame this difficulty for parity games by show-
ing how to run the same algorithm directly on the parity game. In particular, each iteration can be
computed in time O(mn), with a purely combinatorial algorithm. On the downside, the required
valuation is a bit more involved, and usually only defined over simple lassos. In this scenario, com-
puting the value of a given strategy (or solving a graph), corresponds to computing an optimal
(positional) counter strategy, which is guaranteed to exist as a special case of discounted games. For
completeness, the necessary axioms in [VJ00] are proven directly for parity games, making for a
heavy formalism and tedious proofs. A similar treatment of mean-payoff games obtained by a direct
reduction to stochastic games can be found in Friedmann’s thesis [Fri11b].

It is interesting to observe that the operators associated to discounted valuations, and therefore
also those corresponding to the approach of Vöge and Jurdziński, admit unique fixpoints.

170 Strategy improvement with fixpoint valuations

2.2 Energy valuation

We have seen that the energy valuation is a fixpoint valuation and moreover it is co-positional
over finite arenas (see Chapter 2). It is not hard to see that it is tractable over graphs, a modified
Bellman-Ford algorithm is given in [BFL+08] (see full version) with runtime O(nm); we give no
more details here. Therefore, it is fit for strategy improvement. Surprisingly, as far as we are aware,
this had not been precisely established before. This is probably due to the fact that the link between
mean-payoff and energy games was formalised in [BFL+08; BCD+11], roughly at the same time
that Friedmann gave his lower bounds [Fri09], which considerably tamed the excitement around
strategy improvement.

A very similar framework was given by Björklund, Sandberg and Vorobyov [BSV04a], who
essentially showed that one may run strategy improvements using the energy valuation whenever
the arena is modified so that Adam has 0-edges to a retreat vertex with just a 0-loop, and moreover,
only admissible strategies τ are considered, which are positional strategies such that Gτ has only ą 0
cycles (one also assumes, without loss of generality, that such a strategy is given to initialise the
algorithm). In Schewe’s work [Sch08], this second condition is replaced by the assumption (which
also does not incur loss of generality) that the game is bipartite, but the so-called retreat vertex is
still necessary. Luttenberger [Lut08] showed that in the presence of a retreat vertex, the formalisms
of [BSV04a; Sch08] and [Vög00; VJ00] actually coincide.

We believe that it is conceptually interesting to know that strategy improvements may be ran
with the energy valuation without having to add a retreat vertex, or restrict to admissible strategies.
This question was explicitly asked by Björklund, Sandberg and Vorobyov [BSV04a] (see conclusion
page 27). In our opinion, this is the simplest available strategy improvement framework for mean-
payoff games (or parity games by reduction), and our high-level proof is simply based on their
co-positionality over finite arenas, which is well established. We will also use this insight to simplify
the algorithm of [Sch08; Lut08] in the next chapter.

An important difference with formalisms based on discounted valuations is that here, fixpoints
are not necessarily unique. By reduction, the valuation obtained for parity games corresponds over
simple lassos to the vector of all occurrences until the last relevant odd occurrence if the lim sup is
even, and J otherwise, naturally ordered lexicographically. This is similar to [Vög00; VJ00], but
also different and (we believe) a bit simpler. Friedmann’s counterexamples are likely to also apply to
this setting, but we would like to verify this more carefully.

2.3 Parity games

The reduction to energy games immediately gives a fixpoint valuation over ωd, which is also
used by Schewe in [Sch08] together with a retreat vertex (these are called escape games in [Sch08]).
With the formalism of [Vög00; VJ00] this gives two different possibilities for running strategy im-
provements over parity games, both of which are also applicable to mean-payoff (or energy) games,
and subject to Friedmann’s exponential lower bounds.

A natural candidate for a strategy improvement specific to parity games is given by Walukiewicz
signatures [Wal96], or equivalently Jurdziński’s value iteration [Jur00]: the fixpoint valuation over
ωd/2 (or equivalently, over arenas of size ď n, over [0, n´ 1]d/2) defined by relevant occurrences of
odd priorities. However, and surprisingly, this valuation is not positional for Adam; an example is
given in Figure 9.2.

The lack of co-positionally also holds when considering valuations inherited from quasipoly-
nomial construction based on trees of height d/2. We believe that this fact underlies the non-
availability, as of today, of quasipolynomial strategy improvements.

2. Applications and perspectives 171

Figure 9.2: A parity game where a non-positional strategy is needed for Adam to achieve the maximal vector
of relevant odd occurrences (1, 1) from v1, by forcing a path of the form v1

1
ÝÑ v2

2
ÝÑ v1

3
ÝÑ v0

4
ÝÑ

As explained in the introduction, designing strategy improvements specific to parity games (be
they quasipolynomial or not) is well motivated. We believe that our work opens a very interesting
perspective in this direction: can we understand (either in general which might be easier, or specif-
ically for parity games) which monotonic graphs lead to co-positional valuations? What strategy
improvement algorithms are induced? These questions should be approached in the light of the
one-to-two player lift of Gimbert and Zielonka [GZ05], since fixpoint valuations are positional (for
Eve) in general: a fixpoint valuation is co-positional over finite arenas if and only if this is the case
for arenas controlled by Adam.

We also mention a recent related work of Koh and Loho [KL21], who present a quasipolynomial
strategy improvement algorithm for parity games based on universal trees – seemingly contradicting
our discussion. In their framework¹, the progress measure which is computed at each iteration
is forced to increase; it does not necessarily correspond to the least fixpoint of Gτ . In particular,
each strategy may arise multiple times in the overall iteration, which contrasts with usual strategy
iterations (including ours). The main technical contribution of [KL21] is an algorithm establishing
a strong graph-tractability property for universal constructions of [JL17], of [DJT20] and based on
the complete tree nd/2: given a graph G and a progress measure ϕ which is a postfixpoint of UpdG,
one may compute the least prefixpoint which is ě ϕ.

2.4 Other perspectives

Besides perspectives for parity games, we also believe that our framework could be useful for
its flexibility, for simplifying the study of strategy improvement iterations, or extending their ap-
plicability. First, could one describe the behaviour of Friedmann’s intricate examples in terms of
potential reductions (see next chapter), inherent to the energy approach? Could such insights be
used to break their mechanics by using other switching policies (designed specifically for energy
games)? Or could we at least simplify the examples, and understand better the limits of strategy
improvement? (We expect all these questions to be complicated, but worth exploring.)

Second, could the approach be generalised to non-positional (but still structured) Adam strate-
gies? A very interesting case study would be mean-payoff parity games (see Chapter 7), for which
designing practical algorithms – which are not available today – is well-motivated by applications
in reactive synthesis.

¹See the Cramer computation frame at the top of page 8 in [KL21].

10Exploiting symmetry in mean-payoff
games

1 Introduction

Deterministic algorithms for energy games. Recently, Dorfman, Kaplan and Zwick [DKZ19]
presented the first deterministic algorithm to break the combinatorial O(nc2n) barrier for solving
energy games. Their original technique combines a scaling method with an involved subroutine for
accelerating the convergence of the BCDGR algorithm. In the final version, the authors realised
that scaling can be removed, and the subroutine generalised and simplified to produce an algorithm
with complexity

O(min(nmN,m2n/2))

for solving energy games. We will call it the DKZ algorithm. It is presented as an acceleration
of the one of BCDGR, and inherits their state-of-the-art pseudopolynomial bound. It moreover
improves on the state-of-the-art combinatorial bound for deterministic algorithms, which was pre-
viously O(mn2n) from [GKK88; LP07] (see our general introduction for more details).

A careful examination of the DKZ algorithm (obtained after simplification and removal of scal-
ing) reveals a surprising similarity with the GKK algorithm of Gurvich, Karzanov and Khachiyan.
However, it is still unclear how to present the GKK algorithm as an acceleration of the one of
BCDGR. Moreover, the best known runtime bounds on the GKK algorithm are the pseudopoly-
nomial O(mn2N) from Pisaruk [Pis99], and the combinatorial O(mn2n) from the analysis of the
original paper [GKK88], both of which are (far) worse than the ones obtained by DKZ.

Contribution and outline. Our main contribution in this chapter is a novel symmetric presen-
tation and analysis of the GKK algorithm when it is ran on a simple arena, which are those whose
simple cycles have nonzero weight. (This technical assumption can be lifted at the cost of multiply-
ing N by n; more details about it below.) We obtain the pseudopolynomial bound

N + E+ + E´ + 1 ď nN + 1,

on the number of its iteration, where E+ and E´ are respectively the maximum finite energy value
and its dual (formally defined below). Each iteration has runtime O(m), therefore this improves
(assuming the arena is simple) on the state-of-the-art pseudopolynomial O(nmN) bound.

Moreover, all algorithms so far with runtimeO(nmN) are based on value iteration and explicitly
involve nN as their maximal finite constant: any instance of a game with vertices of infinite energy
values (or equivalently, positive mean-payoff values) has to exceed the value nN , regardless of the
structure of the arena. Our bound, although equivalent in the worse case, depends only on energy

173

174 Exploiting symmetry in mean-payoff games

levels in the arena, which are typically much smaller. We complement our result by adapting the
combinatorial analysis of [DKZ19] to the GKK algorithm, improving its combinatorial runtime
bound from mn2n to m2n/2, and therefore matching the state of the art.

Section 2 introduces the needed tools, which are (more or less) standard and based on the two
natural monotonic graphs for mean-payoff games; we also discuss the simplicity assumption. We
present the GKK algorithm in Section 3 and prove the announced pseudopolynomial and exponen-
tial bounds in Sections 4 and 5 respectively.

The last section presents a completely independent contribution, which is based on similar
tools (introduced in Section 2). We give an alternative (simpler) presentation of the algorithm
of Schewe [Sch08] and Luttenberger [Lut08], and propose a symmetric variant which we believe
has not been studied so far. More discussion and motivation is given in Section 6.

Related work. We mention a closely related work of Kozachinskiy [Koz21b], who gave an al-
ternative presentation of the DKZ algorithm (also for simple arenas), and extended the framework
to discounted games, for which he established the first 2O(n) bound, regardless of the discount λ.
Kozachinskiy’s approach for discounted games can also be presented quite naturally as a variant of
the GKK algorithm, but we will not give details here.

Another related work was undergone by Beffara and Vorobyov [BV01], who reported on an
empirical study of the GKK algorithm¹, which performs well in practice. They also found that ini-
tialising the GKK algorithm with a random potential update (see below) often leads to considerable
improvement over their benchmarks; the question is asked whether the randomised algorithm is
polynomial over parity games. A surprising recent paper of Lebedev [Leb16] answers in the nega-
tive.

Section 6 is based on a joint work with Antonio Casares. We also thank Alexander Kozachinskiy
for several interesting and fruitful conversations.

2 Potential reductions and simplicity

Monotonic graphs and symmetry. In contrast with parity games, it appears that mean-payoff
games have only very few natural universal monotonic graphs, and this claim is supported by the
results of Chapter 6. Informally, we believe that there are only two “meaningful” (or useful) mono-
tonic graphs, which correspond to the usual order over Z and its dual, and given by

ℓ
t
ÝÑ ℓ1 ðñ t ď ℓ´ ℓ1

or by reversing the order in the right hand side. In the first scenario, a progress measure is a mapping
ϕ : V Ñ Z (or to Z Y t+8u) and an edge v t

ÝÑ v1 is “valid for Eve” if t ď ϕ(v) ´ ϕ(v1). In the
dual point of view, an edge “is valid for Adam” if t ě ϕ(v)´ ϕ(v1). By “exploiting the symmetry”,
we mean “looking at a progress measure from both points of view”: an edge can be valid for Eve,
for Adam, or for both players (if there is an equality).

Such a symmetry is exploited in the analysis of DKZ, however their algorithm (which follows
the framework of BCDGR) is inherently asymmetric. The symmetry is much more apparent in
the GKK algorithm, however there is a slight asymmetry which comes from zero cycles. This justi-
fies our assumption of simplicity, with which the GKK algorithm admits a completely symmetric
presentation, leading to our improved analysis.

¹Similar prior studies by Lebedev have also been reported on, but we could not find access to them unfortunately.

2. Potential reductions and simplicity 175

Figure 10.1: Effect of the potential reduction given by ϕ(v) = 4 and ϕ(v1) = 0 for v1 ‰ v on the weights
of edges adjacent to v. Note that the sum of a path which neither starts nor ends in v is left unchanged.

A very convenient way to approach the study of such progress measures (which we will call
potentials) is given by potential reductions, which we attribute to [GKK88] in this context and
define just below. Potentials are intrinsically linked with energy games, and with the corresponding
monotonic graph, and can also be interpreted with the dual point of view. They have numerous
occurrences in the literature.

Potential reductions. We fix a finite Z-arena G over V .
A potential is a map ϕ : V Ñ Z, which are ordered pointwise. Given an edge e = v

t
ÝÑ v1 in

G, we denote
tϕ(e) = t´ ϕ(v) + ϕ(v1)

which we call the modified weight of e. Given e, the edge eϕ : v
tϕ(e)
ÝÝÝÑ v1 is called the modified edge.

The modified arena Gϕ over V is obtained from G by modifying all edges, formally

e = v
t
ÝÑ v1 in G ðñ eϕ = v

tϕ(e)
ÝÝÝÑ v1 in Gϕ.

A finite or infinite path π = e0e1 . . . in G corresponds to a modified path πϕ = eϕ0e
ϕ
1 . . . in Gϕ.

Given a finite path π = e0 . . . en´1 : v0
t1
ÝÑ . . .

tn´1
ÝÝÑ vn of length n, observe that the sum of πϕ is

related to that of π by the telescopic sum
n´1
ÿ

i=0

tϕ(ei) = ´ϕ(v0) + ϕ(vn) +
n´1
ÿ

i=0

ti.

We call moving from G to Gϕ a potential reduction. The above implies that mean-payoffs of
infinite paths, and therefore mean-payoff values of strategies and vertices, are left unchanged by
potential reductions, since the constant terms are absorbed in the limit by the multiplication with
1/n. The following theorem is crucial for us, it relates potential reductions and their effect on
energies. It is illustrated in Figure 10.2.

Theorem 10.1 (Potential reductions and energies)

Let ϕ be a potential such that 0 ď ϕ ď Energy+G. Then we have

Energy+
Gϕ + ϕ = Energy+G.

An analogous result was used by Hansen, Miltersen and Zwick [HMZ13] (Lemma 3.6) in the
setting of discounted games (where the hypothesis vanishes, essentially since there is a unique fix-
point). We prove it as an application of Lemma 1.6 from Chapter 2 but it can of course be proved
directly.

176 Exploiting symmetry in mean-payoff games

vertices with

mean-payo�

value >0

Figure 10.2: An illustration of Theorem 10.1. For vertices on the right, energy values in both arenas are 8.

Proof. Consider the construction L given in Chapter 2 for energy games, and let σ be a uniform
positional strategy which respects the prefixpoint Energy+G : V Ñ LJ. Let π = e0 . . . en´1 : v0

t0
ÝÑ

. . .
tn´1
ÝÝÑ vn be a finite path in G consistent with σ. By Lemma 1.6 the sum of π satisfies

n´1
ÿ

i=0

ti ď Energy+G(v0)´ Energy+G(vn).

Adding ´ϕ(v0) + ϕ(vn) on both sides yields

n´1
ÿ

i=0

tϕ(i) ď (Energy+G(v0)´ ϕ(v0))´ (Energy+G(vn)´ ϕ(vn)) ď Energy+G ´ ϕ(v0)

since ϕ ď Energy+G. Therefore we have

ϕ(v0) +
n´1
ÿ

i=0

tϕ(i) ď Energy+G(v0),

which implies the first inequality.
Conversely, we let σϕ be a uniform positional strategy which respects Energy+

Gϕ : V Ñ LJ. We
have for any consistent path π as above that

n´1
ÿ

i=0

tϕi ď Energy+
Gϕ(v0)´ Energy+

Gϕ(vn),

and by adding ϕ(v0)´ ϕ(vn) we get

n´1
ÿ

i=0

ti ď (Energy+
Gϕ(v0) + ϕ(v0))´ (Energy+

Gϕ(vn) + ϕ(vn)) ď Energy+
Gϕ(v0) + ϕ(v0),

since ϕ ě 0.

2. Potential reductions and simplicity 177

We say that a potential is positively safe for G if it satisfies the hypothesis of the theorem

0 ď ϕ ď Energy+G.

In particular, if ϕ coincides with Energy+G where it is finite, then the theorem tells us that all vertices
have Energy+-value 0 or8 in Gϕ.

Dual energy. We define the dual-energy valuation over Z by

Energy´(t0t1 . . .) = inf
nPN

n´1
ÿ

i=0

ti P [´8, 0].

Note that potentials ϕ and ϕ + c where c is a constant define the same reduction. Therefore it
is reasonable to consider potentials up to shifts. Since it is convenient to work with non-negative
potentials, given a potential ϕ we define

ϕ´ = ϕ´maxϕ

which is non-positive in general. We say that a potential ϕ is negatively safe if Energy´
G ď ϕ´ ď 0.

The dual version of Theorem 10.1 (obtained by reversing the sign of the weights) states that whenever
ϕ is negatively safe we have

Energy´

Gϕ + ϕ´ = Energy´
G.

We say that a potential is bi-safe if it is both positively and negatively safe, in which case both versions
of the theorem can be applied.

Observe that we have (Gϕ)ϕ
1

= Gϕ+ϕ1 : sequential applications of potential reductions corre-
spond to reducing with respect to the sum of the potentials.

Lemma 10.1 (Compositionality of safe reductions)

If ϕ is positively (or negatively, or bi-) safe for G and ϕ1 is positively (or negatively, or bi-) safe
for Gϕ then ϕ+ ϕ1 is positively (or negatively, or bi-) safe for G.

Proof. We first show the result for positively safe. Clearly ϕ + ϕ1 is non-negative since both are.
Now Theorem 10.1 gives

Energy+G = Energy+
Gϕ + ϕ ě ϕ1 + ϕ,

the sought inequality.
For negatively safe, again non-positivity of (ϕ+ϕ1)´ is direct. Using the fact that max(ϕ+ϕ1) ď

max(ϕ) + max(ϕ1) in general we obtain similarly

(ϕ+ ϕ1)´ = ϕ+ ϕ1 ´max(ϕ+ ϕ1) ě ϕ´maxϕ+ ϕ1 ´maxϕ1

= ϕ´ + ϕ
1´ = Energy´

G ´ Energy´

Gϕ´ + ϕ
1´ ě Energy´

G.

This also gives compositionality of bi-safety by conjunction.

This allows for iterative reasoning: if a (positively, negatively, or bi-) safe potential ϕ is found,
one may apply the reduction then focus only on finding a potential which is safe for Gϕ, essentially
discarding G.

178 Exploiting symmetry in mean-payoff games

vertices with

mean-payo�

value >0

Figure 10.3: Representation of energy values when no vertex has mean-payoff value zero; this is always the
case for simple arenas.

Simple arenas. We say that an arena G is simple if all simple cycles in G have nonzero sum.
In particular a simple arena has no vertex of mean-payoff value zero, since by positionality values
coincide with means of simple cycles.

Note that potential reductions preserve the sum of cycles, and therefore ifG is simple then so is
Gϕ. We will present the GKK algorithm only over simple arenas for which it admits a description
which is completely symmetric.

Given any arena G of size n, let G+ and G´ denote respectively the arenas obtained by multi-
plying all weights by n and adding one, and by multiplying all weights by n and subtracting one. It
is easy to see that G+ and G´ are simple, and that for each v we have

x ă 0 ðñ x+ ă 0 and x´ ă 0
x = 0 ðñ x+ ą 0 and x´ ă 0
x ą 0 ðñ x+ ą 0 and x´ ą 0

where x, x+ and x´ denote the mean-payoff values of v respectively in G,G+ and G´. Therefore
we may assume simplicity in general at the cost of blowing up the largest absolute value of a weight
N by a multiplicative factor of n.

Note that arenas obtained from the standard reduction from parity games (see preliminaries)
are simple. We do not know if mean-payoff or energy games arising from practical applications are
typically simple, or if the performing the above reduction would be necessary. Simple mean-payoff
games have made several occurrences in the literature, for instance in [Koz21a] or [BSV04a].

Reduced arenas. We say that an arena is reduced if the vertices are partitioned into N˚ and
P ˚ such that from N˚ Eve can ensure to only see non-positive weights and remain in N˚, and
symmetrically. Formally,

• vertices in VEve XN
˚ have a non-positive edge towards N˚,

• all edges outgoing from vertices in VAdam XN
˚ are non-positive and toward N˚,

• vertices in VAdam X P
˚ have a non-negative edge towards P ˚,

3. Symmetric presentation of the GKK algorithm 179

• all edges outgoing from vertices in VEve X P
˚ are non-negative and towards P ˚.

Figure 10.4: A reduced arena. Non-positive edges are represented in blue and non-negative ones in red.

Note that solving a simple reduced arena is trivial: vertices have mean-payoff ă 0 if and only if
they belong to N˚. In a simple reduced arena, vertices in N˚ have Energy+-value 0 and Energy´-
value ´8, and symmetrically vertices in P ˚ have Energy´-value 0 and Energy+-value8. (It is not
hard to see that this actually characterises simple reduced arenas; we will not use this fact.)

3 Symmetric presentation of the GKK algorithm

We fix a simple arena G. The GKK algorithm iterates potential reductions until obtaining a
reduced arena. The runtime for computing each reduction is O(m), therefore the overall runtime
is O(mℓ) where ℓ is the number of iterations.

Theorem 10.2 (Number of iterations of GKK over simple arenas)

The number of iterations of the GKK algorithm over simple arenas is bounded by both

N + E+ + E´ + 1 ď nN + 1 and O(2n/2),

whereE+ andE´ are respectively the maximal absolute values of finite Energy+ and Energy´ values
over V .

Note that we have E+ ď max(n+ ´ 1, 0)N and E´ ď max(n´ ´ 1, 0)N , where n+ and n´

are the respectively number of vertices with positive and negative mean-payoffs values, which satisfy
n+ + n´ = n. This implies the inequality on the left.

We now present how each iteration is computed. The two next sections respectively prove the
pseudopolynomial and the exponential upper bound.

Description of an iteration. Each iteration relies on a bipartition of the set of vertices, which is
completely symmetric thanks to our simplicity assumption. Observe that since there are no simple
zero-cycles inG any infinite path visits a non-zero weight. The arena is therefore partitioned into the
set of vertices N˚ from which Eve can ensure that the first visited non-zero weight is negative, and
the set of vertices P ˚ from which Adam can ensure that the first visited non-zero weight is positive.

Note that the partitionN˚, P ˚ depends only on the signs (and zeroness) of the weights, and not
on their precise values. FormallyN˚ is defined to be the winning region of the objective comprised

180 Exploiting symmetry in mean-payoff games

of all words whose first non-zero weight is negative. It is computable in linear time. In a terminology
formally introduced in the next chapter, N˚ is the Eve attractor to negative edges over non-positive
edges. This justifies our terminology of “attractor-based” for the GKK algorithm.

Figure 10.5: An example of the partition of the vertices intoN˚ and P ˚; for clarity, no details are given with
respect to P ˚ where the situation is similar. Blue, black and red arrows respectively represent negative, zero,
and positive edges. The layers depicted in N˚ correspond to the Eve-attractor over zero edges to negative
ones.
With regards to the explanation below: here three edges participate to the maximum defining δ´

A namely
e0, e1 and e2. Only e3 participates to the maximum defining δ´

E ; v1 has a non-positive edge towardsN˚ and
thus does not belong to SN .

As always, we focus on the point of view of Eve, and thus on N˚. By definition from N˚ Eve
is able to force that a negative edge is seen. The algorithm computes the worst possible (maximal)
negative value that Eve can ensure from N˚, which we now describe.

Consider an Adam vertex v in N˚: any edge towards P ˚ is necessarily negative otherwise v
would belong to P ˚. Therefore Adam may choose to switch to P ˚, but at the cost of seeing a
negative weight. We let

δ´
A = maxtt | N˚ X VAdam

t
ÝÑ P ˚u ă 0

denote the largest such weight Adam can achieve. It may be that there is no such edge in which case
δ´
A = max∅ = ´8.

From an Eve vertex v in N˚ if Eve has a non-positive edge towards N˚ she can follow this path
and avoid to switch to P ˚. Otherwise all edges outgoing from v towards N˚ are positive, and we
let

SN = tv P VEve XN
˚ | v

t
ÝÑ N˚ ùñ t ą 0u

be the set of Eve vertices inN˚ from which she is forced to switch to P ˚ or see a positive edge. Note
that a vertex v P SN necessarily has negative outgoing edges, which must therefore point towards
P ˚, otherwise v would not belong to N˚. Therefore we let

δ´
E = max

vPSN
mintt | v t

ÝÑ v1u ă 0,

and we now put
δ´ = max(δ´

E , δ
´
A) P [´8, 0).

The following result (and the dual one) will be exploited for our pseudopolynomial bound. We
prove it now since it refers to the definitions just above.

4. Pseudopolynomial upper bound 181

Lemma 10.2 (Relevance of δ´ in terms of energies)

It holds that Energy´
G takes values ď δ´ over N˚.

Proof. Consider a uniform positional strategy σ for Eve which assigns to v P (VEve X N˚)zSN a
non-positive edge towardsN˚, and to v P SN an edge of weightă δ´

E (which therefore necessarily
leads to P ˚). Consider an infinite path π : v0

t0
ÝÑ v1

t1
ÝÑ . . . from v0 P N

˚ which is consistent with
σ.

If π remains inN˚ then all weights are non-positive, and since moreoverG is simple it must be
that Energy´(π) = ´8. Otherwise, let i0 P ω be the first index such that vi0+1 P P

˚. If vi0 P VEve
then necessarily vi0 P SN and thus ti0 ď δ´

E ď δ´. If vi0 P VAdam then likewise ti0 ď δ´
A ď δ´.

Since moreover πăi0 remains in N˚ and is consistent with σ, it only sees non-positive weights, and
therefore Energy´(π) ď t0 + t1 + ¨ ¨ ¨+ ti0 ď δ.

Symmetrically one may define a relevant minimal positive weight for Adam from P ˚ by setting

δ+E = mintt | P ˚ X VEve
t
ÝÑ N˚u and δ+A = min

vPSP
maxtt | v t

ÝÑ v1u

and
δ+ = min(δ+E , δ

+
A) P (0,8],

where
SP = tv P VAdam X P

˚ | v
t
ÝÑ P ˚ ùñ t ă 0u.

We now finally let δ = min(´δ´, δ+) P (0,8]. If δ = 8 then δ´ = ´8 and δ+ = 8 which
implies that G is reduced and the iteration stops.

Otherwise we have δ ą 0 and we consider the positive potential given by

ϕ(v) =

#

δ if v P P ˚

0 if v P N˚.

Note that it is symmetric up to shifting by ´δ/2, and therefore so is the corresponding potential
reduction; it adds δ to the weight of edges from N˚ to P ˚, removes δ to the weight of edges from
P ˚ to N˚, and leaves other edges unchanged.

Lemma 10.2 implies that ϕ´ is negatively safe, while its dual version (Energy+ takes values
ě δ+ ě δ over G) says that ϕ is positively safe.

4 Pseudopolynomial upper bound

We introduce a terminology from [GKK88]: given a vertex v P VEve, its extremal edges are its
outgoing edges with minimal weight, and extremal edges of v P VAdam are its outgoing edges with
maximal weight. The extremal weight of v is the weight of its extremal edges which we denote
ext(v) P Z.

We say that a vertex is negative, zero, or positive, according to the sign of its extremal weight. We
let² N,Z and P denote the sets of negative, zero, and positive vertices in G. Note that N Ď N˚

and P Ď P ˚ while Z is split between both.

²We apologise for the clash in notations with our notation N for the maximal absolute value of a weight, which is
easily resolved thanks to context.

182 Exploiting symmetry in mean-payoff games

Figure 10.6: The three sets of verticesN ,Z and P , in relationship withN˚, P ˚. Lemma 10.3 states that from
an iteration to the next, no new vertex becomes negative or positive. We also display SN and SP although
these are not used for the pseudopolynomial bound (besides relying on Lemma 10.2).

We let G1 = Gϕ be obtained from G after the potential reduction introduced above, and use
primes to denote subsets of vertices and quantities defined as above in G1.

Lemma 10.3 (Evolution of signs of vertices)

We have
Z Ď Z 1, N Ě N 1 and P Ě P 1.

Proof. We prove that
@v P N˚, ext(v) ď ext1(v) ď 0
@v P P ˚, ext(v) ě ext1(v) ě 0.

This implies the lemma: if ext(v) = 0 then so does ext1(v) and if ext1(v) ă 0 then necessarily
ext(v) ă 0. We only prove the first line since the second follows by symmetry.

For the left inequality it suffices to observe that the weight of edges outgoing fromN˚ can only
increase: edges pointing toN˚ keep the same weight while those pointing towards P ˚ are increased
by δ. For the inequality on the right we make a quick case disjunction.

• Let v P N˚XVAdam. Then all extremal edges are non-positive, and those which point towards
P ˚ are even ď ´δ by definition of δ hence they all remain non-positive.

• Let v P N˚ X VEve. The result follows directly if v has a non-positive outgoing edge towards
N˚ since it is left unchanged. Otherwise v P SN hence v has an outgoing edge of weight
ď ´δ which therefore remains non-positive.

We now let G = G0, G1, G2 . . . denote the sequence of arenas encountered throughout the
iteration, and use obvious notations such as N j, P j,˚, δj or ϕj . In particular Gj+1 is defined if and
only if δj ă 8.

Given j0 such that Gj0 is defined, we moreover let

∆j0 =
j0
ÿ

j=0

δj and Φj0 =
j0
ÿ

j=0

ϕj.

The following is a crucial consequence of Lemma 10.3.

4. Pseudopolynomial upper bound 183

Corollary 10.1

It holds that Φj takes value 0 over N j and ∆j over P j .

In particular we have minΦj = 0 and maxΦj = ∆j .

Proof. Thanks to lemma 10.3 we have

N0 Ě N1 Ě ¨ ¨ ¨ Ě N j

therefore if v P N j then for all j1 ď j, v belongs to N j1

Ď N j1,˚ therefore ϕj1

(v) = 0 and thus
Φj(v) = 0. Likewise, if v P P j then for all j1 ď j we have ϕj1

(v) = δj
1 thereforeΦj(v) = ∆j .

With this is hands we are ready to prove the announced bound.

Theorem 10.3 (Novel pseudopolynomial bound)

The iteration terminates in at most N + E+ + E´ + 1 steps.

The proof is illustrated in Figure 10.7.

Figure 10.7: An illustration for the proof of Theorem 10.3, where j = N + E+ + E´. Since Ψj it is
positively safe, vertices with finite Energy+ value (denoted N8,˚) must be mapped to the blue region, and
symmetrically; by our choice of j, this implies that edges from N8,˚ to P8,˚ are positive, and those from
P8,˚ to N8,˚ are negative.

Proof. We let N8,˚ and P8,˚ respectively denote the sets of vertices with negative and positive
mean-payoff values, which partitionG. Since it is positively safe by composition, and the quantities
below are finite, we have thanks to Theorem 10.1 for all j that over v P N8,˚,

Φj(v) = Energy+G(v)´ Energy+
Gj(v) ď E+.

Likewise, over v P P8,˚ we obtain

Φj,´(v) = Energy´
G(v)´ Energy+

Gj(v) ě ´E
´,

184 Exploiting symmetry in mean-payoff games

which rewrites as
Φj(v) ě ∆j ´ E´.

We now assume that the j = N + E+ + E´-th iteration is defined, and for contradiction that
δj ă 8. Note that ∆j ě j + 1 as a sum of j + 1 positive integers.

We claim that N j (and symmetrically, P j) is non-empty. Indeed if N j = ∅ then P j = V
therefore δj = 8. (Intuitively, Adam can ensure that no negative weight is ever seen.)

By Corollary 10.1, Φj takes value 0 over N j therefore N j Ď N8,˚ thanks to the above since
0 ă ∆j ´ E´ (see Figure 10.7). Likewise, we have P j Ď P8,˚ since ∆j ą E+.

Note that any edge v t
ÝÑ v1 from N8,˚ to P8,˚ has weight

tΦ
j

(v) = t+ Φj(v1)´ Φj(v) ě t+∆j ´ E´ ´ E+ ě ´N +∆j ´ E´ ´ E+ ě 1

in Gj . Likewise, any edge from P8,˚ to N8,˚ has weight ă 0 in Gj , therefore zero edges cannot
lead from N8,˚ to P8,˚ or vice-versa.

Now note that by definition vertices inN j,˚ have a path toN j Ď N8,˚ comprised of only zero
weights in Gj , and therefore N j,˚ Ď N8,˚; similarly, P j,˚ Ď P8,˚. Therefore we have

N j,˚ = N8,˚ and P j,˚ = P8,˚.

Since all edges from N j,˚ to P j,˚ are positive, we have δ´ = ´8. Likewise δ+ = 8 and therefore
δ = 8, a contradiction.

5 Strong exponential upper bound

We now prove the O(2n/2) bound by adapting the argument of [DKZ19]. We first discuss the
general strategy which we break in two steps and then present the two steps separately.

Proof structure. Consider the attractor layers³ L1, L2 ¨ ¨ ¨ Ď N˚ towards N over zero edges. It
was already observed in [GKK88] that the sequence

|L1 X VEve|,´|L1 X VAdam|, |L2 X VEve|,´|L2 X VAdam|, . . .

strictly increases lexicographically at each step of the iteration such that N = N 1 and P = P 1.
Using Lemma 10.3 this yields a O(n2n) upper-bound on the number of iterations, which is not
explicitely given in [GKK88] although the argument is laid out to prove termination (it is also very
easy to reduce the bound toO(2n), directly from their analysis). We follow the strategy of [DKZ19],
which we break in two steps.

• The first step consists in exhibiting a different sequence of layers with a similar behaviour.
Proving strict lexicographical increase is quite involved (more than for the attractor layers
of [GKK88], we believe).

• The second step relies on encoding the above sequence in a strictly growing integer over ď
|N˚| bits. Exploiting the symmetry then allows to conclude via an elegant padding argument
and lower the bound to O(2n/2).

³This is formally defined in the next chapter. Here, we discuss them only informally. At this stage, we believe that
the reader is likely to be familiar with this standard concept.

5. Strong exponential upper bound 185

It is crucial for the padding argument to apply that the nonzero signs in the above sequence
alternate between positive and negative, which might not be the case with the layers as described
above (for instance it might be that the second integer is zero, while the first and third are positive).
One may circumvent this issue by reducing (without loss of generality) to a bipartite arena which
ensures the wanted property and allows to use the padding argument (this is done in [Koz21b])
directly on the attractor layers, invoking the proof of [GKK88].

We believe however that the layers of [DKZ19] together with the proof of step one are of in-
dependent interest, hence we will follow their definitions and directly adapt their argument to the
case at hands. As we will see, the layers of [DKZ19] are defined only via paths, and thus appear
to be less natural than the attractor layers of [GKK88] in this setting. It is therefore quite surpris-
ing to us that the main result (Theorem 10.4) still holds. Besides, we do not know if a similar
padding argument can be forged directly for the attractor layers (because there might be zeros, as
explained above), therefore using the layers of [DKZ19] seems necessary to establish the result over
non-bipartite arenas.

5.1 Step one: layers and their dynamics

Again, we focus on N˚, but will later use the main result together with its dual to obtain the
wanted bound. Given a finite path π : v0 ÝÑ v1 ÝÑ . . . ÝÑ vℓ in G we define its number of
alternations (towards N) alt(π) P ω Y t8u to be the minimal k such that there exist a decreasing
sequence of k + 1 indices ℓ ě i0 ě i1 ě ¨ ¨ ¨ ě ik such that

• vi0 , . . . , vℓ P N ,

• for all j P [1, k], vij , . . . , vij´1´1 all belong to VAdam if j is odd and to VEve if j is even.

In particular a path has finite alternation number if and only if it ends in N and it has alternation
number 0 if and only if it is contained N . Moreover note that a path from v R N towards N has
even alternation number if and only if v P VEve. The choice of the first layer being comprised of
Adam vertices is arbitrary, the proof below also goes through with the other convention.

We say that a path is zero if it visits only zero edges. We define the alternation depth alt(v) over
vertices in N˚ by

alt(v) = mintalt(π) | π is a zero path from v to N which remains in N˚u.

An example is given in Figure 10.8. We say that a path from v P N˚ is optimal if it is a zero
path from v to N which remains in N˚ and achieves the above minimum. Note that by definition
of N˚, vertices in N˚ have a simple zero path towards N hence alt(v) is finite and bounded by n.

We will study the dynamics of the sets

Ai = tv P N
˚ | alt(v) = iu.

We assume that the iteration is not over, δ ă 8. We again use the notation G1 for Gϕ, where ϕ
is the GKK potential (defined in Section 3), and again use primes for sets and quantities relative to
G1. The following is the main result for the first step.

186 Exploiting symmetry in mean-payoff games

Figure 10.8: The alternating layers, indicated by the green numbers, in the example of Figure 10.5. Notice
that alternating layers (green numbers) and attractor layers (in blue) are completely different; however – and
quite surprisingly – the theorem below holds in both cases (see [GKK88] for details about attractor layers).

Theorem 10.4 (Dynamics of alternating layers)

If N = N 1 and P = P 1, then the sequence

´|A1|, |A2|,´|A3|, |A4|, . . .

stricly grows lexicographically.

Towards proving the theorem, we define two relevant indices iD and iA which we respectively
call the departure index and arrival index. As their names suggest the first is relevant to vertices
which leave N˚, that is, those in N˚ X P

1˚, while the second is relevant to arriving vertices, those
in P ˚ XN

1˚. We let

iD = mintalt(v) | v P VAdam XN
˚ and v P P 1˚u,

iA = mintalt(e0π1) | e0 is an edge of weight δ from P ˚ X VEve to v1 P N˚ in G
and π1 is optimal from v1 in Gu

Note that if finite, iD is odd and iA is even. We now provide a sequence of incremental results that
eventually give the theorem.

Lemma 10.4 (Incremental statements proving Theorem 10.4)

Assume that N 1 = N and P 1 = P .

(i) For all v P N˚, if alt(v) ă iD then v P N 1˚ and alt1(v) ď alt(v).

(ii) Any path π1 which is optimal in G1 but is not zero in G satisfies alt1(π1) ě iA.

(iii) For all v P P ˚ XN
1˚ it holds that alt1(v) ě iA.

(iv) For all i ď min(iD´1, iA)we haveAi Ď A1
i and for all i ď min(iD, iA´1)we haveA1

i Ď Ai.

(v) If iA ă iD then |A1
iA
| ą |AiA |.

(vi) We have δ´
E ă ´δ and likewise δ+A ą δ.

5. Strong exponential upper bound 187

(vii) If iA = 8 then iD ă 8.

(viii) Theorem 10.4 holds.

Items (i), (ii) and (iii) build towards item (iv) which is the main intermediate result. Items (v)
and (vii) have a similar proof although (vii) also relies on (vi), and build up to the conclusion.

Proof. (i) We prove the claim by induction on the length ℓ of the smallest optimal path π = v0
0
ÝÑ

. . .
0
ÝÑ vℓ from v0 = v. Note that π is zero in G and remains inN˚ hence it is also zero in G1.

If π has length zero then v P N = N 1 hence v P N 1˚ and alt1(v) = 0 ď alt(v), so we assume
ℓ ą 0 and that the result is known for vertices with an optimal path of length ď ℓ´ 1.
It holds by induction that v1, v2, . . . , vℓ P N

1˚ hence it suffices to prove that v P N 1˚ since it
implies that π is a zero path in G1 which remains in N 1˚. If v P VEve then v has a zero edge in
G1 towards v1 P N

1˚ hence v P N 1˚. Otherwise it holds that v P N 1˚ because v P P 1˚ would
contradict that alt(v) ă iD.

(ii) Let π1 : v0
t0
ÝÑ . . .

tℓ´1
ÝÝÑ vℓ be such a path. It cannot be that π1 is included in N˚ otherwise it

would be zero in G, and we let i0 be the largest index such that vi0 P P ˚. Since t1i0 = 0 we
have ti0 = δ ą 0 hence it must be that vi0 P VEve otherwise we would have vi0 P P = P 1

which contradicts that vi0 P N
1˚. We now let π be an optimal path from vi0+1. Then we have

alt(π1) ě alt((vi0
ti0
ÝÑ vi0+1)π) ě iA.

(iii) Let v P P ˚ XN
1˚, and let π1 : v0

t0
ÝÑ . . .

tℓ´1
ÝÝÑ vℓ be an optimal path from v = v0 in G1. We

assume for contradiction that alt1(v) ă iA, which thanks to the previous item implies that π1

is zero in G. Since vℓ P N 1 = N and v = v0 P P
˚ there is an index i0 such that vi0 P P ˚ and

vi0+1 P N
˚. This contradicts the fact that ti0 = t1i0 = 0.

(iv) We prove the two results together by induction on i. For i = 0 we have A0 = N = N 1 = A1
0

hence we let i ě 1 and assume that both result hence the equality are known for smaller values.
By item (i) if i ă iD and v P Ai then v P N 1˚ and alt1(v) ď i, but our induction hypothesis
tells us that alt1(v) cannot be ă i hence Ai Ď A1

i.

Conversely let v P A1
i, assume i ă iA, let π : v0

t0
ÝÑ . . .

tℓ´1
ÝÝÑ vℓ be an optimal path from

v0 = v in G1, and let j0 ą 0 be the smallest index such that vj0 R A1
i. We assume that π

is chosen such that vj0 is minimal, and prove the result by an inner induction on j0. Since
alt1(v) = i ă iA we know by item (iii) that v P N˚.
If j0 = 1, that is if v1 P A1

i´1, then thanks to the (outer) induction hypothesis for all j ě 1
we have vj P A1

kj
= Akj for some kj ă i, hence for all j ě 0 we have vj P N˚. Hence π1

remains inN˚ and is zero inG1 thus it is also zero inG and alt(v) ď alt(π) = i. We conclude
thanks to the (outer) induction that alt(v) = i.
If j0 ě 2 then the inner induction hypothesis gives vj P N˚ for j P [1, j0] and the outer
induction hypothesis gives vj P N˚ for j P [j0 + 1, ℓ], and we repeat the same argument.

(v) Assume that iA ă iD. By item (iv) it holds that AiA Ď A1
iA

hence it suffices to find v0 P
A1
iA
zAiA and we take v0 given by the definition of iA: v0

t0
ÝÑ v1 with v0 P P ˚XVEve, v1 P N˚

with alt(v1) ď iA and t0 = δ therefore t10 = 0.

188 Exploiting symmetry in mean-payoff games

Again by (iv) it holds that v1 P N
1˚ and alt1(v1) ď alt(v1), hence v0 P VEve has a zero edge in

G1 towards a vertex of N 1˚ thus v0 P N
1˚. Now alt1(v0) ď alt((v0

t10
ÝÑ v1)π

1
1), where π1

1 is an
optimal path from v1 in G1 and hence alt1(v0) ď iA. Yet again thanks to (iv) it cannot be that
alt1(v0) ă iA since A1

i Ď Ai for i ă iA and v0 P P ˚, therefore we conclude that v0 P A1
i.

(vi) Assume for contradiction that δN,2 = ´δ. Then there is v P SN such that ext(v) = ´δ,
hence ext1(v) = 0 so v P Z 1, which contradicts N 1 = N . The proof of the second statement
is symmetric.

(vii) If iA = 8 then there is no edge with weight δ in G from P ˚ X VEve to N˚ hence δP,1 ą δ

therefore it must be by item (vi) that δ = ´δ´
A . We let e0 = v0

t
ÝÑ0 v1 be an edge with weight

t0 = ´δ from v0 P VAdamXN
˚ to v1 P P ˚. We claim that P 1˚ Ě P ˚ which proves the result

since then v0 P VAdam has an edge e0 which is zero (hence non-negative) in G1 towards P 1˚,
hence v0 P P

1˚ and iD ď alt(v0).

This follows from a quick induction over attractor-layers towards P = P 1 over zero edges in
G: a vertex v P VAdamX (P ˚zP) has a zero edge, which remains zero, inG towards a vertex in
the previous layer, and by assumption vertices v P VEveX (P ˚zP) have all their edges towards
N˚ which are ě δP,1 ą δ hence remain positive.

(viii) By item (vii) m = min(iD, iA) is finite, and by item (iv) we have Ai = A1
i for all i ă m. If

m = iA ď iD ´ 1 then moreover Am Ď A1
m and the inclusion is strict by item (v), which

concludes. Otherwise m = iD ď iA ´ 1 hence Am Ě A1
m and the inclusion is strict by

definition of iD.

Even broken in elementary steps the proof above remains very tedious, we are not aware unfor-
tunately of simplifications that could be made. The remainder is much more straightforward.

5.2 Step two: padding argument

We now describe the second step of the upper-bound proof, which is due to [DKZ19]. We let
k denote |P |+ |N | which can only decrease throughout the iteration thanks to Lemma 10.3. Note
that there exists r P [1, n´ k] such that the layers A1, . . . , Ar are non-empty, and Ar+1, Ar+2, . . .
are empty. We let sr = 1 if r is even and 0 otherwise.

The argument relies on the following n´ k + 1-bits integer

α´ = 0 . . . 0
loomoon

|A1|

1 . . . 1
loomoon

|A2|

0 . . . 0
loomoon

|A3|

. . . sr . . . sr
loomoon

|Ar|

1 0 . . . 0
loomoon

|P˚|´|P |

,

and its symmetric counterpart α+, which is defined in exactly the same way with respect to layers
in P ˚.

Lemma 10.5 (Quantifying the growth of αN)

If k = k1 then α1´ ą α´ + 2|P˚|´|P | and likewise α1+ ą α+ + 2|N˚|´|N |.

Proof. By Theorem 10.4 the leftmost bit to switch from α´ to α1´ switches from 0 to 1, and occurs
before the rightmost block of the form 10 . . . 0 with |P ˚| ´ |P | zeros.

We are finally ready to prove the announced bound.

6. The ESL algorithm 189

Proof of O(2n/2) bound. Consider α = α´ + α+, which is ď 2n´k+2. Note that |N˚| ´ |N | +
|P ˚| ´ |P | = n´ k, hence max(|N˚| ´ |N |, |P ˚| ´ |P |) ě n´k

2
. By the above lemma, if k1 = k

then

α1 ą 2max(|N˚|´|N |,|P˚|´|P |) ě 2
n´k
2 .

Hence, there are at most 2n´k+2/2
n´k
2 = 4.2

n´k
2 consecutive iterations with the same k. The bound

follows since
n´1
ÿ

k=0

4.2
n´k
2 = O(2n/2).

6 The ESL algorithm

In this independent section, we discuss an algorithm due to Schewe [Sch08], which was also
presented in a different light by Luttenberger [Lut08].

Informal presentation. Schewe presents it as a switching policy, roughly in the strategy im-
provement framework of Björklund and Vorobyov [BV05] discussed in the previous chapter, with
a retreat vertex. In this setting, it is locally optimal in the sense that at each iteration, a combination
of switches is performed to obtain the strategy τ 1 maximising val(Gτ 1) among all strategies avail-
able by combining improving switches. Moreover, the iteration can be computed in almost linear
O(m+ n logn) time. Schewe observed that the algorithm consistently outperforms (often, by far)
all other switching policy over practical and random instances, which makes it to this date the most
efficient and reliable strategy improvement algorithm.

Luttenberger [Lut08] gave a completely different presentation of Schewe’s algorithm, as one
improving over non-deterministic strategies, still with a retreat vertex and a restriction over ad-
missible strategies (called reasonable strategies in [Lut08]). In the setting of non-deterministic
strategy improvement which he introduces, the algorithm rephrases naturally as the “all profitable
switches” policy: at each step, the (non-deterministic) strategy τ 1 is simply comprised of all im-
proving switches. Luttenberger complements his results by showing that the strategy improvement
frameworks of [BV05] and [Vög00; VJ00] coincide when the arena has a retreat vertex.

Our contribution. Following our result in the previous chapter that the energy valuation is fit
for strategy improvement, we investigate whether this algorithm can be understood in the vocab-
ulary of energy games (without retreat vertices or strategy restrictions). It turns out that it has a
surprisingly natural presentation in this setting, and we like to see it as an acceleration of the value
iteration of [BCD+11] rather than a strategy improvement. We will call the resulting algorithm the
ESL algorithm (for Energy-Schewe-Luttenberger). We recall that Luttenberger’s version is imple-
mented (over GPUs) in STRIX [MSL18; LMS20], the currently most efficient academic tool for
LTL synthesis. We believe that our approach is more manageable and flexible, and might be prone
to more efficient implementations.

Just like the BCDGR algorithm, the ESL algorithm is completely asymmetric. We also propose
a natural symmetric variant, which had not been considered before. Quite surprisingly, we are
not able to prove its termination, although our simulations suggest that the algorithm not only
terminates, but performs even fewer iterations over random instances, especially those induced by
parity games. We first present the ESL algorithm, then its symmetric variant, and then discuss a few
early empirical results.

190 Exploiting symmetry in mean-payoff games

6.1 Presentation of the algorithm

Thanks to Theorem 10.1, we may consider algorithms which iterate positively safe potential
reductions, formally, given by ϕ satisfying

0 ď ϕ ď Energy+G.

The GKK algorithm is of this form (see Section 3), and stops when the obtained arena is reduced.
The BCDGR algorithm is also of this form, where ϕ(v) is defined to be the extremal weight of
v if v is positive (or invalid), and 0 otherwise; moreover an infinite potential is given to vertices
which exceed nN , to ensure termination. Formalising the BCDGR algorithm in terms of potential
reductions therefore requires introducing potentials with infinite coordinates, which is done just
below. One can also see the DKZ algorithm (whose details we will omit) in this scenario: roughly
speaking, the potential reduction which is performed is similar to GKK’s, while precise mechanics
which guarantee the O(nmN) implementation are inspired from BCDGR’s.

The ESL algorithm is also given in this form, where ϕ is the maximal weight of a path com-
prised of only non-negative weights which Adam can ensure. Again, it is convenient to present the
algorithm only over simple arenas. A complete execution is depicted in Figure 10.9.

Sum until negative valuation. We extend the energy valuation to Z8 = ZY t8u by setting as
previously

Energy+ : (Z8)ω Ñ [0,8]

t0t1 . . . ÞÑ supk
řk´1
i=0 ti

where naturally 8 + t = 8 for any t P Z8. We now define the sum until negative valuation SU+

by
SU+ : (Z8)ω Ñ [0,8]

t0t1 . . . ÞÑ
řkneg´1
i=0 ti where kneg = mintk | tk ă 0u.

It follows directly from the definition that for any w = t0t1 ¨ ¨ ¨ P (Z8)ω, we have 0 ď SU+(w) ď
Energy+(w). Therefore, SU+

G defines a positively safe potential. Note also that SU+
G is larger in

general than the potential of the BCDGR algorithm, which only considers the first letter (if it is
positive).

Extended potentials. We fix a Z8-arena G. An extended potential is a map ϕ : V Ñ Z8. The
modified weight of an edge e = v

t
ÝÑ v1 is now given by

tϕ(e) =

#

8 if t, ϕ(v) or ϕ(v1) is8
t´ ϕ(v) + ϕ(v1) otherwise.

This definition may seem odd at first sight; the intuition is that vertices mapped to8 are automat-
ically declared winning for Adam (meaning, of infinite energy, or positive mean-payoff). Modified
arenas, modified paths, and potential reductions are defined just like previously. We extend Theo-
rem 10.1 to extended potentials, which is just a formality. The statement is exactly the same.

⁴We have not established positionality of SU+, which holds over arbitrary arenas. One may easily prove this result
by showing that the completely well-monotonic graph over ω Y tJu given by ℓ t

ÝÑ ℓ1 ðñ (ℓ = J or 0 ď t ď

ℓ´ ℓ1 or t ă 0) is uniformly SU+-universal.

6. The ESL algorithm 191

Figure 10.9: A complete execution of the ESL algorithm with four iterations over an arena of size 15 and
degree 2 (which was sampled randomly). In each iteration, we indicate the SU+-values of each vertex; ver-
tices are coloured according to the sign of their extremal weight to improve readability. Optimal positional
strategies⁴ are indicated with bold arrows. Over such arenas, the average number of iterations is around 3.5;
it decreases when the degree grows.

Theorem 10.5 (Extended potential reductions and energies)

Let ϕ be an extended potential such that 0 ď ϕ ď Energy+G. Then we have

Energy+
Gϕ + ϕ = Energy+G.

Proof. Let v P V . If v has infinite energy in G, then any Adam strategy τ with infinite energy in
G guarantees infinite energy in Gϕ, regardless of ϕ. If v has finite energy in G, then we pick an
optimal positional strategy σ from v, and conclude by applying Theorem 10.1 in Gσ, over which ϕ
is finite by assumption.

An ESL iteration. The ESL algorithm is based on the fact that the optimal SU+ values can be
computed efficiently over arbitraryZ8 arenas, by a straightforward extension of Dijkstra’s algorithm,

192 Exploiting symmetry in mean-payoff games

in time O(m+ n logn). This is due to the fact that only non-negative weights are considered; it is
quite remarkable (and not often exploited!) that in this case, moving from graphs to games incurs
no loss in complexity for Dijkstra’s algorithm.

This was first observed by Khachiyan, Gurvich and Zhao⁵ [KGZ06] (Theorem 1 therein, where
SU+ corresponds to case (i) with blocking systems B2). A similar algorithm was also given by
Schewe [Sch08] with complexity O(mP˚ + |P ˚| log |P ˚|), where P ˚ Ď V is the set of vertices
with positive SU+ (this also corresponds to the set P ˚ from the GKK algorithm, see Section 3).
Luttenberger [Lut08] uses a variant of the Bellman-Ford algorithm, with higher complexityO(mn).

Theorem 10.6 (Efficient computation of an iteration by Dijkstra’s algorithm)

The positively safe extended potential SU+
G : V Ñ Z8 can be computed in timeO(m+n logn)

over simple arenas.

We present the algorithm of [KGZ06], full details can be found in their paper (or in [Sch08]).

Proof. We start by determining in linear time O(m) the set N of vertices with negative extremal
weight; these have SU+ value 0. We then initialise F , the set of vertices over which SU+

G is known,
toN . Note that all remaining Eve vertices have only non-negative outgoing edges, and all remaining
Adam vertices have (at least) a non-negative outgoing edge.

We then iterate the two following steps illustrated in Figure 10.10. (A complexity analysis is
given below.)

1. If there is an Adam vertex v R F all of whose non-negative outgoing edges v t
ÝÑ v1 lead to F , set

SU+
G(v) to be the maximal such t+ SU+

G(v
1), add v to F , and go back to 1.

2. Otherwise, let v t
ÝÑ v1 be an edge from VEvezF to F (it is necessarily positive) minimising

t+ SU+
G(v

1); set SU+
G(v) = t+ SU+

G(v
1), add v to F and go back to 1. If there is no such edge,

terminate.

Figure 10.10: The game version of Dijkstra’s algorithm; blue edges are negative and red ones are non-negative.
If there is a vertex such as v (it belongs to Adam and all edges pointing out of F are ă 0), one may set the
value of v. Otherwise, set the value of an Eve vertex v minimising t+ SU+(v1) over edges v t

ÝÑ v1 going to
F ; if there is no such edge, terminate (Adam can force seeing ě 0 edges forever).

⁵We are grateful to Alexander Kozachinskiy for pointing out this reference to us.

6. The ESL algorithm 193

After the iteration has terminated, there remains to deal with cF , which is the set of vertices
from which Adam can ensure to visit only non-negative edges forever. Since the arena is assumed
to be simple (no simple cycle has weight zero) it holds that SU+

G is8 over F , and we are done⁶.
As usual, by storing the number of edges outgoing from Adam vertices in cF to F , step 1

induces only a total linear runtime O(m). For step 2, one should store, for each v P VAdamzF ,
the edge towards F minimising t + SU+

G(v
1) in a priority queue. Using a Fibonacci heap as was

first suggested by Fredman and Tarjan [FT84] for Dijkstra’s algorithm lowers the complexity from
O(m logn) to O(m+ n logn).

The ESL algorithm iteratively applies the extended potential reduction given by SU+
G, and ter-

minates when an arenaG8 is reached such that SU+
G8

takes only values 0 and8 (stated differently,
G8 is reduced as in Section 2). We then have SU+

G8
= Energy+G8

, and as for the GKK algorithm we
recover Energy+G thanks to Theorem 10.5 since extended potential reductions compose by addition.

Note that nN is not “hardcoded” in the ESL algorithm as it is in the BCDGR algorithm.
Vertices with infinite energy are now detected whenever a strategy is available for Adam which avoids
seeing any negative weight (in this case, the energy is necessarily infinite thanks to our simplicity
assumption).

Termination of the ESL algorithm. There remains to prove termination of the ESL algorithm,
for which we rely on the following lemma (which is analogous to Lemma 10.3 for the GKK algo-
rithm). As previously, we let G1 denote the arena obtained after the potential reduction, and use N
and N 1 for the sets of vertices with extremal weight ă 0.

Lemma 10.6 (Evolution of N)

We have N Ě N 1.

Proof. We show that cN Ď cN 1. Let v R N . If v has SU+-value8 in G then it has only outgoing
edges of weight +8 in G1 therefore it cannot belong to N 1; we thus assume otherwise.

• Assume v belongs to VAdam. Let τ be a SU+-optimal strategy in G, and let e = v
t
ÝÑ v1 =

τ(ε). Since v R N we have t ě 0 and SU+(v) = t+SU+(v1). Hence we have tϕ(e) = 0 ě 0
so v R N 1.

• Assume now that v P VEve. We have for all e = v
t
ÝÑ v1 P E that t ě 0 hence SU+(v) ď

t+ SU+(v1), and thus tϕ(e) ě 0, the wanted result.

We now let G0 = G denote the initial Z-arena, and for each j ě 0 we let ϕj = SU+
Gj and

Gj+1 = (Gj)ϕ
j be the Z8-arena obtained after j iterations of the ESL algorithm. As before, we

also let Φj = ϕ0 + ¨ ¨ ¨+ ϕj´1, and we have Gj = (G0)Φ
j .

The lemma directly gives N0 Ě N1 Ě . . . and therefore vertices v1 in N j satisfy Φj(v1) = 0.
Now if v is a vertex such that ϕj(v) = SU+

Gj is finite, then by definition there is a simple path in G
from v to some v1 P N j with Φj-modified weight ϕj(v). This rewrites as

0 ď ϕj(v) = ´Φj(v) + Φj(v1)
loomoon

0

+
k
ÿ

i=0

ti
loomoon

ďnN

,

⁶If the arena is not simple, one must additionally solve a Büchi game, and the complexity of the iteration is increased.
We believe that this increased cost can be amortised overall, but give no details for this claim.

194 Exploiting symmetry in mean-payoff games

and thusΦj(v) ď nN . Stated differently, finite values remainď nN , which guarantees termination
in at most O(n2N) iterations.

Using an implementation similar to the BCDGR algorithm, where the data structures (and
the set P ˚ of increasing vertices) is stored from an iteration to the next, one may lower the global
complexity upper bound to O((m+ n logn)nN), at least for simple arenas. Such an implementa-
tion was already suggested by Schewe [Sch08], but no complexity bound is given for mean-payoff
games⁷.

6.2 The alternating ESL algorithm

Note that the GKK potential reduction is bi-safe, whereas the BCDGR and ESL potentials are
only positively safe, and in this sense asymmetric. Actually, it is not hard to see that the GKK
potential is precisely the largest constant⁸ bi-safe potential, which gives another way of presenting
the GKK algorithm. It would be interesting to forge (non-constant) bi-safe potential which can be
computed efficiently, which would lead to other symmetric algorithms.

We take a different direction and consider a potential update which is neither positively nor
negatively safe: the one obtained by first applying the ESL update SU+, and then its dual SU´ –
defined by summing (non-positive) weights until the first positive weight is seen – and so on. This
requires extending arenas and potentials to ZY t´8,+8u, which is again a formality; we give no
more details for the sake of conciseness. A complete example is given in Figure 10.11.

We believe that this algorithm is interesting for four reasons. First, it is simple to describe,
implement or run by hand: simply alternate between SU+ and SU´ potential updates – each of
which is not much harder than Dijkstra’s algorithm – and terminate when a potential is reached
which takes values only˘8 (over simple arenas). Second, it is completely symmetric, and only very
few such algorithms are known⁹. Third, we have observed empirically (see below) that even fewer
iterations are often performed (and especially for parity games), compared to the ESL algorithm.
Fourth, we are not able to establish its termination with the currently available tools (even over
parity games), and so far have failed to understand the subtle combinatorics it involves.

6.3 Empirical comparisons

We discuss empirical comparisons of GKK, ESL and alternating ESL (AESL) over energy games,
and also compare ESL and AESL with Oink’s implementations [Dij18b] of Zielonka’s algorithm over
parity games. Our initial motivation for these simulations was to visualise AESL over small examples,
and moreover empirically establish its termination. We have not implemented the DKZ algorithm,
but believe its behaviour to be similar to GKK. The BCDGR algorithm is already impractical over
arenas of size ď 100 with weights up to 1000. Our code is publicly available at

https://github.com/PierreOhl/parity_games_solving.

⁷Schewe’s presentation is done over parity games; no complexity bound is given for mean-payoff games, which are
only mentioned in a footnote. This is quite unfortunate, since his algorithm would have improved on the state of the
art at that time (and also suggests the fruitful link with energy games, which was exploited by [BCD+11] only a few
years later).

⁸By “constant”, we mean that the potential takes only one nonzero value (or equivalently up to shifting, only two
different values).

⁹As far as we are aware, Zielonka’s algorithm [Zie98], the GKK algorithm, the symmetric strategy improvement
of Schewe, Trivedi and Varghese [STV15] (which is completely different), and variations over these three algorithms,
cover all known symmetric algorithms for parity and energy games to date.

https://github.com/PierreOhl/parity_games_solving

6. The ESL algorithm 195

Figure 10.11: Execution of the alternating ESL algorithm on the arena of Figure 10.9, starting with a positive
iteration. In arenas with an even index (red boxes), SU+-values are displayed, whereas the dual SU´-values
are computed for odd indices. Bold arrows represent optimal positional strategies. The algorithm converges
in 5 iterations, we do not depict G4 for conciseness (the three remaining vertices converge to 8).

Our implementations are done in Python, and all are quite naive; for instance, our implemen-
tation of the Dijkstra-like algorithm for computing SU+ (see Theorem 10.6) does not properly use
heaps and only built-in Python data structures (int and list) are used. It is likely that several orders
of magnitude could be gained in terms of runtime by using better implementations (more details
are given below).

Nevertheless, we may still comment on the number of iterations, and obtained runtimes are
small enough to conclude that both the ESL and alternating ESL algorithms appear to be very
robust, at least over random instances. Such conclusions were also given by Schewe [Sch08] (for
parity games) and Meyer and Luttenberger [ML16], who implemented an algorithm similar to ESL
over GPUs.

In all experiments below, we have run the algorithms on random arenas of degree two: for
each vertex, two successors are sampled uniformly at random, and colours (weights or priority) are
sampled uniformly at random in a given range. Sometimes, arenas are also chosen to be bipartite
(successors of VEve belong to VAdam and vice-versa) to avoid having components which are trivially

196 Exploiting symmetry in mean-payoff games

winning. We have observed that augmenting the degree (even degree 3, and even over bipartite
games) considerably decreases the number of iterations and the runtime of all algorithms.

Comparison of algorithms for energy games. We start by comparing the different iterative
algorithms for energy games. We discuss three benchmarks B1, B2, B3 of 150 arenas each. (We
lack of more structured benchmarks; we stress again that these are preliminary empirical results.)

• InB1, arenas have size from 1 to 3000, degree 2, and weights are drawn in the range [´1000, 1000].

• In B2 and B3, arenas have size from 1 to 100000, degree 2, and weights are drawn in the
range [´1010, 1010]. Benchmark B3 is moreover comprised only of bipartite arenas.

Results are depicted in Figure 10.12.

GKK

ESL

AESL

ESL

AESL

ESL

AESL

ESL

AESL

ESL

AESL

GKK

ESL

AESL

number of vertices number of verticesnumber of vertices

number of vertices number of vertices number of vertices

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

ru
n

ti
m

e
 (

s
e
c
)

ru
n

ti
m

e
 (

s
e
c
)

ru
n

ti
m

e
 (

s
e
c
)

Figure 10.12: Comparison of the energy games algorithms GKK, ESL and AELS on benchmarks B1, B2

and B3. The number of iterations of GKK grows linearly with n, whereas it is almost constant for both ESL
and AESL, which scale up to much larger arenas. It appears that AESL is a bit more robust (in number of
iterations) than ESL over generic arenas, however this difference is not observed over bipartite arenas (we
cannot explain this fact). The runtimes displayed by ESL and AESL are similar.

We observe that the ESL and AESL outperform GKK, which does not scale to benchmarks
B2 and B3. Both ESL and AESL make only a very small number (almost constant) of iterations,
even over large arenas. With degree 5, this number even drops to typically ď 10 iterations for
both algorithms (on arenas of size up to 100000 as in B2 and B3). Similar results are presented
in [Sch08] (for parity games with small numbers of colours), and the implementation of [ML16]
scales to arenas with 40 million vertices (but the number of iterations is not discussed).

Comparison with Oink’s implementations of Zielonka’s algorithm. We have also compared
ESL and AESL with Oink’s implementations [Dij18b] of the Zielonka algorithm over parity games.

To run algorithms implemented in Oink, we use arenas where priorities label the vertices (which
are easily transferred to our setting). We use three benchmarksB4, B5, B6 of 100 arenas each gener-
ated uniformly at random as above. For all parity arenas we generate, we draw priorities at random

6. The ESL algorithm 197

between 1 and n (there are linearly many priorities). The three benchmark are comprised only of
bipartite arenas of degree 2.

• In B4, arenas have size from 1 to 50000.

• In B5, all arenas have size 20000.

• In B6, all arenas have size 80000.

Results are depicted in Figure 10.13. Again, our implementation here is very naive: we work
directly with weights of the form (´n)p in Python’s native encoding of integers. For B6, this cor-
responds to integers of magnitude up to 8000080000 » 10400000. We ran two implementations
of Zielonka’s algorithm in Oink, namely UZLK and ZLK (sequentially). The first is more basic
whereas the second one includes several optimisations; details can be found in [Dij18b]. Results are
displayed in Figure 10.13.

number of vertices instance numberinstance number

number of vertices instance number instance number

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

ru
n

ti
m

e
 (

s
e
c
)

ru
n

ti
m

e
 (

s
e
c
)

ru
n

ti
m

e
 (

s
e
c
)

4.10�

149

5.10�

305

2251

0.012

0.22

84

2117

8.1

37

75

15.10³

Figure 10.13: Comparison of ESL, AELS and Oink’s UZLK and ZLK. In benchmark B5, UZLK times out
(1000 sec) for 12 instances. In benchmark B6, ESL (not displayed) times out over all instances, and UZLK
times out over 26 instances. For B5 and B6, average runtimes (which include timeouts) and number of
iterations (which do not) are displayed.

We observe that over random parity games, AESL performs much better than ESL, and the
number of iterations performed remains low even for large instances. Both ESL and AESL appear
to be more robust than UZLK, which frequently displays high runtimes. Although they are consis-
tently outperformed, we also observe that going from B5 to B6, the average runtime for AESL is
roughly multiplied by 10, whereas it is multiplied by 20 for ZLK, which is an indication that AESL
might scale to larger parity games.

There are many ways in which our implementation could be improved, each of which might
save several orders of magnitude and bridge the runtime gap with ZLK. The four most notable are
the following.

198 Exploiting symmetry in mean-payoff games

• Port it to C++ (or another lower level language), and use appropriate data structures rather
than Python’s lists and integers to manipulate data.

• Improve the implementation of Dijkstra’s algorithm by properly using heaps (or Fibonacci
heaps).

• Save time by using information (valid edges/vertices) from an iteration to the next (this is
currently done for ESL but not AESL).

• In the case of parity games, use adapted structures to manipulate integers with few nonzero
bits rather than words of size O(log(nn)) = O(n logn) manipulated by Python’s native
integers.

We believe that the very low number of iterations displayed over random games is a good motivation
for developing better implementations. It is also encouraging that our naive implementations can
already compete with UZLK. We would also be eager to run the algorithms (especially AESL) over
structured benchmarks, for which a higher number of iterations should be expected; this is left to
future work.

7 Conclusion and perspectives

In this chapter, we have further investigated algorithms for solving mean-payoff games. We have
argued that the two natural monotonic graphs correspond to potential reductions, and proposed to
look at these in a symmetric fashion.

Symmetric study of GKK algorithm. First, we have shown that the GKK algorithm of Gurvich,
Karzanov and Khachiyan admits a completely symmetric presentation over simple arenas, which are
those admitting only nonzero simple cycles. This allowed us to present a novel symmetric analysis,
revealing a bound of N + E+ + E´ + 1 on the number of iterations (for simple arenas). This
new bound improves on the state-of-the-art runtime bound O(nmN) by taking into account the
structure of the game.

We have also established a state-of-the-art combinatorial bound 2n/2 on the number of iterations
of the GKK algorithm, by adapting the technique of Dorfman, Kaplan and Zwick [DKZ19]. Similar
examples for which the 2n/2 bound is matched are given in the full version of [DKZ19] for the DKZ
algorithm, and can also be found¹⁰ in [BV01] for the GKK algorithm.

It would be interesting to further study the GKK algorithm, and we propose three directions
for future work.

1. Could a similar symmetric analysis be extended to non-simple arenas? Could one at least ob-
tain the O(mnN) bound for the GKK algorithm (potentially by reusing information from one
iteration to the next, as in value iterations) as is suggested by the results of [DKZ19]?

2. Recall that the state-of-the-art pseudopolynomial algorithm for the mean-payoff value or strategy
synthesis problems is due to Comin and Rizzi [CR16] and runs in timeO(mn2N). Very roughly,
it is based on repeatedly solving energy games with higher and higher energy levels using the
BCDGR algorithm. Could one instead use the GKK algorithm as a subroutine, to improve the
complexity (at least for simple arenas)? Could a symmetric algorithm be designed in this manner?

¹⁰It appears from [GKK88] that such examples are due to Lebedev.

7. Conclusion and perspectives 199

3. Could we use the GKK algorithm (potentially, in combination with Zielonka’s) to derive new
(attractor-based) algorithms for mean-payoff parity games?

ESL and AESL algorithms. Second, we have used the same tools to present a variation on an
algorithm of Schewe [Sch08], which we called the ESL algorithm. Roughly speaking, it accelerates
the BCDGR value iteration by running, in each iteration, a game-theoretic version of Dijkstra’s
algorithm working in almost linear time O(m + n logn). We believe that there is value in un-
derstanding this algorithm better, since it is without doubt the most efficient one in practice for
solving mean-payoff games. Schewe’s algorithm is moreover an important piece of the successful
LTL-synthesis tool STRIX’s [MSL18; LMS20].

We have also proposed a natural symmetric variant, which alternates the potential reduction
computed by Dijkstra’s algorithm and its dual. We have observed empirically that it performs very
few iterations over random arenas induced by parity games. However, we have not been able to
derive its termination from our current toolset. Beyond more serious implementations and bench-
marking, the directions we envisage for our future work on the ESL and AESL algorithms are the
following.

1. Obviously, we want to understand the termination of the AESL algorithm.

2. We want to investigate combinatorial bounds for the ESL algorithm (which could also help for
the first item).

3. We want to understand how the ESL algorithm behaves on Friedmann’s examples [Fri09] (most
likely, in an exponential fashion, just as Schewe’s version). In particular, can we describe their
dynamics in terms of potential reductions?

4. It would also be very interesting to further study applicability of these two algorithms. How
could they be optimised, or parallelised? Could their behaviour be understood specifically on
parity games? Could synthesis frameworks (such as STRIX) benefit from our simpler formalism?
Could they be used on extensions of mean-payoff games?

5. Last, could we identify a wider (abstract) class of monotonic graphs over which the value iteration
algorithm can be sped up by a similar game-extension of Dijkstra’s algorithm?

We also hope that our work in this chapter participates in popularising the GKK and ESL
algorithms both of which appear to us as very natural and flexible methods for solving energy (or
parity) games.

11Attractor-based algorithms and parity
bi-progress measures

We now focus on attractor-based algorithms for parity games; we refer to the general introduction for
more context. Although we also like to present the GKK algorithm as attractor-based, this chapter
is completely independent from the previous one. Informally, the reason is that the nature of the
symmetry considerably differs between parity and mean-payoff games: while in the latter, positive
weights compete with negative weights, the symmetry is more interleaved in the former, where even
priorities compete with odd ones.

In the previous chapter, we exploited the symmetry of mean-payoff games by looking at a single
progress measure (or potential) from the point of view of both players. Here, it appears to be more
natural¹ to consider interleaving two given progress measures, one from the point of view of each
player. We will call the resulting object a (parity) bi-progress measure.

The observation which motivated this chapter is that Zielonka’s positionality proof [Zie98] di-
rectly relies on ordinals: an (asymmetric) construction of a family of parity-universal monotonic
graphs (which is different from the one of Emerson and Jutla [EJ91] or equivalently Walukiewicz’s
signatures [Wal96], used in Chapter 5) can be extracted from his work. This construction can be
related to Klarlund’s quasi progress measures [Kla91] (which he introduced for complementing Streett
automata), also instrumental (under the name lazy progress measures) in the recent work of Daviaud,
Jurdziński and Lehtinen [DJL19].

More recently, Parys [Par19] gave a quasipolynomial version of Zielonka’s algorithm, improved
by Lehtinen, Schewe and Wojtczak [LSW19] by using the universal tree of Jurdziński and Lazić [JL17]
(see also their joint full version [LPS+21]), and adapted to be parameterisable by arbitrary uni-
versal trees by Jurdziński and Morvan [JM20]. This reveals a combinatorial relationship between
(fixpoint-based, asymmetric) value iterations and (symmetric) attractor-based algorithms: both rely
on universal trees. We propose to further explore the link between these two paradigms.

Contributions and outline. The first insight we exploit is that value iterations naturally com-
pute attractors: for instance, if d + 1 is the largest odd priority appearing in the arena, then after i
iterations any vertex at depth ď i in the Adam attractor to d + 1 (this is formally defined below)
has its d + 1 coordinate ě 1 in the progress measure. Building up on this observation, we prove a
simulation result, which roughly establishes that the attractor-based algorithm of [JM20] can be ob-
tained by running synchronously running a value iteration algorithm for each player, with virtually
no interaction between the two, except that the iteration stops whenever each vertex is mapped to

¹As we will see, this is not only natural but also completely generic: one can interleave parity progress measures
regardless of the underlying monotonic graph.

201

202 Attractor-based algorithms and parity bi-progress measures

either of the two J elements. Perhaps surprisingly, to simulate the algorithm of [JM20] parame-
terised with trees T odd and T even, one simply uses the construction LT odd from Chapter 5, based on
signatures, and its dual.

Although it is intuitively simple, establishing the simulation result requires tedious formalities.
In particular, it is adequate to rely on a streamlined, non-recursive presentation of the algorithm
of [JM20] which we call attractor-labelling: the algorithm is defined iteratively as a depth-first traver-
sal of the interleaving T (defined below) of T odd and T even. The first section is devoted to such a
presentation, and the second one establishes the simulation result (the main result of [JM20], namely
correctness of their algorithm, is obtained as a consequence).

The reader might be surprised at this point: two contradictions immediately arise. First, the
algorithm of [JM20] has complexity (up to polynomial factors) roughly |T odd||T even|, while the syn-
chronous value iteration has complexity roughly |T odd|+ |T even| (or even min(|T odd|, |T even|)). This
advantage comes from monotonicity of the value iteration approach: recall from the general intro-
duction (Figure 2 therein) that information (winning strategies in subgames) is repeatedly discarded
in attractor-based algorithms, whereas this is not the case in value iterations. Stated differently, our
simulation result explains that progress measures can be seen as adequate data structures for running
the algorithm of [JM20] more efficiently, by avoiding to discard information.

Second, Zielonka’s algorithm is well-known to frequently perform subexponentially many (even
polynomially many) iterations, while this is not the case of value iterations (even when ran in parallel
as above). This is not contradictory because, as explained in [JM20], even when T odd and T even are
chosen to be complete n-ary trees of height d/2, their algorithm does not match Zielonka’s and per-
form more steps. (Parys’ algorithm cannot be matched either, even with adequate tree parameters.)

Section 3 explores the generic structure of parity bi-progress measures, and formalises a general
way of using information (validity) from one progress measure to accelerate the other. Finally, in
Section 4, we give a detailed sketch proving that by using Zielonka’s construction of monotonic
graphs (akin to [Kla91] or [DJL19] as explained above), combined with our acceleration, one may
simulate Zielonka’s algorithm, or even derive progress measure-based non-discarding variants of it.
This opens different perspectives for further work on this front, which are discussed in Section 5.

This chapter is the fruit of a joint work with Marcin Jurdziński, Rémi Morvan and K. S. The-
jaswini, a preprint is available at [JMO+20]. The presentation we make here is very different and
the precise results we derive are incomparable, but the underlying ideas are the same. We are also
grateful to Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow and Olivier Serre for many
stimulating discussions.

1 Universal attractor-based algorithm of [JM20]

In this section, we present the algorithm of [JM20] in a streamlined fashion, which is formally
heavier but more adequate to our needs. Its (non-trivial) correctness will be derived in the next
section, as a consequence of our simulation result. We start by formally introducing attractors.

Reachability games and attractors. Fix a finite tgood,waitu-arena G and consider the reacha-
bility game: Eve wants to visit a good-edge. Recall from Chapter 2 that the winning region is given
by a fixpoint of the form ψ : V Ñ ω, which can be explicited setting Aďi = ψ´1([0, i]) by

Aďi =

"

v P VEve
ˇ

ˇ D v
c
ÝÑ v1 with c = good or

v1 in Aďi´1

*

Y

"

v P VAdam
ˇ

ˇ v
c
ÝÑ v1 implies c = good or

v1 in Aďi´1
.

*

1. Universal attractor-based algorithm of [JM20] 203

for all i. See Figure 11.1 for an illustration.

Figure 11.1: On the left, the Eve attractor to bold blue edges. On the right, the Eve attractor to blue vertices.

Since |V | = n there is r ď n such that Aďr = Aďr´1, which, as we have already proved
(Lemma 2.4), impliesAďr+i´1 = Aďr´1 for all i, and thereforeAi = AďizAďi´1 is empty if i ě r.
It is not hard to see that the global value iteration algorithm (from the point of view of Adam) for
solving the safety game in the safety-universal monotonic graph of size one (see Chapter 2) iteratively
computes Ai, for i ă r, with linear runtime O(m).

Given a C-arena G and a subset E 1 of its edges, we call Eve-attractor to E 1 in G the winning
region in the reachability game obtained from G by colouring edges in E 1 with good and others
with wait. It is the disjoint union of the non-empty sets A0, A1, . . . , Ar´1 described above, which
we call the Eve-attractor layers to E 1 in G, and we say that their number r is the attractor-depth.

We let AttrEve
G (E 1) denote the Eve attractor to E 1 in G. Observe that by definition of safety

games, the pregraph obtained by removing edges from E 1 and restricting to the complement of the
attractor is has no sink in general.

Given a subset V 1 Ď V of the vertices, we also call Eve-attractor to V 1 in G the attractor
attrEve

G (E 1) where E 1 =
Ť

v1PV 1 Out(v1) is the set of edges outgoing from vertices in V 1. For con-
venience, we use the same notation AttrEve

G (V 1) and also use A0, . . . , Ar´1 to denote the attractor
layers. Note that we have in this case that A0 = V 1 and that Aďi+1 is comprised of Eve vertices
with an outgoing edge towards Aďi and of Adam vertices all of whose outgoing edge are towards
Aďi. In the case of vertex attractors, we define the depth to be r ´ 1, for instance if the attractor is
V 1 itself then the depth is 0.

Adam-attractor (of subsets of edges or vertices) are defined dually.

1.1 A non-recursive presentation

For the sake of discussion and clarity, we include a copy of Jurdziński and Morvan’s pseudo-code,
which is based on two mutually recursive procedures, as is the case of the Zielonka algorithm.

It is more convenient for our needs to make completely explicit the structure of the recursive
calls of the algorithm. This requires the notion of (tree) interleaving, which was already discussed
in [JM20]. We fix d to be an even integer.

Interleaving. Recall that we denote u = (ud´1, ud´3, . . . , u1) when interpreting tuples in ωd/2
as occurrences of odd priorities. Given a tuple u = (ud, ud´1, . . . , u1) P ωd, we let uodd =
(ud´1, . . . , u1) P ωd/2 denote its projection on odd coordinates, and likewise we let ueven =
(ud, ud´2, . . . , u2) denote its projection on even coordinates.

204 Attractor-based algorithms and parity bi-progress measures

Figure 11.2: The pseudo-code from [JM20]. The notations are not formally adapted, and the formalism is
slightly different, mainly because games are vertex-coloured.

Conversely, givenueven = (ud, . . . , u2), u
odd = (ud´1, . . . , u1) P ω

d/2,we let u = ι(ueven, uodd) P
ωd be given by u = (ud, ud´1, . . . , u2, u1). We always use the notation u for the interleaving of
ueven and uodd, and conversely ueven and uodd for the projections of u.

Now given two trees of height d/2, T even Ď ωd/2 and T odd Ď ωd/2, respectively interpreted
as describing occurrences respectively of even and odd priorities, we let T = ι(T even, T odd) denote
their interleaving, formally

u P T ðñ ueven P T even and uodd P T odd.

Note that although ι defines a bijection between ωd and (ωd/2)2, trees obtained as interleavings have
a special shape; for instance if d = 2, interleavings correspond to rectangles in ω2.

Depth-first traversal. We now fix an arbitrary tree T Ď ωd of height d. (T will later be taken as
an interleaving, but this does not impact the definitions below.) We let T Ď ωďd denote the set of
prefixes of T . In particular we have T Ď T . We say that u1 is below u if u is a prefix of u1. We call
elements of T the nodes of T , and elements of T the leaves of T (which are special nodes).

The interleaving T of the two trees gives the global structure of the recursive calls in the algo-
rithm. Consider the procedure on the left hand-side of Figure 11.2. Informally T is visited in a
depth-first fashion; when reaching a node u, an attractor is computed, then a recursive call is made
“below u”, and then another attractor is computed, after which there are two cases: either u has a
right sibling (case where i ă k) in which case the algorithm continues from the right sibling of u,
or u has no right sibling (case where i = k) in which case the algorithm continues from the parent
of u.

Schematically this can be described as

1st attractor at u ÝÑ computation below u ÝÑ 2nd attractor at u ÝÑ computation after u,

in particular, two different attractors are computed at u, at different moments in the algorithm.
We let T ÒÓ

= tuÒ| u P T u Y tuÓ| u P T u. In other words T ÒÓ is comprised of two copies
of each node of T ; see Figure 11.3. We use the word position to refer to elements of T ÒÓ, which
we denote with x or y. Each node u P T is associated with two positions uÒ and uÓ, which are
associated to the two attractors computed at node u. Positions of the form uÓ are called descending
and those of the form uÒ are called ascending ; we refer to this as the orientation of the position.

The depth-first traversal of T is given as a linear order ď over T ÒÓ. It is uniquely described by

uÓ ď u1Ó ď u1Ò ď uÒ

1. Universal attractor-based algorithm of [JM20] 205

whenever u1 is below u, and
uÓ ď u1Ó ðñ u ď u1,

where ď denotes the lexicographical order.

Figure 11.3: An illustration of the depth-first traversal of the tree T = t00, 01, 10, 11, 12, 22u, of height
two. The tree is depicted in black, the positions are represented as cells, and the traversal, which is a linear
order over positions, is given by the orange arrows.

The first element in the traversal is εÓ and the last is εÒ.
We let Succ(x) and Pred(x) respectively denote the immediate successor and predecessor of x

when it is defined. We employ standard terminology with respect to nodes in ordered trees:

• the height of a node u = (ud, ud´1, . . . , up) is p, in particular leaves have height 1 and the
root ε has height d+ 1;

• u is the parent of u1 if u1 is below u and their heights differ by 1, and in this case u1 is a child
of u;

• siblings are nodes with a common parent;

• a sibling u1 of u is a right sibling if it is strictly greater, and a left sibling if it is strictly smaller;

• the direct right sibling of u is its least right sibling if it has one; likewise the first child of u is
its least child if it has one.

This allows us to explicit Succ(x) (except for x = εÒ which is the last position) as follows

Succ(uÓ) =

#

uÒ if u is a leaf
u1Ó where u1 is the first child of u, otherwise

Succ(uÒ) =

#

u1Ó where u1 is the direct right sibling of u if it has one
u1Ò where u1 is the parent of u, otherwise.

Similar formulas can be obtained for Pred(x) by inverting the above ones.

Attractor-labelling. We now additionaly fix a [1, d]-arena G. Given a subset of vertices X Ď V
and an priority p we let Gp

X denote the restriction of G to vertices in X and edges of priority ď p,
and we let Ep

X denote the set of edges of the form X
p
ÝÑ X in G.

We use P P tEve,Adamu to denote either player, and P for the opponent of P. Given u P T ,
the player associated to u corresponds to the priority of its height p: it is P = Eve if p is even and

206 Attractor-based algorithms and parity bi-progress measures

P = Adam otherwise. Note that the player associated to the root ε, as well as the player associated
to leaves, is Adam, since these have odd heights.

We say that a collection of subsets of vertices Xu, Yu, Ax Ď V , where u ranges over the set of
nodes T of T and x ranges over the set T ÒÓ of positions in T , is an attractor-labelling (of T by G) if
(see illustration in Figure 11.4)

• Xε = V ;

• for all² nodes u P T we have

– Xu = Xu1zAx1 and

– Yu = Xu2zAx2 ,

where x1 = Pred(uÓ), x2 = Pred(uÒ), and u1 and u2 are their associated nodes; and

• for all u P T , defining p to be the height of u and P to be the player associated to u, we have

– AuÓ = AttrP
Gďp

Xu

(Ep
Xu

) and

– AuÒ = AttrP
Gďp

Xu

(Yu).

Figure 11.4: A complete depiction of the situation at a node u P T in an attractor labelling of an arena by
a tree of height d. Each node should be seen as inducing two computation cells corresponding to the two
positions uÓ and uÒ which occur at different moments in the depth-first traversal. Each position is responsible
for computing an attractor, and then passing on the information to its successor. In the figure, u is not a leaf
(it has children), and has sibling on both sides. The two illustrations on the left and the right depict the
computation in each cell; the neighbourhood of u in T is represented in the center.

Note that since there are no (d+ 1)-edges, we have AεÓ = ∅; stated differently the first step is
(artificially) trivial. This has no impact on the rest of the presentation.

We will see as an easy property of attractor-labellings that for all nodes u we have Yu Ď Xu

(see Lemma 11.2), which is why the definition of AuÒ makes sense. We say that Gp
Xu

is the arena
associated with u.

We will often drop subscripts for clarity, when the node and/or the position is clear from context.
More precisely, we will often refer to a position x and simply use u,A,X, Y, P, p respectively for the
node associated to x, Ax,Xu, Yu, the player associated to u and the height of u. Likewise, when we
define a position x1, we use u1, A1, X 1, Y 1, P1, p1 for the corresponding objects, avoiding the hassle

²The first equation does not make sense for u = ε, but the second one is required to hold.

1. Universal attractor-based algorithm of [JM20] 207

of formally stating these definitions. The equational form we chose for convenience implies that we
should prove the statement below.

Lemma 11.1 (Attractor-labellings are well defined)

There exists a unique attractor-labelling of T with G.

The formal proof is a bit cumbersome but only syntactical.

Proof. We show by induction on the traversal of T that

for all positions x associated with node u, there exists a unique collection Xw, Yw1 , Ay of subsets,
where y ranges over positions ă x, w over nodes associated to such positions which are

descending, and w1 over nodes associated to those which are ascending.

We let x P T ÒÓ be a position associated with node u and assume that the above holds (which is
vacuous for x = εÓ, the first position). There are two cases according to the orientation of x.

• If x = uÓ. Then if x = εÓ we have Xu = V and otherwise we have Xu = Xu1zAx1 ,
where x1 = Pred(x) and u1 is the associated node, which defines uniquely Xu since uÓă x.
MoreoverAx is defined uniquely using the equation above. This satisfies the wanted inductive
hypothesis for Succ(x).

• If x = uÒ. Then Yu is defined uniquely with respect to Xu2 and Ax2 , where x2 = Pred(x)
and u2 is the associated node. Since x2 ă x, Ax2 is defined uniquely by induction, and so is
Xu2 since u2Óă x. Finally, Ax is defined uniquely with respect to Xu (which is defined by
induction since uÓă x) and Yu.

This concludes the induction and the proof.

Therefore we say “the” attractor-labelling of G by T .

Attractor-based iteration. The proof above suggests a procedure for computing the attractor-
labelling step-by-step, following the depth-first traversal ofT , and we call this procedure the attractor-
based iteration (forG in T). We say that the attractorAεÒ computed at the last position is its output,
which we denote by W Ď V .

We claim that this procedure (and its output) coincides with that of [JM20], when T is set to
be the interleaving of T even and T odd but keep this claim informal since the basic definitions differ.
We state their main result.

Theorem 11.1 (Correctness of the attractor-based iteration)

If T even and T odd are universal then W is the winning region for Eve in G.

We give a few general properties which will be helpful later on.

208 Attractor-based algorithms and parity bi-progress measures

1.2 First properties

The result below requires no game-theoretic argument, but only uses the fact that attractors are
subsets of vertices. Note that the second item implies Yu Ď Xu for all nodes u, since by definition
Yu Ď Xu1 , where u1 is the greatest child of u.

Lemma 11.2 (Set-properties of attractor-labellings)

• If u1 is a right sibling of u then Xu1 Ď Xu.

• If u1 is below u then Xu1 Ď Xu.

• Xu is the disjoint union of AuÓ, of Au1Ò where u1 ranges over the children of u, and of Yu.

Proof. • Let u1 = uj and u = ui for some j ě i. We prove the first item by induction on j´i.
If j´i = 0 then u = u1 and the result is clear. Otherwise, we haveXu1 = XPred(u1Ó)zAPred(u1Ó)

and the result follows by induction since the direct left sibling u1Ó of u is a right sibling of u
with a smaller difference in their last coordinate.

• We prove the second item by induction on the difference in the heights of u and u1. If their
heights are the same then the nodes are equal and the result is clear. If their heights differ by
one, then the leftmost child of u is a left-sibling of u1, hence by the first item, Xu1 Ď Xu2 ,
which concludes since by definition Xu2 = XuzAuÓ Ď Xu. Otherwise, the parent u2 of u1

is below u and higher than u1, hence by induction Xu2 Ď Xu, and since u2 and u1 differ in
height by one we conclude that Xu1 Ď Xu2 Ď Xu.

• Let u1, . . . , uk denote the children of u in this order (meaning, ui+1 is the direct right sib-
ling of ui). We prove by induction on i that XuzXui is the disjoint union of AuÓ and
Au1Ò, Au2Ò, . . . , Aui´1Ò.

For i = 1, we have Succ(uÓ) = u1Ó, hence Xu1 is XuzAuÓ. Given i P [1, k ´ 1] we have
Succ(uiÓ) = ui+1 henceXui+1

= XuizAuiÒ. This directly yields together with the induction
hypothesis at i the result at i+ 1, and we conclude by induction that XzXuk is the disjoint
union of AuÓ and of AuiÒ for all i P [1, k].

Finally we have Succ(ukÒ) = uÒ hence Yu = XukzAukÒ which concludes.

Attractor-labellings and edges. We say that an edge e = v
q
ÝÑ v1 inG is not present at u if v P X

but e does not belong to Gďp
X : either v1 R X or q ą p. We extend this terminology to positions by

considering the associated nodes. We say that e is removed at position x if it belongs to Gďp
X but is

not present at Succ(x).

Lemma 11.3 (Characterizing removed edges)

Let x P T ÒÓ be a position, let e = v
q
ÝÑ v1 be an edge inG and assume that the node u associated

to x is not a leaf.

• If x = uÒ, then e is removed at x if and only if v P (XzA)X VP, q ď p and v1 P A.

1. Universal attractor-based algorithm of [JM20] 209

• Otherwise, e is removed at x if and only if v P (XzA) X VP, q ď p and either q = p or
v1 P A.

Proof. Let x1 = Succ(x) and recall that by definition we haveX 1 = XzA. We have in the first case
p1 ě p, and in the second, since u is not a leaf, p1 = p´ 1. We start with the converse implications
which are direct. If v P XzA, q ď p and v1 P A Ď X then e belongs to Gďp

X and v P X 1 but
v1 R X 1 hence e is removed at x. Now if x = uÓ and q = p, then the assumption v1 P A is no
longer required since p1 = q ´ 1 ă q.

Assume now that e is removed at x. Then v P X 1 = XzA, and e belongs to Gďp
X so it must be

that q ď p.

• If x = u Ò then p1 ě p, hence it must be that v1 R X 1, but since v1 P X this yields
v1 P A = AttrP

Gďp
X
(Yu). Since A is a P-attractor and v R A although v has an edge, namely

e, towards A in Gďp
X , it must be that v P VP which proves our claim.

• If x = uÓ then p1 = p´ 1 so either v1 P A = AttrP
Gďp

X
(Ep

X), or q = p implying e P Ep
X . In

both cases, this implies that v P VP since v R A.

Understanding where the edges that are not present have been removed turns out to be crucial
for our needs.

Lemma 11.4 (Properties of removed edges)

If e is not present at u then it is either removed at u1Ó such that u is below u1, or it is removed
at u1Ò such that u is below a strict right sibling of u1.

Figure 11.5 illustrates the situation in the proof.

Figure 11.5: An illustration for the proof of Lemma 11.4.

Proof. Let e = v
q
ÝÑ v1. We let u0 = ε and for all i such that ui ‰ u we let ui+1 be the leftmost

child of ui if u is below ui, and the direct right sibling of ui otherwise. It is easy to see that this

210 Attractor-based algorithms and parity bi-progress measures

sequence converges to u, and that for all i, uiÓ is before uÓ. Note that all edges (and e in particular)
belong to Gďp0

X0
since X0 = V and p0 = d+ 1.

By the first two items of Lemma 11.2, a direct induction concludes that for all i we haveXui Ě

Xu. In particular since v P Xu we have for all i, v P Xui . Since moreover the height of ui cannot
increase with i, there is a unique index i0 (which is the first index such that v1 R Xui if v1 P Xu, or
such that pi ă q otherwise) such that e belongs to the game associated to ui0 but not to ui0+1.

If u is below ui0 then e is removed at uÓ which proves our claim. Otherwise e is removed at
ui0Ò, and u is below a strict right sibling of ui0 .

2 Simulation by value iteration

We now show that the attractor-based iteration defined in the first section can be simulated
by running in parallel two global value iterations, one for each player. In particular this gives an
alternative proof of correctness of the algorithm (Theorem 11.1) which is the main result of [JM20].

2.1 Setting

Recall that we have fixed an even integer d and two trees T even and T odd of size d/2, respectively
interpreted as counting occurrences of even and odd priorities. We let Lodd be the monotonic graph
from Chapter 5 for the (even) parity condition over T odd; it is given by

uodd p
ÝÑ u1odd in Lodd ðñ

p is even and uodd ěp+1 u
1odd or

p is odd and uodd ąp u
1odd.

Likewise, we let Leven be the monotonic graph over T even given by

ueven p
ÝÑ u1even in Leven ðñ

p is odd and ueven ěp+1 u
1even or

p is even and ueven ąp u
1even.

We also recall the useful notations

rpsodd =

#

p+ 1 if p is even
p if p is odd

and rpseven =

#

p+ 1 if p is odd
p if p is even.

By a slight abuse which is convenient, we often identify Eve with even and Adam with odd, for
instance we use the notations uP or rusP when P P tEve,Adamu. Note that we have

uP p
ÝÑ u1P in LP ùñ uP ěrpsP u1P,

with a strict inequality if rpsP = p, which means that the parity of p matches P. We also recall
that the preorders are defined (even over tuples of non-matching size) by first truncating up to the
indicated index and then comparing lexicographically.

For clarity we denote by Jeven the maximal element of the completion Leven,J of Leven and use
T even,J = T even Y tJevenu for its set of vertices, and likewise for odd. We also let UpdP denote
UpdLP,J

G for both P. Note here that Updodd is defined as usually, but we dualise the role of the
players in Updeven. In general, these are defined by

UpdP(ϕP)(v) =

$

’

&

’

%

min
v

p
ÝÑv1 in G

ρP(ϕP(v1), p) if v P VP

max
v

p
ÝÑv1 in G

ρP(ϕP(v1), p) if v P VP,

where ρP denotes the min-predecessor table in LP,J.

2. Simulation by value iteration 211

Figure 11.6: An example with d = 4. On the left, a representation of the grid T odd,J ˆ T even,J, given by
the (6 + 1) ˆ (5 + 1) black points. On the right, the interleaving T of the two trees and the nodes of T .
Each node u1 P T corresponds to an “inner box” (of corresponding colour) in the grid, comprised of points
(ueven, uodd) such that u is below u1. A pair of progress measures (ϕeven, ϕodd) corresponds to a point in the
grid for each vertex v.

2.2 Simulation

Given a position x P T ÒÓ, we say that it is even if it computes an Eve attractor, and odd otherwise.
Stated differently, uÓ is even if and only if u is even, and uÒ is even if and only if u is odd.

We say that the complexity at position x is the attractor-depth of Ax, which we denote rx. We
define the even and odd complexities strictly before x by

reven
ăx =

ÿ

yăx
y even

ry and rodd
ăx =

ÿ

yăx
y odd

ry,

and the even and odd complexities before x, denoted reven
ďx and rodd

ďx are defined likewise.
For both P we let ϕP

0 denote the minimal progress measure in LP,J. Given a position x, we let
ϕP
x be the progress measure obtained after as many global iterations as the sum of attractor-depths

of P-attractors computed (strictly) before x, formally

ϕP
x = (UpdP)r

P
ăx(ϕP

0).

Recall that ε ÒP T
ÒÓ is the greatest position, therefore the even and odd complexities before ε Ò

respectively correspond to the sum of depths of all even and odd attractors computed throughout
the iteration. We also recall that W denotes the output AεÒ of the iteration. Our main result is the
following.

Theorem 11.2 (Separation via simulation)

For all v P W we have ϕeven
εÒ (v) = Jeven and for all v R W we have ϕodd

εÒ (v) = Jodd.

212 Attractor-based algorithms and parity bi-progress measures

Stated differently, performing a step of global value iteration (for either player, depending on
the attractor) for each attractor-layer computed throughout the iteration results in a pair of progress
measures which has “converged” in a weak sense: any vertex is mapped to J in (at least) one of the
two progress measures. Note that this does not imply that ϕP

εÒ coincides with the least fixpoint ψP.
However, if both trees are universal then this is sufficient for declaring that W is the winning

region of Eve since a vertex mapped toJodd is necessarily winning for Adam³ (see Theorem 4.3) and
vice-versa. Therefore Theorem 11.2 implies Theorem 11.1.

The proof of the theorem amounts to a very careful bookkeeping of the evolution of the two
progress measures. We break it into inductive properties which we call invariants and introduce
now.

Invariants. We think of ϕP
x as the progress measures “just before x”. We will prove the following

invariants. In full, the names of the invariants read as “before, down”, “after, down”, “before, up”
and “after, up”. We let x1 = Succ(x) P T ÒÓ.

(BD) If x = uÓ then for both P, and for all x P X we have ϕP
x(v) ěrpsP uP. In the three invariants

below P denotes the parity of u, which is by definition the parity of its height p.

(AD) If x = uÓ then for all v P Ax we have ϕP
x1(v) ěp u

P.

(BU) If x = uÒ we have

(BU1) for all v P XzY it holds that ϕP
x(v) ąp u

P and

(BU2) for all v P Y it holds that ϕP
x(v) ąp+1 u

P. (Note that rpsP = p+ 1.)

(AU) If x = uÒ then for all v P Ax we have ϕP
x1(v) ąp+1 u

P.

We say that all invariants hold up to x if for each y ă x both invariants (before and after y) hold, and
moreover the invariant before x (either (BU) or (BD) according to the orientation of x) holds.
Note that we have ϕP

y ď ϕP
x whenever y ă x which is very convenient for the proofs below: to

prove that all invariants are satisfied up to x1 = Succ(x) it suffices to verify the invariants after x
and before x1.

We break the proof into two different but analogous cases according to the orientation of x.

Lemma 11.5 (Descending lemma)

If x = uÓ and all invariants hold up to x then all invariants hold up to Succ(x).

Proof. Recall that we have in this case A = AttrP
Gďp

X
(Ep

X) and that u = udud´1 . . . up is indexed
with integers up to p, whose parity is P. Let A0, . . . , Ar´1 denote the attractor layers; we have
r = rP

x. Locally to the proof we let ϕP
0 denote ϕP

x and ϕP
i+1 = UpdP(ϕP

i) for i P r, note that by
definition ϕP

x1 = ϕP
r and ϕP

x1 = ϕP
x. Note also that the ϕP

i ’s satisfy all invariants up to x since they are
greater than ϕP

x. We have to prove the invariant after x and before x1 and we start with the former.
We prove by induction on i P r that for all v P Ai we have ϕP

i+1(v) ěp u
P. We prove together

the base and inductive cases. We let v P Ai and put wP = ϕP
i+1(v) = UpdP(ϕP

i)(v).

³This is not a typo, recall that Lodd is universal for the even-parity condition.

2. Simulation by value iteration 213

Figure 11.7: Depiction for the descending lemma in the case where P is odd. The invariant before x = uÓ

is depicted in yellow: all vertices belonging to X (on the right) are mapped to the yellow zone (on the left).
The invariant after x is depicted in green: we must verify that all vertices inA are mapped by ϕx1 to the green
zone. The tricky part of the proof is about dealing with v P AXVP, represented as the green circle. We must
in this case handle edges such as the purple one, which were removed in previous steps.

• Assume first v P Ai X VP. If i = 0 then v has a p-edge towards v1 P X . By definition of
UpdP it must be that wP p

ÝÑ ϕP
i (v

1) in LP which implies wP ąp ϕ
P
i (v

1). Since the invariant
before x = uÓ holds we have ϕP

i (v
1) ěp u

P therefore wP ąp u
P.

If i ą 0 then v has an edge v q
ÝÑ v1 towards v1 P Ai´1. Again wP q

ÝÑ ϕP
i in LP which implies

wP ěrqsP ϕP
i ąp u

P where the second inequality holds by induction. This implies wP ąp u
P

since rqsP ď p (which follows from the fact that rpsP = p.)

• Assume now that v P Ai X VP; by definition of UpdP there is an edge e = v
q
ÝÑ v1 in G such

that wP q
ÝÑ ϕP

i (v
1) in LP. Since v P Ai if e belongs to Gďp

X then v1 P X and either q = p
or v1 P Aj for some j ă i. Otherwise, the edge e is not present at u and we will invoke
the previous lemmas and the invariant relative to the position where e is removed. We now
elaborate on the three cases.

– Assume v1 P X and q = p. Then we have wP ąp ϕ
P
i (v

1) which implies the wanted
result since we have ϕP

i (v
1) ěp u

P thanks to the invariant before x.

– Assume v1 P Aj for some j ă i. Then we have wP ěrqsP ϕP
i (v

1) which is ąp uP by
induction and we conclude as previously.

– Assume finally that e is not present at u. Then Lemma 11.4 provides us with two
possible cases.

* If e is removed at u1Ó such that u is below u1 (in particular, u cannot be a leaf since
u1 ‰ u). Then by Lemma 11.3 we have v P VP1 hence P = P1, q ď p1 and either
v P A1 or q = p1. In the first case, the invariant after u1Ó yields ϕP

i (v
1) ąp u

1P,
implying the result since wP ěrqsP ϕP

i (v
1) and q ď p1 (hence rqsP ď p1) and

moreover u1P is a prefix of uP.

214 Attractor-based algorithms and parity bi-progress measures

In the second case we have wP ąp1 ϕP
i (v

1) which is ěp u1P thanks to the invariant
before u1Ó, implying thatwP ąp u

1P which is again stronger than the wanted result.

* If e is removed atu1Òwhereu is below a strict right sibling ofu1 then by Lemma 11.3
we have v P VP1 hence P1 = P, q ď p1 and v1 P A1. Thanks to the invariant after
u1Ò we have ϕP1

x (v
1) ąp1+1 u

1P1

and therefore wP ěrqsP ϕP
i (v

1) ąp1+1 u
1P. Since

rqsP ď p1+1 this implies wP ąp1+1 u
1P which is equal to u2

P where u2 is the parent
of u1 since the height of u1 has the inverse parity of P, implying the result since u
is below u2.

This concludes the proof of the induction, and therefore the invariant after x holds. There remains
to prove the invariant before x1, whose definition depends on the orientation of x1.

• If x1 is ascending then since x = uÓ it must be that u is a leaf and x1 = uÒ. In this case, Gďp
X

is comprised only of 1-edges therefore we have A = X and Y 1 = XzA = ∅. Hence there is
only to prove that for all v P XzY = X = A, ϕP

x1(v1) ąp u
P, which was done above.

• If x1 is descending then x1 = u1Ó where u1 is the first child of u. Then invariant before x gives
for both players P2 and for all v P X 1zX the inequality ϕP2

x1 (v) ěrpsP2 uP2 . Since by definition
ϕP2

x1 (v) is a leaf and since u1 is the first child of u this implies ϕP2

x1 (v) ěrp1sP2 u1P2 .

Lemma 11.6 (Ascending lemma)

If x = uÒ and all invariants hold up to x then all invariants hold up to Succ(x).

Figure 11.8: Depiction for the ascending lemma in the case where P is odd. The invariant before u = xÒ

states that vertices in XzY are mapped to the yellow zone, and vertices in Y are mapped to the green zone.
We aim to prove that vertices in A are mapped by ϕx1 to the green zone as well. This time the harder case
corresponds to v P AX VP (informally, it is always the player who does not control the attractor).

The first part of the proof (verifying the invariant after x) is very similar to the above one, with a
focus rather on the other player and a vertex-attractor. The second part however requires a different
case analysis.

2. Simulation by value iteration 215

Proof. Recall that we now have A = AttrP
Gďp

X
(Y), and again u = udud´1 . . . up, the parity of p

being P. We let A0, . . . , Ar´1 denote the attractor layers with depth r ´ 1 (recall our convention
for vertex-attractors), and by definition we have A0 = Y . We let ϕP

0 = ϕP
x and for i P r ´ 1 we let

ϕP
i+1 = UpdP(ϕP

i). The progress measures at x1 are given by ϕP
x1 = ϕP

x and ϕP
x1 = ϕP

r´1. We start by
showing the invariant after x.

We prove by induction on i P r that for all v P Ai we have ϕP
i (v) ąp+1 u

P. The base case i = 0
is exactly given by the second property of the invariant before x. We let i P r ´ 1, pick v P Ai+1

and let wP = ϕP
i+1(v) = UpdP(ϕi)(v), which we aim to prove to be ąp+1 u

P.

• Assume first that v P Ai+1 X VP. By definition of the attractor there is an edge v q
ÝÑ v1

towards v1 P Ai in Gďp
X therefore q ď p. By definition of UpdP it holds that wP q

ÝÑ ϕP
i (v

1)

belongs toLP thuswP ěrqsP ϕP
i (v

1) ąp+1 u
P, where the second inequality holds by induction

hypothesis. This yields the wanted result since rqsP ď p+ 1.

• Assume now that v P Ai+1 X VP. By definition of UpdP there is an edge e = v
q
ÝÑ v1 in G

such that wP q
ÝÑ ϕP

i (v
1) belongs to LP. If e belongs to Gďp

X then q ď p and since v P Ai+1 it
holds that v1 P Aďi and we conclude as in the first item. Ohterwise e is not present at x and
Lemma 11.4 provides us with two cases.

– If e is removed at u1Ó such that u is below u1 then Lemma 11.3 tells us that v P VP1

hence P1 = P and either v1 P A1 or q = p1. In the first case the invariant after u1Ó gives
ϕP1

i (v
1) ąp1 u1P1 and moreover wP1

ąrqsP1 ϕP1

i (v
1) which implies wP1

ąp1 u1P1 and yields
the wanted result since P1 = P and u is below u1.
In the second case we have wP1

ąp1 ϕP1

i (v
1) which is ěp1 u2P1 thanks to the invariant

before u1Ó, implying that wP1

ąp1 u1P1 and the wanted result.

– If e is removed at u1Ò such that u is below a strict right sibling of u1 then Lemma 11.3
gives v P VP1 thus P = P1, and moreover q ď p1 and v1 P A1. We have wP ěrqsP ϕP

i (v
1)

and moreover the invariant after u1Ò gives ϕP
i (v

1) ąp1+1 u
1P and since rqsP ď p1 + 1

we have wP ąp1+1 u
1P. This rewrites as wP ąp1+1 u

2P where u2 is the parent of u1 and
implies the wanted result since u is below u2.

This concludes the induction and the proof of the invariant after x. We now prove the invariant
before x1, whose definition depends on the orientation of x1.

• If x1 = u1Ó then u1 is the direct right sibling of u. For P we have u1P = uP and the result
follows directly from the invariant before uÓ. For P we have for all v P X 1 = XzA Ď XzY
that ϕP

x1(v) ąp u
P thanks to the invariant before x = uÒ and the result follows.

• If x1 = u1Ò then u is the rightmost child of u1 and we have Y 1 = XzA, p1 = p + 1 and
P1 = P. There are two items to prove.

– Let us show that for all v P X 1zY 1 we have ϕP1

x1(v) ąp1 u1P1 . By the third item in
Lemma 11.2, X 1zY 1 is the disjoint union of Au1Ó and of Au2Ò where u2 ranger over
the children of u1. For v P Au1Ó the invariant after u1 Ó concludes. For v P Au2Ò

the invariant after u2Ò yields ϕP2

x1 (v) ąp2+1 u
2P2

which concludes since P2
= P1 and

u2P2

= u1P1 .

216 Attractor-based algorithms and parity bi-progress measures

– There remains to show that for all v P Y 1 = XzA we have ϕP
x1 ąp1+1 u

1P. SinceA Ě Y
it holds that Y 1 = XzA Ď XzY hence by the invariant before uÒ we have for v P Y 1

that ϕP
x1(v) ąp u

P. Since u is the rightmost child of u we have uP = u1Pk P T for k
maximal therefore this gives ϕP

x1(v) ąp+2 u
1P, the wanted result.

Now the invariants before and after ε Ò give exactly the theorem since we have in this case
p = d+ 1 and W = AuÒ.

3 Accelerating iterations of parity bi-progress measures

Moving on from the algorithm of Jurdziński and Morvan [JM20], we now introduce a systematic
way of accelerating synchronous value iterations such as those of the previous section. More precisely,
we explore the following question

“how can we exploit information from ϕeven to accelerate ϕodd, and vice-versa?”

Our initial inspiration was to simulate Zielonka’s algorithm in a value iteration scenario, which
seemed to require such an acceleration mechanism.

We fix a finite [1, d]-arena G of size n.

3.1 The structure of parity bi-progress measures

We let Lodd and Leven be two arbitrary finite monotonic [1, d]-graphs respectively satisfying
W = Parity[1,d] and its complement. As before, we use Jodd and Jeven to denote the maximal
elements of the completions and use Updodd and Updeven for the corresponding operators, with
dual semantics.

Bi-progress measures. A bi-progress measure (for G in (Lodd,Leven)) is a pair (ϕodd, ϕeven) of
progress measures. We say that ϕodd and ϕeven are the coordinates of ϕ.

Given P P teven, oddu we say that an edge or a vertex is valid for P or P-valid if it is valid in ϕP

and that it is bi-valid if it is valid for both P. Recall that Lodd is looked at from the point of view
of Eve (occurrences of odd priorities define usual signatures), therefore an Eve-vertex is odd-valid
if and only if it has an odd-valid outgoing edge and vice-versa. We hope that this convention does
not cause confusion, we find it to be the easier one to work with. We still identify even with Eve
and odd with Adam, for instance VP = VEve if P = even.

Lemma 11.7 (Vertex bi-validity)

Any bi-valid vertex has a bi-valid outgoing edge.

Proof. If v P VP is bi-valid then all its outgoing edges are P-valid and moreover one of them is
P-valid.

We say that a bi-progress measure ϕ has weakly converged if for all v P V , either ϕodd(v) = Jodd

or ϕeven(v) = Jeven. The following result should be seen as a separation result akin to the fact that
a given vertex cannot be winning for both players in general. It is not specific to W = Parity.

3. Accelerating iterations of parity bi-progress measures 217

Corollary 11.1

The progress measure ψ = (ψodd, ψeven) has weakly converged.

Proof. By definition, every vertex is bi-valid in ψ. Starting from v, we may therefore produce an
infinite path π comprised only of bi-valid edges thanks to the lemma. Stated differently, ψodd(v)
and ψeven(v) both have col(π) as a colouration respectively in Lodd,J and Leven,J. If col(π) P W
this implies ψeven(v) = Jeven since Leven satisfies cW , and symmetrically.

This already suggests a weak acceleration mechanism: if it so happens that the iteration is over
for a given player, say ϕeven = ψeven (stated differently, all vertices are even-valid), then any vertex
which is not mapped toJeven can be accelerated, in ϕodd, toJodd (see Figure 11.9), without breaking
the invariant of being ď ψ (on both coordinates).

Figure 11.9: The weak acceleration (which is not specific to parity) which can be performed if all vertices are
even-valid. Note that the obtained bi-progress measure has weakly converged.

Using the weak acceleration and alternating an iteration in parallel for each players, one obtains
a (weakly converging) value iteration algorithm with runtime roughly min(|LEve|, |LAdam|) rather
than roughly |LEve||LAdam|. We will show that in the case of the parity condition, one may obtain a
local variant of the acceleration mechanism.

Parity bi-progress measures. Recall from Chapter 5 that any graph satisfying the (even) parity
condition embeds into LT , where T Ď ωd/2 is the tree comprised of tuples of odd occurrences of
vertices of the graph. We assume for the sake of clarity⁴ that tuples of odd occurrences in Lodd are
pairwise distinct, in other words the map Lodd Ñ T odd is a bijection. Therefore we simply identify
vertices in Lodd with elements of T odd.

Stated differently, we take Lodd to be a monotonic graph obtained from LT odd by (potentially)
removing edges. Naturally, we do the same for Leven. Therefore edges in LP verify that

uP p
ÝÑ u1P in LP ùñ uP ěrpsP u1P,

with a strict inequality if rpsP = p, which means that the parity of p matches P. We stress the
fact that this need not be an equivalence; as we will see there is value in considering non-saturated
constructions of monotonic graphs.

⁴This assumption can easily be removed in what follows, it incurs no loss of generality.

218 Attractor-based algorithms and parity bi-progress measures

We let T denote the interleaving of T even and T odd. Note that Section 2 does not exploit the
(interleaved) preorders over T ; elements u, u1 P T (or T in that case) were only compared via their
projections for instance ueven ěp u

1even for some even p.
What we call the structure of parity bi-progress measures is the sequence of preorders induced

over the interleaving T Ď ωd. Given v P G and a bi-progress measure (ϕodd, ϕeven), assuming
that ϕodd(v) ă Jodd and ϕeven(v) ă Jeven, we define ϕ(v) P T as the interleaving of ϕodd(v) and
ϕeven(v).

Figure 11.10: Another instance of Figure 11.6, which depicts an example where d = 4. The linear order ě1

is depicted in green. The blue and red boxes are now interpreted as equivalence classes =p respectively for
even and odd p’s; they are ordered by ěp.

We let TJ denote (T evenYtJevenu)ˆ (T oddYtJoddu) and extend all preorders naturally to TJ

by seeingJodd as an occurrence of the priority d+1 andJeven as an occurrence of d+2. (Formalities
are not important and cumbersome, we omit them.)

We raise the reader’s attention on the fact that the linear orderě1 over TJ does not coincide with
the (partial) product order ě over TJ defined via the projections. It is true however that ě1 refines
ě; we refer to Figure 11.10. We now extend the definition of ϕ(v) to all vertices in the obvious
way. We therefore see bi-progress measures as mappings V Ñ TJ.

3.2 Accelerations

Here is our main lemma for bi-progress measures.

Lemma 11.8 (Edge bi-validity)

Let v p
ÝÑ v1 be a bi-valid edge. Then ϕ(v) ąp ϕ(v1).

Proof. Assume p to be even. Then we have ϕeven(v) ąp ϕ
even(v1) and ϕodd(v) ěp+1 ϕ

odd(v1) which
implies the result. The case of odd priorities is similar.

3. Accelerating iterations of parity bi-progress measures 219

We obtain our main result as a consequence. We say that a vertex v is minimal up to p or p-
minimal (in ϕ) if for all vertices v1 it holds that ϕ(v1) ěp ϕ(v). We assume that ϕ ď ψ (over both
coordinates).

Theorem 11.3 (Acceleration for P over p-minimal vertices)

Let p P [1, d] and assume that for some P it holds that all p-minimal vertices are P-valid. Then
all p-minimal vertices v satisfy ψP(v) ąrpsP ϕP(v).

Stated differently, if the hypothesis of the theorem is met, one may update for all p-minimal
vertex the value of ϕP(v) to the smallest ąrpsP position (which does not depend on v), without
breaking the property of being ď ψP.

Note that unless ϕ has converged, d + 1-minimal vertices are exactly those which are mapped
to T (no J coordinate). Hence when p = d + 1 the theorem instantiates as the weak acceleration
described in Figure 11.9: if all vertices are valid for P then those which are not mapped to JP can
be mapped to JP. We refer to Figure 11.11 for a depiction of the acceleration.

Figure 11.11: An illustration of the acceleration induced by Theorem 11.3. The points on the grid represent
positions of the vertices in the current bi-progress measure ϕ. The boxes containing p-minimal vertices for
p P [1, 5] are also displayed; in this case, the boxes are the same for p = 1 and 2, and only one vertex is p-
minimal for p P t1, 2, 3u. Assuming all 4-minimal vertices are valid for Eve (this corresponds to the progress
measure ϕodd displayed horizontally), they made be accelerated in ϕeven as represented by the lime arrows.

Proof. We fix a representative u0 P TJ of the =p-equivalence class of p-minimal vertices in ϕ, in
other words p-minimal vertices are exactly those which satisfy ϕ(v) =p u0. We let

S = tv P V | ϕ(v) =p u0 and ψP(v) ďrpsP u
P
0u,

220 Attractor-based algorithms and parity bi-progress measures

which we assume for contradiction to be nonempty. We let ϕ1 be the bi-progress measure whose
coordinates are given by ϕ1P = ϕP and ϕ1P = ψP. We may rewrite membership in S as follows

v P S ðñ ϕ(v) =p u0 and ψP(v) ďrpsP uP
0

ðñ ϕP(v) =rpsP uP
0 and ϕP(v) =rpsP uP

0 and ψP(v) ďrpsP uP
0

(since ϕP ď ψP) ðñ ϕP(v) =rpsP uP
0 and ψP(v) =rpsP uP

0

ðñ ϕ1(v) =p u0
ðñ ϕ1(v) ďp u0.

Now let v P S. It is valid in ϕP by assumption, and valid in ψ1P since all vertices are valid in
evaluations in general; in other words it is bi-valid in ϕ1. Therefore it has a bi-valid outgoing edge
v

q
ÝÑ v1 by Lemma 11.7, hence Lemma 11.8 gives

ϕ1(v) ąq ϕ
1(v1),

which implies ϕ1(v) ą1 ϕ
1(v1) since ą1 is the finest preorder and therefore

u0 ěp ϕ
1(v) ěp ϕ

1(v1)

hence v1 P S.
Iterating this process creates an infinite decreasing sequence for ą1: a contradiction. Hence S

is empty which gives the wanted result.

4 Simulation of Zielonka’s algorithm

We now give a detailed sketch of how Zielonka’s algorithm can be obtained as an accelerated
value iteration.

4.1 Additional ingredients

In our simulation of Jurdziński and Morvan’s algorithm the control we have over positions ϕ(v)
of vertices (in or out of the currentX) is always given by lower bounds (see invariants in Section 2).
This gives no information about vertex-validity; actually when performing global iterations as above,
we cannot guarantee any such control. Our simulation of Zielonka’s algorithm is similar to the one
of Section 2, but requires introducing four additional ingredients.

Local lifts and resets. First, we use local lift operators, which give us more control over the
positions of the vertices (in particular, we no longer want to automatically update vertices outside
of the current X). Second, we use resets to simulate “discarding information” (as in Figure 2 from
the general introduction): we sometimes have to “update back” the value ϕ(v) for some v P X to a
smaller value ϕ1(v) ď ϕ(v) (which is not natural in the context of value iterations).

Accelerations. Third, and most importantly, we use accelerations as described in the previous
section. These allow to perform “shortcuts” in the attractor-labelling, which are valid (only) if T odd

and T even are chosen to be the complete n-ary trees, and can be stated as follows: if it so happens
that⁵ Yu = ∅ at some node u, then it holds that Yu1 = ∅ for any right sibling of u, and therefore
we may skip all computation below right-siblings of u and continue instead from the parent of u.

⁵A similar conclusion is also true if AuÒzYu = ∅, which is a weaker assumption. Stated differently, we may also
simulate the optimisation of Zielonka’s algorithm by Liu, Duan and Tian [LDT14] for free. For simplicity, we stick to
Zielonka’s algorithm in its simpler form.

4. Simulation of Zielonka’s algorithm 221

Using these shortcuts allows to formalise Zielonka’s algorithm as an attractor-labelling and thus
apply our simulation technique. Now using an acceleration to simulate a shortcut after uÒ, provided
Yu = ∅, requires ensuring that all vertices in Xu are valid for Pu in the progress measure after uÒ.
This will follows from induction (computation below u) for vertices in XuzAuÓ, however ensuring
that vertices in AuÓ are valid for Pu requires introducing a fourth ingredient.

Lazy positions. Fourth, we add (polynomially many) lazy positions to the monotonic graph pa-
rameterising the value iteration. This corresponds to the (asymmetric) construction from Zielonka’s
proof [Zie98], and also (although technicalities have to be adapted) to the lazy progress measures
from [DJL19], inspired by [Kla91]. Informally, these lazy positions are added to embed vertices in
attractors, in such a way that they are guaranteed to remain valid if they should later be accelerated.
More details will be given below, we first introduce the construction.

Formally, given a tree T odd Ď ωd/2 whose components are interpreted as odd occurrences, and
an integer n P ω, we let Llazy,n,odd

T odd be the monotonic graph over T odd ˆ n given by

(u, i)
p
ÝÑ (u1, i1) ðñ either

p+ 1 ě pu and p even and u ěp+1 u
1

p ě pu and p odd and u ąp u1

rpsodd ă pu and u ą u1

rpsodd ă pu and u = u1 and i ą i1,

where pu is the (odd) height of u. (Note the striking similarity with the construction for mean-payoff
parity games in Chapter 7.) We do not include proofs that Llazy,n,odd

T odd is monotonic and satisfies
Parity; these facts can verified by hand. The construction is better understood when envisaged in a
recursive fashion, this is illustrated in Figure 11.12.

Observe that the restriction of Llazy,n,odd
T odd to t(u, 0) | u P T u corresponds exactly to the usual

(odd) signature construction Lodd
T odd . In particular, if T odd is (n, d/2)-universal (as a tree), then

Llazy,n,odd
T odd is Parity-universal. Note that the monotonic graph Llazy,n,odd

T odd is not saturated (it is not of
the form Lodd

T 1,odd for some tree T 1,odd), for instance most vertices (all those in (T zT)ˆn) do not have
0-loops.

Of course, we use a dual construction Llazy,n,even
T even from the point of view of the opponent Adam;

details are again omitted here.

4.2 Detailed description of simulation

To simulate Zielonka’s algorithm, we set T even and T odd to be complete n-ary trees of height
d/2. Actually, the algorithm would remain the same if trees of higher degree are used; we stick with
degree n for simplicity. Setting n to be a sufficiently large ordinal (meaning, of cardinal greater than
the arena) one may also run the same (accelerated value iteration) algorithm over infinite arenas,
which is not surprising considering Zielonka’s algorithm is valid over infinite arenas.

Consider an node u P T , we describe how the computation performed by the Zielonka algo-
rithm below u is simulated. For convenience, we assume that u is an even node (its height pu is
even), the odd case is of course analogous. We abstain from giving precise invariants, these can easily
be inferred from the description below. We refer the reader to Figures 11.13 and 11.14 for helpful
depictions of the situation.

Reset. We start by doing a reset: all vertices in Xu are then mapped to (ueven, 0) by ϕeven and to
(uodd, 0) by ϕodd.

222 Attractor-based algorithms and parity bi-progress measures

Figure 11.12: At the top, a recursive depiction of the saturated monotonic graph Lodd
T odd corresponding to

relevant odd occurrences, defined in Chapter 5. Vertices are not apparent; they correspond to the base case
(a single 0-loop), or to the leaves of the tree. We use ďk

ÝÝÑ to denote the conjunction of ďi
ÝÑ for i P [0, k],

and edges following from left and right composition are not depicted for clarity. In the bottom, the lazy
construction Llazy,n,odd

T odd defined above; here, there are n vertices for each inner node u P T odd of the tree.
Observe that the leftmost node no longer has a d ´ 2-loop in the new construction; it is not saturated. In
between, a small graph, and its evaluation in both monotonic construction. Intuitively, strategies computed
by the lazy graph are “attractor-based”.

Descending at node u. We then proceed to perform local lifts at vertices inXu until the follow-
ing holds.

• A vertex v belonging to AuÓ (the Eve-attractor in the current arena Gu to edges of even
priority pu) ends up mapped to (u2,even, 0) by ϕeven, where u2,even is the ąpu-successor⁶ of
ueven in T even. By ϕodd, it ends up mapped to (uodd, i) where i is its attractor-depth; it is then
valid in ϕodd (that is, it is Eve-valid) and remains so provided all vertices inXu remain mapped
to positions below uodd (this remains the case up to uÒ when Yu = ∅).

• A vertex v belonging to XuzAuÓ ends up mapped to (u1,odd, 0) by ϕodd, where u1,odd is the
ą1-successor⁷ of uodd in T odd. It does not move in ϕeven.

Recursive computation below u. We now recursively simulate Zielonka’s algorithm below u; we
let x1 denote Succ(uÓ) and u1 P T be the associated node. As a result of the computation below u,
Xu1 = XuzAuÓ is partitioned into the winning regions, Yu for Adam and Xu1zYu for Eve, in Gu1 .

⁶This is the direct right sibling of u if it has one, and a “next cousin” otherwise.
⁷If uodd is not a leaf, this is the first child of uodd.

4. Simulation of Zielonka’s algorithm 223

Descending case

Figure 11.13: A complete depiction for the descending case. The initial reset brings all vertices in Xu to the
position marked in yellow. From there, applying polynomially many (at most n2) local lifts drives vertices
in the Eve-attractor Au to the green zone (according to their attractor layer), and other vertices, in Xu1 ,
to the position marked in fuchsia. The computation then continues from u1 Ó= ι(u1,odd, ueven)Ó, which
corresponds to the first fuchsia box. The computation below u (or recursive call in Zielonka’s algorithm),
empties all vertices from the three fuchsia boxes.

It then holds by induction (see Figure 11.14) that vertices in Yu are mapped by ϕodd to (u2,odd, 0)
where u2,odd is theąpu+1-successor of uodd, and they are moreover are valid in ϕodd (this corresponds
to Eve-validity). Likewise, it holds that vertices in Xu1zYu are mapped by ϕeven to (u2,even, 0) where
u2,even is the ąpu-successor of ueven, and they are moreover valid in ϕodd. Here, the fact that T even

and T odd are large enough guarantees that Yu and its complement are indeed the winning regions,
and that the needed validity conditions (described above) indeed hold.

Ascending at node u. For the ascending case, we proceed differently if there is an acceleration
(or shortcut) or not.

• Acceleration: assume⁸ Yu = ∅. All vertices in Xu1 are valid in ϕodd (see just above), and
since Yu = ∅, this is also the case for vertices in Au (which have been “waiting” in (uodd, i),
see descending case). Therefore all (pu + 1)-minimal vertices are valid for Eve, and can be
accelerated thanks to Theorem 11.3, that is, mapped to (u(4),even, 0), where u(4),even is the
ąpu+2-successor of ueven, by ϕeven. The simulation then resumes from u3Ò, where u3 is the
parent of u in T .

⁸As mentioned above, this can also be done with the weaker conditionAuÒ = Yu, we then obtain the optimisation
of [LDT14].

224 Attractor-based algorithms and parity bi-progress measures

• If there is no acceleration, then local lifts are performed so that vertices in AuÒ, which is the
Adam-attractor to Yu inGu, are mapped to (u(5),odd, 0), where u(5),odd is theąpu+1-successor
of uodd in T odd. In ϕeven, a vertex v in AuÒzYu ends up in (u2,even, i), where i is its attractor-
depth.

Notice that all vertices in AuÒ Ě Yu are then valid for Adam, and remain so at least until
new vertices become mapped to positions ąpu+2 u

even. This fact is important to guarantee
the needed induction hypothesis. The simulation then resumes from the successor of uÒ.

Ascending case

Figure 11.14: A complete depiction for the two cases (accelerating or not) in the ascending case at u. Initially,
the vertices inXu1 are partitioned between those winning for Adam in Gu1 , which correspond to Yu and are
mapped in the orange zone, and those winning for Eve, which are mapped in the cyan zone. If Yu = ∅,
then all p + 1-minimal vertices (those in the lime box) are valid for Eve, and accelerated toward (u(4),even)
in ϕeven; the iteration then resumes from u3. Otherwise, vertices in AuÒzYu are lifted to the gray zone and
end up being valid for Adam. In this case, the iteration continues from u2, which corresponds to the box just
above u’s yellow box.

Using the sketch above, one may establish the following result.

Theorem 11.4 (Simulation of Zielonka’s algorithm)

Let R P ω be the total number of recursive calls performed by Zielonka’s algorithm. Starting
from the minimal parity bi-progress measure in (Llazy,n,odd

nd/2 ,Llazy,n,even
nd/2), there exists a sequence of at

most n2R+2 applications of local lifts, resets, and (valid) accelerations which leads to a bi-progress
measure which has weakly converged.

5. Conclusion and perspectives 225

We believe that our sketch is detailed enough so that a full proof can easily be extracted by the
reader interested in doing so. We hope that it is as least convincing enough that the theorem indeed
holds.

5 Conclusion and perspectives

In this chapter, we started by proving that the so-called universal attractor decomposition algo-
rithm of Jurdziński and Morvan [JM20] can be simulated by running two value iterations in parallel,
with no interaction between them. In particular, we obtained a new proof of its correctness, which,
surprisingly, is based on signatures rather than attractor-decompositions⁹.

Going further, we have investigated the question of simulating Zielonka’s algorithm, which adds
the empty-set termination rule (in the vocabulary of [JM20]) to considerably decrease the number
of recursive calls. This led us to designing a generic accelerating operator for parity bi-progress
measures, which follows naturally from their interleaved structure. We have then extracted from
Zielonka’s proof [Zie98] a different (lazy) construction of a monotonic graph, and showed that
Zielonka’s algorithm can be simulated by accelerated parallel value iterations over such structures.

The proofs for our two simulation results are very much artificial and their details are somewhat
unpleasant. We believe however that they help motivate the study of (accelerated) value iteration
algorithms based on parity bi-progress measures; we now give more details and further discussions.

A wide class of iterative algorithms. We consider the following operators over parity bi-progress
measures. The names stand for “Update”, “Reset”, and “Accelerate”.

(U) These are the usual (backpropagating) operators from Chapter 1, applied to either coordinate
of ϕ.

(R) These set the image of some vertices to smaller positions. Formally, a pointwise minimum
with some fixed progress measure is applied.

(A) These correspond to the accelerations described above. Formally, these are a familly indexed
by (P, p) P teven, oddu ˆ [1, d + 1], which perform the acceleration in ϕP over p-minimal
vertices if they are all valid in ϕP (and act idly otherwise).

All operators above preserve the property of being smaller than both LP-evaluations ψP.
For the sake of this discussion, we will use AX whenX Ď tU,R,Au to refer to the class of iter-

ative algorithms which allow the operators from X (and terminate when ϕ has weakly converged).
Note that the underlying monotonic graphs Lodd and Leven are not fixed: different structures cor-
respond to different algorithms and possible iterations (some of which may not be effective or even
terminate; we stay at an informal level).

We have seen in Chapter 4 that the class AU,R is actually quite easy to understand in terms of
efficiency. (Note that this class contains the local lift operators which can be simulated by an update
and a reset.) Indeed, thanks to the monotonicity of operators in U and R, the fastest iterations are
simply those which iterate U ; stated differently there is no point in resetting, optimal iterations in
AU,R belong to AU .

⁹We have not defined attractor-decompositions formally. In our language, an Eve-attractor-decomposition over a
tree T odd is a morphism Gσ Ñ Llazy,n,odd

T odd , where σ is a positional strategy (it is therefore winning). These are implicit
in Section 4, but make no appearance in Section 2.

226 Attractor-based algorithms and parity bi-progress measures

Note that usual (one-dimensional) iterations can be simulated in a weak fragment ofAU,A simply
by updating for one player until reaching ψP, and then applying a single weak acceleration (p =
d+1) to obtain weak convergence of the bi-progress measure. Therefore, the quasipolynomial value
iteration algorithms from [CJK+17], [FJS+17], [JL17] or [Leh18; Par20] can be simulated in AU,A.
Moreover, the main result of Section 2 states that the generic attractor-based algorithm of [JM20]
can also be simulated in this fragment.

Section 4 establishes that Zielonka’s algorithm can be simulated (with polynomial blow-up)
in AU,A,R; we believe that this is also the case of the two other quasipolynomial attractor-based
algorithms from [Par19] and [LSW19], but give no details to support this claim.

The issue of monotonicity. Therefore AU,R,A contains both value iteration algorithms and
attractor-based algorithms. A natural candidate for a fast iteration (in any pair of structures) is
the greedy one: successively apply updates, and whenever possible, apply an acceleration. Stated dif-
ferently, the pointwise maximum of all operators is applied at each iteration. It is easy to see that for
any (reasonable) structure (Lodd,Leven) the acceleration operators are non-monotonous. Therefore
it is no longer clear in general whether non-resetting iterations are faster than resetting ones when
in the presence of accelerations.

There is a parallel here with strategy-improvement algorithms (see Chapter 9): there is no reason
a priori that the greedy iteration is the fastest. In strategy improvements however it is well known
in general that there is an iteration which converges in linearly-many steps. This is not clear in the
current setting, but it is an interesting question: assuming knowledge of winning strategies, can we
derive iterations in AU,R,A which converge in polynomial time (assuming some fixed structure)?

We believe that there is hope in proving some (weak) monotonicity properties (for instance,
monotonicity over progress measure which are accessible by an iteration) when restricting to some
subclasses of structures. As of now, we conjecture this to be true for lazy monotonic graphs as defined
in Section 4 but fail to pinpoint what aspect of the structure provides such a guarantee.

This would imply that over such a structure the greedy iteration is optimal or in other words
that AU,R,A collapses to AU,A for optimal iterations. Since AU,R,A captures many known algo-
rithms for solving parity games – at least all known quasipolynomial algorithms, except maybe the
recent priority promotion of Benerecetti, Dell’Erba, Mogavero, Schewe and Wojtczak [BDM+21]
– understanding if such a result holds over some classes of monotonic graphs is well motivated.

Another possible direction would be trying to enrich our class of iterative algorithms with other
accelerating operators. Indeed, it is not hard to come up with generalisations of Theorem 11.3
which allow for accelerations under various kinds of hypotheses; the structure of parity bi-progress
measures is quite robust. Could we come up with a class of accelerating operatorsA1 whose pointwise
maximum is both efficiently computable and monotonic?

General conclusion

We have studied various aspects of (universal) monotonic graphs, in relation to turn-based games of
infinite duration which are positionally determined for Eve. Monotonic graphs are linearly ordered
graphs whose transitions are monotonous. Given a monotonic graph L over L and an arenaG over
V , one obtains a monotonous operator over the set LV of progress measures, whose prefixpoints
naturally yield uniform positional strategies for Eve.

If paths in L satisfy an objective W then obtained positional strategies are winning, and if L
embeds all graphs satisfying W from a class of graphs C then arenas over C have such optimal
strategies. This connects the study of games with (positional) objective W to the study of the W -
universality question for monotonic graphs. Although the fixpoint-based approach is well-known,
its formulation as a universality problem is recent (and has been fruitful for parity games), and the
explicit introduction of monotonic graphs in this context is novel.

The first part culminates in a characterisation of positionality: a valuation (or objective) that
admits a neutral letter is positional over arbitrary arenas if and only if it admits (non-uniform)
universal monotonic graphs that are well-ordered. This is the first characterisation of (one-player)
positionality. The positionality proof is based on the strategy folding technique which appears in the
works of Emerson and Jutla [EJ91], Klarlund [Kla92] and later Walukiewiecz [Wal96] and Grädel
and Walukiewicz [GW06]. The converse completeness result relies on (multiple) choice arenas
which we introduced.

Besides illustrating this result by establishing (often known) positionality results for various val-
uations by means of universal monotonic graphs, we have shown how to lexicographically combine
monotonic graphs so as to lift universality to the lexicographic product of the objectives. This yields
a proof that positional objectives which admit a neutral letter are closed under lexicographic com-
binations; we are not aware of a direct proof for this result.

This motivates the quest for combinations of monotonic graphs which are well-behaved with
respect to union (rather than lexicographical product). Such a general result would solve the main
conjecture of Kopczyński [Kop06] (at least for positionality over arbitrary arenas). We believe that
monotonic graphs can help make progress in this direction. We would also like to investigate
whether universal monotonic graphs can be used to understand (one player) positionality over finite
arenas. We refer the reader to the conclusion of Part I for more details about these two questions.

We then turned our attention to using (universal) monotonic graphs to devise algorithms for
solving games with positional valuations (or objectives). A finite universal monotonic graph reduces
solving games to computing a (least) fixpoint over the set of progress measures it induces.

The most direct way of doing so is by Kleene iteration, which is usually called value iteration
(or progress measure lifting) in this context. These are the object of Part II, which establishes a con-
nection between value iteration and Bojańczyk and Czerwiński’s separating approach, and studies

227

228 Attractor-based algorithms and parity bi-progress measures

finite universal (monotonic) graphs which are minimal in size for various positionally determined
conditions.

For parity games, we formalised the connection with universal trees, presented the construction
of Jurdziński and Lazić [JL17] and the lower bound of Fijalkow [Fij18]. For mean-payoff games, we
directly obtained the value iteration of Brim, Chaloupka, Doyen, Gentilini and Raskin [BCD+11],
and also gave two other constructions and derived (almost) matching lower bounds. Our conclusion
for mean-payoff games is that universal monotonic graphs are captured by the connection to energy
games, in particular value iteration algorithms cannot lead to better algorithms.

Last, we investigated two cases where (specific) universal monotonic graphs can be combined by
union. For mean-payoff parity games, we formalised the construction of Daviaud, Jurdziński and
Lazić [DJL18] in our vocabulary. Besides leading to a universality proof template which we believe
to be interesting in its own right, this allows for a completely asymmetric approach. For multi
mean-payoff games in the (easier) lim sup semantic, we showed that a property of graphs (quantifier
commutation) can be exploited to construct succinct universal graphs.

In Part III, which is composed of three independent chapters, we explored different possibilities,
besides value iteration, for computing the sought fixpoint. In particular, parity and mean-payoff
games are symmetric and not only positional but even bi-positional (over finite arenas), which we
have not exploited so far.

We first discussed the strategy improvement paradigm. We prove that for valuations computed
by monotonic graphs (fixpoint valuations), a simple application of the Knaster-Tarski theorem es-
tablishes that strategy improvement is applicable whenever the valuation is positionally determined
for Adam over finite arenas (which is necessary). Such a simple characterisation appears to be novel;
it allows to relax existence of a unique fixpoint (which underlies schemes based on reductions to
discounted games) to a weaker condition. In particular, this shows that strategy improvements for
mean-payoff games can be applied directly with the energy valuation, answering a question of Björk-
lund anv Vorobyov [BV05] (which, perhaps surprisingly, appeared to be still open). This also moti-
vates understanding which monotonic graphs correspond to co-positional (and thus bi-positional)
valuations, in particular for deriving strategy improvements specific to parity games.

We then turned to mean-payoff games, advocating that the symmetry in mean-payoff games
can be exploited by seeing potential transformations from the point of view of both players; stated
differently, we simultaneously solve the energy game and its dual. Applying such an analysis, pro-
vided the arena is simple (it has no simple cycle with zero sum), we obtained a novel bound of
N+E++E´+1 on the number of iterations of the attractor-based algorithm of Gurvich, Karzanov
and Khachiyan [GKK88] (GKK algorithm), which improves on the state of the art. We also showed
that the technique of Dorfman, Kaplan and Zwick [DKZ19] for deriving the state-of-the-art com-
binatorial O(m2n/2) runtime bound can be applied to the GKK algorithm.

We then gave a presentation of the strategy improvement algorithm of Schewe [Sch08] by means
of energy games. This exploits – in a natural way, we believe – the fact that Dijkstra’s algorithm,
applicable when weights are non-negative, can be lifted to the two-player scenario without blow-up
on its runtime. In particular, using retreat vertices (or escape arenas) as in [BV05] is not necessary.
We call this variant of Schewe’s algorithm the ESL algorithm (for Energy-Schewe-Luttenberger).
This formulation naturally suggests an alternating primal-dual variant (AESL) of the same algorithm.
Although preliminary experimental results are very encouraging, and all the more so for parity games,
we are not able to establish its termination. We believe that further study of the GKK, ESL and
AESL algorithms could be fruitful, and refer the reader to the conclusion of Chapter 10 for more
discussion.

In the last chapter, we focused on attractor-based approaches for parity games, for which the

5. Conclusion and perspectives 229

symmetry is more intricate (interleaved, to be precise) than for mean-payoff games. We showed that
the universal attractor-decomposition algorithm of Jurdziński and Morvan [JM20] can be simulated
by (non-interacting) parallel value iterations, establishing in particular its correctness without for-
mally appealing (even implicitly) to attractor-decompositions. Pursuing further the connection be-
tween attractor-based and value iteration algorithms, we examined the structure of parity bi-progress
measure (comprised of one progress measure for each player), and devised a general way of using
information from each iteration to accelerate the other one, whatever the underlying monotonic
graphs (satisfying the parity condition and its complement).

This allowed us to simulate in a similar way Zielonka’s algorithm by means of accelerated bi-
progress measures. Many algorithms (including almost all quasipolynomial algorithms to date),
but also novel non-discarding attractor-based algorithms, can thus be simulated by accelerated bi-
progress measures. The study of this class of algorithms appears to be interesting and exciting; further
discussion can be found in the conclusion of Chapter 11.

All in all, we advocate for the systematic study of monotonic graphs, their properties, and how
to combine them. Besides well-ordered monotonic graphs which are relevant to positionality, we
have overall fell short of defining interesting subclasses of monotonic graphs. We hold responsible a
lack of time rather than inherent difficulty of such an endeavour, which we see as both exciting and
manageable; we hope that further developments in the (close) future will support this claim.

Unrelated work

During my three years of PhD, I have had the occasion and the pleasure of working on a variety of
unrelated subjects. I chose to focus my dissertation only on infinite duration games, for which I feel
my understanding and personal contribution to be by far the largest. However this is not reflected
in my list of publications (see below), and a large part of the research which is presented in the thesis
is not (yet) published.

Below a brief discussion of subjects on which I have worked during my doctorate and which are
not accounted for in this manuscript.

• Invariants for linear loops. My work in this field started during my 12-week internship in
Oxford in 2016, under the supervision of Joël Ouaknine and James Worrell, and together
with Nathanaël Fijalkow and Amaury Pouly. Back then, we characterised the existence of
complex semialgebraic invariants which led to [FOO+17; FOO+19]. More recently, and
joining forces with Engel Lefaucheux, we solved the much more challenging case of complex
semilinear invariants [FLO+19] (a full version is currently under review).

• Hankel matrices and lower bounds for arithmetic circuits. This work was initiated during my
master’s internship in 2018 under the supervision of my two PhD advisors Olivier Serre and
Nathanaël Fijalkow, and together with Guillaume Lagarde. The starting point was to for-
malise (see [FLO18] for details) similarities between the celebrated results of Fliess [Fli74]
and Nisan [Nis91], respectively in the contexts of weighted word automata and of non-
commutative algebraic branching programs. This correspondance was then lifted between
weighted tree automata on one hand and non-associative arithmetic circuits on the other,
where the interpretation of a more general result of Bozapalidis and Louscou-Bozapalidou [BL83]
led to a novel characterization of the size of non-associative circuits. Exploiting this characteri-
zation we obtained strong new lower bounds both for non-commutative and (set-multilinear)
commutative arithmetic circuits [FLO+20].

• Stochastic population control. In this joint work with Thomas Colcombet and Nathanaël Fi-
jalkow [CFO20], we proved the decidability of a control problem, introduced and left open
by Bertrand, Dewaskar, Genest, Gimbert and Godbole [BDG+19], in the context of popula-
tions of Markov decision processes. Along the way we introduced the sequential flow problem
(see also full version available in [CFO19] and currently under review) which we believe to
be of independent interest and whose complexity, despite some efforts, has yet to be settled.

• Search algorithm for program synthesis. Together with Nathanaël Fijalkow and Guillaume
Lagarde, we propose a new deterministic algortihm as well as an improved sampling algo-
rithm for exploring the space of programs in the context of their automatic synthesis from
input/output. A conference submission is under review.

231

Personal references

[AFGL+21] A. Anand, N. Fijalkow, A. Goubault-Larrecq, J. Leroux, and P. Ohlmann. “New Al-
gorithms for Combinations of Objectives using Separating Automata”. In: GandALF.
2021 (cited on pp. 112, 148, 155).

[CFG+21] T. Colcombet, N. Fijalkow, P. Gawrychowski, and P. Ohlmann. “The Theory of Uni-
versal Graphs for Infinite Duration Games”. In: CoRR abs/2104.05262 (2021) (cited
on pp. 25, 112, 117).

[CFO19] T. Colcombet, N. Fijalkow, and P. Ohlmann. “Controlling a random population”.
In: CoRR abs/1911.01195 (2019) (cited on p. 231).

[CFO20] T. Colcombet, N. Fijalkow, and P. Ohlmann. “Controlling a Random Population”.
In: FOSSACS. Vol. 12077. Lecture Notes in Computer Science. Springer, 2020,
pp. 119–135 (cited on p. 231).

[FGO20] N. Fijalkow, P. Gawrychowski, and P. Ohlmann. “Value Iteration Using Universal
Graphs and the Complexity of Mean Payoff Games”. In: MFCS. Vol. 170. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 34:1–34:15 (cited on
p. 112).

[FLO+19] N. Fijalkow, E. Lefaucheux, P. Ohlmann, J. Ouaknine, A. Pouly, and J. Worrell.
“On the Monniaux Problem in Abstract Interpretation”. In: SAS. Vol. 11822. Lec-
ture Notes in Computer Science. Springer, 2019, pp. 162–180 (cited on p. 231).

[FLO+20] N. Fijalkow, G. Lagarde, P. Ohlmann, and O. Serre. “Lower Bounds for Arithmetic
Circuits via the Hankel Matrix”. In: STACS. Vol. 154. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 24:1–24:17 (cited on p. 231).

[FLO18] N. Fijalkow, G. Lagarde, and P. Ohlmann. “Tight Bounds using Hankel Matrix for
Arithmetic Circuits with Unique Parse Trees”. In: Electron. Colloquium Comput. Com-
plex. 25 (2018), p. 38 (cited on p. 231).

[FOO+17] N. Fijalkow, P. Ohlmann, J. Ouaknine, A. Pouly, and J. Worrell. “Semialgebraic
Invariant Synthesis for the Kannan-Lipton Orbit Problem”. In: STACS. Vol. 66.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 29:1–29:13 (cited
on p. 231).

[FOO+19] N. Fijalkow, P. Ohlmann, J. Ouaknine, A. Pouly, and J. Worrell. “Complete Semial-
gebraic Invariant Synthesis for the Kannan-Lipton Orbit Problem”. In: Theory Com-
put. Syst. 63.5 (2019), pp. 1027–1048 (cited on p. 231).

[JMO+20] M. Jurdziński, R. Morvan, P. Ohlmann, and K. S. Thejaswini. “A symmetric attractor-
decomposition lifting algorithm for parity games”. In: CoRR abs/2010.08288 (2020)
(cited on p. 202).

233

Bibliography

[AAH+14] P. A. Abdulla, M. F. Atig, P. Hofman, R. Mayr, K. N. Kumar, and P. Totzke. “Infinite-
state energy games”. In: CSL-LICS. ACM, 2014, 7:1–7:10 (cited on p. 24).

[ABG+13] X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Tropicalizing the simplex
algorithm. 2013 (cited on p. 22).

[ABG14] X. Allamigeon, P. Benchimol, and S. Gaubert. “The Tropical Shadow-Vertex Al-
gorithm Solves Mean Payoff Games in Polynomial Time on Average”. In: ICALP.
Vol. 8572. Lecture Notes in Computer Science. Springer, 2014, pp. 89–100 (cited
on p. 22).

[AGK+18] X. Allamigeon, S. Gaubert, R. D. Katz, and M. Skomra. “Condition numbers of
stochastic mean payoff games and what they say about nonarchimedean semidefinite
programming”. In: CoRR abs/1802.07712 (2018) (cited on p. 22).

[AGQ+21] M. Akian, S. Gaubert, Y. Qi, and O. Saadi. “Tropical linear regression and mean pay-
off games: or, how to measure the distance to equilibria”. In: CoRR abs/2106.01930
(2021) (cited on p. 22).

[AGS18] X. Allamigeon, S. Gaubert, and M. Skomra. “Solving generic nonarchimedean semidef-
inite programs using stochastic game algorithms”. In: J. Symb. Comput. 85 (2018),
pp. 25–54 (cited on p. 22).

[AGS20] X. Allamigeon, S. Gaubert, and M. Skomra. “Tropical Spectrahedra”. In: Discret.
Comput. Geom. 63.3 (2020), pp. 507–548 (cited on p. 22).

[AKS87] I. Adler, R. M. Karp, and R. Shamir. “A simplex variant solving an m times d linear
program in O(min(m2, d2) expected number of pivot steps”. In: J. Complex. 3.4
(1987), pp. 372–387 (cited on p. 22).

[AMS+13] P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. “Solving Parity Games on Integer
Vectors”. In: CONCUR. Vol. 8052. Lecture Notes in Computer Science. Springer,
2013, pp. 106–120 (cited on p. 24).

[AR17] B. Aminof and S. Rubin. “First-cycle games”. In: Inf. Comput. 254 (2017), pp. 195–
216 (cited on pp. 81, 108).

[AV06] D. Andersson and S. Vorobyov. “Fast Algorithms for Monotonic Discounted Linear
Programs with Two Variables per Inequality”. In: Technical report. Preprint NI06019-
LAA. 2006 (cited on p. 20).

[BAMP81] M. Ben-Ari, Z. Manna, and A. Pnueli. “The Temporal Logic of Branching Time”. In:
POPL. Association for Computing Machinery, 1981, pp. 164–176 (cited on p. 12).

235

236 Bibliography

[Ban22] S. Banach. “Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales”. In: Fundamenta Mathematicae 3 (1922), pp. 133–181 (cited
on p. 80).

[BBR13] A. Bohy, V. Bruyère, and E. F.J.-F. Raskin. “Synthesis from LTL Specifications with
Mean-Payoff Objectives”. In: Tools and Algorithms for the Construction and Analysis
of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 169–184 (cited
on p. 23).

[BBR21] B. Bordais, P. Bouyer, and S. L. Roux. “From local to global determinacy in concur-
rent graph games”. In: CoRR abs/2107.04081 (2021) (cited on p. 55).

[BC18] M. Bojańczyk and W. Czerwiński. An Automata Toolbox. https://www.mimuw.
edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf. 2018 (cited on pp. 14,
25, 111, 113, 116, 117).

[BCD+11] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. Raskin. “Faster algorithms for
mean-payoff games”. In: Formal Methods in System Design 38.2 (2011), pp. 97–118
(cited on pp. 21, 112, 117, 120, 139, 142, 170, 189, 194, 228).

[BCG+14] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, G. Hofferek, B. Jobstmann, B.
Könighofer, and R. Könighofer. “Synthesizing robust systems”. In: Acta Informatica
51.3-4 (2014), pp. 193–220 (cited on p. 23).

[BCH+09] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. “Better Quality in
Synthesis through Quantitative Objectives”. In: CAV. Vol. 5643. Lecture Notes in
Computer Science. Springer, 2009, pp. 140–156 (cited on p. 90).

[BCJ18] R. Bloem, K. Chatterjee, and B. Jobstmann. “Graph Games and Reactive Synthesis”.
In: Handbook of Model Checking. Ed. by E. M. Clarke, T. A. Henzinge, H. Veith, and
R. Bloem. Springer International Publishing, 2018, pp. 921–962 (cited on p. 11).

[BDG+19] N. Bertrand, M. Dewaskar, B. Genest, H. Gimbert, and A. A. Godbole. “Controlling
a population”. In: Logical Methods in Computer Science 15.3 (2019) (cited on p. 231).

[BDM+09] P. Bouyer, M. Duflot, N. Markey, and G. Renault. “Measuring Permissivity in Finite
Games”. In: CONCUR. Vol. 5710. Lecture Notes in Computer Science. Springer,
2009, pp. 196–210 (cited on p. 23).

[BDM+21] M. Benerecetti, D. Dell’Erba, F. Mogavero, S. Schewe, and D. Wojtczak. “Priority
Promotion with Parysian Flair”. In: CoRR abs/2105.01738 (2021) (cited on p. 226).

[BDM16] M. Benerecetti, D. Dell’Erba, and F. Mogavero. “Solving Parity Games via Priority
Promotion”. In: CAV. Vol. 9780. Lecture Notes in Computer Science. Springer, 2016,
pp. 270–290 (cited on p. 15).

[BFL+08] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. “Infinite Runs
in Weighted Timed Automata with Energy Constraints”. In: FORMATS. Ed. by F.
Cassez and C. Jard. Vol. 5215. Lecture Notes in Computer Science. Springer, 2008,
pp. 33–47 (cited on pp. 20, 21, 47, 79, 170).

[BFM+11] A. Bianco, M. Faella, F. Mogavero, and A. Murano. “Exploring the boundary of half-
positionality”. In: Ann. Math. Artif. Intell. 62.1-2 (2011), pp. 55–77 (cited on p. 55).

[BHM+17] P. Bouyer, P. Hofman, N. Markey, M. Randour, and M. Zimmermann. “Bound-
ing Average-Energy Games”. In: FOSSACS. Vol. 10203. Lecture Notes in Computer
Science. 2017, pp. 179–195 (cited on p. 24).

https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf

Bibliography 237

[BHR+19] V. Bruyère, Q. Hautem, M. Randour, and J. Raskin. “Energy Mean-Payoff Games”.
In: CONCUR. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019, 21:1–21:17 (cited on p. 24).

[BJP+12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa�ar. “Synthesis of Reac-
tive(1) designs”. In: Journal of Computer and System Sciences 78.3 (2012), pp. 911–
938 (cited on p. 12).

[BJW02] J. Bernet, D. Janin, and I. Walukiewicz. “Permissive strategies: from parity games to
safety games”. In: RAIRO Theor. Informatics Appl. 36.3 (2002), pp. 261–275 (cited
on pp. 117, 125).

[BL18] U. Boker and K. Lehtinen. “On the Way to Alternating Weak Automata”. In: FSTTCS.
Vol. 122. LIPIcs. 2018, 21:1–21:22 (cited on p. 13).

[BL69] J. R. Büchi and L. Landweber. “Solving sequential conditions by finite-state strate-
gies”. In: Transactions of the American Mathematical Society 138 (1969), pp. 295–311
(cited on pp. 10–12, 53, 54).

[BL83] S. Bozapalidis and O. Louscou-Bozapalidou. “The Rank of a Formal Tree Power Se-
ries”. In: Theoretical Computer Science 27 (1983), pp. 211–215 (cited on p. 231).

[Bla97] R. G. Bland. “New finite pivoting rules for the simpler method”. In: Math. Oper. Res.
2 (1997), pp. 103–107 (cited on p. 16).

[BLO+20] P. Bouyer, S. Le Roux, Y. Oualhadj, M. Randour, and P. Vandenhove. “Games Where
You Can Play Optimally with Arena-Independent Finite Memory”. In: CONCUR.
Vol. 171. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 24:1–
24:22 (cited on p. 55).

[BLT21] P. Bouyer, S. Le Roux, and N. Thomasset. “Finite-memory strategies in two-player
infinite games”. In: CoRR abs/2107.09945 (2021) (cited on p. 54).

[BMO+11] P. Bouyer, N. Markey, J. Olschewski, and M. Ummels. “Measuring Permissiveness in
Parity Games: Mean-Payoff Parity Games Revisited”. In: ATVA. Vol. 6996. Lecture
Notes in Computer Science. Springer, 2011, pp. 135–149 (cited on p. 23).

[BMR+15] P. Bouyer, N. Markey, M. Randour, K. G. Larsen, and S. Laursen. “Average-energy
games”. In: GandALF. Vol. 193. EPTCS. 2015, pp. 1–15 (cited on p. 24).

[BMR14] V. Bruyère, N. Meunier, and J. Raskin. “Secure equilibria in weighted games”. In:
CSL-LICS. ACM, 2014, 26:1–26:26 (cited on p. 90).

[BOR+21] P. Bouyer, Y. Oualhadj, M. Randour, and P. Vandenhove. “Arena-Independent Finite-
Memory Determinacy in Stochastic Games”. In: CONCUR. Vol. 203. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 26:1–26:18 (cited on p. 55).

[BSV03] H. Björklund, S. Sandberg, and S. G. Vorobyov. “A Discrete Subexponential Algo-
rithm for Parity Games”. In: STACS. Vol. 2607. Lecture Notes in Computer Science.
Springer, 2003, pp. 663–674 (cited on p. 16).

[BSV04a] H. Björklund, S. Sandberg, and S. G. Vorobyov. “A Combinatorial Strongly Subex-
ponential Strategy Improvement Algorithm for Mean Payoff Games”. In: MFCS.
Vol. 3153. Lecture Notes in Computer Science. Springer, 2004, pp. 673–685 (cited
on pp. 16, 20, 21, 170, 178).

[BSV04b] H. Björklund, S. Sandberg, and S. G. Vorobyov. “Memoryless determinacy of parity
and mean payoff games: a simple proof”. In: Theor. Comput. Sci. 310.1-3 (2004),
pp. 365–378 (cited on p. 19).

238 Bibliography

[BV01] E. Beffara and S. Vorobyov. Is Randomized Gurvich-Karzanov-Khachiyan’s Algorithm
for Parity Games Polynomial? Uppsala University, Sweden, 2001 (cited on pp. 174,
198).

[BV05] H. Björklund and S. G. Vorobyov. “Combinatorial structure and randomized subex-
ponential algorithms for infinite games”. In: Theor. Comput. Sci. 349.3 (2005), pp. 347–
360 (cited on pp. 16, 189, 228).

[Büc77] J. R. Büchi. “Using Determinancy of Games to Eliminate Quantifiers”. In: FCT.
Vol. 56. Lecture Notes in Computer Science. Springer, 1977, pp. 367–378 (cited on
pp. 10, 53).

[Büc83] J. R. Büchi. “State-Strategies for Games in F G”. In: J. Symb. Log. 48.4 (1983),
pp. 1171–1198 (cited on p. 89).

[CAH+03] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. “Resource Inter-
faces”. In: EMSOFT. Vol. 2855. Lecture Notes in Computer Science. Springer, 2003,
pp. 117–133 (cited on pp. 20–22).

[Cas21] A. Casares. “On the Minimisation of Transition-Based Rabin Automata and the
Chromatic Memory Requirements of Muller Conditions”. In: CoRR abs/2105.12009
(2021) (cited on pp. 55, 96).

[CD10] K. Chatterjee and L. Doyen. “Energy Parity Games”. In: ICALP. Vol. 6199. Lecture
Notes in Computer Science. Springer, 2010, pp. 599–610 (cited on p. 23).

[CD12] K. Chatterjee and L. Doyen. “Energy parity games”. In: Theor. Comput. Sci. 458
(2012), pp. 49–60 (cited on p. 23).

[CDF+18] W. Czerwiński, L. Daviaud, N. Fijalkow, M. Jurdziński, R. Lazić, and P. Parys. “Uni-
versal trees grow inside separating automata: Quasi-polynomial lower bounds for par-
ity games”. In: CoRR abs/1807.10546 (2018) (cited on pp. 14, 112, 117).

[CDH+10] K. Chatterjee, L. Doyen, T. A. Henzinger, and J. Raskin. “Generalized Mean-payoff
and Energy Games”. In: FSTTCS. Vol. 8. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2010, pp. 505–516 (cited on p. 23).

[CE81] E. Clarke and E. Emerson. “Design and synthesis of synchronisation skeletons using
branching time temporal logic”. In: Lecture Notes in Computer Science 131 (1981).
Ed. by Springer, pp. 52–71 (cited on p. 12).

[CF18] T. Colcombet and N. Fijalkow. “Parity games and universal graphs”. In: CoRR abs/1810.05106
(2018) (cited on pp. 25, 67, 117).

[CF19] T. Colcombet and N. Fijalkow. “Universal Graphs and Good for Games Automata:
New Tools for Infinite Duration Games”. In: FoSSaCS. 2019, pp. 1–26 (cited on
pp. 25, 57).

[CFH14] T. Colcombet, N. Fijalkow, and F. Horn. “Playing Safe”. In: FSTTCS. Vol. 29. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 379–390 (cited on
pp. 54, 79, 85).

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. “A Policy Iteration
Algorithm for Computing Fixed Points in Static Analysis of Programs”. In: CAV.
Vol. 3576. Lecture Notes in Computer Science. Springer, 2005, pp. 462–475 (cited
on p. 168).

[CGH+12] P. Cerný, S. Gopi, T. A. Henzinger, A. Radhakrishna, and N. Totla. “Synthesis from
incompatible specifications”. In: EMSOFT. ACM, 2012, pp. 53–62 (cited on p. 24).

Bibliography 239

[CH08] K. Chatterjee and T. A. Henzinger. “Value Iteration”. In: 25 Years of Model Checking
- History, Achievements, Perspectives. Vol. 5000. Lecture Notes in Computer Science.
Springer, 2008, pp. 107–138 (cited on p. 111).

[CHJ05] K. Chatterjee, T. A. Henzinger, and M. Jurdziński. “Mean-Payoff Parity Games”. In:
LICS. IEEE Computer Society, 2005, pp. 178–187 (cited on p. 23).

[CHP07] K. Chatterjee, T. A. Henzinger, and N. Piterman. “Generalized Parity Games”. In:
FOSSACS. Vol. 4423. Lecture Notes in Computer Science. Springer, 2007, pp. 153–
167 (cited on p. 161).

[CHP08] K. Chatterjee, T. A. Henzinger, and N. Piterman. “Algorithms for Büchi Games”. In:
CoRR abs/0805.2620 (2008) (cited on p. 44).

[CHS17] K. Chatterjee, M. Henzinger, and A. Svozil. “Faster Algorithms for Mean-Payoff Par-
ity Games”. In: MFCS. Vol. 83. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2017, 39:1–39:14 (cited on p. 23).

[Chu57] A. Church. “Application of Recursive Arithmetic to the Problem of Circuit Synthe-
sis”. In: Summaries of the SISL 1 (1957), pp. 3–50 (cited on p. 11).

[CJK+17] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. “Deciding parity games
in quasipolynomial time”. In: STOC. 2017, pp. 252–263 (cited on pp. 13, 14, 117,
135, 226).

[CJL+17] T. Colcombet, M. Jurdzinski, R. Lazic, and S. Schmitz. “Perfect half space games”.
In: LICS. IEEE Computer Society, 2017, pp. 1–11 (cited on pp. 22, 24, 90, 155).

[CN06] T. Colcombet and D. Niwiński. “On the positional determinacy of edge-labeled
games”. In: Theor. Comput. Sci. 352.1-3 (2006), pp. 190–196 (cited on p. 53).

[Con90] A. Condon. “On Algorithms for Simple Stochastic Games”. In: Advances In Com-
putational Complexity Theory. Vol. 13. DIMACS. DIMACS/AMS, 1990, pp. 51–71
(cited on p. 20).

[Con92] A. Condon. “The Complexity of Stochastic Games”. In: Inf. Comput. 96.2 (1992),
pp. 203–224 (cited on p. 16).

[CR15] C. Comin and R. Rizzi. “An Improved Pseudo-Polynomial Upper Bound for the
Value Problem and Optimal Strategy Synthesis in Mean Payoff Games”. In: CoRR
abs/1503.04426 (2015) (cited on p. 21).

[CR16] C. Comin and R. Rizzi. “Faster O(V 2EW)-Time Energy Algorithms for Optimal
Strategy Synthesis in Mean Payoff Games”. In: CoRR abs/1609.01517 (2016) (cited
on pp. 21, 198).

[CR17] C. Comin and R. Rizzi. “Improved Pseudo-polynomial Bound for the Value Prob-
lem and Optimal Strategy Synthesis in Mean Payoff Games”. In: Algorithmica 77.4
(2017), pp. 995–1021 (cited on p. 21).

[CTGG99] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. “A constructive fixed point
theorem for min-max functions”. In: Dynamics and stability of systems 14.4 (1999),
pp. 407–433 (cited on p. 20).

[CV12] K. Chatterjee and Y. Velner. “Mean-Payoff Pushdown Games”. In: LICS. IEEE Com-
puter Society, 2012, pp. 195–204 (cited on pp. 24, 155).

[CV13] K. Chatterjee and Y. Velner. “Hyperplane Separation Technique for Multidimen-
sional Mean-Payoff Games”. In: CONCUR. Vol. 8052. Lecture Notes in Computer
Science. Springer, 2013, pp. 500–515 (cited on p. 24).

240 Bibliography

[DG06] V. Dhingra and S. Gaubert. “How to solve large scale deterministic games with mean
payoff by policy iteration”. In: VALUETOOLS. Vol. 180. ACM International Con-
ference Proceeding Series. ACM, 2006, p. 12 (cited on pp. 21, 22).

[Dij18a] T. van Dijk. “Attracting Tangles to Solve Parity Games”. In: CAV. Vol. 10982. Lecture
Notes in Computer Science. Springer, 2018, pp. 198–215 (cited on p. 15).

[Dij18b] T. van Dijk. “Oink: An Implementation and Evaluation of Modern Parity Game
Solvers”. In: TACAS. Vol. 10805. Lecture Notes in Computer Science. Springer,
2018, pp. 291–308 (cited on pp. 15, 194, 196, 197).

[DJL18] L. Daviaud, M. Jurdziński, and R. Lazić. “A pseudo-quasi-polynomial algorithm for
mean-payoff parity games”. In: LICS. 2018, pp. 325–334 (cited on pp. 23, 25, 112,
147, 148, 161, 228).

[DJL19] L. Daviaud, M. Jurdziński, and K. Lehtinen. “Alternating Weak Automata from Uni-
versal Trees”. In: CONCUR. Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, 18:1–18:14 (cited on pp. 14, 201, 202, 221).

[DJT20] L. Daviaud, M. Jurdziński, and K. S. Thejaswini. “The Strahler Number of a Parity
Game”. In: ICALP. Ed. by A. Czumaj, A. Dawar, and E. Merelli. Vol. 168. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 123:1–123:19 (cited on
p. 171).

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. “How Much Memory is Needed
to Win Infinite Games?” In: LICS. IEEE Computer Society, 1997, pp. 99–110 (cited
on pp. 54, 55).

[DKZ19] D. Dorfman, H. Kaplan, and U. Zwick. “A Faster Deterministic Exponential Time
Algorithm for Energy Games and Mean Payoff Games”. In: ICALP. 2019, 114:1–
114:14 (cited on pp. 21, 173, 174, 184, 185, 188, 198, 228).

[EH83] E. A. Emerson and J. Y. Halpern. ““Sometimes” and “Not Never” Revisited: On
Branching versus Linear Time (Preliminary Report)”. In: POPL. Association for Com-
puting Machinery, 1983, pp. 127–140 (cited on p. 12).

[EJ88] E. A. Emerson and C. S. Jutla. “The Complexity of Tree Automata and Logics of
Programs (Extended Abstract)”. In: FOCS. IEEE Computer Society, 1988, pp. 328–
337 (cited on p. 45).

[EJ89] E. Emerson and C. Jutla. “On simultaneously determinizing and complementing
omega-automata”. In: Proceedings. Fourth Annual Symposium on Logic in Computer
Science. IEEE Computer Society, 1989, pp. 333–342 (cited on p. 10).

[EJ91] E. A. Emerson and C. S. Jutla. “Tree Automata, µ-Calculus and Determinacy”. In:
FOCS. IEEE Computer Society, 1991, pp. 368–377 (cited on pp. 10, 11, 13, 14, 53,
56, 63, 87, 89, 108, 125, 201, 227).

[EJS01] E. Emerson, C. S. Jutla, and A. Sistla. “On model checking for the µ-calculus and
its fragments”. In: Theoretical Computer Science 258.1 (2001), pp. 491–522 (cited on
p. 11).

[EJS93] E. A. Emerson, C. S. Jutla, and A. P. Sistla. “On Model-Checking for Fragments of
µ-Calculus”. In: Proceedings of the 5th International Conference on Computer Aided
Verification. CAV ’93. Berlin, Heidelberg: Springer-Verlag, 1993, pp. 385–396 (cited
on p. 11).

Bibliography 241

[EKS18] J. Esparza, J. Kretínský, and S. Sickert. “One Theorem to Rule Them All: A Unified
Translation of LTL into ω-Automata”. In: LICS. ACM, 2018, pp. 384–393 (cited on
p. 12).

[EM73] A. Ehrenfeucht and J. Mycielski. “Positional games over a graph”. In: Notices of the
American Mathematical Society 20 (1973), A–334 (cited on pp. 19, 46, 53).

[EM79] A. Ehrenfeucht and J. Mycielski. “Positional strategies for mean payoff games”. In:
International Journal of Game Theory 109.8 (1979), pp. 109–113 (cited on pp. 19,
46, 81, 108).

[Eme85] E. A. Emerson. “Automata, tableaux, and temporal logics”. In: Logics of Programs.
Springer Berlin Heidelberg, 1985, pp. 79–88 (cited on p. 11).

[Fea10a] J. Fearnley. “Non-oblivious Strategy Improvement”. In: LPAR. Vol. 6355. Lecture
Notes in Computer Science. Springer, 2010, pp. 212–230 (cited on p. 17).

[Fea10b] J. Fearnley. “Strategy Iteration Algorithms for Games and Markov Decision Pro-
cesses”. PhD thesis. University of Warwick, 2010 (cited on p. 168).

[FHZ11] O. Friedmann, T. D. Hansen, and U. Zwick. “Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm”. In: STOC. ACM, 2011, pp. 283–
292 (cited on p. 17).

[Fij18] N. Fijalkow. “An Optimal Value Iteration Algorithm for Parity Games”. In: CoRR
abs/1801.09618 (2018) (cited on pp. 14, 25, 112, 125, 135, 228).

[Fin16] B. Finkbeiner. “Synthesis of Reactive Systems”. In: Dependable Software Systems En-
gineering. 2016 (cited on p. 11).

[FJK+19] J. Fearnley, S. Jain, B. de Keijzer, S. Schewe, F. Stephan, and D. Wojtczak. “An ordered
approach to solving parity games in quasi-polynomial time and quasi-linear space”.
In: Int. J. Softw. Tools Technol. Transf. 21.3 (2019), pp. 325–349 (cited on p. 13).

[FJL+11] U. Fahrenberg, L. Juhl, K. G. Larsen, and J. Srba. “Energy Games in Multiweighted
Automata”. In: ICTAC. Vol. 6916. Lecture Notes in Computer Science. Springer,
2011, pp. 95–115 (cited on p. 24).

[FJS+17] J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. “An ordered approach
to solving parity games in quasi polynomial time and quasi linear space”. In: SPIN.
2017, pp. 112–121 (cited on pp. 13, 14, 117, 135, 226).

[FL09] O. Friedmann and M. Lange. “Solving Parity Games in Practice”. In: ATVA. Vol. 5799.
Lecture Notes in Computer Science. Springer, 2009, pp. 182–196 (cited on pp. 15,
16).

[Fli74] M. Fliess. “Matrices de Hankel”. In: Journal de Mathématiques Pures et Appliquées 53
(1974), pp. 197–222 (cited on p. 231).

[Fri09] O. Friedmann. “An Exponential Lower Bound for the Parity Game Strategy Improve-
ment Algorithm as We Know it”. In: LICS. IEEE Computer Society, 2009, pp. 145–
156 (cited on pp. 17, 170, 199).

[Fri11a] O. Friedmann. “A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solv-
ing Linear Programs and Games”. In: ICPO. Vol. 6655. Lecture Notes in Computer
Science. Springer, 2011, pp. 192–206 (cited on p. 17).

[Fri11b] O. Friedmann. “Exponential Lower Bounds for Solving Infinitary Payoff Games and
Linear Programs”. PhD thesis. Ludwig Maximilians University Munich, 2011 (cited
on pp. 17, 168, 169).

242 Bibliography

[Fri13] O. Friedmann. “A superpolynomial lower bound for strategy iteration based on snare
memorization”. In: Discret. Appl. Math. 161.10-11 (2013), pp. 1317–1337 (cited on
p. 17).

[FT84] M. L. Fredman and R. E. Tarjan. “Fibonacci Heaps and Their Uses in Improved Net-
work Optimization Algorithms”. In: FOCS. IEEE Computer Society, 1984, pp. 338–
346 (cited on p. 193).

[FZ14] N. Fijalkow and M. Zimmermann. “Parity and Streett Games with Costs”. In: Log.
Methods Comput. Sci. 10.2 (2014) (cited on p. 23).

[Gal58] T. Gallai. “Maximum-Minimum Sätze über Graphen”. In: Acta Math. Acad. Sci.
Hung. 9 (1958), pp. 395–434 (cited on p. 21).

[GG98] S. Gaubert and J. Gunawardena. “The duality theorem for min-max functions”. In:
C. R. Acad. Sci. Paris Sér. I Math. 1 (1998), pp. 43–48 (cited on p. 20).

[GH82] Y. Gurevich and L. Harrington. “Trees, Automata, and Games”. In: STOC. Asso-
ciation for Computing Machinery, 1982, pp. 60–65 (cited on pp. 10, 14, 45, 53,
54).

[Gil57] D. Gilette. “Stochastic games with zero stop probabilities”. In: Contributions to the
Theory of Games 3 (1957), pp. 179–187 (cited on p. 19).

[Gim07] H. Gimbert. “Jeux positionnels”. PhD thesis. Université Paris Diderot, 2007 (cited
on p. 53).

[GKK88] V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. “Cyclic games and an algorithm
to find minimax cycle means in directed graphs”. In: USSR Computational Mathemat-
ics and Mathematical Physics 28 (1988), pp. 85–91 (cited on pp. 19, 21, 26, 81, 173,
175, 181, 184–186, 198, 228).

[GLM+15] J. Gajarský, M. Lampis, K. Makino, V. Mitsou, and S. Ordyniak. “Parameterized
Algorithms for Parity Games”. In: MFCS. Vol. 9235. Lecture Notes in Computer
Science. Springer, 2015, pp. 336–347 (cited on p. 15).

[GS53] D. Gale and F. Stewart. “Infinite games with perfect information”. In: Contributions
to the Theory of Games. Vol. 28. 2. Princeton University Press., 1953, pp. 245–266
(cited on p. 40).

[GTW02] E. Grädel, W. Thomas, and T. Wilke, eds. Automata, Logics, and Infinite Games: A
Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Vol. 2500.
Lecture Notes in Computer Science. Springer, 2002 (cited on p. 10).

[GW06] E. Grädel and I. Walukiewicz. “Positional Determinacy of Games with Infinitely
Many Priorities”. In: Log. Methods Comput. Sci. 2.4 (2006) (cited on pp. 42, 53,
56, 89, 227).

[GW13] M. Gazda and T. A. C. Willemse. “Zielonka’s Recursive Algorithm: dull, weak and
solitaire games and tighter bounds”. In: GandALF. Vol. 119. EPTCS. 2013, pp. 7–20
(cited on p. 14).

[GZ05] H. Gimbert and W. Zielonka. “Games Where You Can Play Optimally Without Any
Memory”. In: CONCUR. Vol. 3653. Lecture Notes in Computer Science. Springer,
2005, pp. 428–442 (cited on pp. 53–55, 79, 81, 171).

[HD05] P. Hunter and A. Dawar. “Complexity Bounds for Regular Games”. In: MFCS. Vol. 3618.
Lecture Notes in Computer Science. Springer, 2005, pp. 495–506 (cited on p. 45).

Bibliography 243

[HK66] A. J. Hoffman and R. M. Karp. “On Nonterminating Stochastic Games”. In: Man-
agement Science 12.5 (1966), pp. 359–370 (cited on p. 16).

[HM80] M. Hennessy and R. Milner. “On observing nondeterminism and concurrency”. In:
Automata, Languages and Programming. Springer Berlin Heidelberg, 1980, pp. 299–
309 (cited on p. 10).

[HMZ13] T. D. Hansen, P. B. Miltersen, and U. Zwick. “Strategy Iteration Is Strongly Polyno-
mial for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor”.
In: J. ACM 60.1 (2013), 1:1–1:16 (cited on pp. 16, 49, 169, 175).

[How60] R. Howard. Dynamic programming and Markov processes. Technology Press of Mas-
sachusetts Institute of Technology, 1960 (cited on p. 16).

[JL17] M. Jurdziński and R. Lazić. “Succinct progress measures for solving parity games”.
In: LICS. 2017, pp. 1–9 (cited on pp. 13–15, 25, 112, 117, 125, 130, 135, 148, 158,
171, 201, 226, 228).

[JLR13] L. Juhl, K. G. Larsen, and J. Raskin. “Optimal Bounds for Multiweighted and Parametrised
Energy Games”. In: Theories of Programming and Formal Methods - Essays Dedicated to
Jifeng He on the Occasion of His 70th Birthday. Vol. 8051. Lecture Notes in Computer
Science. Springer, 2013, pp. 244–255 (cited on p. 24).

[JLS15] M. Jurdzinski, R. Lazic, and S. Schmitz. “Fixed-Dimensional Energy Games are in
Pseudo-Polynomial Time”. In: ICALP. Vol. 9135. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 260–272 (cited on p. 24).

[JM20] M. Jurdziński and R. Morvan. “A Universal Attractor Decomposition Algorithm for
Parity Games”. In: CoRR abs/2001.04333 (2020) (cited on pp. 15, 26, 201–205,
207, 209, 210, 216, 225, 226, 229).

[JPZ06] M. Jurdzinski, M. Paterson, and U. Zwick. “A deterministic subexponential algorithm
for solving parity games”. In: SODA. ACM Press, 2006, pp. 117–123 (cited on pp. 13,
15).

[Jur00] M. Jurdziński. “Small Progress Measures for Solving Parity Games”. In: STACS. 2000,
pp. 290–301 (cited on pp. 13, 14, 21, 120, 125, 170).

[Jur98] M. Jurdziński. “Deciding the winner in parity games is in UP X co-UP”. In: Infor-
mation Processing Letters 68.3 (1998), pp. 119–124 (cited on pp. 11, 22).

[Kal92] G. Kalai. “A Subexponential Randomized Simplex Algorithm (Extended Abstract)”.
In: STOC. 1992, pp. 475–482 (cited on p. 16).

[KGZ06] L. Khachiyan, V. Gurvich, and J. Zhao. “Extending Dijkstra’s Algorithm to Maxi-
mize the Shortest Path by Node-Wise Limited Arc Interdiction”. In: CSR. Vol. 3967.
Lecture Notes in Computer Science. Springer, 2006, pp. 221–234 (cited on p. 192).

[KK91] N. Klarlund and D. Kozen. “Rabin Measures and Their Applications to Fairness and
Automata Theory”. In: LICS. IEEE Computer Society, 1991, pp. 256–265 (cited on
pp. 56, 87, 108).

[KL21] Z. K. Koh and G. Loho. Beyond Value Iteration for Parity Games: Strategy Iteration
with Universal Trees. 2021 (cited on p. 171).

[KL93] A. Karzanov and V. Lebedev. “Cyclical games with prohibitions”. In: Math. Program-
ming 60 (1993), pp. 277–293 (cited on p. 19).

244 Bibliography

[Kla91] N. Klarlund. “Progress Measures for Complementation of omega-Automata with Ap-
plications to Temporal Logic”. In: FOCS. IEEE Computer Society, 1991, pp. 358–
367 (cited on pp. 56, 87, 201, 202, 221).

[Kla92] N. Klarlund. “Progress Measures, Immediate Determinacy, and a Subset Construc-
tion for Tree Automata”. In: LICS. IEEE Computer Society, 1992, pp. 382–393
(cited on pp. 53, 56, 64, 87, 227).

[Kop06] E. Kopczyński. “Half-Positional Determinacy of Infinite Games”. In: ICALP. 2006,
pp. 336–347 (cited on pp. 53–56, 81, 89, 96, 147, 155, 227).

[Koz21a] A. Kozachinskiy. “Continuous Positional Payoffs”. In: CONCUR. Vol. 203. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 10:1–10:17 (cited on
pp. 54, 85, 108, 169, 178).

[Koz21b] A. Kozachinskiy. “Polyhedral Value Iteration for Discounted Games and Energy Games”.
In: SODA. SIAM, 2021, pp. 600–616 (cited on pp. 21, 174, 185).

[Koz83] D. Kozen. “Results on the propositional µ-calculus”. In: Theoretical Computer Science
27.3 (1983), pp. 333–354 (cited on pp. 10, 12).

[KT28] B. Knaster and A. Tarski. “Un théorème sur les fonctions d’ensembles”. In: Ann. Soc.
Polon. Math. 6 (1928), pp. 133–134 (cited on p. 31).

[Kup12] O. Kupferman. “Recent Challenges and Ideas in Temporal Synthesis”. In: SOFSEM.
2012 (cited on p. 12).

[KV05] O. Kupferman and M. Vardi. “Safraless Decision Procedures”. In: vol. 2005. FOCS.
Nov. 2005, pp. 531–540 (cited on p. 12).

[Kön27] D. König. “Über eine Schlussweise aus dem Endlichen ins Unendliche”. In: Acta Sci.
Math. (1927) (cited on p. 35).

[LB20] K. Lehtinen and U. Boker. “Register Games”. In: Logical Methods in Computer Science
16.2 (2020) (cited on p. 13).

[LDT14] Y. Liu, Z. Duan, and C. Tian. “An Improved Recursive Algorithm for Parity Games”.
In: TASE. IEEE Computer Society, 2014, pp. 154–161 (cited on pp. 220, 223).

[Leb16] V. Lebedev. “Exponential examples of solving parity games”. In: Computational Math-
ematics and Mathematical Physics 56 (2016), pp. 688–697 (cited on p. 174).

[Leh18] K. Lehtinen. “A modal-µ perspective on solving parity games in quasi-polynomial
time”. In: LICS. 2018, pp. 639–648 (cited on pp. 13, 117, 226).

[LL69] T. M. Liggett and S. A. Lippman. “Stochastic Games with Perfect Information and
Time Average Payoff”. In: SIAM Review 11.4 (1969), pp. 604–607 (cited on p. 19).

[LMS20] M. Luttenberger, P. J. Meyer, and S. Sickert. “Practical synthesis of reactive systems
from LTL specifications via parity games”. In: Acta Informatica 57.1-2 (2020), pp. 3–
36 (cited on pp. 12, 17, 26, 189, 199).

[Loh17] G. Loho. “Combinatorics of tropical linear programming”. PhD thesis. Technische
Universität Berlin, 2017 (cited on p. 22).

[LP07] Y. Lifshits and D. Pavlov. “Potential theory for mean payoff games”. In: Journal of
Mathematical Sciences 145 (2007), pp. 4967–4974 (cited on pp. 21, 173).

[LPS+21] K. Lehtinen, P. Parys, S. Schewe, and D. Wojtczak. “A Recursive Approach to Solving
Parity Games in Quasipolynomial Time”. In: CoRR abs/2104.09717 (2021) (cited on
pp. 16, 201).

Bibliography 245

[LSW19] K. Lehtinen, S. Schewe, and D. Wojtczak. “Improving the complexity of Parys’ re-
cursive algorithm”. In: CoRR abs/1904.11810 (2019) (cited on pp. 15, 201, 226).

[Lud95] W. Ludwig. “A Subexponential Randomized Algorithm for the Simple Stochastic
Game Problem”. In: Inf. Comput. 117.1 (1995), pp. 151–155 (cited on pp. 16, 20).

[Lut08] M. Luttenberger. “Strategy Iteration using Non-Deterministic Strategies for Solving
Parity Games”. In: CoRR abs/0806.2923 (2008) (cited on pp. 12, 16, 22, 26, 170,
174, 189, 192).

[Mar75] D. A. Martin. “Borel Determinacy”. In: Annals of Mathematics 102.2 (1975), pp. 363–
371 (cited on p. 40).

[McN67] R. McNaughton. “Project MAC Progress Report V, Massachusetts Institute of Tech-
nology”. In: (1967-1968) (cited on p. 11).

[McN93] R. McNaughton. “Infinite Games Played on Finite Graphs”. In: Annals of Pure and
Applied Logic 65.2 (1993), pp. 149–184 (cited on pp. 10, 14, 53).

[ML16] P. J. Meyer and M. Luttenberger. “Solving Mean-Payoff Games on the GPU”. In:
ATVA. Vol. 9938. Lecture Notes in Computer Science. 2016, pp. 262–267 (cited on
pp. 21, 195, 196).

[Mos84] A. Mostowski. “Regular expressions for infinite trees and a standard form of au-
tomata”. In: Symposium on Computation Theory. 1984 (cited on p. 11).

[Mos91] A. W. Mostowski. Games with Forbidden Positions. Tech. rep. 78. University of Gdansk,
1991 (cited on p. 11).

[Mou76] H. Moulin. “Prolongement des jeux à deux joueurs de somme nulle”. PhD thesis.
1976 (cited on pp. 19, 81).

[MS87] D. E. Muller and P. E. Schupp. “Alternating automata on infinite trees”. In: Theoretical
Computer Science 54.2 (1987), pp. 267–276 (cited on p. 10).

[MSL18] P. J. Meyer, S. Sickert, and M. Luttenberger. “Strix: Explicit Reactive Synthesis Strikes
Back!” In: CAV. Vol. 10981. Lecture Notes in Computer Science. Springer, 2018,
pp. 578–586 (cited on pp. 12, 189, 199).

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. “A Subexponential Bound for Linear Program-
ming”. In: Algorithmica 16.4/5 (1996), pp. 498–516 (cited on p. 16).

[Muc84] A. Muchnik. “Games on infinite trees and automata with dead-end markers—a new
proof of the decidability of the monadic theory of two successors”. In: Semiotics and
Information 4 (1984), pp. 17–24 (cited on p. 10).

[Nis91] N. Nisan. “Lower Bounds for Non-Commutative Computation (Extended Abstract)”.
In: Proceedings of the 23rd Symposium on Theory of Computing (STOC 1991). ACM,
1991, pp. 410–418 (cited on p. 231).

[Niw86] D. Niwinski. “On Fixed-Point Clones”. In: ICALP. Vol. 226. Lecture Notes in Com-
puter Science. Springer, 1986, pp. 464–473 (cited on p. 10).

[Niw88] D. Niwinski. “Fixed Points vs. Infinite Generation”. In: LICS. IEEE Computer So-
ciety, 1988, pp. 402–409 (cited on p. 10).

[NYY92] A. Nerode, A. Yakhnis, and V. Yakhnis. “Concurrent Programs as Strategies in Games”.
In: Logic from Computer Science. Springer New York, 1992, pp. 405–479 (cited on
p. 12).

246 Bibliography

[Obd03] J. Obdrzálek. “Fast Mu-Calculus Model Checking when Tree-Width Is Bounded”.
In: CAV. Vol. 2725. Lecture Notes in Computer Science. Springer, 2003, pp. 80–92
(cited on p. 15).

[Obd06] J. Obdrzálek. “DAG-width: connectivity measure for directed graphs”. In: SODA.
ACM Press, 2006, pp. 814–821 (cited on p. 15).

[Obd07] J. Obdrzálek. “Clique-Width and Parity Games”. In: CSL. Vol. 4646. Lecture Notes
in Computer Science. Springer, 2007, pp. 54–68 (cited on p. 15).

[Par19] P. Parys. “Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time”. In: MFCS.
2019, 10:1–10:13 (cited on pp. 15, 201, 226).

[Par20] P. Parys. “Parity Games: Another View on Lehtinen’s Algorithm”. In: CSL. 2020,
32:1–32:15 (cited on pp. 14, 117, 226).

[Pis99] N. N. Pisaruk. “Mean Cost Cyclical Games”. In: Mathematics of Operations Research
24.4 (1999), pp. 817–828 (cited on pp. 20, 173).

[Pnu77] A. Pnueli. “The temporal logic of programs”. In: FOCS 14 (1977), pp. 46–57 (cited
on p. 11).

[PP04] D. Perrin and J. Pin. Infinite words - automata, semigroups, logic and games. Vol. 141.
Pure and applied mathematics series. Elsevier Morgan Kaufmann, 2004 (cited on
p. 43).

[PPS06] N. Piterman, A. Pnueli, and Y. Sa’ar. “Synthesis of Reactive(1) Designs”. In: VMCAI.
Springer-Verlag, 2006, pp. 364–380 (cited on p. 12).

[PR71] T. Parthasarathy and T. Raghavan. “Some Topics in Two-Person Games”. In: (1971)
(cited on p. 19).

[PR89] A. Pnueli and R. Rosner. “On the synthesis of a reactive module”. In: POPL. 1989
(cited on p. 12).

[Pur95] A. Puri. “Theory of Hybrid Systems and Discrete Event Systems”. PhD thesis. EECS
Department, University of California, Berkeley, 1995 (cited on pp. 16, 19, 20, 81,
169).

[Rab69] M. O. Rabin. “Decidability of Second-Order Theories and Automata on Infinite
Trees”. In: Transactions of the American Mathematical Society 141 (1969), pp. 1–35
(cited on pp. 10, 11).

[Rab72] M. O. Rabin. Automata on Infinite Objects and Church’s Problem. American Mathe-
matical Society, 1972 (cited on p. 11).

[Ran14] M. Randour. “Synthesis in Multi-Criteria Quantitative Games”. PhD thesis. Univer-
sité de Mons, 2014 (cited on p. 22).

[RCN73] S. S. Rao, R. Chandrasekaran, and K. P. K. Nair. “Algorithms for discounted stochas-
tic games”. In: Journal of Optimization Theory and Applications 11.6 (1973), pp. 627–
637 (cited on p. 16).

[RPR18] S. L. Roux, A. Pauly, and M. Randour. “Extending Finite-Memory Determinacy
by Boolean Combination of Winning Conditions”. In: FSTTCS. Vol. 122. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 38:1–38:20 (cited on
p. 54).

[Saf88] S. Safra. “On the Complexity of Omega -Automata”. In: FOCS. Vol. 29. IEEE Com-
puter Society, 1988, pp. 319–327 (cited on p. 10).

Bibliography 247

[SB69] D. Scott and J. de Bakker. “A theory of programs”. In: (1969). Unpublished manuscript
(cited on p. 10).

[Sch07] S. Schewe. “Solving Parity Games in Big Steps”. In: FSTTCS. Vol. 4855. Lecture
Notes in Computer Science. Springer, 2007, pp. 449–460 (cited on p. 13).

[Sch08] S. Schewe. “An Optimal Strategy Improvement Algorithm for Solving Parity and
Payoff Games”. In: CSL. Vol. 5213. Lecture Notes in Computer Science. Springer,
2008, pp. 369–384 (cited on pp. 16, 20–22, 26, 170, 174, 189, 192, 194–196, 199,
228).

[SE84] R. S. Streett and E. A. Emerson. “The Propositional Mu-Calculus is Elementary”.
In: Proceedings of the 11th Colloquium on Automata, Languages and Programming.
Springer-Verlag, 1984, pp. 465–472 (cited on p. 10).

[Ser04] O. Serre. “Contribution à l’étude des jeux sur des graphes de processus à pile”. PhD
thesis. Université Paris VIII Vincennes-Saint Denis, Nov. 2004 (cited on p. 41).

[SF07] S. Schewe and B. Finkbeiner. “Bounded Synthesis”. In: ATVA. Springer-Verlag, 2007,
pp. 474–488 (cited on p. 12).

[Sha53] L. S. Shapley. “Stochastic Games”. In: 39.10 (1953), pp. 1095–1100 (cited on pp. 16,
19, 49, 53, 69, 80).

[Spe99] A. Specification. “Rev. 2.0”. In: ARM Limited (1999) (cited on p. 12).

[STV15] S. Schewe, A. Trivedi, and T. Varghese. “Symmetric Strategy Improvement”. In:
ICALP. Vol. 9135. Lecture Notes in Computer Science. Springer, 2015, pp. 388–
400 (cited on pp. 17, 26, 194).

[SWZ19] S. Schewe, A. Weinert, and M. Zimmermann. “Parity Games with Weights”. In: Log.
Methods Comput. Sci. 15.3 (2019) (cited on p. 23).

[Tar55] A. Tarski. “A lattice-theoretical fixpoint theorem and its applications”. In: Pacific Jour-
nal of Mathematics 5.2 (1955), pp. 285–309 (cited on p. 31).

[Tho95] W. Thomas. “On the synthesis of strategies in infinite games”. In: STACS. Springer
Berlin Heidelberg, 1995, pp. 1–13 (cited on p. 12).

[Tho96] W. Thomas. Languages, Automata and Logic. 1996 (cited on p. 42).

[Var95] M. Y. Vardi. “An Automata-Theoretic Approach to Fair Realizability and Synthesis”.
In: CAV. Vol. 939. Lecture Notes in Computer Science. Springer, 1995, pp. 267–278
(cited on p. 12).

[VCD+15] Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. M. Rabinovich, and J. Raskin.
“The complexity of multi-mean-payoff and multi-energy games”. In: Information and
Computation 241 (2015), pp. 177–196 (cited on pp. 25, 112, 155, 156, 159, 161).

[Vel15] Y. Velner. “Robust Multidimensional Mean-Payoff Games are Undecidable”. In: FoS-
SaCS. Vol. 9034. Lecture Notes in Computer Science. Springer, 2015, pp. 312–327
(cited on p. 24).

[VJ00] J. Vöge and M. Jurdzinski. “A Discrete Strategy Improvement Algorithm for Solving
Parity Games”. In: vol. 1855. Lecture Notes in Computer Science. Springer, 2000,
pp. 202–215 (cited on pp. 16, 17, 19, 20, 169, 170, 189).

[Vög00] J. Vöge. “Strategie synthese für Paritätsspiele auf endlichen Graphen”. PhD thesis.
University of Aachen, 2000 (cited on pp. 16, 20, 169, 170, 189).

248 Bibliography

[Wal96] I. Walukiewicz. “Pushdown Processes: Games and Model Checking”. In: CAV. Vol. 1102.
Lecture Notes in Computer Science. Springer, 1996, pp. 62–74 (cited on pp. 13, 41,
56, 63, 89, 125, 170, 201, 227).

[Ye11] Y. Ye. “The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the
Markov Decision Problem with a Fixed Discount Rate”. In: Math. Oper. Res. 36.4
(2011), pp. 593–603 (cited on pp. 16, 49, 169).

[YY90] A. Yakhnis and V. Yakhnis. “Extension of Gurevich-Harrington’s Restricted Memory
Determinacy Theorem: A Criterion for the Winning Player and an Explicit Class
of Winning Strategies”. In: Ann. Pure Appl. Log. 48 (1990), pp. 277–297 (cited on
p. 10).

[Zei94] S. Zeitman. “Unforgettable Forgetful Determinacy”. In: Journal of Logic and Compu-
tation 4.3 (June 1994), pp. 273–283 (cited on p. 10).

[Zie98] W. Zielonka. “Infinite Games on Finitely Coloured Graphs with Applications to Au-
tomata on Infinite Trees”. In: Theoretical Computer Science 200.1-2 (1998), pp. 135–
183 (cited on pp. 14, 45, 53, 54, 56, 147, 194, 201, 221, 225).

[ZP95] U. Zwick and M. Paterson. “The Complexity of Mean Payoff Games”. In: COCOON.
Vol. 959. Lecture Notes in Computer Science. Springer, 1995, pp. 1–10 (cited on
pp. 16, 19, 20, 81).

[ZP96] U. Zwick and M. Paterson. “The Complexity of Mean Payoff Games on Graphs”. In:
Theoretical Computer Science 158.1-2 (1996), pp. 343–359 (cited on pp. 16, 19, 20,
169).

	General introduction
	Overview
	Parity games
	Mean-payoff games
	Contributions and organisation of the thesis

	Preliminaries
	Orders and graphs
	Infinite duration games on graphs
	Some classes of games

	Well-monotonic graphs and positionality
	Introduction for Part I
	Positionality from well-monotonic graphs
	Monotonic graphs and universality
	Well-monotonicity and positionality
	Prefix-invariance properties and universality

	Manipulating well-monotonic graphs
	Basic -regular objectives
	Payoff valuations
	Counter games
	Lexicographical products

	Structuration results
	Statement of the results and discussion
	Closure and saturation
	Choice arenas

	Conclusion and perspectives for Part I

	Finite monotonic graphs and value iterations
	Introduction for Part II
	Separating automata and value iterations
	From finite monotonic graphs to valuations
	Determinisation of strongly separating automata
	Value iterations

	Finite monotonic graphs for parity games
	From even graphs to ordered trees
	Universal trees and their size

	Finite monotonic graphs for mean-payoff games
	Universal graphs for A=[-N,N]
	Universal graphs parameterised by k=|A|

	Finite monotonic graphs for mean-payoff parity games
	Constructing a monotonic graph satisfying W
	Universality of LT

	Finite monotonic graphs for multi mean-payoff games
	Strongly connected graphs satisfying W
	A W-universal monotonic graph

	Conclusion and perspectives for Part II

	Beyond value iterations
	Strategy improvement with fixpoint valuations
	A generic framework for strategy improvement
	Applications and perspectives

	Exploiting symmetry in mean-payoff games
	Introduction
	Potential reductions and simplicity
	Symmetric presentation of the GKK algorithm
	Pseudopolynomial upper bound
	Strong exponential upper bound
	The ESL algorithm
	Conclusion and perspectives

	Attractor-based algorithms and parity bi-progress measures
	Universal attractor-based algorithm of JM20
	Simulation by value iteration
	Accelerating iterations of parity bi-progress measures
	Simulation of Zielonka's algorithm
	Conclusion and perspectives

	General conclusion
	Personal references
	Bibliography

