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Abstract. In this paper, we construct an interpretation-preserving functor from a category
of concurrent games to the category of Scott domains and Scott-continuous functions. We
give a concrete description of this functor, extending earlier results on the relational collapse
of game semantics. The crux is an intricate combinatorial lemma allowing us to synchronize
states of strategies which reach the same resources, but with different multiplicity.

Putting this together with the previously established relational collapse, this provides a
new proof of the qualitative-quantitative correspondence first established by Ehrhard in his
celebrated extensional collapse theorem. Whereas Ehrhard’s proof is indirect and rests on
an abstract realizability construction, our result gives a concrete, combinatorial description
of the extraction of quantitative information from a qualitative model.

1. Introduction

The heart of denotational semantics is certainly domain theory, where types are interpreted
as certain partially ordered sets, and programs as (continuous) functions between those.
This idea, originally pioneered by Scott and Strachey [SS71], has spread wide and far, and
underlies much of the modern theory of programming languages. In the terminology of this
paper, this functional semantics is qualitative: it tracks the amount of information about the
input need to compute a given part of the output, but not how many times that information
is needed, or how many times the argument of a function is evaluated.

Another deeply influential discovery, in that field of research, is Girard’s invention of
linear logic [Gir87]. Linear logic is a logic of resources; it gives a special status to those
functions that are linear in the sense that they evaluate their argument exactly once. Starting
with the interpretation of λ-terms as normal functors [Gir88], linear logic prompted the
development of denotational models that are sensitive to resources, in the sense that they
also record the multiplicity of resource usage: in the terminology of this paper, they are
quantitative. Quantitative models have been under active development in the following three
decades, with a number of remarkable achievements. For instance, quantitative models (and
their type-theoretic presentations as non-idempotent intersection types) provide a semantic
characterization of execution time [dC18]. Their resource-sensitivity lets them track numerous
quantitative aspects of computation [LMMP13], or provide models of properly quantitative
computational effects, such as probabilistic choice [EPT18] or quantum effects [PSV14], for
which they give fully abstract models [EPT18,CdV20].
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The drawback of this quantitative aspect, however, is that they are infinitary. Even for
the simply-typed λ-calculus with a finite interpretation for ground types, they give infinitary
semantics, because they rely on finite multisets to represent the arrow type. A “proof” that
a certain point is in the quantitative semantics of a term (which can often be represented
as a derivation in a non-idempotent intersection type system), is really a de-temporised,
“static” representation of the full execution. In contrast, the functional models as in domain
theory, and their syntactic presentations as idempotent intersection type systems, remain
finitary: for instance, they give a finite interpretation to simply-typed programs with finite
ground types. In this way, they talk by finitary means of an infinitary object: the execution
– this is the key to their algorithmic use in e.g. higher-order model-checking [Aeh06,KO09].

There is a fascinating scientific tension between these qualitative and quantitative models.
On the one hand, they are remarkably similar: with the right presentation, the only significant
difference in their construction is whether the exponential modality should be based on
finite sets or finite multisets. On the other hand, the associated proof methods are very
different: quantitative models are infinitary, but their connection with the execution is
simple logically (though it can still be subtle combinatorially), allowing them to provide
useful program approximants [BM20]; qualitative models are finitary, but linking them
with execution requires tools with considerable logical complexity, such as logical relations.
Surprisingly, this tension has been somewhat little studied, perhaps also because the two
families of models correspond to different communities. However, there is one important
paper that strikes right at that tension: Ehrhard’s result that the linear Scott model of the
simply-typed λ-calculus is the extensional collapse of its relational model [Ehr12]. Ehrhard’s
result entails, in particular, that a point a in the qualitative model is in the semantics of a
program M iff it has a “quantitativation” a′ in the quantitative semantics of M . At the core
of this result is the construction of a model that is somewhat hybrid between qualitative and
quantitative; of quantitative relations which behave well with respect to a preorder relation
rearranging resources. But this hybrid model is obtained by formulating and maintaining an
invariant (by biorthogonality) implying this quantitativation, it gives us no combinatorial
understanding of that process, and no way to compute it in concrete cases.

Here, we provide a combinatorial understanding of this quantitativation process, using
game semantics. Game semantics is another quantitative denotational model, originally
developped to attack the famous full abstraction problem for PCF [AJM00,HO00]. Game se-
mantics enriches the relational model with time or causality, presenting interactive executions
of a program with its runtime environment as plays on a game whose rules are determined
by the type. Despite its clear intellectual affiliation with quantitative semantics, the precise
relationship between games and relational models has been the center of a longstanding line
of research [BDER97,Ehr96,Mel06,Mel05,Bou09]. In the modern dresses of thin concurrent
games [CCW19,Cla24], building on concurrent games on event structures [RW11] and in
the footsteps of Melliès’s insightful work on asynchronous games [Mel05], this relationship
now appears as a simple forgetful interpretation-preserving functor to the relational model,
erasing the “dynamic” causal dependency coming from the program, keeping only the “static”
causal dependency from the type – this is summed up in [Cla24], see also [CCPW18,CdV20]
for extensions with quantitative features and [COP23] for a bicategorical version.

In this paper, we complement this “relational collapse” with a related interpretation-
preserving functor to the linear Scott model, a linear decomposition of a (full subcategory
of) Scott domains due independently to Huth [Hut93] and Winskel [Win98]. To construct
a Scott domain from a game, we equip the latter with adequate notions of morphisms,
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cartesian morphisms, which allow the rearrangment (contraction and weakening) of resources.
The crux of the issue is then to show that this collapse operation to the linear Scott model
preserves composition: this rests on a crucial proposition (Proposition 6.10) showing that if
innocent strategies can synchronize up to cartesian morphisms, then one can find adequate
expansions of the strategies making them synchronize on the nose. This forms the core of
our combinatorial account of Ehrhard’s quantitativation result: because our games model
has interpretation-preserving functors to both the relational model and the Scott model, we
also obtain a precise connection between the two (Theorem 6.16). This is also a contribution
to the line of work connecting game semantics to “static” semantics, targetting from the
first time a qualitative semantics, spanning accross communities: Scott domains.

After this scientific introduction, we include in the next section a more technical
introduction, setting the scene and giving the main intuitions, and exposing the outline.

2. The Qualitative and the Quantitative

2.1. The Relational Model and Quantitative Semantics. Our starting point, in this
discussion, will be the relational model of linear logic.

2.1.1. The relational model. At its heart, it is the interpretation of the λ-calculus into the
category Rel of sets and relations, with which we assume that the reader is familiar (see
e.g. [Ehr12] for a reference). Rel is a Seely category [Mel09]: its monoidal product is
the cartesian product of sets, its cartesian product is given by the disjoint union, and its
exponential modality ! sends a set A to the set Mf (A) of finite multisets of elements of A.
We adopt standard conventions for multisets: we adopt a list notation [a1, . . . , an] possibly
with repetitions, with the empty multiset written []. Multiset union is written with a sum +.

As Rel is a Seely category, one can consider the Kleisli category for the exponential
comonad !, which is cartesian closed. One can then interpret the simply-typed λ-calculus
following the standard lines of its interpretation into a cartesian closed category: this sends
any type A to a set JAK, following the straightforward inductive definition1

JoK = {⋆}
JA→ BK = Mf (JAK)× JBK ,

this set JAK is often referred to as the web of A. Likewise, any well-typed term ⊢M : A is
sent to JMK ⊆ JAK a subset of the web. It is a reasonable intuition to think of elements of
JAK as sort of detemporalized execution traces, and indeed it is central in this paper that
they do correspond to plays in the game semantics sense where time has been suppressed.

Let us illustrate this with an example. We have

([([⋆], ⋆), ([⋆, ⋆], ⋆)], ([⋆, ⋆], ⋆)) ∈ Jλfx. f (f x) : (o→ o)→ o→ oK (2.1)

which may be interpreted as an execution of the term (the Church integer for 2) which calls
f twice. For one of these calls, f calls its argument once; the other time, twice – so the term
ends up using x twice. We will revisit this example later armed with better notations.

1The interpretation is parametrised by the choice of an interpretation for the base type. For now we use a
singleton type, which is restrictive but simplifies the relationship with game semantics. In Section 4.4, we
will see how to extend that if the base type is interpreted with an arbitrary set.
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2.1.2. Non-idempotent intersection types. The relational model is a denotational semantics
– in fact, it is the core of numerous quantitative denotational models including coherence
spaces, probabilistic coherence spaces, and many others. But one of its striking features
is that it can be presented purely syntactically, via an intersection type system known as
non-idempotent intersection types, or multi-types.

Non-idempotent intersection types come in two shapes: on the one hand, single types
are of the form ⋆ or ᾱ⊸ β, where β is a single type and ᾱ is a multi-type. On the other
hand, a multi-type ᾱ is a finite multiset [α1, . . . , αn] of single types. Because we refer here
to the relational semantics of the simply-typed λ-calculus, we shall only consider those
non-idempotent intersection types that refine – i.e., follow the structure of – a simple type:

⋆ ◁ o

ᾱ ◁ A β ◁ B

ᾱ⊸ β ◁ A→ B

∀i ∈ I αi ◁ A

[αi | i ∈ I] ◁ A

It looks like there is no intersection in this syntax for non-idempotent intersection types,
but a finite multiset [α1, . . . , αn] can be read as a formal intersection

α1 ∧ . . . ∧ αn

with ∧ an associative, commutative operation – but crucially, not idempotent.
It is direct to see by induction on types that refinements of a simple type A are in

one-to-one correspondance with elements of JAK, provided we interpret the base type as
JoK = {⋆}. Accordingly, we shall from now on identify the two, and see non-idempotent
intersection types as a syntax for elements of the relational model. Though we shall not rely
on it in this paper, this also extends to typing rules for terms: the relational interpretation
of ⊢M : A is precisely the set of α ◁ A such that ⊢M : α is derivable – for instance,

λfx. f (f x) : [[⋆]⊸ ⋆, [⋆, ⋆]⊸ ⋆]⊸ [⋆, ⋆]⊸ ⋆

is the typing judgment corresponding to (2.1).

2.1.3. Plays and refinement types. These objects, points of the web in the relational model or
non-idempotent intersection types, are at the heart of many quantitative models. Importantly
for this paper, this includes (some presentations of) game semantics.

Game semantics present computation as an exchange of moves between two players:
Player (+), who plays for the program under scrutiny, and Opponent (−), who plays for
the execution environment. In this setting, an execution is traditionally represented as
a play, a chronological sequence of moves linked with so-called pointers indicating their
hierarchical relationships. As an example, we show in Figure 1 a play in (the strategy for)
λfx. f (f x). It is read from top to bottom, and each move is placed under the corresponding
type component. Opponent starts computation, which prompts the evaluation of f with
q+. Then f calls its argument, which prompts the evaluation of the second occurrence of f .
After that, f calls its argument twice, and x gets evaluated twice. Moves are linked with
so-called justification pointers, carrying the hierarchical relationships between variable calls.

Time is critical in traditional presentations of game semantics. But it is nonetheless
sensible to forget time, retaining only the tree structure induced by moves and justification
pointers – as pictured in Figure 2, where the correspondence between moves and atoms in
the type is conveyed via subscripts rather than the horizontal position of moves. In this
time-forgetting operation lies the main intuition behind the link between game semantics
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λfx. f (f x) : (o → o) → o → o
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Figure 1: Example of a play
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Figure 2: Its position

and relational semantics: Figure 2 (ignoring solid arrows _) turns out to be an alternative
representation of the non-idempotent intersection refinement

[[⋆]⊸ ⋆, [⋆, ⋆]⊸ ⋆]⊸ [⋆, ⋆]⊸ ⋆ ◁ (o→ o)→ o→ o

encountered earlier – carrying the same information as in the play in Figure 1 about the
distinct variable calls and their hierarchical dependencies2. Modern presentations of game
semantics [Mel05,RW11,CCRW17] reject time; instead, positions as pictured in Figure 2 are
primitive. In concurrent games, positions are enriched instead with causal wiring conveying
the causal dependencies from the term, pictured with solid arrows _ in Figure 2.

2.1.4. Rigidity and symmetries. There is a seemingly small, but actually fundamental
subtlety in the explanation above. Positions, those trees matching points in the relational
model, are unordered : children of a same node which correspond to the same type component
can be permuted at will – this corresponds to the fact that elements of !A in the relational
model are multisets rather than merely lists. They are quotiented structures.

In thin concurrent games, strategies play not on these quotiented structures, but rather
on some choice of concrete representatives; this is in particular required so that positions
can be sensibly enriched with causal information as in Figure 2. In thin concurrent games
in particular, concrete representatives of positions are called configurations. In these objects,
distinct copies of moves are kept separate by attributing each an identifier, an integer called
its copy index. Copy indices are not unique to a move, but two moves sharing the same
justifier and corresponding to the same type component cannot have the same copy index.
As an example, we draw in Figure 3 concrete representatives for the position of Figure 2.
Copy indices appear in grey, to distinguish them from the subscript for the type component.

This feature of working with concrete representatives of positions is not unique to thin
concurrent games; it is in fact common in categorifications of the relational model, such
as generalized species of structure [FGHW08]. There, types are interpreted not as sets

2The formal link between plays in Hyland-Ong games and points of the web in the relational model was
first established by Boudes [Bou09] – at least under this specific form: the correspondence between static
and dynamic denotational models was first explored in [BDER97,Ehr96]. This tension between static and
dynamic models underlies Melliès’s work on asynchronous games [Mel05].
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q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

∼=−

q−4,1

q+2,0 q+2,4 q+3,2 q+3,6

q−1,13 q−1,2 q−1,4

∼=+

q−4,1

q+2,1 q+2,5 q+3,6 q+3,2

q−1,13 q−1,2 q−1,4

Figure 3: Concrete configurations with copy indices

comprising quotiented structures, but as groupoids: their objects are concrete representatives
of non-idempotent intersection types obtained as for the relational models but with lists

⟨α1, . . . , αn⟩
instead of finite multisets. In quantitative semantics, these concrete representatives of
quotiented objects are often referred to as rigid. In this categorified situation, the quotient is
replaced with explicit morphisms generated by permutations between elements of these lists.

Just like generalized species, thin concurrent games are rigid ; and concrete configurations
are related by so-called symmetries, tree isomorphisms which can only change copy indices.
In Figure 3 we show two symmetries, which are the tree isomorphisms respecting the
topological position of nodes. In thin concurrent games, the polarity of moves lets us set
apart sub-groupoids of polarized symmetries3: some symmetries, dubbed positive, only
change the copy index of positive moves; while others, dubbed negative, only reindex negative
moves. Not every symmetry is negative or positive: the composite symmetry in Figure 3 is
neither. But every symmetry factors as a composition of the two, as illustrated in Figure 3.
We leave these structures on the side from now on, but they will play a crucial role later on.

Note in passing that these similarities between thin concurrent games and generalized
species of structure are not superficial; the two models are connected at the bicategorical
level by an interpretation-preserving (cartesian closed) pseudofunctor [COP23].

2.2. The Qualitative. Quantitative models record the multiplicity of resource usage. This is
their defining feature, and a significant part of their remarkable ability to handle quantitative
effects such as probabilistic choice [DE11], quantum primitives [PSV14] and others [LMMP13].
But most denotational models – starting with Scott domains [Plo77] – do not record such
quantitative information: they are qualitative; they record the presence of resource calls but
not their multiplicity. They correspond to a different notion of approximation according to
which a function is greater than another if it produces more using less information about
the input, regardless of how many times the input is evaluated.

2.2.1. Idempotent intersection types. In terms of intersection types, being qualitative means

α ∧ α = α ,

i.e. that ∧ is idempotent : an expression α1 ∧ . . . ∧ αn no longer corresponds to the finite
multiset [α1, . . . , αn], but to the set {α1, . . . , αn}. But brutally enforcing α ∧ α = α in this

3This fundamental distinction was identified for the first time in Melliès’s orbital games [Mel03]; it is also
at the core of the more recent setting of thin spans of groupoids [CF23].
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way fails: the finite powerset endofunctor on Rel fails to be a comonad, as the candidate
co-unit fails naturality. For instance, with A = {a1, a2}, B = {b}, with R = {(a1, b), (a2, b)},

({a1, a2}, b) ∈ derB ◦ !R , ({a1, a2}, b) ̸∈ R ◦ derA .

Intuitively, the issue is that seeing b may correspond to one occurrence, or to many. If
it is really just one, then we get it through either {a1} or {a2} but not through {a1, a2}.
However, if there are actually several “merged” occurrences of b, then some may arise through
a1 and others through a2, so we really do need {a1, a2}. To sort out this confusion, we must
relax our intuition about resources: while in the relational model, (a, b) ∈ JMK means that
there is an execution where M consumes exactly a to produce b, here we must allow M to
produce b or more using a or less. In idempotent intersection types, this means that it is
unavoidable to consider a partial order on types, i.e. a subtyping relation. By insisting that
R is adequately down-closed for this subtyping relation, one reinstates naturality.

It is then fairly natural to consider “idempotent” intersection types as simply the
addition of a preorder on non-idempotent intersection types, defined by the rules below:

⋆ ≤ ⋆

ᾱ2 ≤ ᾱ1 β1 ≤ β2

ᾱ1⊸ β1 ≤ ᾱ2⊸ β2

∀i ∈ I ∃j ∈ J αi ≤ βj

[αi | i ∈ I] ≤ [βj | j ∈ J ]
(2.2)

noting that the order is contravariant on the left hand side for the arrow. Those may not
look idempotent as they are still based on multisets; but it follows that for all ᾱ,

ᾱ ∧ ᾱ ≤ ᾱ , [] ≤ ᾱ

which reminds us of the logical laws of contraction and weakening. In particular, ᾱ ≤ ᾱ∧ [] ≤
ᾱ∧ ᾱ. Hence, though idempotence is not enforced primitively, it is derived as the equivalence
relation generated by the subtyping preorder4. This view on idempotent intersection types
is implicit in the linear Scott model, the linear decomposition of Scott domains discovered
by Huth [Hut93] and Winskel [Win98]; and in particular in Winskel’s presentation5.

The heart of Ehrhard’s celebrated extensional collapse theorem [Ehr12] is then that in
this language, the interpretation of a simply-typed λ-term in the linear Scott model is simply
the down-closure of its relational interpretation, linking the qualitative and the quantitative.

2.2.2. Cartesian maps. Now, as we discussed earlier, the set of non-idempotent intersection
types may be categorified into a groupoid of rigid intersection types, as formalized in
the cartesian closed bicategory of generalized species of structure; or into a groupoid of
configurations in the sense of thin concurrent games. It is natural that the preorder ≤ should
then be refined into a category : this is achieved, for instance, through the cartesian closed
bicategory of cartesian distributors [Oli21]. There, given a category A a morphism in !A

⟨αi | i ∈ I⟩ → ⟨βj | j ∈ J⟩
consists in a function h : I → J , together with a family (fi)i∈I where fi : αi → βf(i) in A
– we call this a cartesian morphism, as it can contract several copies together, and it can
weaken copies on the right hand side by not giving them a pre-image. A morphism from
α1 ⊸ β1 to α2 ⊸ β2 consists in morphisms f : α2 → α1 and g : β1 → β2, reflecting (2.2),
contravariantly on the left hand side.

4One can equivalently work with non-idempotent intersection types equipped with the subtyping preorder,
or with idempotent intersection types equipped with the induced partial order.

5The preordered set of intersection types is not the order of Scott domains, which may be obtained by
considering the complete lattice of down-closed sets – see Section 5.1.3.



8 P. CLAIRAMBAULT

In this paper, we achieve an analogous categorification in thin concurrent games, turning
the groupoid of configurations in thin concurrent games into a category of configurations.
So, what should be the adequate morphisms between configurations? Drawing inspiration
from symmetries and the contraction maps above, a natural guess is that they should simply
be forest morphisms which preserve the type component. For instance, we could have

q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

⇝

q−4,0

q+2,0 q+3,0

q−1,0

contracting all copies down to copy index 0. But this is not right, because it does not take
into account the contravariance on the left hand side of arrows. The missing ingredient is
to account for polarity – negative contraction maps can only contract and weaken negative
moves, while positive contraction maps can only contract and weaken positive moves:

q−4,0

q+2,0 q+2,1 q+3,0

q−1,12 q−1,4 q−1,2

+⇝

q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

−⇝

q−4,1

q+2,0 q+2,4 q+3,2 q+3,6

q−1,1 q−1,0

and cartesian morphisms between configurations are obtained as relational compositions
−+⇝⇝ = +⇝ −⇝+⇝ −⇝. . . +⇝ −⇝

which are therefore no longer forest morphisms, but do induce the adequate preorder on
configurations to match the linear Scott model, as we shall demonstrate in this paper.

2.2.3. Cartesian matching problems. The main contribution of this paper is to extend this
into a structure-preserving functor from a category of thin concurrent games into the linear
Scott model. This builds on earlier results on the relational collapse of thin concurrent
games: informally, a strategy σ : A ⊢ B from A to B is an aggregate of states xσ, with

xσA

7→ xσ 7→ xσB

projections obtained – ignoring the issue of taking symmetry classes – by simply forgetting
the causal arrows _ displayed e.g. in Figure 2. The relational collapse of σ then gathers
all pairs (xσA, x

σ
B). But to reach the linear Scott model, we need to build a relation that is

down-closed ! We shall achieve this by sending σ to all pairs (yA, yB) such that we have

yA
+−⇝⇝ xσA

7→xσ 7→ xσB
−+⇝⇝ yB ,

i.e. simply the down-closure with respect to +−⇝⇝. This does yield a valid morphism in linear
Scott models. But this leaves us with the demanding task to show that this down-closure
remains functorial. And this means that for σ : A ⊢ B and τ : B ⊢ C, given

xσ 7→ xσB
−+⇝⇝ xB

−+⇝⇝ xτB

7→xτ ,

i.e. (xσ, xσB
−+⇝⇝ xτB, x

τ ), we must find a synchronization zτ⊙σ in τ ⊙ σ whose (down-closure
of the) projection on A,C is the same. An analogous property is necessary with respect to
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symmetries to construct thin concurrent games [Cla24, Proposition 7.4.4]. But here, the
situation is significantly more complex: both xσ and xτ are trying to duplicate and erase
each other, and we must find a satisfactory state where all these duplications and erasures
are satisfied – we call this a cartesian matching problem.

In game semantics we approach the question concretely, and provide a combinatorial
argument to resolve such matchings. This is the crux of this paper; once this is solved it is
not hard to provide an interpretation-preserving functor from to the linear Scott model.

2.3. Outline. This sums up the main thrust of the paper; of course there are various
technical subtleties that come blur the waters. First, we must introduce thin concurrent
games, along with their relational collapse. This already comes with a significant technical
set-up on top of thin concurrent games: typically, those configurations that match points in
the relational model must be identified via a payoff mechanism. One must also introduce
the slightly unorthodox concept of a relative Seely (∼-)categories, a weakening of Seely
categories, as the structure of plain Seely categories is not preserved by the relational collapse.
This content is well-covered in other sources [Cla24,COP23], which our presentation follows.

We must then give concrete definitions for cartesian morphisms. Unfortunately, we
can only do that relying on a fairly concrete description of the games considered, referring
explicitly to copy indices. For this we must import from [Cla24] the rather clunky notion of
mixed board. Though this paper focuses on the semantic structures, we will apply those to
obtain results on the simply-typed λ-calculus. We consider the λ-calculus with one base
type o – our results of course apply in the presence of many base types, but for this paper
we estimate that the additional notational burden is not worth the extra generality.

Concretely, the paper is organized as follows. In Section 3, we recall the main definitions
of thin concurrent games. In Section 4 we describe the relational collapse of thin concurrent
games – the material is mainly taken from [Cla24], with the extra development required
in order to allow interpreting the atom as an arbitrary set. They main thrust of the
contributions start in Section 5: there, we refine our games to allow the collapse to the
linear Scott model. In particular, we introduce the notion of cartesian morphism on a mixed
board, and develop some of their basic properties. Finally, in Section 6 we show how to
solve cartesian matching problems, and derive our main results.

3. Thin Concurrent Games

The goal of this section is to give an introduction to thin concurrent games, geared towards
its relational collapse: we wish to present the situation in which this collapse is the most
natural, which we may then specialize in later parts of this paper.

Though those are well-understood notions, setting up all the required infrastructure for
the collapse is demanding – the reader can find a more detailed introduction in [Cla24].

3.1. Basic Concurrent Games. The framework of concurrent games [MM07,FP09,RW11]
is not merely a game semantics for concurrency – though it can serve that purpose – but a
deep reworking of the basic mechanisms of game semantics using causal “truly concurrent”
structures from concurrency theory [NPW79], which we must first introduce.
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3.1.1. Event structures. Concurrent games and strategies are based on event structures. An
event structure represents the behaviour of a system as a set of possible computational
events equipped with dependency and incompatibility constraints.

Definition 3.1. An event structure (es) is E = (|E|,≤E ,#E), where |E| is a (countable)
set of events, ≤E is a partial order called causal dependency and #E is an irreflexive
symmetric binary relation on |E| called conflict, satisfying:

finite causes: ∀e ∈ |E|, [e]E = {e′ ∈ |E| | e′ ≤E e} is finite,
vendetta: ∀e1 #E e2, ∀e2 ≤E e′2, e1 #E e′2 .

Operationally, an event can occur if all its dependencies are met, and no conflicting
events have occurred. A finite set x ⊆f |E| down-closed for ≤E and comprising no conflicting
pair is called a configuration – we write C (E) for the set of configurations on E, naturally
ordered by inclusion. If x ∈ C (E) and e ∈ |E| is such that e ̸∈ x but x ∪ {e} ∈ C (E), we
say that e is enabled by x and write x ⊢E e. For e1, e2 ∈ |E| we write e1 _E e2 for the
immediate causal dependency, i.e. e1 <E e2 with no event strictly in between. Finally,
two events e1, e2 ∈ |E| are in immediate conflict, written e1 E e2, if e1 #E e2, and this
conflict is not inherited: if e′1 < e1 then ¬(e1 #E e2), and likewise on the other side.

There is an accompanying notion of map: a map of event structures from E to F is
a function f : |E| → |F | such that: (1) for all x ∈ C (E), the direct image fx ∈ C (F ); and
(2) for all x ∈ C (E) and e, e′ ∈ x, if fe = fe′ then e = e′. There is a category ES of event
structures and maps.

3.1.2. Games and strategies. Throughout this paper, we will gradually refine our notion of
game. For now, a plain game is simply an event structure A together with a polarity
function polA : |A| → {−,+} which specifies, for each event a ∈ A, whether it is positive
(i.e. due to Player / the program) or negative (i.e. due to Opponent / the environment).
Events are often called moves, and annotated with their polarity.

A strategy is an event structure with a projection map to A:

Definition 3.2. Consider A a plain game. A strategy on A, written σ : A, is an event
structure σ together with a map ∂σ : σ → A called the display map, satisfying:

(1) for all x ∈ C (σ) and ∂σx ⊢A a−, there is a unique x ⊢σ s such that ∂σs = a.
(2) for all s1 _σ s2, if polA(∂σ(s1)) = + or polA(∂σ(s2)) = −, then ∂σ(s1) _A ∂σ(s2).

There two conditions (called receptivity and courtesy) ensure that the strategy does not
constrain the behaviour of Opponent any more than the game does. They are essential for
the compositional structure we describe below, but they do not play a major role in this
paper (their use is encapsulated in technical lemmas and propositions proved elsewhere).
Note also that though a strategy does not come with a polarity function for the moves in σ,
they do inherit a polarity through ∂σ. This is used implicitly from now on.

As a simple example, the usual game B for booleans in call-by-name is

q−

tt+ ff+

drawn from top to bottom (Player moves are blue, and Opponent moves are red): Opponent
initiates computation with the first move q, to which Player can react with either tt or ff .
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Strategies give a “proof-relevant” account of execution, in the sense that moves and
configurations of the game can have multiple witnesses in the strategy. For example, on the
left below, b and c are both mapped to the same move tt:

σ
∂σ // B

a
F}}�

& ,,

x��!

q−

b � 66c � // tt+ ff+

=:

B

q−
@zz� ~��$

tt+ tt+

We denote immediate causality by _ in strategies, and by dotted lines for games – this
lets us represent the strategy in a single diagram, as on the right above. Similar diagrams
may represent not entire games and strategies but configurations of games and strategies,
which implicitly inherit a partial order from the ambiant event structure.

3.1.3. Morphisms between strategies. For σ and τ two strategies on A, a morphism from σ
to τ , written f : σ ⇒ τ , is a map of event structures f : σ → τ preserving the dependency
relation ≤ (we say it is rigid) and such that ∂τ ◦ f = ∂σ.

3.1.4. +-covered configurations. We now describe a useful technical tool: it turns out that a
strategy is completely characterized by a subset of its configurations, called +-covered.

For a strategy σ on a game A, a configuration x ∈ C (σ) is +-covered if all its maximal
events are positive, so every Opponent move in x has at least one Player successor. We write
C+(σ) for the partially ordered set (by inclusion) of +-covered configurations of σ.

Lemma 3.3. Consider a plain game A, and strategies σ, τ : A.
If f : C+(σ) ∼= C+(τ) is an order-isomorphism such that ∂τ ◦ f = ∂σ, then there is a

unique isomorphism of strategies f̂ : σ ∼= τ such that for all x ∈ C+(σ), f̂(x) = f(x).

Proof. Immediate consequence of [Cla24, Lemma 6.3.4].

This is the first hint of a methodology that is central to this paper: in concurrent games,
we rarely reason at the level of individual events, preferring whenever possible to reason at
the level of configurations, especially when linking with relational-like models.

3.2. A ∼-category of concurrent games and strategies. We now show how games
and strategies are organized into a ∼-category – that is, a bicategory where 2-cells are
degenerated so that each hom-set forms a setoid, a set with an equivalence relation.

3.2.1. Strategies between games. If A is a plain game, its dual A⊥ has the same components as
A except for the reversed polarity. In particular C (A) = C (A⊥). The parallel composition
A ∥ B of A and B is simply A and B side by side, with no interaction – its events are the
tagged disjoint union |A ∥ B| = |A|+ |B| = {1} × |A| ⊎ {2} × |B|, and other components
are inherited. Likewise, the hom A ⊢ B is simply defined as A⊥ ∥ B. We write xA ∥ xB
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for the configuration of A⊗B that has xA ∈ C (A) on the left and xB ∈ C (B) on the right,
and likewise for xA ⊢ xB ∈ C (A ⊢ B), informing order-isomorphisms6

− ∥ − : C (A)× C (B) ∼= C (A ∥ B) , (3.1)

− ⊢ − : C (A)× C (B) ∼= C (A ⊢ B) . (3.2)

A strategy from A to B is a strategy on the game A ⊢ B. Note that if σ : A ⊢ B and
xσ ∈ C (σ), by convention we write ∂σ(x

σ) = xσA ⊢ xσB ∈ C (A ⊢ B).
Our first example of a strategy between games is copycat ccA : A ⊢ A, the identity

morphism on A in our ∼-category. Concretely, copycat on A has the same events as A ⊢ A,
but adds immediate causal links between copies of the same move across components. By
Lemma 3.3, the following characterizes copycat up to isomorphism.

Proposition 3.4. If A is a game, there is an order-isomorphism

cc (−) : C (A) ∼= C+( ccA)

such that for all x ∈ C (A), ∂ ccA( cc x) = x ⊢ x.

Proof. Follows from [Cla24, Lemma 6.4.4].

This shows that the copycat strategy is essentially the diagonal relation, which is the
first hint of the connection between concurrent games and the relational model.

3.2.2. Composition. Consider σ : A ⊢ B and τ : B ⊢ C. We define their composition
τ ⊙ σ : A ⊢ C. Concurrent games are a dynamic model, and to successfully synchronize, σ
and τ must agree to play the same events in the same order ; this is defined in two steps.

We say that configurations xσ ∈ C (σ) and xτ ∈ C (τ) are matching if they reach the
same configuration on B, i.e. xσB = xτB = xB . If that is the case, it induces a synchronization
(and we may then ask if that synchronization induces a deadlock). If all events of xσ and
xτ were in B, this synchronization would take the form of a bijection xσ ≃ xτ . But some
moves of xσ are in A and some moves of xτ are in C, so instead we form the bijection

φ[xσ, xτ ] : xσ ∥ xτC
∂σ∥xτ

C≃ xσA ∥ xB ∥ xτC
xσ
A∥∂−1

τ

≃ xσA ∥ xτ

where x ∥ y is the tagged disjoint union. This uses the fact that from the conditions on
maps of event structures, ∂σ : xσ ≃ xσA ⊢ xσB is a bijection and likewise for ∂τ .

Next, we import the causal constraints of σ and τ to (the graph of) φ[xσ, xτ ], via:

(m,n) ◁σ (m′, n′) ⇔ m <σ∥C m′

(m,n) ◁τ (m′, n′) ⇔ n <A∥τ n′

letting us finally say that matching xσ and xτ are causally compatible if ◁ = ◁σ ∪ ◁τ

on (the graph of) φ[xσ, xτ ] is acyclic. In particular, xσ and xτ in Figure 4 are not causally
compatible, the synchronization induces a deadlock.

The composition of σ and τ is the unique (up to iso) strategy whose +-covered
configurations are essentially causally compatible pairs of +-covered configurations. Writing
CC(σ, τ) for causally compatible pairs (xσ, xτ ) ∈ C+(σ)× C+(τ) (ordered componentwise):

6Throughout this paper, we write ≃ for mere bijections, and ∼= for isomorphisms also preserving structure.
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U ⊸ U

q−

0tt|
q+
_���
✓−

� ##+
✓+

vs

(U ⊸ U) ⊢ N

q−

1tt}
q+

0tt|
_���

q−
_���

✓−

� ""*/ss{
✓+ 0+

Figure 4: An example of matching but causally incompatible configurations, in the composi-
tion of σ : U⊸ U and τ : U⊸ U ⊢ N. The underlying games are left undefined,
but can be recovered by removing the arrows _. The configurations are matching
on U⊸ U, but the arrows _ impose incompatible orders (i.e. a cycle) between
the two occurrences of ✓.

Proposition 3.5. Consider strategies σ : A ⊢ B and τ : B ⊢ C.
There is a strategy τ ⊙σ : A ⊢ C, unique up to isomorphism, with an order-isomorphism

−⊙− : CC(σ, τ) ∼= C+(τ ⊙ σ)

s.t. for all xσ ∈ C+(σ) and xτ ∈ C+(τ) causally compatible, ∂τ⊙σ(x
τ ⊙ xσ) = xσA ⊢ xτC .

Proof. See [Cla24, Proposition 6.2.1].

This description of composition emphasizes the conceptual difference between a static
model, in which composition is based merely on matching pairs, and a dynamic model, based
on causal compatibility and sensitive to deadlocks. We get [Cla24, Theorem 6.4.11]:

Theorem 3.6. There is a ∼-category CG with: (1) objects, plain games; (2) morphisms
from A to B, strategies σ : A ⊢ B; and equivalence relation, isomorphism of strategies.

3.3. Adding Symmetry. The ambiant ∼-category in which this paper takes place is not
quite CG, but a refinement sensitive to symmetry – this is necessary so that the model
supports an exponential modality. We now go from CG to TCG by replacing the set of
configurations C (A) with a groupoid of configurations S (A) whose morphisms are chosen
bijections called symmetries, that behave well with respect to the causal order.

3.3.1. Event structures with symmetry. Our starting point is to replace event structures
with event structures with symmetry, due to Winskel [Win07]:

Definition 3.7. An isomorphism family on es E is a groupoid S (E) having as objects
all configurations, and as morphisms certain bijections between configurations, satisfying:

restriction: for all θ : x ≃ y ∈ S (E) and x ⊇ x′ ∈ C (E),
there is θ ⊇ θ′ ∈ S (E) such that θ′ : x′ ≃ y′.

extension: for all θ : x ≃ y ∈ S (E), x ⊆ x′ ∈ C (E),
there is θ ⊆ θ′ ∈ S (E) such that θ′ : x′ ≃ y′.

We call (E,S (E)) an event structure with symmetry (ess).
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We refer to morphisms in S (E) as symmetries, and write θ : x ∼=E y if θ : x ≃ y with
θ ∈ S (E). The domain dom(θ) of θ : x ∼=E y is x, and likewise its codomain cod(θ) is y.
A map of ess E → F is a map of event structures that preserves symmetry: the bijection

fθ
def
= fx

f−1

≃ x
θ≃ y

f
≃ fy,

is in S (F ) for every θ : x ∼=E y (recall that f restricted to any configuration is bijective).
This exactly amounts to making f : S (E)→ S (F ) a functor of groupoids.

We can define a 2-category ESS of ess, maps of ess, and natural transformations between
the induced functors. For f, g : E → F such a natural transformation is necessarily unique
[Win07], and corresponds to the fact that for every x ∈ C (E) the composite bijection

f x
f−1

≃ x
g
≃ g x

via local injectivity of f and g, is in S (F ). So this is an equivalence, denoted f ∼ g.

3.3.2. Thin games. We define games with symmetry. To match the polarized structure, a
game is an ess with two sub-symmetries, one for each player (see e.g. [Mel03,CCW19,Paq22]).

Definition 3.8. A thin concurrent game (tcg) is a game A with isomorphism families
S (A),S+(A),S−(A) s.t. S+(A),S−(A) ⊆ S (A), symmetries preserve polarity, and

(1) if θ ∈ S+(A) ∩S−(A), then θ = idx for x ∈ C (A),
(2) if θ ∈ S−(A), θ ⊆− θ′ ∈ S (A), then θ′ ∈ S−(A),
(3) if θ ∈ S+(A), θ ⊆+ θ′ ∈ S (A), then θ′ ∈ S+(A),

where θ ⊆p θ′ is θ ⊆ θ′ with (pairs of) events of polarity p.

Elements of S+(A) (resp. S−(A)) are called positive (resp. negative); they intuitively
correspond to symmetries carried by positive (resp. negative) moves, introduced by Player
(resp. Opponent). We write θ : x ∼=−

A y (resp. θ : x ∼=+
A y) if θ ∈ S−(A) (resp. θ ∈ S+(A)).

Each symmetry has a unique positive-negative factorization [Cla24, Lemma 7.1.18]:

Lemma 3.9. Consider A a tcg and θ : x ∼=A z a symmetry.
Then, there are unique y ∈ C (A), θ− : x ∼=−

A y and θ+ : y ∼=+
A z s.t. θ = θ+ ◦ θ−.

We extend with symmetry the basic constructions on games: the dual A⊥ has the same
symmetries as A, but S+(A

⊥) = S−(A) and S−(A
⊥) = S+(A); the parallel composition

A1 ∥ A2 has symmetries those θ1 ∥ θ2 : x1 ∥ x2 ∼=A1∥A2
y1 ∥ y2, where each θi : xi ∼=Ai yi,

and similarly for positive and negative symmetries; the hom A ⊢ B is A⊥ ∥ B.

3.3.3. Thin strategies. We now define strategies on thin concurrent games:

Definition 3.10. Consider A a tcg.
A strategy on A, written σ : A, is an ess σ equipped with a morphism of ess ∂σ : σ → A

forming a strategy in the sense of Definition 3.2, and such that:

(1) if θ ∈ S (σ), ∂σθ ⊢A (a−, b−), there are unique θ ⊢σ (s, t) s.t. ∂σs = a and ∂σt = b.
(2) if θ : x ∼=σ y is such that ∂σθ ∈ S+(A), then x = y and θ = idx.

As before, a strategy from A to B is a strategy on σ : A ⊢ B.
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The first condition forces σ to acknowledge Opponent symmetries in A; the notation
θ ⊢A (a, b) means (a, b) ̸∈ θ and θ ∪ {(a, b)} ∈ S (A). The second condition is thinness: it
means that any non-identity symmetry in the strategy must originate from Opponent.

3.3.4. A ∼-category. The composition of thin strategies σ : A ⊢ B and τ : B ⊢ C is obtained
by equipping τ ⊙ σ (Proposition 3.5) with an adequate isomorphism family.

If S +(σ) is the restriction of S (σ) to +-covered configurations, then we can write
CC(S +(σ),S +(τ)) for the pairs (φσ, φτ ) of symmetries which are matching, i.e. φσ

B = φτ
B

and whose domain (or equivalently, codomain) are causally compatible.

Proposition 3.11. Consider σ : A ⊢ B and τ : B ⊢ C thin strategies.
There is a unique symmetry on τ ⊙ σ with a bijection commuting with dom and cod

(−⊙−) : CC(S +(σ),S +(τ)) ≃ S +(τ ⊙ σ)

and compatible with display maps, i.e. (φτ ⊙ φσ)A = φσ
A and (φτ ⊙ φσ)C = φτ

C .

Proof. This follows from [Cla24, Proposition 7.3.1].

It can be checked that this makes τ ⊙ σ : A ⊢ C a thin strategy as required. In order to
form a ∼-category, it is necessary to give the adequate equivalence relation between thin
strategies. For this, recall first the 2-dimensional structure in ESS, given by the equivalence
relation ∼ on morphisms (Section 3.3.1). For two maps f, g : E → A into a tcg, we write
f ∼+ g if f ∼ g and for every x ∈ C (E) the symmetry obtained as the composition

f x
f−1

≃ x
g
≃ g x ,

witnessing f ∼ g for x, is positive. This lets us give the next definition:

Definition 3.12. Let σ, τ : A ⊢ B be thin strategies. A positive morphism of strategies
from σ to τ is a rigid map of ess f : σ → τ such that ∂τ ◦ f ∼+ ∂σ. We write f : σ ⇒ τ to
mean that f is a positime morphism from σ to τ .

A positive isomorphism f : σ ∼= τ is an invertible (on the nose) positive morphism.

As a convention, if f is a 2-cell as above, for xσ ∈ C (σ) we write

f [xσ] : ∂σx
σ ∼=+

A⊢B ∂τ (f xσ)

for the positive symmetry witnessing this, which may be decomposed into two symmetries
on the two sides, f [xσ]A : xσA

∼=−
A (f xσ)A and f [xσ]B : xσB

∼=+
B (f xσ)B.

Positive isomorphism will provide the equivalence relation for the ∼-categorical structure
of thin concurrent games. A crucial challenge in constructing this ∼-category is then to
ensure that positive isomorphism is preserved under composition. This demands in particular,
given f : σ ⇒ σ′ : A ⊢ B and g : τ ⇒ τ ′ : B ⊢ C, to form a horizontal composition

g ⊙ f : τ ⊙ σ ⇒ τ ′ ⊙ σ′ : A ⊢ C ,

which requires us to transport xτ ⊙ xσ ∈ C+(τ ⊙ σ) to C+(τ ′ ⊙ σ′) via f and g. However,
the issue is that f(xσ) and g(xτ ) may not be matching: the hypotheses at hand only yield

g[xτ ]B ◦ f [xσ]−1
B : f(xσ)B ∼=B g(xτ )B

a mediating symmetry – hence to achieve our goals, we use [Cla24, Proposition 7.4.4]:
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Proposition 3.13. Consider xσ ∈ C+(σ), θB : xσB
∼=B xτB, x

τ ∈ C+(τ) causally compati-
ble, i.e. the relation ◁ induced on the graph of the composite bijection

xσ ∥ xτC
∂σ∥xτ

C≃ xσA ∥ xσB ∥ xτC
xσ
A∥θ∥xτ

C≃ xσA ∥ xτB ∥ xτC
xσ
A∥∂−1

τ

≃ xσA ∥ xτ

by <σ∥C and <A∥τ as in §3.2.2, is acyclic – we also say the composite bijection is secured.

Then, there are unique yτ ⊙ yσ ∈ C+(τ ⊙ σ) with symmetries φσ : xσ ∼=σ yσ and
φτ : xτ ∼=τ yτ , such that φσ

A ∈ S−(A) and φτ
C ∈ S+(C), and φτ

B ◦ θ = φσ
B.

Altogether, this allows us to construct the desired ∼-category:

Theorem 3.14. There is a ∼-category TCG with: (1) objects, thin concurrent games; (2)
morphisms, strategies σ : A ⊢ B; (3) equivalence, positive isomorphism.

3.4. Boards. In this line of work connecting concurrent games with relational-like models,
a difficulty is that points in the sense of the relational model are not all configurations, but
only some of them. This means that following the approach first outlined by Melliès [Mel05]
and adapted to concurrent games in earlier work (see e.g. [Cla24]), we must enrich tcgs with
structure allowing us to identify those configurations that are stopping, in the sense that
they correspond to points in the relational model.

We now introduce boards along with useful constructions on them.

Definition 3.15. A board is a tcg A along with κA : C (A) → {−1, 0,+1} a payoff
function, such that this data satisfies the following conditions:

invariant: for all θ : x ∼=A y, we have κA(x) = κA(y),
race-free: for all a A a′, we have polA(a) = polA(a

′).
forestial: for all a1, a2, a ∈ A, if a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,

alternating: for all a1, a2 ∈ A, if a1 _A a2, then polA(a1) ̸= polA(a2),

A −-board must also satisfy the following two additional conditions:

negative: for all a minimal in A, polA(a) = −,
initialized: κA(∅) ≥ 0 .

Finally, a −-board A is strict if κA(∅) = 1 and all its initial moves are in pairwise
conflict. It is well-opened if it is strict with exactly one initial move.

The payoff function κA assigns a value to each configuration. Configurations x with
payoff 0 are called complete, written x ∈ C 0(A): those correspond to points in the relational
model. Otherwise, κA assigns a responsibility for why a configuration is non-complete: if
κA(x) = −1 then Player is responsible, otherwise it is Opponent.

We recall a few constructions on boards. The objects of our forthcoming category will
be −-boards. The first basic −-boards are the units. In the presence of the payoff function
the empty tcg ∅ splits into two units, reflecting the units of multiplicative and additive
conjunctions in linear logic: the top ⊤ has κ⊤(∅) = 1, while the one 1 has κ1(∅) = 0. To
interpret the base type we shall use a strict board, also written o, with only one move q,
which is negative. Its payoff function is given by κo(∅) = 1 and κo({q}) = 0.
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⊗ −1 0 +1
−1 −1 −1 −1
0 −1 0 +1
+1 −1 +1 +1

` −1 0 +1
−1 −1 −1 +1
0 −1 0 +1
+1 +1 +1 +1

Figure 5: Payoff for ⊗ and `

3.4.1. Dual, tensor and par. First, the dual extends with payoff via κA⊥(x) = −κA(x) as
expected. Of course, the dual does not preserve −-boards. Parallel composition splits into:

Definition 3.16. Consider A and B two boards.
Their tensor A⊗B and their par A`B are A ∥ B enriched with:

κA⊗B(xA ∥ xB) = κA(xA)⊗ κB(xB) , κA`B(xA ∥ xB) = κA(xA)` κB(xB)

with the operations ⊗ and ` defined on {−1, 0,+1} in Figure 5.

The tensor of two −-boards is still a −-board, though tensor does not preserve strict
−-boards. The par also preserves −-boards, but we shall not use it on −-boards: if A and
B are −-boards, let us use A ⊢ B to denote the board A⊥ `B used to define the strategies
from A to B. Observe that even if A and B are −-boards, A ⊢ B is not.

By definition of payoff, the order-isomorphisms of (3.1) and (3.2) refines to bijections:

−⊗− : C 0(A)× C 0(B) ∼= C 0(A⊗B) , (3.3)

−`− : C 0(A)× C 0(B) ∼= C 0(A`B) . (3.4)

3.4.2. The with. We only consider the additive conjunction of linear logic: the with. But in
order to define it, we must first define a new operation on ess and tcgs.

Definition 3.17. Let A1 and A2 be two tcgs.
Then, we define their sum A1 +A2 as comprising the components:

events: |A1 ∥ A2| = |A1|+ |A2|
causality: (i, a) ≤A1∥A2

(j, a′) ⇔ i = j & a ≤Ai a
′

conflict: (i, a) #A1∥A2
(j, a′) ⇔ i ̸= j ∨ a #Ei a

′ ,
symmetry: θ ∈ S (A1 ∥ A2) ⇔ ∃θi ∈ S (Ai), θ = θ1 ∥ θ2 ,

positive symmetries: θ1 ∥ θ2 ∈ S+(A1 +A2) ⇔ θ1 ∈ S+(A1)& θ2 ∈ S+(A2)
negative symmetries: θ1 ∥ θ2 ∈ S−(A1 +A2) ⇔ θ1 ∈ S−(A1)& θ2 ∈ S−(A2) .

where, necessarily, one of θ1 or θ2 must be empty.

Ignoring the positive and negative symmetries, this also yields an operation + on plain
event structures with symmetry that we shall use later on.

If A,B are tcgs and xA ∈ C (A), we write (1, xA) ∈ C (A+B) as a shorthand for {1}×xA
and likewise for (2, xB) = {2}×xB ∈ C (A+B) for xB ∈ C (B). Note that all configurations
of A + B have the form (1, xA) for xA ∈ C (A) or (2, xB) for xB ∈ C (B). For non-empty
configurations, this decomposition is unique. We shall also use the corresponding notations
for symmetries, with e.g. (1, θA) : (1, xA) ∼=A+B (1, yA) for θA : xA ∼=A yA comprising all
((1, a), (1, a′)) for (a, a′) ∈ θA. This sum operation yields the with operation on strict boards:
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Definition 3.18. Consider S and T two strict −-boards.
Then, their with S & T is the strict −-board with tcg the sum S + T and

κS&T (1, xS) = κS(xS) , κS&T (2, xT ) = κT (xT ) ,

for non-empty configurations and κS&T (∅) = 1.

As we will see, this construction will give a cartesian product in the subcategory of
strict −-boards. It can also be applied to non-strict −-boards, but then it is not a product:
if in A1 &A2, one of the Ai is not strict, then the corresponding projection does not respect
payoff (in the sense of Definition 3.26), because we have set κA1&A2(∅) = 1. On the other
hand, setting κA1&A2(∅) = 0 breaks the correspondence with the relational model, since the
empty configuration does not correspond in a canonical way to one of the components.

In the sequel, we shall use the obvious n-ary generalization of the product. Observe that
any strict −-board S decomposes uniquely (up to forest isomorphism) as S ∼= &i∈ISi, where

each Si is well-opened. We need notations for configurations of this board. Writing C ̸=∅(E)

(resp. S ̸=∅(E)) for the non-empty configurations (resp. symmetries) of E, we observe:

Lemma 3.19. Consider (Si)i∈I a family of well-opened −-boards. Then there are

C ̸=∅(&i∈ISi) ∼=
∑

i∈I C ̸=∅(Si)

S ̸=∅(&i∈ISi) ∼=
∑

i∈I S ̸=∅(Si)

S ̸=∅
− (&i∈ISi) ∼=

∑
i∈I S ̸=∅

− (Si)

S ̸=∅
+ (&i∈ISi) ∼=

∑
i∈I S ̸=∅

+ (Si)

order-isos commuting with dom and cod.

3.4.3. Linear closure. First, we define it in the case the rhs board is well-opened:

Definition 3.20. Consider A a −-board and S a well-opened −-board.
Then, A⊸ S has tcg all components set as A ⊢ S except for:

causality: ≤A⊸S = ≤A⊢S ⊎ {((2, s0), (1, a)) | a ∈ A}
writing min(S) = {s0}, yielding a well-opened tcg. Its payoff function is:

κA⊸S(xA ∥ xS) = κA⊢S(xA ∥ xS) = κA⊥(xA)` κS(xS) .

This corrects the non-negativity of A ⊢ S, by forcing the missing dependency. In the
sequel, we shall need A⊸ S not only when S is well-opened (which has no particular status
in the definition of relative Seely categories), but when it is strict. In that case, A⊸ S may
be defined directly via the decomposition into strict boards, as done in:

Definition 3.21. Consider A a −-board, and S a strict −-board, with S ∼= &i∈ISi.
Then, we define A⊸ S = &i∈I(A⊸ Si).

The following lemma then follows from Lemma 3.19:

Lemma 3.22. Consider A,S −-boards with S strict. Then, there are:

C ̸=∅(A⊸ S) ∼= C (A)× C ̸=∅(S)

S ̸=∅(A⊸ S) ∼= S (A)×S ̸=∅(S)

S ̸=∅
− (A⊸ S) ∼= S+(A)×S ̸=∅

− (S)

S ̸=∅
+ (A⊸ S) ∼= S−(A)×S ̸=∅

+ (S)

order-isos commuting with dom and cod.

This anticipates on the link with the relational model, where the linear arrow is obtained
with a cartesian product. Following this, we adopt the convention that for each xA ∈ C (A)

and xS ∈ C ̸=∅(S), xA⊸ xS ∈ C ̸=∅(A⊸ S) denotes the corresponding configuration.
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3.4.4. Exponential. We start by defining the bang as a construction on mere ess:

Definition 3.23. Consider E an ess. Then, we define the bang !E with:

events: |!A| = N× |A|
causality: (i, a1) ≤!A (j, a2) ⇔ i = j ∧ a1 ≤A a2
conflict: (i, a1) #!A (j, a2) ⇔ i = j ∧ a1 #A a2

symmetries: θ ∈ S (!A) ⇔ ∃π : N ≃ N, ∃(θn)n∈N ∈ S (A)N

∀(i, a) ∈ dom(θ), θ(i, a) = (π(i), θi(a)) .

In (i, e) ∈ !E, we refer to i as a copy index. This is in this definition of games that
symmetries really come into play: they are used to express that these copy indices can be
reindexed at will. It will be convenient to characterize the shape of configurations on !E:

Lemma 3.24. For E an ess, there is an order-isomorphism

⌊−⌋ : Fam
(
C ̸=∅(E)

)
≃ C (!E) (3.5)

with Fam(X) the set of families of elements of X indexed by finite subsets of N.

Proof. This associates to (xi)i∈I the set ∥i∈I xi = ⊎i∈I{i} × xi.

To clarify the notation above: we mean that for any family (xi)i∈I ∈ Fam(C ̸=∅(E)), we
write ⌊xi | i ∈ I⌋ ∈ C (!E) for the corresponding configuration of !E. In addition, it is clear
that if X is a set, then Fam(X) quotiented by permutations of indices is in bijection with
Mf (X). Hence, the order-isomorphism of Lemma 3.24 immediately yields a bijection

C (!E)/∼=!E ≃ Mf (C
̸=∅(E)/∼=E) (3.6)

which again suggests the forthcoming connection with the relational model.
Now, we extend the bang construction to boards:

Definition 3.25. Consider S a strict board. Then, we define the bang !S additionally has:

polarities: pol!S(i, s) = polS(s)
pos. symmetries: θ ∈ S+(!S) ⇔ ∃(θn)n∈N ∈ S+(S)

N ,
∀(i, s) ∈ dom(θ), θ(i, s) = (i, θi(s))

neg. symmetries: θ ∈ S−(!S) ⇔ ∃π : N ≃ N, ∃(θn)n∈N ∈ S−(S)
N ,

∀(i, s) ∈ dom(θ), θ(i, s) = (π(i), θi(s))

with payoff given by κ!S(⌊xi | i ∈ I⌋) =
⊗

i∈I κS(xi), and κ!S(⌊⌋) = 0.

If S is a strict board, then !S is still a −-board, but no longer strict. Since the minimal
events of S are negative, an exchange in the copy indices arising from this definition is
viewed as negative. Hence, positive symmetries can not affect them. Also, because S is
strict, its complete configurations are non-empty; hence (3.5) and (3.6) refine to:

⌊−⌋ : Fam(C 0(S)) ∼= C 0(!S) (3.7)

[−] : Mf (C
0(S)/∼=S) ≃ C 0(!S)/∼=!S (3.8)

which again suggests the forthcoming relational collapse. Note that this only holds if S is
a strict board. The bang !S does work in more generality [CC21,Cla24], but not in a way
that is compatible with the relational model. Accordingly, we shall focus not on the Seely
category structure where ! is a comonad, but in a variation called relative Seely category
where ! is a relative comonad ; we will come back to that point later on.
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3.5. The Relative Seely Category of Sequential Innocence. As explained before, we
will form a category whose objects are −-boards. The morphisms will be certain strategies
in the sense of Definition 3.10. But to ensure the existence of a functorial collapse to the
relational model, we must impose additional conditions on strategies.

3.5.1. Deterministic sequential innocence. We first introduce our notion of strategies:

Definition 3.26. Consider A a board, and σ : A a strategy. We define conditions:

negative: for all s ∈ σ minimal for ≤σ, we have polA(∂σ s) = −,
winning: for all xσ ∈ C+(σ), κA(∂σ x

σ) ≥ 0,
forestial: ≤σ is a forest.

deterministic: if s− _σ s+1 , s
+
2 then s+1 = s+2 .

We say σ is deterministic sequential innocent (dsinn) if it satisfies all four.

Winning ensures that strategies are well-behaved with respect to payoff: in particular,
a closed interaction between winning strategies will always result in a complete position,
which is essential for the relational collapse. Forestial and deterministic make σ a negatively
branching forest, which mimics a syntactic tree7; this ensures that composition is deadlock-
free and therefore matches relational composition.

Copycat strategies on −-boards are automatically deterministic sequential innocent.
Deterministic sequential innocence is also stable under composition, which ensures [Cla24]:

Theorem 3.27. There is a ∼-category DSInn with: (1) objects, −-boards; (2) morphisms,
dsinn strategies; (3) equivalence, positive isomorphism.

3.5.2. Relative Seely categories. This category (we shall often omit the “∼-” from now on)
has significant further structure. In particular, it can be organized into a Seely category,
a categorical model of intuitionistic linear logic [Mel09]; but unfortunately that structure
is not preserved by the relational collapse. For instance, for a game !!A, there is only one
empty configuration, whereas in Mf (Mf (C (A))) there are multiple ways to be “empty”:
[], [[]], [[], []], . . .; even if the empty configuration on A is not deemed a valid position. In
a sense, the relational model counts how many times a program “does nothing”, which is
meaningless if states in the relational model are to correspond to sets of events.

Fortunately, this mismatch arises outside of the translation of simple types (or even
standard linear/non-linear systems, where ! can only occur on the left hand side of an arrow).
The categorical structure describing the structure that is preserved is called a relative Seely
category [CP21,Cla24]; we now recall the definition.

Definition 3.28. A relative Seely category is a symmetric monoidal category (C,⊗, 1)
equipped with a full subcategory Cs together with the following data and axioms:

• Cs has finite products (&,⊤) preserved by the inclusion functor J : Cs ↪→ C.
• For every B ∈ C there is a functor B⊸ − : Cs → Cs, such that there is

Λ(−) : C(A⊗B,S) ≃ C(A,B⊸ S).

a bijection natural in A ∈ C and S ∈ Cs.
7The relational collapse is possible for the more general notion of visible strategies, see [Cla24]. But the

rest of this paper will depend on this specific notion of deterministic sequential strategy.
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• There is a J-relative comonad ! : Cs → C. This means that we have, for every S ∈ Cs, an
object !S ∈ C and a dereliction morphism derS : !S → S, and for every σ : !S → T , a
promotion σ! : !S → !T , subject to three axioms [ACU10]:

derT ◦ σ! = σ (σ : !S → T )

der!S = id!S (S ∈ Cs)
(τ ◦ σ!)! = τ ! ◦ σ! (σ : !S → T, τ : T → U) ,

which make ! : Cs → C a functor, via !σ = (σ ◦ derS)
! for σ : S → T .

• The functor ! : Cs → C is symmetric strong monoidal (Cs,&,⊤)→ (C,⊗, 1), so
m0 : 1→ !⊤ mS,T : !S ⊗ !T → !(S & T )

are natural isos, additional compatible with promotion: the diagram

!Γ
⟨f,g⟩! //

⟨der,der⟩! ��

!(S & T )

m−1��
!(Γ & Γ)

m−1 ''

!S ⊗ !T77

f !⊗g!
!Γ⊗ !Γ

commutes for all Γ, S, T ∈ Cs, f ∈ C(!Γ, S), g ∈ C(!Γ, T ).

Any Seely category is a relative Seely category with C = Cs. For any relative Seely
category, the Kleisli category associated with !, denoted C!, is cartesian closed: it has objects
those of Cs, morphisms C!(S, T ) = C(!S, T ), products &, and function space S ⇒ T = !S ⊸ T .

There is an accompanying notion of morphism: a relative Seely functor from C to D
is a functor F : C → D together with isomorphisms

t⊗A,B : FA⊗ FB ∼= F (A⊗B)

t&S,T : FS & FT ∼= F (S & T )

t⊸A,S : FA⊸ FS ∼= F (A⊸ S)

t1 : 1 ∼= F1
t⊤ : ⊤ ∼= F⊤
t!S : !FS ∼= F !S

satisfying appropriate naturality and coherence conditions [Cla24]. This ensures in particular
that F lifts to a cartesian closed functor F! : C! → D!.

8

3.5.3. The relative Seely category DSInn. We now spell out the additional structure in
DSInn. From now on, by strategy we mean a morphism in DSInn, i.e. a sequential
deterministic strategy in the sense of Definition 3.26. First, the symmetric monoidal
structure is handled by [Cla24, Propositions 8.1.1 and 8.2.16]:

Proposition 3.29. Consider A,B,C,D −-boards, and σ : A ⊢ B, τ : C ⊢ D strategies.
Then, there is a strategy σ ⊗ τ : A⊗ C ⊢ B ⊗D, unique up to iso, s.t. there are

(−⊗−) : C+(σ)× C+(τ) ≃ C+(σ ⊗ τ)
(−⊗−) : S +(σ)×S +(τ) ≃ S +(σ ⊗ τ)

order-isos commuting with dom, cod, and s.t. for all θσ ∈ S +(σ) and θτ ∈ S +(τ),

∂σ⊗τ (θ
σ ⊗ θτ ) = (θσA ⊗ θτC)⊗ (θσB ⊗ θτD) .

8These definitions must of course be taken in ∼-categorical form: as before this means that all operations
preserve ∼, and all conditions hold up to ∼; yielding notions of relative Seely ∼-category and relative
Seely ∼-functor. We omit the straightforward adaptation.
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Moreover, (−⊗−) preserves positive isomorphism.

From this definition, Propositions 3.5, 3.11 and a straigthforward symmetry-aware
extension of Lemma 3.3, it follows that ⊗ is a bifunctor. In addition, there are associativity
and unit natural isomorphisms defined as the obvious copycat strategies, satisfying the
required conditions for a symmetric monoidal category [Cla24, Proposition 8.2.20].

Next, we move to the product, which is defined via [Cla24, Proposition 8.2.22]:

Proposition 3.30. For −-boards Γ, A,B, with A,B strict, and strategies σ : Γ ⊢ A, τ : Γ ⊢
B, there is a strategy ⟨σ, τ⟩ : Γ ⊢ A&B, unique up to iso, such that there are order-isos:

C+(σ) + C+(τ) ≃ C+(⟨σ, τ⟩)
S +(σ) + S +(τ) ≃ S +(⟨σ, τ⟩)

commuting with dom, cod, and such that for all θσ ∈ S +(σ) and θτ ∈ S +(τ), we have

∂⟨σ,τ⟩(iσ(θ
σ)) = θσΓ ⊢ iA(θ

σ
A) , ∂⟨σ,τ⟩(iτ (θ

τ )) = θτΓ ⊢ iB(θ
τ
B)

with iσ : C+(σ)→ C+(⟨σ, τ⟩) and iτ : C+(τ)→ C+(⟨σ, τ⟩) the induced injections.
Moreover, ⟨−,−⟩ preserves positive isomorphism.

There are also projections, obtained again as the obvious copycat strategies

πA : A&B ⊢ A , πB : A&B ⊢ B

turning A&B into a categorical product [Cla24, Proposition 8.2.24] for A and B strict, and
additionally ⊤ is terminal. Finally, for the arrow type, we have [Cla24, Proposition 8.2.25]:

Proposition 3.31. Consider Γ, A,B −-boards with B strict.
For σ : Γ⊗A ⊢ B, there is Λ(σ) : Γ ⊢ A⊸ B, unique up to iso, s.t. there are

Λ(−) : C+(σ) ∼= C+(Λ(σ))
Λ(−) : S +(σ) ∼= S +(Λ(σ))

order-isos commuting with dom, cod, and such that for all θσ non-empty,

∂Λ(σ)(Λ(θ
σ)) = θσΓ ⊢ θσA⊸ θσB (3.9)

whenever ∂σ(θ
σ) = θσΓ ∥ θσA ⊢ θσB.

Moreover, Λ(−) preserves positive isomorphism.

This construction, currying, is easily shown to be invertible up to isomorphism. As
usual, the evaluation is defined as evA,B = Λ−1( ccA⊸B), the uncurrying of the identity, for
A, B two −-boards with B strict; altogether this makes A⊸ B an arrow of A and B.

The last outstanding construction is the promotion, relative to the exponential:

Proposition 3.32. Consider S, T strict −-boards, and σ : !S ⊢ T a strategy.
Then, the ess !σ may be equipped with a display map ∂σ† such that

∂σ†(⌊xσ,i | i ∈ I⌋) = ⌊xσ,iA,j | ⟨i, j⟩ ∈ Σi∈IJi⌋ ⊢ ⌊xσ,iB | i ∈ I⌋

where ∂σ(x
σ,i) = ⌊xσ,iA,j | j ∈ Ji⌋ ⊢ xσ,iB , writing Σi∈IJi for the set of encodings ⟨i, j⟩ ∈ N of

all pairs of i ∈ I and j ∈ Ji, where ⟨−,−⟩ : N2 ≃ N is an arbitrary bijection.
This makes σ† : !S ⊢ !T a strategy, and the construction (−)† preserves positive iso.
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The dereliction strategy derA : !A ⊢ A is defined as a copycat strategy, opening one
copy with copy index 0. Finally, the Seely isomorphisms (up to positive iso) are

seeA,B : !A⊗ !B ∼= !(A&B) ,

defined again by the obvious copycat strategy, and the obvious isomorphism !⊤ ∼= 1 between
empty games. Altogether, these provide all the components for the desired structure:

Theorem 3.33. The components above make DSInn a relative Seely category; where the
strict full subcategory DSInns is restricted to strict −-boards.

In particular, the Kleisli category DSInn! is cartesian closed.

4. Relational Collapse

Now that we have set up our ambiant game semantics, we are in position to resume the
discussion in the introduction now resting on precise definitions. The aim of this section is to
recall the relational collapse of thin concurrent games, for deterministic sequential strategies.

This takes the form of a relative Seely functor

R(−) : DSInn→ Rel

which we describe in this section. Again, we borrow much of the presentation from [Cla24].

4.1. General Idea. We start by giving the basic definition of the collapse.

4.1.1. Collapsing games. As argued before, boards come equipped with a notion of stopping
configurations: namely, those configurations whose payoff is null:

❲A❳ = {x ∈ C (A) | κA(x) = 0} ,
which as argued in the introduction, are designed to match notions of rigid intersection types;
or alternatively, the objects of the interpretation of a type in generalized species [COP23].

In turn, points of the web in the sense of the relational model – or non-idempotent
intersection types – will correspond to stopping configurations up to symmetry

R(A) = ❲A❳/∼=A (4.1)

called the positions of A. Here, we use symbols x, y, z . . . to range over symmetry classes of
configurations – note the different font than for configurations.

Now, the idea is simply to send a board A to its set of positions. This is well-behaved,
in the sense that (by design!) there are relatively straightforward bijections presented in
Figure 6 where A,B are any −-boards and S, T are strict. For 1 and ⊤ this is clear. For
the tensor and hom-game this follows from (3.4) and (3.4). For the with this comes from
Lemma 3.19, for the linear arrow from Lemma 3.22, and for the bang, from (3.8).

From the above, as an immediate corollary we get a bijection, for every simply type A:

sA : JAKRel ≃ R(JAKDSInn) (4.2)

obtained simply by induction on A – and similarly for a simply-typed context Γ. So as
announced, we are able to identify the points in the relational interpretation of a type A
with certain (symmetry classes of) configurations of the game semantics interpretation of A.
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s⊢A,B : R(A)×R(B) ≃ R(A ⊢ B)

s⊗A,B : R(A)×R(B) ≃ R(A⊗B)

s1 : 1 ≃ R(1)
s!S : Mf (R(S)) ≃ R(!S)
s⊤ : ∅ ≃ R(⊤)

s&S,T : R(S) +R(T ) ≃ R(S & T )

s⊸A,S : R(A)×R(S) ≃ R(A⊸ S)

Figure 6: Structural collapse bijections

s⊢A,B : RC(A)×RC(B) ≃ RC(A ⊢ B)

s⊗A,B : RC(A)×RC(B) ≃ RC(A⊗B)

s1 : 1 ≃ RC(1)
s!S : Mf (R

C(S)) ≃ RC(!S)
s⊤ : ∅ ≃ RC(⊤)

s&S,T : RC(S) +RC(T ) ≃ RC(S & T )

s⊸A,S : RC(A)×RC(S) ≃ RC(A⊸ S)

Figure 7: Colored collapse bijections
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Figure 8: The relational collapse : forgetting the dynamic order

4.1.2. Collapsing strategies. Now, we must extend this to strategies. The idea is rather
simple: we intend to simply send a strategy to its set of reached positions. In fact, the
slightly better behaved definition consists in sending a strategy σ : A ⊢ B to

R(σ) = {(xA, xB) ∈ R(A)×R(B) | ∃xσ ∈ C+(σ), xσA ∈ xA, xσB ∈ xB} (4.3)

those positions reached by +-covered configurations only9. This is illustrated in Figure 8,
with one +-covered configuration arising from the interpretation of λfx. f (f x) : (o1 →
o2)→ o3 → o4, labelling the occurrences of the base type to match the moves in the diagram.
There are two phenomena at play here: firstly, the dynamic causal links _ are forgotten,
leaving only the underlying configuration. Secondly, the copy indices are forgotten by taking
the symmetry class. Note that by doing only the first, one may collapse not merely to the
relational model, but to its categorification, generalized species of structure [COP23].

4.2. Composition. Hopefully, the above conveys the idea of the relational collapse. There
are however a few conceptual subtleties that have to do with preservation of composition.

For this section, fix two strategies σ : A ⊢ B and τ : B ⊢ C in DSInn.

4.2.1. Oplax preservation. We start with the easy inclusion, namely:

R(τ ⊙ σ) ⊆ R(τ) ◦R(σ) .

Consider (xA, xC) ∈ R(τ ⊙ σ). From the definition, this means that there is some
xτ⊙σ ∈ C+(τ ⊙ σ) such that xτ⊙σ

A ∈ xA and xτ⊙σ
C ∈ xC . By Proposition 3.5, +-covered

configurations of τ ⊙ σ are in one-to-one correspondence with pairs (xσ, xτ ) of causally

9In fact, in the case of deterministic sequential innocent strategies, the configurations that reach positions
are always +-covered, under the mild assumption that stopping configurations have as many Opponent as
Player events. We stick with the +-covered definition, which works without sequential innocence [Cla24].
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compatible xσ ∈ C+(σ) and xτ ∈ C+(τ). Here, causally compatible means that xσB = xτB,
and that the induced synchronization of xσ and xτ causes no deadlock – recall that we then
write xτ⊙σ = xτ ⊙ xσ ∈ C+(τ ⊙ σ).

To show (xA, xC) ∈ R(τ) ◦R(σ), we must exhibit xB ∈ R(B) such that (xA, xB) ∈ R(σ)
and (xB, xC) ∈ R(C). This seems simple: we have xσB = xτB , so we may simply take xB their
symmetry class. We must however ensure that κA(xB) = 0 – and this follows easily from
κA(xA) = κC(xC) = 0 using the fact that σ and τ are winning [Cla24, Lemma 10.4.6].

4.2.2. Lax preservation. We now focus on the other inclusion:

R(τ) ◦R(σ) ⊆ R(τ ⊙ σ) . (4.4)

In this direction, the situation is more subtle. Consider (xA, xB) ∈ R(σ) and (xB, xC) ∈
R(τ). By definition, those are witnessed by xσ ∈ C+(σ) and xτ ∈ C+(τ) such that

xσA ∈ xA, xσB ∈ xB, xτB ∈ xB, xτC ∈ xC

and ideally, we would like to form xτ ⊙ xσ ∈ C+(τ ⊙ σ) using Proposition 3.5. But there
are two issues: firstly, we may not have xσB = xτB, in general all we have is xσB, x

τ
B ∈ xB so

that there must exists some unspecified symmetry θ : xσB
∼=B xτB. Secondly, even if we had

xσB = xτB, it is not clear why the induced synchronization would be deadlock-free.
Fortunately, it is a general fact that sequential innocent strategies cannot deadlock :

Lemma 4.1. Consider A,B,C −-boards, σ : A ⊢ B and τ : B ⊢ C deterministic sequential
innocent strategies, xσ ∈ C (σ) and xτ ∈ C (τ) with a symmetry θ : xσB

∼=B xτB.
Then, the composite bijection

φ : xσ ∥ xτC
∂σ∥xτ

C≃ xσA ∥ xσB ∥ xτC
xσ
A∥θ∥xτ

C≃ xσA ∥ xτB ∥ xτC
xσ
A∥∂−1

τ

≃ xσA ∥ xτ ,

is secured, in the sense of Proposition 3.13.

This deadlock-free lemma was first proved in the context of [CCW15] – the reader is
rather directed to the more recent and detailed presentation in [Cla24, Lemma 10.4.8],
where it is proved with the more general hypothesis that σ and τ should be visible. This
crucial lemma bridges the main conceptual difference between game semantics and relational
semantics: the former is sensitive to deadlocks, whereas the latter is not.

Applying Lemma 4.1 to the data at hand, the obtained securedness hypothesis lets us
reindex xσ and xτ by Proposition 3.13 to obtain yτ ⊙ yσ ∈ C+(τ ⊙ σ) such that yσA

∼= xσA
and yτC

∼=C xτC , so that yτ ⊙ yσ witnesses (xA, xC) ∈ R(τ ⊙ σ) as required.

4.3. Further structure. From the above, R(τ ⊙ σ) = R(τ) ◦R(σ). From Proposition 3.4,
it is immediate that R( ccA) is the identity relation on R(A). All other constructions on
strategies are preserved in the appropriate sense of a relative Seely functor, with respect
to the isomorphisms in Rel induced with the bijections of Figure 6; as follows via routine
verifications from Propositions 3.29, 3.30, 3.31 and 3.32. Altogether:

Theorem 4.2. The above provide the components for a relative Seely functor:

R(−) : DSInn→ Rel .
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See [Cla24, Corollary 10.4.15] for more details. It follows in particular that we also get

R!(−) : DSInn! → Rel!

a cartesian closed functor between the induced cartesian closed categories, so that:

Corollary 4.3. Consider Γ ⊢M : A a simply-typed λ-term.
Then, the following diagram commutes in Rel:

!JΓKDSInn!

R(JMKDSInn!
)
//

!sΓ
��

JAKDSInn!

sA
��

!JΓKRel! JMKRel!

// JAKRel!

4.4. Relational Collapse in Colors. The above theorem holds with respect to the
relational interpretation of simple types fixed in Section 2.1.1, which specified in particular
that JoK = {⋆} some singleton set. This comes into play in the existence of the unique
bijection between singleton sets so : JoKRel ≃ R(JoKDSInn). Here, we show how Corollary
6.15 must be adapted if we instead have JoKRel = C some arbitrary set of colors. For
disambiguation, from now on we shall explicitly specify the interpretation of the base type
in the relational interpretation with J−KCRel.

Though the relational interpretation of types changes, the interpretation of types as
games remains the same; thus the connection between games and positions must be adjusted
to a connection between games and positions in colors. This mechanism is new in the context
of concurrent games (it does not apply in earlier published works involving the relational
collapse of concurrent games), but a similar idea already appears in Tsukada and Ong’s
account of the relationship between game semantics and the relational model [TO16].

4.4.1. Positions in colors. We start by adjusting configurations and positions:

Definition 4.4. Consider A a board, and x ∈ C (A) a configuration.
A C-coloring (or just coloring, when C is clear from the context) of x is a function

λ : x → C. We write col(x) for the set of C-colorings of x, and CC(A) for the set of
configurations in colors, i.e. pairs (x, λ) of a configuration equipped with a coloring.

Though a configuration with colors is a pair (x, λ) ∈ CC(A), we shall sometimes just
write x ∈ CC(A) and refer to the coloring as λx ∈ col(x).

If A and B are boards, xA ∈ C (A) and xB ∈ C (B), then every pair of colorings
λA ∈ col(xA) and λB ∈ col(xB) induce a coloring λA ⊗ λB ∈ col(xA ⊗ xB) simply by co-
pairing, informing a bijection col(xA ⊗ xB) ≃ col(xA)× col(xB). Together with the bijection
−⊗− : C (A)×C (B) ≃ C (A⊗B), this yields a bijection −⊗− : CC(A)×CC(B) ≃ CC(A⊗B).
We have similar bijections for ⊢,&,⊸ and !, defined in the obvious way.

Definition 4.5. Two configurations with colors x, y ∈ CC(A) are symmetric if there is
some θ : x ∼=A y that preserves colors. This is an equivalence relation, and a position with
colors is a symmetry class of configurations with colors of null payoff, written x ∈ RC(A).
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All the above bijections between configurations in colors are compatible with symmetry,
and yield the bijections of Figure 7. For the base type o, a coloring consists simply in the
choice of a color for the unique move q, so that we indeed have RC(JoKDSInn) ≃ JoKCRel = C.
Altogether, the bijection (4.2) extends in the presence of colors to give

sA : JAKCRel ≃ RC(A)

for every simple type A, extending our earlier situation in the presence of colors.

4.4.2. Experiments. Next, we must associate to any strategy a set of positions in colors.
This rests on the following notion of experiment, the name being inspired from the notion
with the same name in proof nets [Gir87]. Intuitively, an experiment is a coloring of a
configuration of a strategy; except that the axiom links must be preserved: a Player move
must have the same color as that given to its (necessarily unique) causal predecessor.

Definition 4.6. Consider A a board, σ : A a strategy, and x ∈ C+(σ).
A (C-)coloring of x is a function λ : x→ C subject to:

monochrome: for all s−1 _σ s+2 , we have λ(s−1 ) = λ(s+2 ).

As above, we write col(x) for the set of colorings of x ∈ C+(σ). An experiment on σ
is x ∈ C+(σ) together with a coloring, and we write C+

C (σ) for the set of experiments.

As for configurations in colors, experiments are pairs (x, λ) ∈ CC(σ); nevertheless we
shall often just write x ∈ CC(σ) and refer to the coloring as λx ∈ col(x).

Given xσ ∈ C+(σ), recall that the display map ∂σ : σ → A induces a bijection ∂σ : xσ ≃
xσA. We use this bijection to transport any coloring λσ ∈ col(xσ) to λσ

A = λσ ◦ ∂−1
σ ∈ col(xσA).

Likewise, if xσ ∈ CC(σ), we write xσA ∈ CC(A) for the corresponding configuration in colors.

4.4.3. The colorful collapse. With this we extend the collapse to the colored setting:

RC(σ) = {xA ⊢ xB ∈ RC(A ⊢ B) | ∃xσ ∈ C+
C (σ), xσA ∈ xA, xσB ∈ xB} , (4.5)

which we now aim to show still yields a relative Seely functor. As perhaps expected, the
noteworthy cases are preservation of composition, and of copycat.

We focus first on composition; fix σ : A ⊢ B and τ : B ⊢ C, along with xσ ∈ C+(σ)
and xτ ∈ C+(τ) causally compatible. Given colorings λσ ∈ col(xσ) and λτ ∈ col(xτ ), we say
that they are matching if λσ

B = λτ
B. Preservation of composition rests on:

Lemma 4.7. Fix σ : A ⊢ B, τ : B ⊢ C with xσ ∈ C+(σ) and C+(τ) causally compatible.
Then, there is a bijection:

−⊙− : {(λσ, λτ ) ∈ col(xσ)× col(xτ ) | matching} ≃ col(xτ ⊙ xσ) ,

satisfying (λτ ⊙ λσ)A = λσ
A and (λτ ⊙ λσ)C = λτ

C .

Proof. In this proof, we use terminology and notations from [Cla24].
Recall that τ⊙σ is the restriction to events occurring in A,C of the interaction τ⊛σ, an

event structure with display map ∂τ⊛σ : τ ⊛σ → A ∥ B ∥ C representing the interaction of σ
and τ without hiding. Along with this, any xτ⊙xσ ∈ C (τ⊙σ) has a witness xτ⊛xσ, obtained
as the down-closure xτ ⊛ xσ = [xτ ⊙ xσ]τ⊛σ, with display ∂τ⊛σ (x

τ ⊛ xσ) = xσA ∥ xB ∥ xτC for
xB = xσB = xτB. Reciprocally, one recovers xτ ⊙ xσ from xτ ⊛ xσ by restricting it to visible
events, i.e. those events in A,C – see [Cla24, Section 6.2.2].
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From left to right, fix xτ ⊙ xσ ∈ C+(τ ⊙ σ) with matching colorings λσ and λτ – as
they are matching, they induce a coloring λτ ⊛ λσ on xτ ⊛ xσ, which restricts to a coloring
λτ ⊙ λσ for xτ ⊙ xσ; but we must check that it is monochrome. The main observation is
that every immediate causality p−1 _τ⊙σ p+2 in xτ ⊙ xσ arises from a sequence

p−1 _τ⊛σ q1 _τ⊛σ . . . _τ⊛σ qn _τ⊛σ p+2

where all the qis occur in B. In that case, all those causal links arise from immediate causal
links in σ and τ [Cla24, Lemma 6.2.14], so the coloring λτ ⊛ λσ is preserved along the chain
and (λτ ⊛ λσ)(p−1 ) = (λτ ⊛ λσ)(p+2 ), hence (λτ ⊙ λσ)(p−1 ) = (λτ ⊙ λσ)(p+2 ) as well.

From right to left, fix a coloring λ on xτ ⊙ xσ. The main observation we make is that
every q ∈ xτ ⊛ xσ is uniquely sandwiched between visible events. More precisely, there are
unique p−1 , p

+
2 visible, necessarily with the polarities indicated, and a unique causal path

p−1 = q0 _τ⊛σ . . . _τ⊛σ qn+1 = p+2

such that q appears in the qis, and every q1, . . . , qn occurs in B (is hidden) – this follows
easily from Lemmas 6.1.16 and 6.2.15 from [Cla24], remarking that as σ and τ are forestial, so
is τ ⊛σ. This lets us complete λ to the interaction xτ ⊛xσ by setting λ(q) = λ(p−1 ) = λ(p+2 );
this projects to matching λσ on xσ and λτ on xτ . These projected colorings are monochrome,
because if e.g. (p1)

−
σ _σ (p2)

+
σ , then a straightforward case analysis shows that p1 and p2

must appear in the same sandwhich as above, and therefore receive the same color.
That these operations are inverses is an easy verification.

This immediately entails that the “colorful collapse” preserves composition; we shall see
the proof just later. For preservation of copycat, the corresponding main lemma is:

Lemma 4.8. For any −-board A and any x ∈ C (A), there is a bijection

cc− : col(x) ≃ col( cc x)

such that for all λ ∈ col(x), we have cc λ = [λ, λ] the co-pairing.

Proof. Immediate causal links from negative moves to positive moves in cc x have shape

(i, a) _ cc x (j, a)

where i ≠ j (see [Cla24, Lemma 6.4.3]). Thus, given λA ∈ col(x), then the co-pairing
λ = [λA, λA] : cc x → C satisfies monochrome, therefore giving a valid coloring on cc x.
Reciprocally, for all a ∈ x, we always have either (1, a) _ cc x (2, a) or (2, a) _ cc x (1, a)
depending on the polarity of a (see also [Cla24, Lemma 6.4.3]). Thus, if λ ∈ col( cc x), we
must have λ(i, a) = λ(j, a) by monochrome, so that λ = [λA, λA] for some λA ∈ col(x).

Putting these two lemmas together, we have:

Proposition 4.9. The colorful collapse defined above yields a functor:

RC(−) : DSInn → Rel

with a bijection so : R
C(JoKDSInn) ≃ C.

Proof. This proposition builds on the functoriality of the earlier (colorless) collapse. In this
proof, we leave implicit the material already covered in Sections 4.2 and 4.3, and focus on
the preservation of colorings.

For preservation of copycat, consider (xA, yA) ∈ RC( ccA). By definition, it is witnessed by
an experiment in ccA, i.e. a pair ( cc x, λ) ∈ C+

C ( cc x) such that ( cc x, λ)l ∈ xA and ( cc x, λ)r ∈ yA.
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By Lemma 4.8, λ = [λA, λA] for λA ∈ col(x), so that ( cc x, λ)l = (x, λA) ∈ CC(A) and
( cc x, λ)r = (x, λA) as well. Hence we have (x, λA) in both symmetry classes xA and yA,
which must therefore be equal. Reciprocally, given xA ∈ RC(A), taking (x, λ) ∈ CC(A) a
representative, it is immediate by Lemma 4.8 again that ( cc x, cc λ) ∈ C+

C ( ccA) provides an
experiment which projects on the left and right to (x, λ) ∈ xA as required.

For preservation of composition, consider first (xA, xC) ∈ RC(τ ⊙ σ). By definition, it is
witnessed by an experiment in τ⊙σ, which by Lemma 4.7 must have the form (xτ⊙xσ, λτ⊙λσ),
where (xσ, λσ) ∈ C+

C (σ) and (xτ , λτ ) ∈ C+
C (τ) are compatible experiments, i.e. xσ, xτ are

causally compatible and λσ, λτ are matching. Writing xB = xσB = xτB and λB = λσ
B = λτ

B,
we form (xB, λB) ∈ CC(B). Its symmetry class xB is then in RC(B), and (xA, xB) ∈ RC(σ) is
witnessed by the experiment (xσ, λσ) while (xB, xC) ∈ RC(τ) is witnessed by the experiment
(xτ , λτ ). Hence (xA, xC) ∈ RC(τ) ◦RC(σ) as required.

Reciprocally consider (xA, xC) ∈ RC(τ) ◦ RC(σ), so there is xB ∈ RC(B) such that
(xA, xB) ∈ RC(σ) and (xB, xC) ∈ RC(τ), respectively witnessed by (xσ, λσ) ∈ CC(σ) and
(xτ , λτ ) ∈ CC(τ). Now, we must have (xσB, λ

σ
B) ∈ xB and (xτB, λ

τ
B) ∈ xB, hence there must be

θB : xσB
∼=B xτB compatible with the coloring, i.e. λτ

B ◦ θB = λσ
B. Now, by Proposition 3.13

(along with Lemma 4.1), there are yτ ⊙yσ ∈ C+(τ ⊙σ) and φσ : xσ ∼=σ yσ and φτ : xτ ∼=τ yτ

such that φτ
B ◦θB = φσ

B . Now the idea is to equip yσ and yτ with adequate colorings, to turn
them into experiments: we simply set µσ = λσ ◦ (φσ)−1 and µτ = λτ ◦ (φτ )−1. As φσ and
φτ are order-isomorphisms preserving polarity, it is clear that those are monochrome so that
(yσ, µσ) ∈ C+

C (σ) and (yτ , µτ ) ∈ C+
C (τ) are valid experiments. Additionally, by construction,

µσ
B = λσ

B ◦ (φσ
B)

−1 = λτ
B ◦ θB ◦ (φσ

B)
−1 = λτ

B ◦ (φτ
B)

−1 = µτ
B

ensuring that µσ and µτ are matching, so that we can form the experiment E = (yτ ⊙
yσ, µτ ⊙ µσ). Finally, this experiment indeed witnesses that (xA, xC) ∈ RC(τ ⊙ σ) since

φσ
A : (xσ, λσ)A ∼=A (yσ, µσ)A = EA , φτ

C : (xτ , λτ )C ∼=C (yτ , µτ )C = EC
so that EA ∈ xA and EC ∈ xC as required.

4.4.4. Further structure. It remains to extend RC(−) to a relative Seely functor. All the
structural isomorphisms for that are the same as in the colorless case, colored as for copycat
in the obvious way. Preservation of tensor and promotion are handled by two lemmas:

Lemma 4.10. Fix σ : A ⊢ B, τ : C ⊢ D strategies, and xσ ∈ C+(σ), xτ ∈ C+(τ).
Then, there is a bijection:

−⊗− : col(xσ)× col(xτ ) ≃ col(xσ ⊗ xτ )

such that (λσ ⊗ λτ )A⊗C = λσ
A ⊗ λτ

C and (λσ ⊗ λτ )B⊗D = λσ
B ⊗ λτ

D.

We omit the direct proof. Because of this lemma, it is straightforward that RC(σ ⊗ τ)
and RC(σ)⊗RC(τ) coincide up to s⊗, as required by relative Seely functors.

Finally, we need a corresponding observation for the promotion:

Lemma 4.11. Fix σ : !S ⊢ A, and ⌊xσ,i | i ∈ I⌋ ∈ C+(σ†). Then, there is a bijection:

⌊−⌋ :
∏
i∈I

col(xσ,i) ≃ col(⌊xσ,i | i ∈ I⌋)
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such that for all (λσ,i)i∈I ∈
∏

i∈I col(x
σ,i), writing λσ,i

!S = ⌊λσ,i
j | j ∈ Ji⌋, we have

⌊λσ,i | i ∈ I⌋!S = ⌊λσ,i
j | ⟨i, j⟩ ∈ Σi∈IJi⌋ ,

⌊λσ,i | i ∈ I⌋A = ⌊λσ,i
A | i ∈ I⌋ .

Again there is no subtlety here besides the heavy notation, the coloring ⌊λσ,i | i ∈ I⌋ is
defined via the obvious co-pairing, and verifications are direct. Via this lemma, it follows
that RC(σ†) and RC(σ)† coincide up to s!, as required by relative Seely functors.

Together with a few additional verifications for structural isomorphisms, this yields:

Theorem 4.12. The above provide the components for a relative Seely functor:

RC(−) : DSInn→ Rel .

Again, it follows in particular that we also get RC
! (−) : DSInn! → Rel! a cartesian

closed functor between the induced cartesian closed categories, so that:

Corollary 4.13. Consider Γ ⊢M : A a simply-typed λ-term.
Then, the following diagram commutes in Rel:

!JΓKDSInn!

RC(JMKDSInn!
)
//

!sΓ
��

JAKDSInn!

sA
��

!JΓKCRel! JMKCRel!

// JAKCRel!

This is the same statement as in the colorless case, except that this fact we have fixed
an arbitrary set C for the interpretation of the base type. Note however that neither DSInn
nor its interpretation of the base type has changed: it is only the collapse that we changed.

5. From Games to the Linear Scott Model

Now, we have finally finished setting up the scene, and we can finally carry on with the
journey announced in the introduction. So far, we have introduced the relational model Rel,
the (relative) Seely category DSInn of thin concurrent games, and the relational collapse

R(−) : DSInn→ Rel

that preserves the interpretation of the simply-typed λ-calculus. This collapse is quantitative:
Rel still records the multiplicity of resource consumption. In the rest of this paper, we set
to construct a corresponding qualitative collapse, targetting the linear Scott model.

In this section, we first recall the linear Scott model. Then, we construct cartesian
morphisms, these morphisms between configurations that allow contraction and weakening
of resources. We establish a few important properties of cartesian morphisms. Then, we
will show that from a board equipped with cartesian morphisms we are able to construct a
preorder, in a way compatible with the interpretation of types in the linear Scott model.

5.1. The Linear Scott Model. We first recall the linear Scott model, following [Ehr12].
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5.1.1. The basic category. The linear Scott model can be presented in two different ways:
as a category of (linear) functions between certain complete lattices, or as a category of
relations between certain preordered sets. In this paper we pick the latter presentation,
because it is more homogenous with the relational model and facilitates the relationship;
but we shall also include a discussion about the domain-theoretic presentation.

We work with the following category:

Definition 5.1. ScottL has: (1) objects, preorders (|A|,≤A); (2) morphisms from A to
B, relations α ⊆ |A| × |B| which are down-closed : if (a, b) ∈ α and a ≤A a′, b ≤B b′, then
(a′, b′) ∈ α. Composition is relational composition, and identities idA = {(a, a′) | a′ ≤A a}.

By a slight abuse of notation, we often write only A for the support set. If A is a
preorder, we write Aop for the opposite preorder, with same support but reversed preorder.
The product preorder has (a, b) ≤A×B (a′, b′) iff a ≤A a′ and b ≤B b′.

As explained in the introduction, a ≤A a′ expresses that the resources in a can be
“contracted” into the resources in a′; and the resources in a′ can be also “weakened” by not
appearing in a. For instance, we shall see that if A is discrete, then

[a, a] ≤!A [a, b]

where both copies of a are contracted into a and b is weakened. However, that intuition is
incomplete as the preorder is crucially reversed in contravariant position.

5.1.2. Seely category. Firstly, ScottL has a symmetric monoidal structure: if A and B are
preorders, then A ⊗ B = A × B. The monoidal unit is 1 = ({⋆},=), and the functorial
action of ⊗ is as in the relational model, while structural morphisms are the down-closure
of their relational counterparts: for instance, for associativity we have

αScottL
A,B,C : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

= {(((a, b), c) , (a′, (b′, c′))) | a′ ≤A a, b′ ≤B b, c′ ≤C c}
and likewise for the other components [Ehr12]. Likewise, the cartesian structure of Rel
adapts to ScottL transparently, with A&B = A+B the disjoint union of the two preorders;
⊤ = (∅, ∅) is terminal. The pairing operation is the same as inRel, and projections in ScottL
are obtained as the down-closure of those in Rel. We additionally set A⊸ B = Aop ×B –
again, currying is as in Rel, and evaluation in ScottL is the down-closure of evaluation in
Rel. Altogether, this makes ScottL a cartesian symmetric monoidal closed category.

Now, we get to the more critical definition of the exponential. Given A, we set

|!A| = Mf (|A|), µ ≤!A ν ⇔ ∀a ∈ supp(µ), ∃a′ ∈ supp(ν), a ≤A a′ ,

where the support supp(µ) of a finite multiset µ ∈Mf (X) is simply the set of x ∈ X with
non-zero multiplicity. Again, this preorder is built on the same set as the exponential for
the plain relational model. We specify the additional components of the exponential with:

!α = {(µ, ν) ∈ !A× !B | ∀b ∈ supp(ν), ∃a ∈ supp(µ), (a, b) ∈ α}
derA = {(µ, a) | ∃a′ ∈ supp(µ), a ≤A a′}
digA = {(µ, [µ1, . . . , µn]) | ∀i, µi ≤!A µ}

seeA1,A2 = {((µ1, µ2), ν) | ∀(i, a′) ∈ supp(ν), ∃a ∈ supp(µi), a′ ≤Ai a}
and see1 : 1 ∼= !⊤ the obvious isomorphism. Altogether, we have:

Theorem 5.2. The above components make ScottL a Seely category.
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Though the exponential is built from finite multisets, this model does not actually record
quantitative information as morphisms are down-closed – note that !A is isomorphic (in
ScottL) to the preorder obtained with the same definitions but built on finite sets instead
of finite multisets. This Seely category ScottL will be the target of our qualitative collapse.

5.1.3. The Linear Scott Model and Scott Domains. Though the rest of the paper will mostly
focus on ScottL as presented above, we take a small detour to present its relationship with
the standard category of Scott domains and continuous functions.

Morphisms in ScottL as functions. If A is a preorder, we write D(A) for the set of
down-closed subsets of |A|; it is a complete lattice. If a ∈ A, we write [a]A = {a′ ∈ A | a′ ≤A

a} ∈ D(A); likewise if X ⊆ |A|, we write [X]A ∈ D(A) for its down-closure.
We shall now construct a new category, which is an alternative presentation of ScottL

in terms of functions. Its objects are the same as ScottL, i.e. preorders. A morphism from
A to B is a linear map from D(A) to D(B), i.e. a function f : D(A)→ D(B) such that

f(
⋃
i∈I

xi) =
⋃
i∈I

(f(xi))

for any family (xi)i∈I of xi ∈ D(A) – in particular, f is monotone and f(∅) = ∅. We write
ScottFun for the category with preorders as objects and linear maps.

The main observation here is that ScottL and ScottFun are isomorphic categories:

Proposition 5.3. The following constructions yield an isomorphism of categories:

funA,B : ScottL[A,B] → ScottFun[A,B]
α 7→ x ∈ D(A) 7→ αx

trA,B : ScottFun[A,B] → ScottL[A,B]
f 7→ {(a, b) | b ∈ f([a]A)}

where αx refers to relational composition, and where tr is called the linear trace.

A full subcategory of Scott domains. Now, we redo the analogous construction but for
the Kleisli category ScottL!. We noted above that for every preorder A, D(A) is a complete
lattice; in fact it is a Scott domain, whose compact elements are the finitely generated
elements of D(A), that is, those x ∈ D(A) such that x = [X]A for some finite X ⊆ |A|. Let
us write ScottP for the category whose objects are preorders, and morphisms from A to
B are Scott-continuous functions from D(A) to D(B). Writing also Scott for the usual
category of Scott domains and Scott continuous functions, this yields a full and faithful
(identity on morphisms) functor K : ScottP ↪→ Scott.

Given X ⊆ |A| for a preorder A, we set X ! = Mf (X). With this, we have:

Proposition 5.4. The following constructions yield an isomorphism of categories:

FunA,B : ScottL![A,B] → ScottP[A,B]
α 7→ x ∈ D(A) 7→ αx!

TrA,B : ScottP[A,B] → ScottL![A,B]
f 7→ {(µ, b) | b ∈ f([supp(µ)]A)} .
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Altogether we get a full and faithful functor

K ◦ Fun : ScottL! → Scott

which is easily shown to preserve the cartesian closed structure; so that the Kleisli category
ScottL! is indeed a category of Scott domains and Scott-continuous functions.

Cartesian Morphisms. In Ehrhard’s presentation of the linear Scott model [Ehr12], each
type is interpreted as a preorder whose support set is nothing but the standard relational
interpretation of the type. Thus, we expect to extract a preorder from a board A by simply
attaching to R(A) (and, later on, to RC(A)) an adequate preorder relation. As argued in the
introduction, this preorder relation will arise from a notion of cartesian morphisms between
configurations, maps allowing the contraction and weakening of resources.

We now move back to games, aiming for the definition of cartesian morphisms.

5.2. Mixed Boards. In the introduction, we sketched cartesian morphisms as certain forest
morphisms leaving the identity of moves (i.e. the type component) unchanged, but that
may alter copy indices. Unfortunately, we are not able to define such morphisms in the
setting of boards as presented in Definition 3.15 – we need to refine our notion of game.

5.2.1. Arenas. Those boards arising from the interpretation of simple types have a specific
shape – namely, they are themselves an expansion of a simpler structure called an arena:

Definition 5.5. An arena comprises A = (|A|, polA,≤A) with |A| a countable set of moves,
polA : |A| → {−,+} a polarity function, ≤A a causality partial order, such that:

forestial: for all a1, a2, a ∈ |A|, if a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,
well-founded: there is no infinite descending a1 >A a2 >A a3 >A . . . ,

negative: if a ∈ |A| is minimal for ≤A, then polA(a) = −,
alternating: for all a1, a2 ∈ |A|, if a1 _A a2, then polA(a1) ̸= polA(a2).

Additionally we fix, for each move a ∈ A, a set Ind(a) which is either N or {∗}.
This is close to the usual notion of Hyland-Ong arenas, with a slight change in presenta-

tion so as to remain close to boards. The new component is the set Ind(a), which specifies
which moves are duplicable by specifying the admissible copy indices10.

We briefly present the main constructions on arenas. First, for the atom, we write o
for the arena with exactly one (negative) move q−, with Ind(q−) = {∗}: this move is not
duplicable. If A is an arena, the exponential !A has the same components as A (we do not
duplicate the moves), but we set Ind!A(a

−) = N for every a− minimal: we set the initial
moves as duplicable. The parallel composition A ∥ B adapts transparently to arenas, with
the Ind(−) function inherited. Note that any arena may be written as A ∼= ∥i∈I Ai with Ai

well-opened. If A and B are arenas with B well-opened, then A⊸ B is an arena (again
with Ind inherited); this extends to B not well-opened with

A⊸ (∥i∈I Bi) = ∥i∈I A⊸ Bi .

Altogether, this lets us interpret any simple type as an arena with JoKAr = o and
JA→ BK = !JAKAr⊸ JBKAr: moves are not explicitly duplicated, but simply marked with

10This data is not required for the interpretation of simple types, where all non-initial moves are necessarily
duplicable. We need this here because we wish to phrase the collapse as a relative Seely functor, also handling
the linear structure; and hence some moves may not be duplicable in the arena.
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(o1 → o2)→ o3 → o4

q−4

q+2 q+3

q−1

Figure 9: Interpretation of (o→ o)→ o→ o as an arena

the admissible copy indices. We show in Figure 9 the interpretation of the simple type
(o→ o)→ o→ o as an arena – the reader familiar with Hyland-Ong games will recognize
here the familiar arena for that type, where each move corresponds to an atom occurrence.

5.2.2. Mixed boards. Mixed boards are boards as in Definition 3.15, except that moves are
labeled by moves from an underlying arena, and various conditions are satisfied to ensure the
links between the two11. This leads to the following slightly bulky definition – here pred(−)
denotes the unique predecessor of a non-minimal move, exploiting that boards are forestial :

Definition 5.6. A mixed board is (A,A) with A a −-board, A an arena, with

lblA : |A| → |A| , indA : |A| → N ⊎ {∗} ,
with lblA a label function preserving polarities and indA an indexing function such that
indA(a) ∈ Ind(a) for all a ∈ A, satisfying the following additional conditions:

rigid: lblA preserves and reflects minimality, and preserves _,
transparent: for any x, y ∈ C (A) and bijection θ : x ≃ y,

then θ ∈ S (A) iff θ is an order-iso preserving lblA,
local conflict: if a1 a2, we have pred(a1) = pred(a2) and ind(a1) = ind(a2),

invariant conflict: if a1 a2, lbl(a1) = lbl(b1), lbl(a2) = lbl(b2),
pred(b1) = pred(b2) and ind(b1) = ind(b2), then b1 b2.

jointly injective: for a1, a2 ∈ A, if lbl(a1) = lbl(a2), ind(a1) = ind(a2),
and pred(a1) = pred(a2), then a1 = a2.

wide: for any a ∈ A, b ∈ A, lbl(a) _A b, and i ∈ IndA(b),
there is b ∈ A s.t. pred(b) = a, lbl(b) = b and ind(b) = i,

+-transparent: for θ : x ∼=A y, θ ∈ S+(A) iff for all a− ∈ x, ind(θ(a)) = ind(a),
−-transparent: for θ : x ∼=A y, θ ∈ S−(A) iff for all a+ ∈ x, ind(θ(a)) = ind(a).

A mixed board is strict if A is strict and Ind(a) = {∗} for every a ∈ A minimal.

This looks complicated, but those conditions are really simple structural properties
expressing that the board is an expansion of the arena12.

11Mixed boards were developed in [CC21,Cla24] to make explicit the link between the interpretation of
types in concurrent games and in standard Hyland-Ong games.

12It is not quite the case that the board is determined (up to iso) by the arena, because the arena lacks
the information about which moves are related additively and multiplicatively – it conflates A & B with
A⊗B. In principle this could be added, but this does not seem worth the even heavier definition.
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Figure 10: A structural map on (o1 → o2)→ o3 → o4

The mixed board for the board game is (o, o) with lbl : q− 7→ q− and ind : q− 7→ ∗ – by
abuse of notations, we shall denote this mixed board by o. The tensor of mixed boards
has A⊗B = A ∥ B, with components inherited. The with of strict mixed boards S and T
is defined likewise. The bang of strict S has !S = !S (i.e. with just Ind(s) = N for s ∈ S
minimal and other components unchanged). The linear arrow A⊸ S is extended to mixed
boards in the obvious way. However, note that only the objects of our category will be
mixed boards – we do not give a mixed board construction for the hom-game.

5.3. Cartesian Morphisms. On mixed boards, we may now define cartesian morphisms.

5.3.1. Structural maps. From now on, fix a mixed board A. Cartesian maps are motivated as
variations of symmetries that can additionally contract and weaken resources. The condition
transparent characterises those as order-isomorphisms which leave the label unchanged; by
weakening order-isomorphism to simply forest morphism, we obtain the following notion:

Definition 5.7. A structural map is a function f : x→ y, for x, y ∈ C (A), satisfying

min-preserving: for all a ∈ min(x), then f a ∈ min(y),
_-preserving: for all a _A b, then f a _A f b,

label-preserving: for all a ∈ x, lblA (f a) = lblA a.

We write f : x⇝ y to indicate that f : x→ y is a structural map.

In Figure 10 we give an example of a structural map, where q+3,2 and q+3,6 are sent to
themselves, and the other assignments are forced. Note that all copy indices can be changed
freely. The structural map contracts both positive and negative moves, while q+3,7 is not
reached – it is regarded as weakened by this structural map.

Structural maps form a category, and one can consider the associated preorder with
configurations as elements, and x ≤ y iff there is some structural map f : x⇝ y. However,
this preorder is not actually the one we need, because it is not compatible with the linear
arrow construction of preorders. Indeed, recall that in ScottL, the linear arrow was

A⊸ B = Aop ×B

contravariant on the left hand side, whereas structural maps on A⊸ B are covariant on
both sides. To recover the appropriate variance, we must take polarities into account:
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Figure 11: A cartesian morphism

Definition 5.8. For a structural map f : x⇝ y, we define the conditions:

−-total: if a+ ∈ x, for all f a+ _ b− in y, there is a+ _ c− in x s.t. f c− = b−;
and for all b− minimal in y there is c− in x such that f c− = b−.

+-total: if a− ∈ x, for all f a− _ b+, there is a− _ c+ in x s.t. f c+ = b+,
−-preserving: if a− ∈ x, indA (f a) = indA a,
+-preserving: if a+ ∈ x, indA (f a) = indA a,

we call a structural map positive iff it is −-preserving and −-total ; we call it negative iff
it is +-preserving and +-total. For these notions, we use notations f : x +⇝ y and f : x −⇝ y.

Intuitively, positive structural maps can only contract positive moves: −-preserving
ensures that they cannot contract negative moves (as the copy index is preserved), and
−-total entails that they cannot weaken negative moves: negative extensions must have a
pre-image. Dually, negative structural maps can only contract and weaken negative moves.

Structural maps generalize symmetries, in a way compatible with polarities:

Lemma 5.9. Any symmetry θ : x ∼=A y is also a structural map θ : x⇝ y. Moreover, θ is
positive (resp. negative) as a symmetry iff it is positive (resp. negative) as a structural map.

Proof. For the first part, note that by transparent, θ is an order-isomorphism preserving lblA.
It is thus evident from the definition that it is also a structural map. For the second part,
if θ : x ∼=+

A y, then by +-transparent it is −-preserving. It is also −-total because it is an
order-iso. The other implication proceeds similarly, and the negative case is symmetric.

5.3.2. Cartesian morphisms. We are now in position to define our cartesian morphisms,
which take positive structural maps covariantly and negative structural maps contravariantly.

Definition 5.10. A cartesian morphism χ : x −+⇝⇝ y is any composite relation:

x = x1
+⇝ x2

−⇝ x3 . . . xn−2
+⇝ xn−1

−⇝ xn = y

where x1, . . . , xn ∈ C (A).

A cartesian morphism χ : x −+⇝⇝ y is a relation between x and y, i.e. χ ⊆ x × y, but
it is in general not functional in either direction. This, of course, is unavoidable: basic
contractions are functional, but they are taken covariantly or contravariantly. We give
in Figure 11 an example of a cartesian morphism (we do not give the exact definition of
structural maps to avoid overloading the picture, but they are almost uniquely defined).
Note that there is also a cartesian morphism from the rightmost diagram to the leftmost
one, so that these two are considered equivalent, qualitatively.
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The definition of cartesian morphism obviously yields a category, but the first property
we aim for is that every cartesian morphism factors uniquely as the notation −+⇝⇝ suggests.
But this is not a trivial fact, establishing it requires building up a number of prerequisites.

We start with this easy property of structural maps:

Lemma 5.11. Consider f : x⇝ y a structural map, and (a, b) ∈ f with both non-minimal.
Then, f(pred(a)) = f(pred(b)) as well.

Proof. Immediate from _-preserving and the fact that the game A is forestial.

Next we show a uniqueness property of intermediate witnesses for cartesian morphisms:

Lemma 5.12. Consider χ : x −+⇝⇝ y a cartesian morphism, obtained through the chain:

x = x1
f+
1⇝ y1

f−
1 ⇝ x2 . . . xn

f+
n⇝ yn

f−
n⇝ xn+1 = y .

Then, for any (a1, an+1) ∈ χ, there is a unique sequence of witnesses

x1 ⇝
f+
1

y1

⇝f−
1

x2 . . . xn ⇝
f+
n

yn

⇝f−
n

xn+1

∈ ∈ ∈ . . . ∈ ∈ ∈

a1 b1 a2 . . . an bn an+1

such that for every 1 ≤ i ≤ n, (ai, bi) ∈ f+
i and (ai+1, bi) ∈ f−

i .

Proof. Existence is obvious by definition of relational composition, we prove uniqueness.
Note that since structural maps preserve minimality and _, all moves in such as sequence
must have the same depth, where the depth of a minimal is 0, and the depth of b where
a _ b is depth(b) = depth(a) + 1. It follows that χ preserves depth as well. Thus, we prove
the uniqueness of the chain above by induction on depth(a1) = depth(an+1).

Assume the depth is 0. For any 1 ≤ i ≤ n− 1, if ai+1 ∈ min(xn+1) is fixed, necessarily
negative since A is negative, then there is a unique bi ∈ yn such that (ai+1, bi) ∈ f−

i since

f−
i is a function. Now, in turn, we show that there is a unique ai ∈ min(xi) such that

(ai, bi) ∈ f+
i . It must be minimal, or contradict the minimality of bi since f

+
i is _-preserving.

Consider then another a′i such that (a′i, bi) ∈ f+
i also; necessarily also minimal. Then,

lbl(a′i) = lbl(bi) since f+
i is label-preserving. Additionally, ind(a′i) = ind(bi) since f+

i is
−-preserving – as all elements in this chain are negative. But then, a′i and ai are both
minimal, with same label and copy index, thus a′i = ai by jointly injective.

Now, consider (a1, an+1) ∈ χ of depth d + 1. Since A is forestial, there are unique
c1 _ a1 and cn+1 _ an+1. By Lemma 5.11, we have (c1, cn+1) ∈ χ as well, and by induction
hypothesis, there is a unique sequence of witnesses

x1 ⇝
f+
1

y1

⇝f−
1

x2 . . . xn ⇝
f+
n

yn

⇝f−
n

xn+1

∈ ∈ ∈ . . . ∈ ∈ ∈

c1 d1 c2 . . . cn dn cn+1

for this. Now for negative extensions, we reason as above from right to left: if ci+1 _ ai+1

negative, there is a unique di _ bi such that (ai+1, bi) ∈ f−
i since it is a function; and then

there is a unique ci _ ai s.t. (ai, bi) ∈ f+
i by −-total, uniqueness being by label-preserving

and −-preserving for f+
i , along with jointly injective for A. For positive extensions, the

reasoning is symmetric from left to right, concluding the proof.
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From this unique witness property, we derive the following lifting property:

Lemma 5.13. For any structural map χ : x −+⇝⇝ y, we have the following lifting properties:

(1) if b−2 ∈ min(y), then there is a unique b−1 ∈ min(x) such that (b−1 , b
−
2 ) ∈ χ,

(2a) If (a1, a2) ∈ χ, then for all a2 _A b−2 in y,
there is a unique a1 _ b−1 in x such that (b1, b2) ∈ χ,

(2b) If (a1, a2) ∈ χ, then for all a1 _A b+1 in x,
there is a unique a2 _ b+2 in y such that (b1, b2) ∈ χ.

Proof. Since A is negative, there is only one case for transporting minimal events.
By definition, χ is obtained as a composition of structural maps:

x = x1
f+
1⇝ y1

f−
1 ⇝ x2 . . . xn

f+
n⇝ yn

f−
n⇝ xn+1 = y .

(1) For 1 ≤ i ≤ n, for any a−i+1 ∈ xn+1 minimal, then there is a unique b−i ∈ yn such that

(a−i+1, b
−
i ) ∈ f−

i , because it is a function; and b−i is minimal since f−
i preserves minimality.

Then, there is some a−i ∈ xi such that (a−i , b
−
i ) ∈ f+

i by −-total. Again it must be minimal:

a predecessor would yield a predecessor for b−i by _-preserving. It is unique since f+
i is

label-preserving and −-preserving and by jointly injective for A. Iterating this, we get a
unique sequence of witnesses terminating in an+1, and in particular unique (a1, an+1) ∈ χ.

(2a) Now consider (a1, an+1) ∈ χ, and an+1 _ c−n+1. By Lemma 5.12, there is

x1 ⇝
f+
1

y1
⇝f−

1
x2 . . . xn ⇝

f+
n

yn
⇝f−

n
xn+1

∈ ∈ ∈ . . . ∈ ∈ ∈
a1 b1 a2 . . . an bn an+1

a unique sequence of witnesses. Note that by Lemma 5.11, if there is indeed some a1 _ c−1
such that (c−1 , c

−
n+1) ∈ χ, then its sequence of witnesses (unique by Lemma 5.12) must be

above the (unique) sequence of witnesses for (a1, an+1). Hence it suffices to show that there
is a unique sequence of witnesses above the above ending in c−n+1, and this is what we shall

do. Thus assume ai+1 _ c−i+1. As just above, there is a unique (c−i+1, d
−
i ) ∈ f−

i because it is

a function, and we do have bi _ d−i by _-preserving. Then, there is a unique (c−i , d
−
i ) ∈ f+

i

by −-total, −-preserving, label-preserving, _-preserving for f+
i and jointly injective for A.

Iterating this we get a unique sequence of witnesses terminating in c−n+1 above the unique

sequence witnessing (a1, an+1); and in particular unique (c−1 , c
−
n+1) as required.

(2b) The reasoning is symmetric.

Now, we are almost ready to prove our factorization result. As we will need to build
structural maps gradually, we need to cover intermediate cases where total constraints are
not satisfied, and shall therefore need the following notions:

Definition 5.14. A partial positive map, written f : x +p⇝ y, is a structural map satisfying
−-preserving (but not −-total). Likewise, a partial negative map, written f :−p⇝ y, is a
structural map satisfying +-preserving (but not +-total).

These satisfy the following lifting lemmas:

Lemma 5.15. Consider f : x +p⇝ y a partial positive structural map. Then:
(1) for y ⊢A b−2 minimal, there is a unique x ⊢A b−1 minimal such that

f ⊎ {(b−1 , b
−
2 )} : x ⊎ {b

−
1 }

+p⇝ y ⊎ {b−2 } ,
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(2) for a ∈ x, for y ⊢A b−2 with f a _A b−2 , there is a unique x ⊢A b−1 with a _A b−1 s.t.

f ⊎ {(b−1 , b
−
2 )} : x ⊎ {b

−
1 }

+p⇝ y ⊎ {b−2 }

Proof. We detail (2), as (1) is similar but simpler.
Existence. First, we note that f is label-preserving, so that lbl a = lbl (f a). Thus, by rigid,

lbl a _A lbl b−2 . Thus by wide, there is indeed some b−1 such that a _A b−1 , lbl(b
−
1 ) = lbl(b−2 )

and ind(b−1 ) = ind(b−2 ). Now, we must justify that x ⊢A b−1 . Clearly, x⊎ {b
−
1 } is down-closed.

If it was inconsistent, there would be some b ∈ x such that b b−1 , in which case a _ b
and ind(a) = ind(b) by local conflict. Since A is alternating, b is negative as well, and f is
−-preserving, so that by invariant conflict we have fb b−2 as well, contradiction.

Uniqueness. Straightforward by jointly injective and that f is positive.

Lemma 5.16. Consider f : x −p⇝ y a negative structural map. Then for all a ∈ x, for all
y ⊢A b+2 with f a _A b+2 , there is a unique x ⊢A b+1 with a _A b+1 such that

f ⊎ {(b+1 , b
+
2 )} : x ⊎ {b

+
1 }

−p⇝ y ⊎ {b+2 }

Proof. Same as for Lemma 5.15.

Now, we are finally in position to prove our factorization result. For the proof, we
introduce the following notation: if R ⊆ A×B is a relation from A to B, we write R⊥ ⊆ B×A
for the reverse relation. We will also apply this to functions, regarded as functional relations.

Lemma 5.17. Consider A a mixed board, and χ : x −+⇝⇝ z a cartesian morphism.
Then, there are unique y ∈ C (A), χ− : y −⇝ x and χ+ : y +⇝ z, such that

x oo (−+)
χ // z

y

(−)
χ−

__

(+)
χ+

??

⊆

where the bottom path is composed relationally, i.e. we ask χ+ ◦ χ⊥
− ⊆ χ.

Finally, the inclusion is actually an equality.

Proof. First, remark that we can find y, χ− and χ+ such that

x oo (−+)
χ // z

y

(−p)
χ−

__

(+p)
χ+

??

⊆

with χ− : y −p⇝ x and χ+ : y +p⇝ z – indeed, it suffices to take y and χ−, χ+ to be empty. Let
us call such data a solution; solutions are partially ordered by componentwise inclusion.
There is an upper bound to the size of y, because it is a tree whose depth is bounded by
both that of x and z, and its width is bounded by the maximum of those of x and z (by
−-preserving and +-preserving of χ+ and χ−). Hence, there is a solution y, χ−, χ+ where y
has maximal size. We show that it satisfies the conditions of the lemma.

We must first check that χ+ and χ− are not partial. First, we show that χ+ is −-total.
Thus take a+ ∈ y, and a+2 = χ+ a+ _ b−2 in z. Assume, seeking a contradiction, that b−2
has no lifting in y. There is a candidate for the lifting: by wide, there is some a+ _ b− such
that lbl(b−) = lbl(b−2 ) and ind(b−) = ind(b−2 ), and it is unique by jointly injective. Moreover,
we have y ⊢A b−, otherwise there is c− b−, and by local conflict we also have a+ _ c−
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and ind(c−) = ind(b−). But as χ+ is −-preserving and preserves labels, by invariant conflict
we have χ+ c− χ+ b− = b−2 , but χ+ c− ∈ z, which contradicts z ∈ C (A). Hence, we form

y ⊎ {b−} ∈ C (A) , χ+ ⊎ {(b−, b−2 )} : y ⊎ {b
−} +p⇝ z .

To extend χ− accordingly, write a+1 = χ− a+. By hypothesis, we have (a+1 , a
+
2 ) ∈ χ.

Hence, by Lemma 5.13, there is a (unique) a+1 _ b−1 such that (b−1 , b
−
2 ) ∈ χ. We form

χ− ⊎ {(b−, b−1 )} : y ⊎ {b
−} −p⇝ z

which is clearly a partial negative structural map. The required inclusion is still satisfied, so
this contradicts the maximality of the solution y, χ−, χ+ – the case where b− is minimal is
similar but simpler. The proof that χ− is +-total is symmetric.

For uniqueness, consider we have

y′

(−)
ξ−

��
(+)

ξ+

��

⊆

x oo (−+)
χ // z

y

(−)
χ−

``

(+)
χ+

>>

⊆

and show y′ ⊆ y, and that for every a ∈ y′, we have χ− a = ξ− a and χ+ a = ξ+ a.
Consider a ∈ y′ minimal not satisfying this property. If it is minimal in A then it is

in particular negative. Then write a′ = ξ+ a; by definition of structural maps we have a′

minimal with lbl a′ = lbl a, by −-preserving we have ind a′ = ind a – so that in fact a = a′

by jointly injective. And by −-total, there is a′′ ∈ y such that χ+ a′′ = a, and for the same
reason a′′ = a, so that a ∈ y. Moreover, we have seen that χ+ a = ξ+ a = a; but we also
know that (χ− a, χ+ a), (ξ− a, ξ+ a) ∈ χ by hypothesis. But now, by Lemma 5.13, there is a
unique b such that (b, a) ∈ χ – so χ− a = ξ− a = b as required. Now if a ∈ y′ is not minimal
in A, it has a unique predecessor b _A a, for which we know by induction that b ∈ y and
χ− b = ξ− b and χ+ b = ξ+ b. Based on that, if a is negative, we can directly replay the
argument above; and the symmetric argument if a is positive. In particular, this shows that
y′ ⊆ y with ξ−, χ−, ξ+, χ+ compatible with the inclusion. But the argument is symmetric,
so we also have y ⊆ y′ – which concludes uniqueness.

Finally, we must show that the inclusion between the two sides of the diagram is actually
an equality. Consider (b1, b2) ∈ χ minimal (note that they must have the same depth)
such that (b1, b2) ̸∈ χ+ ◦ χ⊥

−. If (b1, b2) are minimal, then they are negative (b−1 , b
−
2 ). By

−-total for χ+, there is some b− ∈ y such that χ+ b− = b−2 . Writing b′1 = χ− b−, we must
have (b′1, b2) ∈ χ, but by Lemma 5.13 this implies b′1 = b−1 , so (b−1 , b

−
2 ) ∈ χ+ ◦ χ⊥

− after
all, contradiction. So now if they are not minimal, there are c1 _ b1 and c2 _ b2 with
(c1, c2) ∈ χ (by Lemma 5.11) and (c1, c2) ∈ χ+ ◦ χ⊥

− (by minimality of (b1, b2)), so there is
c ∈ y such that χ+ c = c2 and χ− c = c1. Now we distinguish by cases. If b1, b2 are negative,
then exploiting c, the reasoning is the same as for b1, b2 minimal above, using the same
lemmas – and if b1, b2 are positive, then the reasoning is symmetric.

From this lemma, it follows in particular that as accounced, every cartesian morphism
χ : x −+⇝⇝ y can be written uniquely as the relational composition x −⇝· +⇝ y.
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s⊗A,B : S(A)×S(B) ≃ S(A⊗B)

s1 : 1 ≃ S(1)
s!S : !S(S) ≃ S(!S)
s⊤ : ∅ ≃ S(⊤)

s&S,T : S(S) +S(T ) ≃ S(S & T )

s⊸A,S : S(A)op ×S(S) ≃ S(A⊸ S)

Figure 12: Structural preorder-isos

s⊗A,B : SC(A)×SC(B) ≃ SC(A⊗B)

s1 : 1 ≃ SC(1)
s!S : !SC(S) ≃ SC(!S)
s⊤ : ∅ ≃ SC(⊤)

s&S,T : SC(S) +SC(T ) ≃ SC(S & T )

s⊸A,S : SC(A)op ×SC(S) ≃ SC(A⊸ S)

Figure 13: Colored preorder-isos

5.4. Reconstructing the Preorder. Now, in this section we reconstruct a preorder from
these cartesian morphisms, and show how this is compatible with all the constructions on
preorders involved in the relative Seely category structure. Fix here a mixed board A.

5.4.1. Uncolored case. From the relational collapse, we know that we must equip the set
R(A) of positions of A defined in (4.1) with a preorder derived from cartesian morphisms.
The obvious route is to start is to define it on configurations: for x, y ∈ C (A), we set

x +−⇝⇝ y ⇔ ∃χ : y −+⇝⇝ x ,

noting the inversion in directions. This is compatible with symmetry:

Lemma 5.18. Consider x, x′, y, y′ ∈ C (A) such that x ∼=A x′ and y ∼=A y′.
Then, x +−⇝⇝ y iff x′ +−⇝⇝ y′.

Proof. Fix a cartesian morphism χ : y −+⇝⇝ x which by Lemma 5.17 factors as χ+ ◦ χ⊥
− for

χ− : z −⇝ y and χ+ : z +⇝ x. Fix also symmetries θ : x ∼=A x′ and ϑ : y ∼=A y′, by Lemma
3.9 they factor as θ = θ+ ◦ θ− and ϑ = ϑ+ ◦ ϑ− for θ+, ϑ+ positive symmetries and θ−, ϑ−
negative symmetries. Now, with all this data we can form

x′
θ+
+⇝ ·

θ−1
−
−⇝ x

χ+
+⇝ ·

χ−
−⇝ y

ϑ−
−⇝ ·

ϑ−1
+
+⇝ y′

converting symmetries to structural maps by Lemma 5.9; so that x′ +−⇝⇝ y′.

We write x +−⇝⇝ y if for any x ∈ x and y ∈ y, we have x +−⇝⇝ y – by the lemma above, this
does not depend on the choice of x and y, and immediately forms a preorder. Thus:

Definition 5.19. For any mixed board A, we set S(A) = (R(A), +−⇝⇝).

This is compatible with all the constructions on preorders involved in the relative
Seely structure of ScottL. More precisely, the bijections of Figure 6 can be verified to be
compatible with the preorder, i.e. to yield preorder-isomorphisms as described in Figure 12.
For most of them, the corresponding verification is straightforward; we just detail two.

Lemma 5.20. Fix A,S mixed boards with S strict, xA⊸ xS , yA⊸ yS ∈ R(A⊸ S).
Then, xA⊸ xS

+−⇝⇝ yA⊸ yS iff yA
+−⇝⇝ xA and xS

+−⇝⇝ yS.

Proof. By Lemma 5.18, it suffices to reason on representatives.
If. Fix yA, xA, xS , yS such that yA

+−⇝⇝ xA and xS
+−⇝⇝ yS . By definition, this means

that there are χA : xA
−+⇝⇝ yA and χS : yS

−+⇝⇝ xS . By Lemma 5.17, there are χ−
A : zA

−⇝ xA
and χ+

A : zA
+⇝ yA, with also χ−

S : zS
−⇝ yS and χ+

S : zS
+⇝ xS . We may then form

χ+
A ⊸ χ−

S : zA⊸ zS
−⇝ yA⊸ yS , χ−

A ⊸ χ+
S : zA⊸ zS

+⇝ xA⊸ xS
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defined in the obvious way – observe the inversion of polarities, to match that A is dualized
on the left hand side. Altogether, we have xA⊸ xS

+−⇝⇝ yA⊸ yS as required.
Only if. Assuming xA⊸ xS

+−⇝⇝ yA⊸ yS , we have structural maps

χ−
A⊸S : zA⊸ zS

−⇝ yA⊸ yS , ξ+A⊸S : zA⊸ zS
+⇝ xA⊸ xS .

First, as χ−
A⊸S preserves labels, it decomposes uniquely into χA⊸ χS for χA : zA ⇝ yA

and χS : zS ⇝ yS structural maps. Furthermore, the negativity of χ−
A⊸S ensures that χA is

positive and χS is negative. From the same reasoning on ξ+A⊸S , we get ξ−A : zA
−⇝ xA and

ξ+S : zS
+⇝ xS , which may be directly assembled to witness yA

+−⇝⇝ xA and xS
+−⇝⇝ yS .

This precisely ensures that the bijection s⊸A,S extends to an isomorphism of preorders as
in Figure 12 – note how the contravariant on the left hand side matches the dualization of
the moves in A in the construction of A⊸ S. The other noteworthy case is the exponential:

Lemma 5.21. Consider S a strict mixed board, and x = [xi | i ∈ I], y = [yj | j ∈ J ] ∈ R(!S).
Then, x +−⇝⇝ y iff for all i ∈ I, there is j ∈ J such that xi

+−⇝⇝ yj.

Proof. By Lemma 5.18, it suffices to reason on representatives.
If. Working with representatives, we have I, J ⊆f N. Assume that for all i ∈ I, there

is j ∈ J such that xi
+−⇝⇝ yj . Fix a function f : I → J such that for all i ∈ I, we have

xi
+−⇝⇝ yf(i). So, we have χ+

i : zi
+⇝ xi and χ−

i : zi
−⇝ yf(i). Form z = ⌊zi | i ∈ I⌋. Setting

χ+ : ⌊zi | i ∈ I⌋ → ⌊xi | i ∈ I⌋
(i, s) 7→ (i, χ+

i (s)) ,

it is a positive structural map. Critically, it leaves i unchanged, as required by −-preserving
and it reaches all minimal moves in x, as required by −-total. Likewise, setting

χ− : ⌊zi | i ∈ I⌋ → ⌊yj | j ∈ J⌋
(i, s) 7→ (f(i), χ−

i (s)) ,

it follows that χ− is +-preserving and +-total, so a positive structural map. Altogether, we
have constructed a witness z and structural maps ensuring that x +−⇝⇝ y as required.

Only if. Assuming x +−⇝⇝ y, we have some z = ⌊zk | k ∈ K⌋ with maps

χ+ : ⌊zk | k ∈ K⌋ +⇝ ⌊xi | i ∈ I⌋ , χ− : ⌊zk | k ∈ K⌋ −⇝ ⌊yj | j ∈ J⌋ .

Now, any (k, s) ∈ ⌊zk | k ∈ K⌋ minimal must be negative and ind(k, s) = k, so that
χ+(k, s) = (k, s′) by −-preserving. In fact, for every (k, s) ∈ ⌊zk | k ∈ K⌋, there is

(k, s0) _!S (k, s1) _!S . . . _!S (k, s)

a (unique) sequence of justifiers with s0 minimal. Since χ+ is _-preserving, we must have
(k, s′0) = χ+(k, s0) <!S χ+(k, s) = (k′, s′), but this entails that k = k′: χ+ preserves the first
component k; and also K ⊆ I. In fact, this is an equality since χ+ is also +-total, so that
z = ⌊zi | i ∈ I⌋. Additionally, it follows that χ+ decomposes into the data, for each i ∈ I, of
χ+
i : zi

+⇝ xi. Decomposing χ− similarly, we get a function f : I → J and χ−
i : zi

−⇝ yf(i).

But altogether, assembling all the data we get xi
+−⇝⇝ yf(i) for all i ∈ I as required.

Thus, we have established that the construction of a preorder from cartesian morphisms
is compatible with the constructions on objects involved in the relative Seely structure.
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5.4.2. Colored case. In the colored case, we must first extend cartesian morphisms:

Definition 5.22. Consider A a mixed board, and x, y ∈ CC(A) configurations in colors.
A structural map f : x⇝ y is simply a structural map in the previous sense, preserving

colors, i.e. λy(f(a)) = λx(a) for all a ∈ x. It is positive (resp. negative) if it is positive
(resp. negative) as a plain structural map. A cartesian morphism is defined as in Definition
5.10, with positive and negative structural maps preserving colors.

All the development of Section 5.3 adapts transparently in the presence of colors, which
are preserved everywhere. The induced preorder is again compatible with (color-preserving)
symmetries, so that it yields a preorder on positions in colors; altogether extending RC(A)
into a preordered set SC(A). Finally, as before the bijections matching the relative Seely
constructions in games and in the linear Scott model are obviously compatible with colors,
yielding the preorder-isomorphisms of Figure 13.

6. Qualitative Collapse

We have built, from any mixed board A, a preorder S(A) (or SC(A) in the colored case) in
a way compatible with the constructions involved in the relative Seely structure of ScottL.
We shall now extend that to strategies, as usual focusing first on the uncolored case.

6.1. Introduction. The basic idea for our collapse to the linear Scott model is simple: we
shall simply take the down-closure of the relational collapse of (4.3), i.e., without colors:

S(σ) = [R(σ)]S(A)op×S(B) ∈ ScottL[S(A),S(B)] (6.1)

which means that (xA, xB) ∈ S(σ) provided we can find yA ∈ S(A), yB ∈ S(B) with
yA

+−⇝⇝ xA and xB
+−⇝⇝ yB along with a witness yσ ∈ C+(σ) such that yσA ∈ yA and yσB ∈ yB.

It is obvious that this is indeed a morphism in ScottL. We shall now make our first
steps towards proving functoriality, introducing the main difficulties. First, we note:

Lemma 6.1. Consider A a mixed board. Then, S( ccA) = idS(A).

Proof. This is straightforward: the latter comprises all pairs (x1, x2) with x2
+−⇝⇝ x1, while the

former amounts to all (y1, y2) such that there exists y ∈ S(A) with a specific representative
y ∈ y with y2

+−⇝⇝ y and y +−⇝⇝ y1 – clearly, this concerns the same pairs.

We also easily have oplax functoriality:

Lemma 6.2. Consider A,B and C mixed boards, and σ : A ⊢ B, τ : B ⊢ C.
Then, S(τ ⊙ σ) ⊆ S(τ) ◦S(σ).

Proof. Consider (xA, xC) ∈ S(τ ⊙ σ). This means there are yA
+−⇝⇝ xA and xC

+−⇝⇝ yC with
(yA, yC) ∈ R(τ ⊙ σ), which we know is in R(τ) ◦R(σ). But R(σ) ⊆ S(σ) and likewise for τ ,
hence (yA, yC) ∈ S(τ) ◦S(τ). But then, (xA, xC) ∈ S(τ) ◦S(τ) as well by down-closure.

Again, the final inequality S(τ) ◦S(σ) ⊆ S(τ ⊙ σ) is more problematic, let us see why.
Consider (yA, yC) ∈ S(τ) ◦S(σ). Unfolding definitions, there must be witnesses xσ ∈ C+(σ)
and xτ ∈ C+(τ) such that xσA ∈ xA

+−⇝⇝ yA, x
τ
B

+−⇝⇝ xσB, and xτC ∈ xC with yC
+−⇝⇝ xC .

Recall that the situation in Section 4.2.2, concerning lax preservation of composition for
the relational collapse, was somewhat analogous, except that we had xσB

∼=B xτB rather than
xσB

−+⇝⇝ xτB – we needed to synchronize xσ and xτ through a symmetry, whereas we now
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Figure 14: Example resolution of a cartesian matching problem

want to synchronize them through a cartesian morphism. In the symmetry case, this was
handled by Proposition 3.13, which we do not (yet!) have for cartesian morphisms.

Let us sum up below what we need, for fixed σ : A ⊢ B and τ : B ⊢ C. What we have:
witnesses xσ ∈ C+(σ) and xτ ∈ C+(τ) along with a cartesian morphism χ : xσB

−+⇝⇝ xτB.
What we want: some yτ ⊙ yσ ∈ C+(τ ⊙ σ) such that yσA

+−⇝⇝ xσA and xτC
+−⇝⇝ yτC . In the

sequel, we shall refer to this data as, respectively, a cartesian (matching) problem, and a
solution to the problem. We call this a cartesian problem because both strategies are actively
trying to duplicate and erase each other, and a solution is a situation where both strategies
have reached a state where they have all the resources they need, not more and not less.

Example 6.3. To illustrate this operation, we detail an example, using two λ-terms

⊢Mσ = λfx. f (. . . (f︸ ︷︷ ︸
n

x) . . .) : (o→ o)→ o→ o ,

g : (o→ o)→ o→ o ⊢Mτ = λx. g (. . . (g︸ ︷︷ ︸
m

x) . . .) : (o→ o)→ o→ o .

The reader may recognize Mσ the Church integer for n and Mτ that for m, though on
different types. Interpreting those (with the adequate promotion for Mσ), we obtain

σ ∈ DSInn[1, B] , τ ∈ DSInn[B,C]



THE QUALITATIVE COLLAPSE OF CONCURRENT GAMES 45

strategies that we wish to compose – here, B = !J(o→ o)→ o→ oK and C = J(o→ o)→
o→ oK. As events in B in C correspond to atoms in those types, we find it convenient to
write B as (a→ b)→ c→ d and C as (e→ f)→ g → h to ease the correspondence.

With these notations, the upper part of Figure 14 presents a cartesian problem involving
σ and τ . On the upper left part, we have the typical (unduplicated) configuration of σ,
iterating n times its argument, displayed onto B as the configuration indicated (omitting
copy indices). Likewise, on the upper right corner, we have the typical (unduplicated)
configuration of τ , made larger than for σ because of η-expansion, displayed to B as shown.
There is a cartesian morphism as shown, linking all pairs of moves with the same label.

Resolving this problem involves performing all the necessary duplications: τ makes m
copies of σ, but the first copy of σ makes n copies of the m− 1 remaining calls of σ, and so
on. . . The solution appears in the bottom part of the diagram, consisting in the indicated
expansions of the configurations of σ and τ , whose display on B now match.

The example above illustrates that solving a cartesian problem can involve an exponential
blowup in the size of the configurations – indeed, we know that the Church integer for m
applied to that for n normalizes to the Church integer for nm, witnessing the nm calls to the
event f+ in the duplicated version of the configuration for τ in the diagram. In general, the
situation is far worse: the size of the solution is not elementary in the size of the problem,
witnessing the usual bounds in the normalization of the simply-typed λ-calculus13.

From this explosion, it is clear that the resolution of a cartesian problem will be
non-trivial. In particular, we rely on a non-trivial termination argument, introduced next.

6.2. Bounding Interactions. Here we provide an upper bound on the size of solutions to
cartesian problems – this relies on our earlier work on the size of interactions in Hyland-Ong
games [Cla11,Cla13,Cla15], which we shall import into the realm of thin concurrent games.

6.2.1. Structural maps in strategies. In this endeavour, our first step will be to formalize
what it means for one configuration to be an expansion of another, as in the left and right
hand sides of Figure 14. This involves adapting structural morphisms to strategies:

Definition 6.4. Consider A,B mixed boards, σ : A ⊢ B a strategy, x, y ∈ C (σ).
A partial structural map is a function f : xσ → yσ satisfying:

min-preserving: for all s ∈ min(xσ), then f s ∈ min(yσ),
_-preserving: for all s _σ t, then f s _σ f t,

valid: ∂σ f has form fA ⊢ fB for fA : xσA ⇝ yσA and fB : xσB ⇝ yσB,

where ∂σ f , the display of f to A ⊢ B, is obtained as the composition

xσA ⊢ xσB
∂−1
σ≃ xσ

f→ yσ
∂σ≃ yσA ⊢ yσB .

We write f : xσ p⇝ yσ. It is a structural map, written f : xσ ⇝ yσ, if additionally

total: if f s _σ t+, there is a (necessarily) unique s _σ u+ s.t. f(u+) = t+.

13It is direct to extend Figure 14 into an example of that, exploiting the explosion of the application
n . . . n of Church integers – here τ is n, and σ is the tuple of ns typed appropriately.
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So in essence, a structural map between configurations of a strategy is a forest-morphism
which displays to a structural map in the game, in the sense of Definition 5.7.

Morally, we wish that a structural map can only send an event of σ to one that is “the
same”, in the sense of the symmetry. For deterministic sequential innocent strategies this
follows from the definition above (which is indeed fine-tuned for deterministic sequential
innocent strategies, but would be poorly behaved beyond that) – we now introduce a lemma
that expresses that. For that, we recall from [Cla24] the concept of a grounded causal
chain (gcc) of a strategy σ: it is a finite set ρ = {ρ1, . . . , ρn} ⊆f |σ| that forms

ρ1 _σ . . . _σ ρn

a sequence with ρ1 ∈ min(σ). In the general framework of [Cla24], a gcc may not be a
configuration as it may not be down-closed. But here, because strategies are sequential
innocent, we have ρ ∈ C (σ) indeed – it is then simply a branch of σ. We write gcc(σ) for the
set of gccs of σ. Additionally, if xσ ∈ C (σ), we write gcc(xσ) for the set of gccs within xσ.

Lemma 6.5. Consider A,B mixed boards, σ : A ⊢ B a strategy, xσ, yσ ∈ C (σ), and
f : xσ p⇝ yσ a partial structural map.

Then, for any ρ ∈ gcc(xσ), f induces a symmetry f↾ρ : ρ ∼=σ f ρ.

Proof. By induction on ρ. If ρ is empty, then this is obvious.
Consider first ρ _ s−1 _ s+2 ∈ gcc(xσ). By induction hypothesis, we have

f : ρ _ s−1
∼=σ f ρ _ f s−1

a symmetry, which extends on the left to ρ _ s−1 _ s+2 , a configuration since σ is determin-
istic sequential innocent. Now by symmetry, there must be an extension

f ∪ {(s+2 , t
+
2 )} : ρ _ s−1 _ s+2

∼=σ f ρ _ f s−1 _ t+2

with in particular f s−1 _ t+2 . But now we also have f s−1 _ f s+2 since f is rigid; and this
implies f s+2 = t+2 since σ is dsinn. So overall, we have, as required:

f : ρ _ s−1 _ s+2
∼=σ f ρ _ f s−1 _ f s+2 .

Consider now ρ _ s+1 _ s−2 ∈ gcc(xσ). By induction hypothesis,

f : ρ _ s+1
∼=σ f ρ _ f s+1

is a symmetry. But also, f s+1 _ f s−2 since f preserves _. But now, we argue that

∂σ f : ∂σ(ρ _ s+1 ) _ ∂σ s
−
2
∼=A⊢B ∂σ(ρ _ s+1 ) _ ∂σ (f s−2 )

by transparent, because as a structural map, ∂σ f preserves labels. It follows that

f : ρ _ s+1 _ s+2
∼=σ f ρ _ f s+1 _ f s−2

by ∼-receptive, as required.
The last case is the same where s−2 is minimal; which is similar but simpler.
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6.2.2. Pointer structures. In [CH10], the present author together with Harmer studied
the termination of the simply-typed λ-calculus, through the lense of game semantics. In
particular, they proved that any interaction between finite innocent strategies (in the
traditional sense of Hyland-Ong games [HO00]) must be finite. This was later refined by
Clairambault into a quantitative bound [Cla11,Cla13,Cla15], that we shall import here into
concurrent games. As we rely on this result, we must first provide a reminder.

The result is more adequately phrased in terms of pointer structures:

Definition 6.6. A pointer structure is the data of a natural number n ∈ N together with

ϕ : {1, . . . , n− 1} → {0, . . . , n− 2}
a pointer function, which is:

contractive: for all i ∈ {1, . . . , n− 1}, ϕ(i) < i,
alternating: for all i ∈ {1, . . . , n− 1}, i is even iff ϕ(i) is odd.

Pointer structures are what remain from Hyland-Ong games by forgetting the identity
of moves in arenas, and only remembering the pointers. We give an example below, pictured
from left to right. Instead of writing integers, we only write ◦ for even numbers (reminiscent
of Opponent moves) and • for odd numbers (reminiscent of Player moves),

◦ • ◦ • ◦ • ◦

and the function ptr is indicated by following the edges from right to left.
Not all these pointer structures can arise in interactions between strategies; only those

that satisfy an additional visibility condition. Given a pointer structure ϕ, we define

⌜−⌝ : {0, . . . , n− 1} → P({0, . . . , n− 1})
0 7→ {0}

2k + 1 7→ {2k + 1} ∪ ⌜2k⌝
2k + 2 7→ {2k + 2} ∪ ⌜ϕ(2k + 2)⌝

⌞−⌟ : {0, . . . , n− 1} → P({0, . . . , n− 1})
0 7→ {0}

2k + 1 7→ {2k + 1} ∪ ⌞ϕ(2k + 1)⌟
2k + 2 7→ {2k + 2} ∪ ⌞2k + 1⌟

respectively called the P -view and the O-view. The P -view captures the part of a play
available to an innocent strategy, while the O-view captures the part of a play available to
an innocent environment. A pointer structure is visible when for all 1 ≤ i ≤ n− 1, we have
ϕ(i) ∈ ⌜i⌝ when i is odd and ϕ(i) ∈ ⌞i⌟ when i is even – visible pointer structures are exactly
those that may arise as an interaction between innocent strategies.

Finally, in a pointer structure ϕ : {1, . . . , n− 1} → {0, . . . , n− 2}, the length |ϕ| of ϕ
is simply n. The depth of 1 ≤ i ≤ n− 1 is the k ∈ N such that ϕk(i) = 0; we extend this
to 0 ≤ i ≤ n− 1 by stating that the depth of 0 is 0. The depth of a pointer structure ϕ
is the maximal depth of 0 ≤ i ≤ n − 1. The P -size of ϕ is the minimal N such that for
all 0 ≤ i ≤ n− 1, we have #⌜i⌝ ≤ 2N , the O-size of ϕ is the minimal N such that for all
0 ≤ i ≤ n− 1, we have #⌞i⌟ ≤ 2N + 1 – the depth roughly corresponds to the order of the
type, the P -size and O-size to the size of the two interacting strategies.

Then, we have [Cla15, Theorem 4.17]:

Theorem 6.7. Consider ϕ visible pointer structure of depth bounded by d ≥ 3, P -size bounded
by n ≥ 1 a O-size bounded by p ≥ 1. Then, writing 20(N) = N and 2d+1(N) = 22d(N),

|ϕ| ≤ 2d−3

(
pn+1 − 1

p− 1
− 1

)
,

additionally |ϕ| = 1 if d = 0, |ϕ| = 2 if d = 1, and |ϕ| ≤ 2n if d = 2.
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In [Cla15], this bound is also shown to be asymptotically tight. Though for the work
here, this precise bound does not matter: what matters is that it exists.

6.2.3. The upper bound. We now move back to the technical setting of this paper, for
interacting σ : A ⊢ B, τ : B ⊢ C with xσ ∈ C (σ), xτ ∈ C (τ) and a cartesian morphism
χ : xσB

−+⇝⇝ xτB, we want an upper bound to the size of all solutions to the cartesian problem.
We call the τ -size of (xσ, χ, xτ ) the minimal n s.t. every gcc of xσA ∥ xτ is smaller than

2n; its σ-size the minimal p such that every gcc of xσ ∥ xτC is smaller than 2p; its depth the
minimal d+ 2 such that every gcc of xτC is smaller than d+ 2, every gcc of xσB, x

τ
B is smaller

than d+ 1, and every gcc of xσA is smaller than d. Finally, its branching degree is the
minimal b such that (regarded as trees), xσ and xτ have branching degree smaller than b.

Lemma 6.8. Consider (xσ ∈ C (σ), χ, xτ ∈ C (τ)) as above with τ -size less than n ≥ 1,
σ-size less than p ≥ 1, depth less than d ≥ 3 and branching degree less than b ≥ 2.

Then, for any yσ ∈ C (σ) and yτ ∈ C (τ) matching such that there are structural maps
χσ : yσ p⇝ xσ, χτ : yτ p⇝ xτ with χσ

A : yσA
−p⇝ xσA and χτ

C : yτC
+p⇝ xτC , we have

#(yτ ⊛ yσ) ≤ b
2d−3

(
pn+1−1

p−1
−1

)
.

Proof. Firstly, because σ and τ are deterministic sequential innocent, it follows that yτ ⊛ yσ

is a forest. Consider one of its branches ρ ∈ gcc(yτ ⊛ yσ), written as

ρ0 _ ρ1 _ . . . _ ρl−1

for l its length. For each 1 ≤ i ≤ l − 1, if ∂τ⊛σ ρi is non-minimal in A ∥ B ∥ C, then its
unique immediate predecessor is some ∂τ⊛σ ρj for j < i, we set ϕ(i) = j. If ∂τ⊛σ ρi is minimal
in A, we must have (ρi)σ defined. Because yσ is a forest, there is a unique minimal s ∈ yσ

such that s <σ (ρi)σ, and it must correspond to some unique ρj (such that (ρj)σ = s), with
j < i – we set ϕ(i) = j. If ∂τ⊛σ ρi is minimal in B we set ϕ(i) = 0, and it cannot be minimal
in C because ρ0 is, and yσC (thus yσ) has a unique minimal event since C is strict14.

Then, it follows by [Cla24, Proposition 10.2.5] that ϕ is a visible pointer structure; that
its O-views correspond to gccs in yσ ∥ yτC , and that its P -views correspond to gccs in yσA ∥ yτ .
But because χσ and χτ and their displays χσ

A, χ
τ
C are structural maps and hence forest

morphisms, those are bounded respectively by 2p and 2n. Likewise, by construction its
depth is smaller than d. Hence, we may apply Theorem 6.7 and deduce that we have

#ρ ≤ 2d−3

(
pn+1 − 1

p− 1
− 1

)
. (6.2)

So yτ ⊛ yσ is a forest whose depth is bounded by this quantity. To deduce a bound on
the size of yτ ⊛ yσ, we give a corresponding upper bound to the branching degree of that
forest. For that, consider p ∈ yτ ⊛ yσ. We prove that the branching at p is bounded by b,
reasoning by cases on the polarity of p and its component of occurrence.

If p has polarity l and occurs in A, then reasoning by cases via [Cla24, Lemma 6.2.15],
any p _τ⊛σ p′ must satisfy that p′ has polarity −, p′σ is defined and

∂τ⊛σ(pσ) _A∥B∥C ∂τ⊛σ(p
′
σ)

so that in particular, pσ _σ p′σ by [Cla24, Lemma 6.1.16]. Since χσ is rigid,

χ(pσ) _σ χ(p′σ)

14This is the definition of the justifier in an interaction between visible strategies [Cla24, Section 10.2.2].
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as well. Hence, this defines a map from successors of p in yτ ⊛ yσ to successors of χ(pσ)
in xσ. We show this map is injective; for that, consider p _τ⊛σ p′, p′′ with χ(p′σ) = χ(p′′σ).
In particular, ∂σ(χ(p

′
σ)) = ∂σ(χ(p

′′
σ)) so they have the same label, index and predecessor.

By rigidity, label-preserving and negative, it follows that ∂σ(p
′
σ) and ∂σ(p

′′
σ) have the same

predecessor, label and copy index, so that ∂σ(p
′
σ) = ∂σ(p

′′
σ) by jointly injective [Cla24,

Definition 12.1.1]. By receptivity of σ, it follows that p′σ = p′′σ, so that p′ = p′′ also by local
injectivity of ∂σ. It follows that the set of causal successors of p in yτ ⊛ yσ has cardinal less
or equal than B. The case where p has polarity r and occurs in C is symmetric.

If p has polarity −, say e.g. that it occurs in C. Then, reasoning by cases based on
[Cla24, Lemma 6.2.15], any p _τ⊛σ p′ in yτ ⊛ yσ must have polarity r and satisfy pτ _τ p′τ .
By sequential innocence, there can be at most one such p′τ , so there is at most one such p′ in
τ ⊛ σ. If p has polarity l and occurs in B, then again reasoning by cases on [Cla24, Lemma
6.2.15], any p _τ⊛σ p′ in yτ ⊛ yσ satisfies pτ _τ p′τ , and the same reasoning applies. The
final case where p has polarity r and occurs in B is symmetric.

Altogether, yτ ⊛ yσ is a forest of depth bounded by (6.2) and branching bounded by b,
giving the announced upper bound on its size.

This upper bound could be improved for d = 1, 2, but again the precise quantity does not
really matter here; only that once xσ and xτ are fixed, the solutions to the cartesian problems
have a bounded size. Note also the importance of the assumptions that χσ

A is negative and
χτ
C positive: this is what ensures that yσ and yτ do not have more duplications by the

external Opponent than in xσ and xτ , meaning that the upper bound to the branching degree
of xσ, xτ transports to yσ, yτ and to yτ ⊛ yσ. Finally, we note that as #yσ ≤ #(yτ ⊛ yσ)
and likewise for τ , the same upper bound applies to yσ and yτ .

6.3. Functorial Collapse. With this, we have finished introducing the essential ingredients
to show functoriality of the collapse to the linear Scott model.

6.3.1. Cartesian problems and how to solve them. First, the tools introduced just above now
allow us to be more precise about what we mean by cartesian problem.

Definition 6.9. Consider σ : A ⊢ B and τ : B ⊢ C. A cartesian (matching) problem is
the data of xσ ∈ C (σ), xτ ∈ C (τ) and a cartesian morphism χ : xσB

−+⇝⇝ xτB.
A solution to this problem is given by yσ ∈ C (σ), yτ ∈ C (τ), χσ, χτ such that:

xσ xσB
oo χ

−+ // xτB xτ

yσ
χσ

``

yB

χσ
B

``

⊆ χτ
B

>>

yτ
χτ

>>

with χσ
A : yσA

−⇝ xσA and χτ
C : yτC

+⇝ xτC .

This captures the notion of cartesian matching problem introduced in Section 6.1. First,
indeed we have yσA

+−⇝⇝ xσA and xτC
+−⇝⇝ yτC , so that this solution will provide the required

witness for functoriality. But we have a little bit more here: we know that yσ is an expansion
of xσ and likewise yτ is an expansion of xτ ; this is witnessed by specific structural morphisms
χσ and χτ whose display is compatible with the cartesian morphism χ.

Now, the next key proposition shows how to solve cartesian problems:
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Proposition 6.10. Consider σ : A ⊢ B and τ : B ⊢ C deterministic sequential innocent.
Then any cartesian problem for σ, τ has a unique solution.

Proof. Consider xσ ∈ C (σ), xτ ∈ C (τ) and χ : xσB
−+⇝⇝ xτB a cartesian problem.

First, note we can find a partial solution, i.e. yσ ∈ C (σ), yτ ∈ C (τ), χσ and χτ s.t.:

xσ xσB
oo χ

−+ // xτB xτ

yσ
χσ

p

``

yB

χσ
B

``

⊆ χτ
B

>>

yτ
χτ

p

>>

with χσ
A : yσA

−p⇝ xσA and χτ
C : yτC

+p⇝ xτC – indeed one can take yσ = yτ = ∅. Such partial
solutions are partially ordered by componentwise inclusion. By Lemma 6.8, there is a bound
N ∈ N on the cardinal of yτ ⊛ yσ for partial solutions; thus there is a partial solution of
maximal size. From now on, we fix a partial solution yσ, yτ , χσ, χτ of maximal size and
prove that it actually is a total solution as seeked.

First, we prove that χτ : yτ +⇝ xτ is total. Consider χτ s _τ t+. Assuming there is
no s _τ u+ in yτ such that χτ u+ = t+, we shall construct an extension of the solution,
contradicting its maximality. We start with the easy case where t+ occurs in C. Since
τ is a forest, [s]τ is a gcc. By Lemma 6.5, this means that the restriction of χτ to
[s]τ is θ : [s]τ ∼=τ [χτ s]τ a symmetry on τ . Hence, there is s _τ u+ in τ such that
θ ∪ {(u+, t+)} ∈ S (τ) is still a symmetry. Extend yτ with u+ and χτ (u+) = t+, it is a
direct verification that this yields a solution, contradicting maximality.

Now, let us assume that t+ occurs in B, i.e. ∂τ (t
+) = (1, b′). First, we update yτ and

χτ as above. This means that we have ∂τ (u
+) = (1, b) with b negative in B, with yB ⊢B b,

and χτ
B(b) = b′. By receptive, there is a unique yσ ⊢ v− such that ∂σ(v

−) = (2, b). We must
now extend χσ accordingly. For that, assume w.l.o.g. that b is not minimal – the minimal
case is similar but simpler. So, there is a (unique) a _B b. By locally injective, there is a
unique n+ ∈ yσ such that ∂σ(n

+) = (2, a). Write m+ = χσ(n+) with ∂σ(m
+) = (2, c) with

c ∈ xσB – by definition, c = χσ
B(a). If we also write d = χτ

B(a), then we have (c, d) ∈ χB by
hypothesis, and by _-preserving, d _B b′ negative. Thus, by Lemma 5.13, there is a unique
c _B e− in xσB such that (e−, b′) ∈ χB. By locally injective, there is a unique k− ∈ xσ

such that ∂σ(k
−) = (2, e−). Then, we may finally extend χσ with v− 7→ e−, and verify the

required conditions. Symmetrically, χσ : yσ +⇝ xσ is total as well.
Finally, it remains to prove that χσ

A and χτ
C are not partial; first we check that χτ

C is
−-total. So consider a ∈ yτC and χτ

C a _C c− – the case where c− is minimal is similar but
simpler. If c− has no predecessor for χτ

C , then Lemma 5.15 provides a unique extension of
yτC which yields an extension of yτ by receptivity, contradicting maximality. Likewise, the
+-totality of χσ

A follows from Lemma 5.16.
For uniqueness, assume we have two solutions, i.e.

vσ

ξσ

~~

vB
ξσB

~~

ξτB

  

⊆

vτ

ξτ

  
xσ xσB

oo χB
+− // xτB xτ

yσ
χσ

``

yB

χσ
B

``

⊆ χτ
B

>>

yτ
χτ

>>
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and consider e.g. an event p ∈ vτ ⊙ vσ which is minimal such that it is not in yτ ⊙ yσ. Now
we reason by cases: if p is positive for σ, this is absurd by sequential innocence for σ and
receptivity for τ . If it is positive for τ , the situation is symmetric. If p is negative in A, then
it must be also in yτ ⊙ yσ because χσ

A is −-preserving and −-total and by receptivity of σ.
If p is negative in C, then the situation is symmetric.

Thus as illustrated in Figure 14, one can always find solutions to cartesian problems:
two deterministic sequential innocent strategies trying to duplicate and erase each other
alongside a cartesian morphism can always find a successful resolution, and this resolution
is unique if one adequately takes into account the copy indices.

6.3.2. Functorial collapse. The property above is the key conceptual contribution of this
work. The functoriality of the collapse to the linear Scott model immediately follows.

Theorem 6.11. We have a ∼-functor

S(−) : DSInn→ Scott

Proof. Preservation of identities was handled in Lemma 6.1 and oplax preservation of
composition in Lemma 6.2. For lax preservation of composition, consider (xA, xB) ∈ S(σ) and
(xB, xC) ∈ S(τ). By definition, this means that taking some representatives xA ∈ xA, xB ∈ xB
and xC ∈ xC , there are witnesses xσ ∈ C+(σ) and xτ ∈ C+(τ) such that

xσA
+−⇝⇝ xA , xB

+−⇝⇝ xσB , xτB
+−⇝⇝ xB , xC

+−⇝⇝ xτC ,

meaning in particular that xτB
+−⇝⇝ xσB, which means that there is a cartesian morphism

χ : xσB
−+⇝⇝ xτB. This forms a cartesian problem, which we can solve using Proposition 6.10:

the solution consists in yσ ∈ C (σ), yτ ∈ C (τ) matching, with χσ, χτ such that:

xσ xσB
oo χ // xτB xτ

yσ
χσ

``

yB

χσ
B

``

⊆ χτ
B

>>

yτ
χτ

>>

with χσ
A : yσA

−⇝ xσA and χτ
C : yτC

+⇝ xτC . But then, we may form yτ ⊙ yσ ∈ C+(τ ⊙ σ), with

(yτ ⊙ yσ)A
−⇝ xσA

+−⇝⇝ xA , xC
+−⇝⇝ xτC

+⇝yτC = (yτ ⊙ yσ)C

yielding a witness for (xA, xC) ∈ S(τ ⊙ σ) as required.

6.4. Further Structure. The above takes care of the main obstactle in linking thin
concurrent games with the linear Scott model, but there is still some work to do to conclude.
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6.4.1. A relative Seely functor. First, the functor of Theorem 6.11 extends to a relative Seely
functor. To show this we must adjoin to it a number of structural isomorphisms, which are
simply (the down-closure of) those of Figure 12. All required conditions are straightforward,
save for the preservation of promotion which we detail here.

Lemma 6.12. Consider S,A mixed boards with S strict, and σ : !S ⊢ A.
Then, the following diagram commutes (with t!S the down-closure of s!S):

!S(S)
(S(σ) ◦ t!S)

†
//

t!S
��

!S(T )

t!T
��

S(!S)
S(σ†)

// S(!T )

Proof. First, as (S(σ) ◦ t!S)
† and S(σ†) are down-closed, it is equivalent to compose them

with the preorder-isomorphisms s!S and s!T , which are bijections between multisets (quotiented
lists) and symmetry classes of configurations of !T (quotiented families), for which we use
similar notations, thus we will deal with these bijections implicitely in this proof.

Thus, take ([xA,l | l ∈ L], [yB,k | k ∈ K]) ∈ (S(σ) ◦ s!S)†. This means that for all k ∈ K,
we have ([xA,l | l ∈ L], yB,k) ∈ S(σ). So there is ⌊xA,l | l ∈ L⌋ and yB,k ∈ yB,k such that

yB,k
+−⇝⇝ xσ,kB , ⌊xσ,kA,j | j ∈ Jk⌋ +−⇝⇝ ⌊xA,l | l ∈ L⌋

for some xσ,k ∈ C+(σ) displaying to ⌊xσ,kA,j | j ∈ Jk⌋ ⊢ xσ,kB . We may form ⌊xσ,k | k ∈ K⌋ ∈
C+(σ†) displaying by definition to ⌊xσ,kA,j | ⟨k, j⟩ ∈ Σk∈KJk⌋ ⊢ ⌊xσ,kB | k ∈ K⌋ and

⌊yB,k | k ∈ K⌋ +−⇝⇝ ⌊xσ,kB | k ∈ K⌋ , ⌊xσ,kA,j | ⟨k, j⟩ ∈ Σk∈KJk⌋ +−⇝⇝ ⌊xA,l | l ∈ L⌋

as needed. Reciprocally, take ([xA,l | l ∈ L], [yB,k | k ∈ K]) ∈ S(σ†). By definition, there are

⌊xA,l | l ∈ L⌋ ∈ [xA,l | l ∈ L] , ⌊yB,k | k ∈ K⌋ ∈ [yB,k | k ∈ K]

representatives witnessed by σ†, i.e. there is ⌊xσ,i | i ∈ I⌋ ∈ C+(σ†), such that

⌊xσ,iA,j | j ∈ Ji⌋ +−⇝⇝ ⌊xA,l | l ∈ L⌋ , ⌊yB,k | k ∈ K⌋ +−⇝⇝ ⌊xσ,iB | i ∈ I⌋

where ∂σ† ⌊xσ,i | i ∈ I⌋ = ⌊xσ,iA,j | j ∈ Ji⌋ ⊢ ⌊xσ,iB | i ∈ I⌋. But by Lemma 5.21 (on

representatives), this means that for all k ∈ K there is i ∈ I such that yB,k
+−⇝⇝ xσ,iB . Thus

for all k ∈ K, there is i ∈ I such that xσ,i witnesses that ([xA,l | l ∈ L], yB,k) ∈ S(σ)†.

Altogether, we have the following theorem:

Theorem 6.13. The above provide the components for a relative Seely functor:

S(−) : DSInn→ ScottL .
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6.4.2. Collapse in colors. Finally, we must now extend this with colors – this essentially
follows the pattern of Section 4.4. Most ingredients are in place already: the relational
collapse of strategies in colors was introduced in Section 4.4.3, and in particular in (4.5).
As without colors, this collapse is adapted to target the linear Scott model by taking the
down-closure for the preorder with colors introduced in Section 5.4.2.

Thus, we simply restate the definition in (6.1) with colors:

SC(σ) = [RC(σ)]SC(A)op×SC(B) ∈ ScottL[SC(A),SC(B)] . (6.3)

With this definition, we can finally state our main theorem:

Theorem 6.14. For every set C we have a relative Seely functor:

SC(−) : DSInn → ScottL .

Proof. Preservation of identity as in Lemma 6.1, via Lemma 4.8. For composition, as
in Lemma 6.2, oplax functoriality follows from that for the colorful relational collapse
(Proposition 4.9). Now for lax functoriality, consider (xA, xC) ∈ SC(τ) ◦SC(σ), so there is
a position in colors xB such that (xA, xB) ∈ SC(σ) and (xB, xC) ∈ SC(τ). Unfolding the
definitions, this means that there are experiments (xσ, λσ) ∈ C+

C (σ), (xτ , λτ ) ∈ C+
C (τ) s.t.

(xσA, λ
σ
A)

+−⇝⇝ (xA, λA) , (xσB, λ
σ
B)

−+⇝⇝ (xτB, λ
τ
B) , (xC , λC)

+−⇝⇝ (xτC , λ
τ
C)

providing us in particular with a cartesian morphism χ : xσB
−+⇝⇝ xτB which preserves colors,

i.e. it relates moves with the same color. By Proposition 6.10, this cartesian problem has a
solution, giving us yσ ∈ C (σ), yτ ∈ C (τ), χσ, χτ such that:

xσ xσB
oo χ

−+ // xτB xτ

yσ
χσ

``

yB

χσ
B

``

⊆ χτ
B

>>

yτ
χτ

>>

which we must enrich with colors. To turn yσ and yτ into experiments we simply set

µσ(s) = λσ(χσ s) , µτ (t) = λτ (χτ t) ,

as χσ and χτ are forest morphisms it is straightforward that those are valid experiments.
Furthermore, µσ and µτ are matching because in the inclusion in the diagram above and
since χ preserves colors. Hence, by Lemma 4.7, we may form an experiment

(yτ ⊙ yσ, µτ ⊙ µσ) ∈ C+
C (τ ⊙ σ) ,

additionally from the definition, χσ
A and χτ

C preserve colors, so we still have

(yσA, µ
σ
A)

+−⇝⇝ (xA, λA) , (xC , λC)
+−⇝⇝ (yτC , µ

τ
C) ,

concluding lax functoriality and the fact that we have a functor. Finally, all structural
isomorphisms required for a relative Seely functor are (the down-closure of) those in Figure
13. The proof for the coherence laws is essentially undisturbed by colors.

Finally, from this we deduce:

Corollary 6.15. Consider Γ ⊢M : A a simply-typed λ-term.
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Then, the diagram commutes in ScottL, for each set C:

!JΓKDSInn!

SC(JMKDSInn!
)
//

!tΓ
��

JAKDSInn!

tA
��

!JΓKCScottL! JMKCScottL!

// JAKCScottL!

with tΓ, tA the down-closure of sΓ, sA:

We phrase the result with tΓ, tA because they are indeed the structural isomorphisms in
ScottL given through the relative Seely functor. Note however that sΓ and sA are order-
isomorphisms and SC(JMKDSInn!

) and JMKCScottL!
are down-closed, so that the diagram

also holds if tΓ, tA are simply replaced with the order-isomorphisms sΓ, sA (this glosses
over the fact that the functorial action of ! is different in Rel and ScottL. Fortunately,
it is easily verified that if φ : A ∼= B is an order-isomorphism between preorders, then
!ScottL[φ]Aop×B = [!Relφ](!A)op×!B; here this ensures that !ScottLtΓ = [!RelsΓ]).

This concludes the link between thin concurrent games and the linear Scott model –
this is really the main result of this paper. However, because we also know their relationship
with the relational model, we are able to leverage it to study the direct link between the
relational model and the linear Scott model, in the spirit of Ehrhard [Ehr12].

6.5. Quantitative Collapse. As announced, the interpretation of a simply-typed λ-term
in ScottL! is simply the down-closure of its interpretation in Rel!:

Theorem 6.16. Consider Γ ⊢M : A a simply-typed λ-term. Then, JMKScottL!
= [JMK]Rel! ].

Proof. This is direct via the following calculations in Rel:

JMKScottL!
= sA ◦SC(JMKDSInn!

) ◦ !s−1
Γ

= sA ◦ [RC(JMKDSInn!
)] ◦ !s−1

Γ

= [sA ◦RC(JMKDSInn!
) ◦ !s−1

Γ ]

= [JMKRel! ]

using Corollary 6.15 (inlining the remark about phrasing it with sΓ, sA); then by definition of
the linear Scott collapse with colors in (6.3); then using that sΓ, sA are order-isomorphisms
and hence commute with down-closure; and finally using Corollary 6.15.

In [Ehr12], Ehrhard shows that ScottL! is the extensional collapse of Rel!. Ehrhard
presents this as a relatively complex categorical statement relating two cartesian closed
categories C (in this case, Rel!) and E (in this case, ScottL!), the former intensional and the
latter extensional; roughly speaking expressing that the interpretation of the λ-calculus in E
corresponds the interpretation in C modulo extensional equivalence, a notion constructed
by induction on types. We do not reprove this extensional collapse theorem here. In fact,
Ehrhard’s statement does not seem to follow easily from our results: in order to prove the
extensional collapse, Ehrhard provides a cartesian closed category Ppl! together with

Ppl! → e(Rel!,ScottL!)

a cartesian closed functor, where (C, E) is a category of “heterogeneous logical relations”
glueing together, intuitively, an intensional model and an extensional model. There, Ppl! is
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a sort of hybrid between Rel! and ScottL!: morphisms are relations that are well-behaved
with respect to the preorder, a property phrased via biorthogonality. In particular, we have

Rel! ← Ppl! → ScottL!

cartesian closed functors, so that Ppl! can play the same role as DSInn! in the proof of
Theorem 6.16. Thus we could imagine reproving Ehrhard’s result by similarly providing

DSInn! → e(Rel!,ScottL!)

a cartesian closed functor; however the natural definition does not seem to work. Strategies
are somehow “too intensional”; the problem is that the fact that they behave well with
respect to the preorder is derived combinatorially rather than maintained as an invariant –
so they behave well only against other strategies, and not arbitrary elements in Rel!.

This is not a bug! Rather than the extensional collapse statement per se, it is the
relationship between qualitative and quantitative models implicit in Ehrhard’s paper, i.e.
Theorem 6.16, that turned out to be more influential, and that we reproduced here.

7. Conclusions

In addition to reproving Ehrhard’s result by different means, this result is a stepping stone
for other work in progress.

The first one is an infinitary extension of Theorem 6.14, i.e. an alternative collapse to
the linear Scott model giving also account of infinitary executions, i.e. infinite configurations;
we hope that such a result is key in a complete semantic understading of the decidability of
higher-order model-checking [Ong06]. Ehrhard’s does not extend to an infinitary version
of Theorem 6.16 with respect to the infinitary relational model [GM15], and actually, it
seems that surprisingly, the infinitary version of Theorem 6.16 does not hold at all in the
presence of greatest fixed point. In contrast, work in progress suggests that Theorem 6.14
does extend.

The second one is a bicategorical extension: from the result of this paper, it is not
too hard to send strategies to cartesian distributors [Oli21]. Proving that this is (pseudo-
)functorial is more subtle; this could potentially give a bicategorical version of Ehrhard’s
result, thanks to the connection we already have between thin concurrent games and
generalized species of structure [COP23].
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[Mel06] Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence. Theor. Comput.

Sci., 358(2-3):200–228, 2006.
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