
32

Game Semantics forQuantum Programming

PIERRE CLAIRAMBAULT, Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France

MARC DE VISME, Univ Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, France

GLYNN WINSKEL, University of Cambridge, United Kingdom

Quantum programming languages permit a hardware independent, high-level description of quantum algo-

rithms. In particular, the quantum λ-calculus is a higher-order programming language with quantum primitives,

mixing quantum data and classical control. Giving satisfactory denotational semantics to the quantum λ-
calculus is a challenging problem that has attracted significant interest in the past few years. Several models

have been proposed but for those that address the whole quantum λ-calculus, they either do not represent the

dynamics of computation, or they lack the compositionality one often expects from denotational models.

In this paper, we give the first compositional and interactive model of the full quantum λ-calculus, based on

game semantics. To achieve this we introduce a model of quantum games and strategies, combining quantum

data with a representation of the dynamics of computation inspired from causal models of concurrent systems.

In this model we first give a computationally adequate interpretation of the affine fragment. Then, we extend the

model with a notion of symmetry, allowing us to deal with replication. In this refined setting, we interpret and

prove adequacy for the full quantum λ-calculus. We do this both from a sequential and a parallel interpretation,
the latter representing faithfully the causal independence between sub-computations.

CCS Concepts: • Theory of computation → Denotational semantics; • Computer systems organiza-
tion → Quantum computing;

Additional KeyWords and Phrases: Quantum λ-calculus, Denotational Semantics, Game Semantics, Concurrent

Games

ACM Reference Format:
Pierre Clairambault, Marc De Visme, and Glynn Winskel. 2019. Game Semantics for Quantum Programming.

Proc. ACM Program. Lang. 3, POPL, Article 32 (January 2019), 29 pages. https://doi.org/10.1145/3290345

1 INTRODUCTION
Quantum computation, a paradigm that exploits the quantum physical aspects of reality, promises

to have a huge impact in computing. Algorithms like Shor’s [Shor 1997] factoring integers in

polynomial time and Grover’s [Grover 1996] permitting a database search of size n in O(
√
n)

challenge our traditional view of algorithmics and complexity. Meanwhile applications exploiting

quantum features in cryptography [Gisin et al. 2002] are already deployed (notably based on

Quantum Key Distribution). The field is moving fast, with large companies such as Google, IBM and

Intel investing massively in the race for practical quantum hardware.

This activity around quantum computation prompts the need for programming languages, so
as to give structured and high-level descriptions of quantum algorithms, with no reference to

Authors’ addresses: Pierre Clairambault, Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, 46 allée d’Italie, Lyon, 69364,

France, Pierre.Clairambault@ens-lyon.fr; Marc De Visme, Univ Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, 46 allée d’Italie,

Lyon, 69364, France, Marc.de-Visme@ens-lyon.fr; Glynn Winskel, Computer Laboratory, University of Cambridge, 15 JJ

Thomson Avenue, Cambridge, CB3 0FD, United Kingdom, Glynn.Winskel@cl.cam.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART32

https://doi.org/10.1145/3290345

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

https://doi.org/10.1145/3290345
https://doi.org/10.1145/3290345

32:2 Pierre Clairambault, Marc De Visme, and Glynn Winskel

the underlying hardware. And indeed, researchers have developed programming languages for

quantum computing, see [Gay 2006] for a survey. In this work we are interested in particular in the

quantum λ-calculus [Selinger and Valiron 2006], marrying quantum computation with classical

control as offered by a higher-order, functional language with recursion and datatypes such as lists.

From its inception, the quantum λ-calculus was equipped with a formal operational semantics. Yet

a denotational account is also highly desirable: it brings with it compositional, syntax-independent

reasoning and may guide the design and analysis of programming languages. Finding denotational

semantics for the quantum λ-calculus has attracted a lot of attention. Selinger and Valiron first

provided a fully abstract model for the linear fragment [Selinger and Valiron 2008]. Delbecque

[Delbecque 2011] gave a more dynamic model based on game semantics [Abramsky et al. 2000;

Hyland and Ong 2000], but for a restricted language: entanglement can happen within types qbit⊗n ,
but qbit⊗(n+m) cannot be decomposed as qbit⊗n ⊗ qbit⊗m . This means that the quantum state

remains local, and can be propagated along with the execution flow. More recently, Hasuo and

Hoshino proposed a model, based on Girard’s Geometry of Interaction [Girard 1989], of a language

with a similar restriction as in Delbecque’s language [Hasuo and Hoshino 2017]. In another direction,

Malherbe [Malherbe 2013; Malherbe et al. 2013] gave a model based on presheaves, without this

restriction on entanglement, albeit without recursion. An adequate denotational semantics for the

full quantum λ-calculus with recursion was finally achieved five years ago [Pagani et al. 2014],

mixing ideas from models of linear logic with the category CPM of completely positive maps, a
natural mathematical framework for representing (first-order) quantum computing.

While an important breakthrough, this model is not the end of the story. Indeed, it is static (it is
similar to the weighted relational models [Laird et al. 2013]): it collects all completed executions of

the classical layer of a quantum program, and annotates each with a quantum weight formalized as

a morphism in CPM. As a consequence, it carries no sequential information (nor does it claim to)

and, fundamentally, cannot represent the evaluation order. For instance, it considers equal the two

terms f (д skip) and д (f skip)1. This means that the model becomes inapplicable if one considers

that a program of the quantum λ-calculus may interact with classical execution environments, in

which such sequentiality may be observed (because of the presence of e.g. exceptions). Besides
this static aspect, the model also contains “junk”, i.e. elements not corresponding to programs. In

particular, the addition of infinite elements was required to obtain the closure properties used in

the model construction of [Pagani et al. 2014]. The model has, for instance, an inhabitant of the

interpretation of booleans that evaluates to true with “probability” 2, or even +∞.

For classical languages, static semantics can be opposed to dynamic or interactive semantics, that

display information about the sequentiality and dynamics of execution – such semantics include

game semantics and the geometry of interaction mentioned above. In this family, and besides the

models of fragments mentioned above, a recent breakthrough was achieved in [Dal Lago et al. 2017];

yielding an adequate model of the full quantum λ-calculus based on an extension of the geometry of

interaction. Compelling as it is, their approach however lacks the compositionality that one usually

expects from a denotational semantics: it describes execution of a quantum program operationally

as a token machine, i.e. an operational process where tokens walk through the syntax of the program,

modifying the quantum store. Hence the problem of finding a compositional interactive dynamic

semantics of the full quantum λ-calculus has until now remained open.

In this paper, we address this, under the form of a computationally adequate game semantics
for the full quantum λ-calculus. The basic idea behind our approach is to annotate the dynamic

description of execution offered by game semantics with annotations by quantum weigths in CPM.

Whereas the model of [Pagani et al. 2014] associates quantum weights to completed executions,

1
This holds if f , д : 1 ⊸ 1 are commands – it is of course not the case that application is commutative in this model.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:3

our model tracks them throughout computation. Through a condition constraining how quantum

annotations may evolve locally, we manage to leverage this dynamic information to avoid the

addition of infinite elements of [Pagani et al. 2014]. In fact, we show (Proposition 4.3) that all

the quantum annotations we use are in fact superoperators; known to correspond to physically

realisable operations on quantum states – ours is the first denotational model of the full quantum

λ-calculus to achieve this.

We base our semantics on concurrent games, a framework for games based around ideas from

concurrency theory. Initiated by [Abramsky and Melliès 1999; Melliès 2005], this family of game

semantics has been actively developed recently, prompted by new foundations introduced in

[Rideau and Winskel 2011] – milestones relevant to the present contribution include fully abstract

models of higher-order [Castellan et al. 2015], concurrent [Castellan and Clairambault 2016] and

probabilistic [Castellan et al. 2018; Winskel 2013] programs. A notion of quantum strategies was

already proposed in this setting [Winskel 2013] but it was not broad enough for our purposes so

we had to develop a new notion from scratch.

The choice to use concurrent games for a sequential language may seem surprising. In principle,

our methodology to add quantum information on top of games could be deployed in sequential

games. Elegance matters aside, there are two main reasons for this choice: (1) we want our model

to be a good candidate for the challenging open question of full abstraction for the full quantum

λ-calculus; already in the non-deterministic case, sequential games struggle with the branching

information required to characterize “purely functional” non-deterministic behaviour [Harmer and

McCusker 1999]. In contrast, concurrent games represent this information; (2) it is compelling to

describe a parallel evaluation of quantum programs, in the hope of having connections with the

geometry of interaction of [Dal Lago et al. 2017]; and reflecting the parallelism of quantum circuits.

Indeed, besides our sequential interpretation, from our definitions we will get for free a parallel
interpretation, reflecting the independence of sub-computations in the quantum λ-calculus.

Outline and contributions. In Section 2 we introduce the quantum λ-calculus and some quan-

tum foundations. In Section 3, we recall the linear probabilistic games of [Winskel 2013]. Our

contributions start in Section 4, where we construct the compact closed category QCG of quan-

tum concurrent games. In Section 5, we build on QCG the further structure required to interpret

the affine fragment, and prove adequacy. Finally, in Section 6 we mix quantum annotations with

symmetry from [Castellan et al. 2015], and extend our adequacy result to the full calculus.

2 THE QUANTUM λ-CALCULUS
We start this section by introducing our programming language of study, the quantum λ-calculus.
Our calculus is essentially that of [Pagani et al. 2014], with the proviso that it is affine rather than

strictly linear: all variables, even quantum, can be left unused. We will come back to this later.

The design of the quantum λ-calculus has two main inspirations. On the one hand, it is a call-by-

value higher-order programming language, not unlike ML, extended to handle quantum datatypes.

On the other hand, its typing system includes the exponential or “bang” operator (written !) from

Linear Logic [Girard 1987], used to annotate resources that are deemed safe to copy or duplicate.

This is indeed required by the laws of physics: the no-cloning theorem implies that quantum states

cannot be copied, and are therefore inherently linear. Therefore a programming language designed

to manipulate quantum states must be able to explicitly handle linear resources.

In this section we will first give the syntax and typing rules for the quantum λ-calculus. Then
we will review the basic elements of quantum mechanics used to represent pure quantum states,

and finally use them to describe the operational semantics of our language.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:4 Pierre Clairambault, Marc De Visme, and Glynn Winskel

2.1 Syntax and Typing
We first define the types of the quantum λ-calculus, generated by the grammar below.

A,B ::= qbit | 1 | A ⊗ B | A ⊕ B | Aℓ | A ⊸ B | !(A ⊸ B)

The type qbit represents qubits, the quantum equivalent of bits and atomic pieces of quantum

data. We also have a unit type 1 along with tensors (whose inhabitants are pairs), sums and finite

lists (with, as a particular case, the type of integers nat = 1
ℓ
). We do not have an explicit primitive

for classical bits, but those can be easily recovered as syntactic sugar via bit = 1 ⊕ 1. Accordingly,

we introduce the syntactic sugar ff = inl (skip) : bit and tt = inr (skip) : bit. There are two

function types: !(A ⊸ B) represents functions that may be used more than once – in contrast with

functions of type A ⊸ B, which are lost after one use. As in [Pagani et al. 2014], applications of

the exponential modality ! are restricted to function types. This restriction forbids the unrealistic

type !qbit of replicable qubits. Note however that !(1 ⊸ qbit) makes perfect sense: its elements

are functions which may be called arbitrarily many times, and which at each call generates a new

independent qubit. Types of the form !(A ⊸ B) are non-linear, while all the others are linear.
We now introduce the grammar of terms.

t ,u ::= x | λxA. t | t u | skip | t ; u | t ⊗ u | letxA ⊗ yB = t inu | inl t | inr t
| match t with (xA : u1 | yB : u2) | split | letrec f A⊸B xA = t inu
| meas | new | U

The first two lines describe a simply-typed λ-calculus with unit, tensor, sums, lists, and recursive

definitions. Hopefully any ambiguities concerning the syntax should be cleared up by the typing

rules. In particular, though there are no constructors nil and cons for lists, those may be defined as

syntactic sugar, respectively as nil = inl skip and cons t u = inr (t ⊗ u).
The last line lists quantum primitives. The first, new : bit ⊸ qbit, prepares a new qbit based on

a given bit. The second, meas : qbit ⊸ bit, performs a measurement. Finally,U : qbit⊗n ⊸ qbit⊗n

(where qbit⊗n is the iterated tensor qbit ⊗ . . . ⊗ qbit) stands for any unitary map of arity n –

the language includes a primitive for every unitary. The precise mathematical meaning of these

primitives will be reviewed in Section 2.2, where we recall some elements of quantum computing.

Before we go on to typing rules, we give the grammar of values.

v,w ::= x | λxA. t | v ⊗w | inl v | inr v | skip | split | meas | new | U

Typing judgements have the form Γ ⊢ t : Awhere Γ is a context, i.e. a list of declarations of distinct
variables x1 : A1, . . . ,xn : An . We say that Γ is non-linear iff it has the form x1 : !A1, . . . xn : !An ;

we may then write !Γ to emphasize this fact. Most typing rules are displayed in Figure 1. To these

we add an exchange rule allowing us to permute variable declarations in contexts – having an

explicit exchange helps in writing a clean definition of the interpretation in game semantics.

Throughout this paper we assume that all terms are well-typed.

Example 2.1. The reader can find in [Pagani et al. 2014] simple programs in this language. We

mention one of their examples, illustrating the interactions of quantum effects and higher-order:

⊢ telep : !(1 ⊸ ((qbit ⊸ bit ⊗ bit) ⊗ (bit ⊗ bit ⊸ qbit)))

Its definition relies on the quantum teleportation algorithm. Applied to skip, telep generates a

pair f ⊗ д of entangled functions, respectively of type f : qbit ⊸ bit ⊗ bit and д : bit ⊗ bit ⊸ qbit.
These functions are restricted to one use, but such pairs can be generated at will.

After generation, Alice takes f home and Bob takes д home. Alice can then teleport a qubit to

Bob by performing the following operations: she applies f to it, obtaining two classical bits b1 and

b2 that she can send Bob by classical means. Then Bob applies д to these, and doing so recovers

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:5

(A linear)

Γ,x : A ⊢ x : A Γ,x : !A ⊢ x : A

!Γ ⊢ v : A ⊸ B

!Γ,∆ ⊢ v : !(A ⊸ B) Γ ⊢ skip : 1

Γ,x : A ⊢ t : B

Γ ⊢ λxA. t : A ⊸ B

!Γ,∆ ⊢ t : A ⊸ B !Γ,Ω ⊢ u : A

!Γ,∆,Ω ⊢ t u : B

!Γ,∆ ⊢ t : 1 !Γ,Ω ⊢ u : A

!Γ,∆,Ω ⊢ t ; u : A

!Γ,∆ ⊢ t : A !Γ,Ω ⊢ u : B

!Γ,∆,Ω ⊢ t ⊗ u : A ⊗ B

!Γ,∆ ⊢ t : A ⊗ B !Γ,Ω,x : A,y : B ⊢ u : C

!Γ,∆,Ω ⊢ letxA ⊗ yB = t inu : C

!Γ,∆ ⊢ t : A1 ⊕ A2 !Γ,Ω,x : Ai ⊢ ui : C

!Γ,∆,Ω ⊢ match t with (xA1
: u1 | xA2

: u2) : C

Γ ⊢ t : A

Γ ⊢ inl (t) : A ⊕ B

Γ ⊢ u : B

Γ ⊢ inr (t) : A ⊕ B

Γ ⊢ t : 1 ⊕ (A ⊗ Aℓ)

Γ ⊢ t : Aℓ Γ ⊢ split : Aℓ ⊸ 1 ⊕ (A ⊗ Aℓ)

!Γ, f : !(A ⊸ B),x : A ⊢ t : B ∆, !Γ, f : !(A ⊸ B) ⊢ u : C

∆, !Γ ⊢ letrec f A⊸B xA = t inu : C Γ ⊢ meas : qbit ⊸ bit

Γ ⊢ new : bit ⊸ qbit

U unitary of arity n

Γ ⊢ U : qbit⊗n ⊸ qbit⊗n

Fig. 1. Typing rules for the quantum λ-calculus

Alice’s original qubit. Interestingly f and д can be used by Bob to send two classical bits to Alice

via a single qubit (the dense coding algorithm). As stated in [Pagani et al. 2014], the entangled f
and д form a “single-use isomorphism” between the otherwise non-isomorphic qbit and bit ⊗ bit.

On weakening. We allow weakening on any variables, as opposed to only non-linear ones in

[Pagani et al. 2014]. Even quantum variables can be left unused. This choice, already present in

the original quantum λ-calculus [Selinger and Valiron 2006], is well-suited to game semantics,

which form an inherently affine model. It is realistic: one can think of unused quantum variables

as implicitly measured and the result thrown away. More importantly, we stress that this is an

extension rather than a restriction: our adequacy result holds of course when applied to a term

satisfying the more restrictive typing discipline of [Pagani et al. 2014].

2.2 PureQuantum States and Their Operations
Pure quantum states. In order to define the operational semantics of the quantum λ-calculus, we

provide a reminder on some basic notions regarding the mathematical representation of quantum

states. We first recall here the notions required for the representation of pure states; in Section 2.4

we will go more in depth and describe the representation of mixed states, i.e. probabilistic sums of

pure states. The reader is directed to [Nielsen and Chuang 2002] for a more complete treatment.

The elementary unit of quantum information is the qubit, which is a normalized vector in the

two-dimensional Hilbert space C2
. The vectors of the canonical basis of C2

are usually written

|0⟩ and |1⟩, thought of as corresponding to the booleans false and true respectively. The state of
a qubit can therefore be described as a linear combination α |0⟩ + β |1⟩ (where α , β ∈ C such that

|α |2 + |β |2 = 1), referred to as a quantum superposition. More generally, a state of a system of n
qubits is a vector in the Hilbert space obtained as the n-fold tensor product C2 ⊗ . . . ⊗ C2

, written

(C2)⊗n , whose canonical basis vectors have the form |b1⟩ ⊗ . . . ⊗ |bn⟩, simply written as |b1 . . .bn⟩.

Basic quantum operations. Quantum algorithms on this data are defined via three basic operations:

initializations, unitary maps andmeasurements, all reflected by primitives of the quantum λ-calculus.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:6 Pierre Clairambault, Marc De Visme, and Glynn Winskel

[q, ℓ, (λxA. t)v] → [q, ℓ, t[v/x]]
[q, ℓ, skip; t] → [q, ℓ, t]

[q, ℓ,match inl (v)with (xA : t | yB : u)] → [q, ℓ, t[v/x]]
[q, ℓ,match inr (v)with (xA : t | yB : u)] → [q, ℓ,u[v/y]]

[q, ℓ, letxA ⊗ yB = v ⊗w inu] → [q, ℓ,u[v/x ,w/y]]
[q, ℓ, splitv] → [q, ℓ,v]

[q, ℓ, letrec f A⊸B xA = t inu] → [q, ℓ,u[λxA. letrec f A⊸B xA = t in t/f]]

Fig. 2. Rules for classical control

[q, ℓ,U (x1 ⊗ . . . ⊗ xk)] → [q′, ℓ,x1 ⊗ . . . ⊗ xk]
[q, |x1 . . . xn⟩,new ff] → [q ⊗ |0⟩, |x1 . . . xn+1⟩,xn+1]

[q, |x1 . . . xn⟩,new tt] → [q ⊗ |1⟩, |x1 . . . xn+1⟩,xn+1]

[αq0 + βq1, |x1 . . . xk . . . xn⟩,measxk]
|α |2

→ [q′
0
, |x1 . . . xk−1xx+1 . . . xn⟩, ff]

[αq0 + βq1, |x1 . . . xk . . . xn⟩,measxk]
|β |2
→ [q′

1
, |x1 . . . xk−1xx+1 . . . xn⟩, tt]

Fig. 3. Rules for quantum data

Initialization prepares a new qubit in state |0⟩ or |1⟩. Unitary maps of arity n are invertible linear

maps U : (C2)⊗n → (C2)⊗n such thatU † = U −1
, whereU †

is the complex conjugate transpose of U .

Finally,measurement is a probabilistic operation, taking a qubit and producing a bit. Measuring

α |0⟩+β |1⟩ yields ffwith probability |α |2 and ttwith probability |β |2. This also holds for measuring

one qubit in a system of n qubits: in general measuring the first qubit in a state α |0⟩ ⊗ϕ0 + β |1⟩ ⊗ϕ1

(assuming ϕ0,ϕ1 are normalized) yields again ff with probability |α |2 and tt with probability |β |2.
Measuring affects the state, leaving the remaining qubits in state respectively ϕ0 and ϕ1.

Example 2.2. A common unitary operation is the Hadamard gate H : C2 → C2
, sending |0⟩ to

1√
2

(|0⟩ + |1⟩) and |1⟩ to 1√
2

(|0⟩ − |1⟩). Preparing a qubit |0⟩, applying the Hadamard gate and then

measuring results in ff with probability
1

2
and tt with probability

1

2
, yielding an unbiased coin toss.

Example 2.3. Another crucial unitary operation is the controlled not gate CNOT : C2 ⊗ C2 →

C2 ⊗ C2
, defined as |00⟩ 7→ |00⟩, |01⟩ 7→ |01⟩, |10⟩ 7→ |11⟩, |11⟩ 7→ |10⟩. It is a quantum extension

of the classical gate preserving the first bit, and negating the second iff the first is tt.
Preparing the state |00⟩, applying H on the first qubit followed by CNOT yields the maximally

entangled state or “EPR pair” 1√
2

|00⟩ + 1√
2

|11⟩, that is behind the quantum teleportation term

of Example 2.1. Measuring either qubit yields ff with probability
1

2
and tt with probability

1

2
.

Subsequently measuring the other qubit then yields the same result, deterministically.

2.3 Operational Semantics
With these elements of quantum computing in place, we can formally define the operational

semantics of the quantum λ-calculus, again essentially imported from [Pagani et al. 2014].

Reductions. Configurations are [q, ℓ, t]where q ∈ (C2)⊗n is a quantum store; ℓ is a list ofn variables,
written |x1 . . . xn⟩, assigning names to the qubits in the store; and xπ (1) : qbit, . . . ,xπ (n) : qbit ⊢ t : A
(with π a permutation of {1, . . . ,n}). Unlike in [Pagani et al. 2014] arbitrary weakening is admissible

in our language, so the xi s might not all appear free in t . Note that ℓ = |x1 . . . xn⟩ acts as a binder
for x1, . . . ,xn in [q, ℓ, t]. The notion of α-equivalence is extended accordingly.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:7

Reductions are probabilistic, and have the form [q, ℓ, t]
p
→ [q′, ℓ′, t ′], meaning that the former

reduces to the latter with probabilistic weight p ∈ [0, 1]. Rules without a probabilistic annotation are
deterministic, and implicitly annotated with 1. In particular, all rules of Figure 2 are deterministic.

In contrast, the two measurement rules of 3 are probabilistic. To understand them, observe that for

any 1 ≤ k ≤ n + 1, a quantum state q ∈ (C2)⊗(n+1)
can be decomposed uniquely as

q = αq0 + βq1 = α(
∑
i

αi |φi ⟩ ⊗ |0⟩ ⊗ |ψi ⟩) + β(
∑
i

βi |φi ⟩ ⊗ |1⟩ ⊗ |ψi ⟩)

where q0, q1 are normalised, the isolated qubit in the tensor is the k-th, and i ranges over the
canonical basis of (C2)⊗n . We can then define q′

0
=

∑
i αi |φi ⟩ ⊗ |ψi ⟩ and q′1 =

∑
i βi |φi ⟩ ⊗ |ψi ⟩ where

the k-th qubit has been eliminated, reflecting the destructive aspect of quantum measurement.

The rule for unitary operations also requires disambiguation. If ℓ has the form |x1 . . . xkxk+1 . . . xn⟩,
then q′ is simply (U ⊗ id) q. In general though, we obtain q′ as (π−1 ◦ (U ⊗ id) ◦ π) q where π is the

action on the n-fold tensor of a permutation of {1, . . . ,n} ensuring that ℓ has the required form.

Finally, we add a congruence rule to close them under context. First we define

E[] ::= [] | E[]; u | letxA ⊗ yB = E[] inu | matchE[]with (xA : u1 | yB : u2)

| E[]u | v E[] | E[] ⊗ u | v ⊗ E[] | inl (E[]) | inr (E[]) ,

the evaluation contexts, and set [q, ℓ,E[t]] → [q, ℓ,E[t ′]] whenever [q, ℓ, t] → [q, ℓ, t ′].

Convergence. Using the one-step reduction between configurations defined above, we can define

a notion of convergence. First of all, a path ρ : [q1, ℓ1, t1] →→ [qn , ℓn , tn] is a reduction sequence

[q1, ℓ1, t1]
p1

→ · · ·
pn−1

→ [qn , ℓn , tn]. The weight of a path as above is w(ρ) =
∏

1≤i≤n−1
pi .

Finally, if ⊢ t : 1 is a closed term, then t converges with probability p, written t ⇓p , iff∑
ρ : [1, | ⟩,t]→→[qρ , ℓρ ,skip]

w(ρ) = p.

It is with respect to this notion of convergence that we will later on state our adequacy result.

2.4 MixedQuantum States and Completely Positive Maps
In this section, we review some of the basic structures behind the denotational semantics of [Pagani

et al. 2014] – these structures will also play a role in our game semantics.

From a program ⊢ t : qbit⊗n , the reductions terminate with values carrying pure quantum states.
But since the reductions are probabilistic, they really yield a (sub-)probability distribution on pure

states, also called amixed state. In building a denotational semantics for quantum programs onemust

adopt a framework for quantum computation which treats mixed states and their transformations

as first-class citizens: a natural choice for that is the category CPM of finite-dimensional Hilbert

spaces and completely positive maps. Instead of the concrete presentation of CPM in [Pagani et al.

2014] we opt for a more abstract one, that will mix better with our game-theoretic construction.

Hilbert spaces. Let Hilb be the category of finite dimensional Hilbert spaces. It is well-known

H K
f

ηL ϵL

Fig. 4. Partial trace

that Hilb is symmetric monoidal; write ⊗ for its tensor product and I
for its unit, which is simply C. It is further compact closed: any finite-

dimensional Hilbert space H has a dual H ∗ = Hilb(H , I), with a unit
ηH : I → H ∗ ⊗H and a co-unit ϵH : H ⊗H ∗ → I . Via this compact closed

structure Hilb admits a partial trace (to form a traced monoidal category

[Joyal et al. 1996]). Given f : H ⊗ L → K ⊗ L in Hilb, its partial trace is
a map TrL(f) : H → K , obtained as in the string diagram in Figure 4. If f : L → L, its (complete)
trace is tr(f) = TrI (I ⊗ f) : I → I so a scalar factor, matching the usual trace of the matrix of f .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:8 Pierre Clairambault, Marc De Visme, and Glynn Winskel

Indeed, Hilb(L,L) is isomorphic to L∗ ⊗ L whose vectors we can think of as matrices. With slightly

more generality than in Section 2.2, a unitary map is f : H → K in Hilb which is invertible with

inverse f −1 = f † : K → H , given by its conjugate transpose.

Positive operators. An operator is a linear map with the same domain and codomain. An operator

f : H → H in Hilb is positive if it is hermitian, i.e f = f †, and its eigenvalues are non-negative

real numbers. Write Op(H), and Pos(H), for the set of operators, respectively positive operators,

on H . We equip Op(H) with an order, the Löwner order (see e.g. [Selinger 2004]), by f ≤L д iff

д − f ∈ Pos(H). Those ρ ∈ Pos(H) for which tr(ρ) ≤ 1 are the subdensity operators, a standard for

representing mixed quantum states.

Such operators on C2
represent mixed quantum states on one qubit: a pure qubit α |0⟩ + β |1⟩

appears as

(
|α |2 α ¯β
ᾱβ |β |2

)
. Here |α |2 and |β |2 are reals and sum to 1, onemay think of |α |2 as the probability

of measuring ff, of |β |2 as that of measuring tt, and the other coefficients as required to express

the behaviour of the state under unitary transforms. More generally, a pure state expressed as a

map f : I → H in Hilb yields f̂ = f f † ∈ Pos(H) a density operator that can be also represented as

a density matrix. So, subdensity operators can represent pure states – but unlike pure states, they

are also stable under convex (sub-probabilistic) sums.

Completely positive maps. Whereas positive operators can represent mixed states, completely

positive maps can express transformations that take mixed states to mixed states. The categoryCPM
again has finite-dimensional Hilbert spaces as objects, but now a map f : H

CPM
→ K is a linear map

H ∗

ϵK
K

f
H ∗

ηH
K

Fig. 5. Construction of ¯f

f : H ∗ ⊗ H → K∗ ⊗ K in Hilb such that its correspondent
¯f : H ∗ ⊗

K → H ∗ ⊗ K , got by compact closure (Figure 5), is positive. The 1-1

correspondence f 7→ ¯f between completely positive maps and positive

operators is known as the Choi-Jamiolkowski isomorphism.

It is helpful conceptually and technically to regard f : H
CPM
→ K in CPM

as taking operators on H to operators on K , so as f : Op(H) → Op(K)
in Hilb. A linear map f : Op(H) → Op(K) is positive if it takes positive
operators to positive operators. Those f : Op(H) → Op(K) arising from

completely positive maps are those for which f ⊗ idL is positive for any

idL : Op(L) → Op(L). If a completely positive map f further satisfies tr(f (A)) ≤ tr(A) it is called a

superoperator. Superoperators represent the physically realisable operations on quantum states.

We can describe a map in CPM, regarded as a map between operators, as mapping matrices

to matrices linearly. For instance the measurement of a value 0 or 1 of a qubit in C2
is described,

respectively, by the two superoperators meas0,meas1 ∈ CPM(C2, I) where

meas0 :

(
a b
c d

)
7→ a and meas1 :

(
a b
c d

)
7→ d .

Symmetrically, the two superoperators new0, new1 ∈ CPM(I ,C2) represent initialization of a qubit:

new0 : a 7→

(
a 0

0 0

)
and new1 : d 7→

(
0 0

0 d

)
.

Finally, for f : H → K a unitary map, the superoperator f̂ : H
CPM
→ K takes д ∈ Op(H) to f дf †.

Denotational semantics. Similarly to Hilb, CPM is also compact closed, and therefore almost

equipped to model higher-order programming. Freely adding biproducts to handle ⊕, one obtains

a fully abstract model for the linear fragment [Selinger and Valiron 2008]. Replication is more

intricate: one needs to (1) enrich spaces with the action of a group of symmetries under which maps

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:9

should be invariant [Pagani et al. 2014], and (2) work on a formal completion of CPM to ensure

convergence of infinite sums; yielding an adequate model of the quantum λ-calculus.

3 LINEAR PROBABILISTIC GAMES
In this section, we start introducing the required notions towards our quantum game semantics.

From a pedagogical viewpoint, we find it simpler to first introduce the probabilistic model, on

which we will build in Section 4 to present quantum games.

Game semantics present computation as a game between two players: Player and Opponent.

Player plays for the program under study, whereas Opponent plays for its execution environment.

They exchange moves obeying rules specified by a game interpreting the type. Finally, a program
is represented as a strategy for Player, presenting its interactive behaviour with its environment.

Our strategies follow a game semantics paradigm focusing on positions and causality rather

than (sequential) plays, initiated by [Abramsky and Melliès 1999; Melliès 2005], and developed

further by [Faggian and Piccolo 2009; Melliès and Mimram 2007]. Our definitions build on the

non-deterministic realization of this paradigm in the language of event structures, originating in
[Rideau and Winskel 2011]. Recently, this formulation has been actively developed (e.g. [Castellan
et al. 2015; Clairambault et al. 2012]) and proved to be a powerful and versatile basis for semantics;

including with probabilities [Castellan et al. 2018]. See [Castellan et al. 2017] for an introduction.

3.1 Games and Non-Deterministic Strategies
We start by introducing games and strategies without probabilities, to be added in a second stage.

3.1.1 Games. The game corresponding to a type presents all computational events that may happen

in a call-by-value computation on this type, along with their dependencies. As an example, Figure

6 shows the game corresponding to (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1 (the details of this correspondence will

be given later on in the paper). The diagram is read from top to bottom. Each move (or event) is
annotated with a polarity that specifies whether it is due to Player (+) or Opponent (−). Before

anything else, the term under study has to evaluate to a value (an abstraction), corresponding to the

initial λ+. The next available move is (λ, λ)− corresponding to Opponent giving Player an argument

– being on a tensor type, this argument is a pair of values, here abstractions. Upon being called, the

function may return (yielding the rightmost sk+), or may feed a value to one of the two argument

functions, which in turn might return. In the diagram of Figure 6 and others to come, we attempt

to place moves under the corresponding type component.

Formally, both games and strategies will be certain event structures [Winskel 1986].

Definition 3.1. An event structure (es) is (E, ≤E ,ConE) where E is a set of events partially
ordered by ≤E the causal dependency relation, and ConE is a nonempty consistency relation

consisting of finite subsets of E. These are subject to the following additional axioms:

[e]E =def {e
′ | e ′ ≤E e} is finite for all e ∈ E,

{e} ∈ ConE for all e ∈ E,
Y ⊆ X ∈ ConE implies Y ∈ ConE , and

X ∈ ConE & e ≤E e ′ ∈ X implies X ∪ {e} ∈ ConE .

An event structure with polarities (esp) additionally has a function polE : E → {−,+}
assigning to each event a polarity.

Wewill often drop the E in ≤E ,ConE , [e]E whenever it is clear from the context.When introducing

an event in the presence of polarities, we will often annotate it to specify its polarity, as in e+, e−.
The relation e ′ ≤E e expresses that e causally depends on the earlier occurrence of event e ′. That

a finite subset of events is consistent conveys that its events can occur together by some stage in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:10 Pierre Clairambault, Marc De Visme, and Glynn Winskel

(1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

λ+

(λ, λ)−

sk+ sk+ sk+

sk− sk−

Fig. 6. The game for (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

(1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

λ+#nnt
(λ, λ)−%oousk+

� ''.sk−
�))/sk+

� ''.sk−
� ''.sk+

Fig. 7. A strategy on (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

the evolution of the process. Event structures come with a notion of state: a (finite) configuration
is a finite x ⊆ E which is consistent, i.e. x ∈ ConE , and down-closed, i.e. for all e ∈ x , for all e ′ ≤E e
we have e ′ ∈ x as well. We write C (E) for the set of all configurations of E. Finally, we also write

e _E e ′, called immediate causal dependency iff e <E e ′ with no event strictly in between.

Figure 6 presents an event structure, with all subsets consistent and a tree-like causality drawn

with dotted lines. Though the interpretation does not exploit the generality of this definition,

we define a game to be an esp A that is race-free, i.e. if x ,x ∪ {a−
1
},x ∪ {a+

2
} ∈ C (A), then

x ∪ {a1,a2} ∈ C (A) as well. We introduce a few simple constructions on games: the dual A⊥
of

A has the same components as A, except for polA⊥ = −polA. For A1,A2 two games, their parallel
composition A1 ∥ A2 has events A1 + A2 = {1} × A1 ∪ {2} × A2 the tagged disjoint union, and

causality (i,a) ≤ (j,a′) iff i = j and a ≤Ai a
′
. Each subset of A1 ∥ A2 has the form X = X1 ∥ X2 –

we set X ∈ ConA1 ∥A2
iff X1 ∈ ConA1

and X2 ∈ ConA2
. Finally, polarity if polA1 ∥A2

(i,a) = polAi (a).

3.1.2 Strategies. A strategy presents the computational events of the game that a program is

prepared to make, along with enriched causal constraints. For instance, Figure 7 displays what will

be the strategy for ⊢ λx . let f 1⊸1 ⊗ д1⊸1 = x inд (f skip) : (1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1. As the term is

an abstraction, the strategy immediately plays the initial λ+. When called with a pair (λ, λ)−, the
strategy feeds sk+ to f . When f returns, the resulting value is copied to д. Finally when д returns,

the term returns at toplevel. This strategy is a total order, but in general strategies are partial orders

and may be non-deterministic, formalized as event structures labelled by the game.

Definition 3.2. A strategy on game A is an es S , with a labelling function σ : S → A, which is:

(1) Rule-abiding. For any x ∈ C (S), σ x ∈ C (A),
(2) Locally injective. For any s, s ′ ∈ x ∈ C (S), if σ s = σ s ′ then s = s ′.
(3) Receptive. If x ∈ C (S) and σ x extends with negative a− ∈ A, i.e. a < σ x and σ x ∪{a} ∈ C (A),

then there exists a unique s ∈ S such that σ s = a and x ∪ {s} ∈ C (S).
(4) Courteous. If s1 _S s2, then either σ s1 _A σ s2, or polA(σ s1) = − and polA(σ s2) = +.

Besides conditions (1), (2) that express that σ is a sensible labeling of S by moves of the game

(they amount to σ being a map of event structures [Winskel 1986]), receptivity expresses that Player

cannot prevent Opponent from playing one of his moves, and courtesy that Player may only choose

which positive events to play, and which negative events enable them.

The polarity of A lifts to S through σ ; we may hence talk about the polarity of s ∈ S and write

polS (s) for polA(σ s). When representing a strategy, we will as in Figure 7 show the event structure

S , with moves displayed as their image through σ . We will also reflect through the dotted lines

the immediate causal order in the underlying game, so as to avoid having to represent both the

game and the strategy. The strategy of Figure 7 is deterministic (all finite subsets consistent), but

some future diagrams (e.g. in Figure 9) will involve a relation called immediate conflict and
carrying the information on consistency: a finite subset of events is consistent iff its down-closure

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:11

©­­­­­­­­«

(1 ⊸ 1) ⊗ (1 ⊸ 1) +→ (1 ⊸ 1)

(λ, λ)−
)qqx �))0sk+
� ##+

λ+@zz�
sk−

� &&-
sk−

t���

sk+
� ##+
sk−

�))/sk+

ª®®®®®®®®¬
⊙

©­­­­­­­­«

1 +→ (1 ⊸ 1) ⊗ (1 ⊸ 1)

sk−

� ((/(λ, λ)+
,rrz � ��%

sk−
	 ��(

sk−
-ssz 	 ��(

sk+ sk+

ª®®®®®®®®¬
=

©­­­­­­­­«

1 +→ (1 ⊸1)

sk−

� &&-λ+H~~�
sk−

ª®®®®®®®®¬
Fig. 8. Composition of two strategies σ : 1 +→ (1 ⊸ 1) ⊗ (1 ⊸ 1) and τ : (1 ⊸ 1) ⊗ (1 ⊸ 1) +→ (1 ⊸ 1)

does not contain two events in immediate conflict. Not all consistency relations can be represented

in this way, but this representation will be sufficient for the purposes of this paper.

3.1.3 Composition. In denotational semantics programs are interpreted compositionally by induc-

tion on syntax, each syntactic construction being matched by a semantic one. Crucially, interpreting

application and substitution involves composition of strategies. A strategy from game A to game
B is simply a strategy σ : S → A⊥ ∥ B playing on a compound game A⊥ ∥ B. We will occasionally

write σ : A +→ B, keeping the S anonymous. From σ : A +→ B and τ : B +→ C we wish to define

τ ⊙ σ : A +→ C resulting from their interaction – this relies on the following definition.

Take from now on strategies σ : S → A⊥ ∥ B and τ : T → B⊥ ∥ C , that we wish to compose.

Definition 3.3. Configurations xS ∈ C (S) and xT ∈ C (T) are causally compatible iff (1) they
arematching, i.e. σ xS = xA ∥ xB and τ xT = xB ∥ xC , and (2) the induced composite bijection φ

xS ∥ xC
σ ∥xC
� xA ∥ xB ∥ xC

xA ∥τ −1

� xA ∥ xT

is secured, i.e. the relation (c,d) ◁ (c ′,d ′) ⇔ (c ≤S ∥C c ′ ∨d ≤A∥T d ′) on (the graph of) φ is acyclic.

A causally compatible pair (xS ,xT) is minimal iff it is minimal amongst causally compatible

pairs with the same projections on A and B, ordered by the product of the inclusions.

Causally compatible pairs are the expected states of the interaction between σ and τ – the

matching condition expresses that configurations agree on the interface, and the securedness that

they do not impose incompatible causal constraints; in other words no deadlock arises in their

synchronization. To illustrate this, we highlight in the example composition of Figure 8 the maximal

pair of configurations of σ , τ which are causally compatible as those that are not grayed out. The

full configurations satisfy condition (1) above, but not condition (2): the induced bijection is not

secured, as σ and τ have incompatible constraints for the next two moves. Finally, the highlighted

configurations are causally compatible, but not minimal: removing the sk that depends on (λ, λ) in
both strategies yields a causally compatible pair with the same projections.

To define composition, we rely on the following proposition.

Proposition 3.4. There is a strategy τ ⊙ σ : T ⊙ S → A⊥ ∥ C , unique up to isomorphism,
such that there is an order-isomorphism between minimal causally compatible pairs (xS ,xT) and
configurations z ∈ C (T ⊙ S) (we write z = xT ⊙ xS to emphasize this correspondence), and such that
writing σ xS = xA ∥ xB and τ xT = xB ∥ xC , we then have (τ ⊙ σ) (xT ⊙ xS) = xA ∥ xC .

Here, isomorphism between strategies σ : S → A and σ ′
: S ′ → Ameans a bijection φ : S � S ′

preserving and reflecting all structure, making the obvious triangle commute.

We show in Figure 8 an example of composition. Concretely, τ ⊙σ : T ⊙S → A⊥ ∥ C is computed

by replaying within event structures the paradigm that composition is parallel interaction plus hiding,
familiar from traditional game semantics: first we construct the interaction T ⊛ S where we let S

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:12 Pierre Clairambault, Marc De Visme, and Glynn Winskel

1 ⊸ bit

λ+
(1)4uu�

sk−

� &&- � ((/tt+
(1

2
)

ff+
(1

2
)

Fig. 9. Interpretation of coin : 1 ⊸ bit

(1 ⊸ 1) ⊗ (1 ⊸ 1)

λ ⊗ λ+
(1)

)qqx � ��(
sk−

 !!*
sk−

 !!*
sk+

(1

2
)

sk+
(1

2
)

Fig. 10. Non-local probabilistic correlation

andT freely synchronize on B; then we hide, keeping only the events that map toA orC , i.e. that are
not synchronized. In this paper we will not detail the concrete construction of composition, which

is covered at length elsewhere [Castellan et al. 2017]. Instead we will only rely on the proposition

above, which characterises composition uniquely.

3.1.4 Categorical structure. In order to get a category we need to define an identity, the copycat
strategy. Again instead of repeating its concrete definition from [Castellan et al. 2017], we recall

a useful characterization. In the proposition below, for x ,y configurations of a game A we write

x ⊆− y iff x ⊆ y and pol(y \ x) ⊆ {−}; and symmetrically for x ⊆+ y.

Proposition 3.5. For any gameA there is a unique strategy ccA : CCA → A⊥ ∥ Awith eventsCCA =

A⊥ ∥ A, ccA the identity function, and configurations those xA ∥ yA such that xA ⊇+ xA ∩ yA ⊆− yA.

Onemay think of ccA as an asynchronous forwarder: whenever it receives a negative event on one

side, it propagates it to the other side – in an asynchronous manner. So a state xA ∥ yA ∈ C (CCA)

has a core xA ∩ yA of already propagated moves, present in both components, extended with

negative not-yet-propagated moves to the right, and dually to the left.

As expected, copycat is neutral for composition up to iso [Rideau and Winskel 2011]. There

is a monoidal structure, given on games by A ∥ B and on strategies σ1 : S1 → A⊥
1

∥ B1 and

σ2 : S2 → A⊥
2
∥ B2 by the obvious labeling map σ1 ∥ σ2 : S1 ∥ S2 → (A1 ∥ A2)

⊥ ∥ (B1 ∥ B2).

In [Castellan et al. 2017], it is proved that:

Theorem 3.6. There is a compact closed category (CG, ∥, (−)⊥) having games as objects, and as
morphisms strategies up to isomorphism.

3.2 Probabilistic Strategies
Having reviewed the core category of concurrent games developed in [Castellan et al. 2017; Rideau

and Winskel 2011], we now recall its enrichment with probabilities [Winskel 2013], applied to the

semantics of a probabilistic programming language in [Castellan et al. 2018].

3.2.1 Definition. Tomotivate the definition of probabilistic strategies, let us look first at a simplified

example: the interpretation of a coin : 1 ⊸ bit primitive, which upon call produces tt with

probability
1

2
and ff with probability

1

2
(coin is actually definable in the quantum λ-calculus,

following the quantum algorithm outlined in Example 2.2). We hope the reader will agree that the

diagram of Figure 9 fairly represents the behaviour of coin; where each Player event is annotated

with the probability of playing it once its conditions are met. Furthermore, in such a probabilistic

choice, the sum of annotations for the different events in conflict should not exceed one.

However, simply annotating events with probabilities is too naive – in reality, probabilistic

weights are not local. Indeed, consider the diagram of Figure 10. If Opponent plays only one sk−,
Player will play the corresponding sk+ with probability

1

2
. But what happens if Opponent plays

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:13

both occurrences of sk−, what is the probability of getting both occurrences of sk+? If the choices
are independent, then it should be

1

4
. On the other hand, maybe the diagram is intended to represent

⊢ if coin() then (λy. skip) ⊗ (λy. skip) else (λy.⊥) ⊗ (λy.⊥) : (1 ⊸ 1) ⊗ (1 ⊸ 1)

(with the obvious syntactic sugar) in which case, the probability of getting both is
1

2
. So instead of

simply annotating events with probabilities, we will annotate configurations.
More precisely, we will annotate a strategy with a probability valuation, a function v : C (S) →

[0,∞) with the intuition that v(x) records the probability of reaching x , conditionally to Opponent

playing the negative events in x (it will follow a posteriori that valuations are less than one).

However, not all such functions make sense as probability valuations. If x can extend with s+
1
and s+

2

in conflict, then we expect thatv(x) ≥ v(x∪{s1})+v(x∪{s2}) – an equality would mean that in state

x we make a probabilistic choice between s1 and s2, the inequality giving us a chance to get stuck at

x . But if s1 and s2 are compatible, how should we adapt the constraint above? Reading v(x) as the
probability of ending up in x or above, one observes that v(x ∪ {s1, s2}) is accounted for twice in

v(x∪{s1})+v(x∪{s2}), hence the constraint becomesv(x) ≥ v(x∪{s1})+v(x∪{s2})−v(x∪{s1, s2}).

In general, formalizing this observation involves an inclusion-exclusion principle that is at the
basis of our definition of probabilistic strategies [Winskel 2013].

Definition 3.7. A probabilistic strategy on game A is a strategy σ : S → A, together with a

probability valuation, i.e. a function vσ : C (S) → [0,∞) which is

• Normalised: vσ (∅) = 1;

• Oblivious: If x ⊆− y then vσ (x) = vσ (y), for x ,y ∈ C (S); and
• Monotone: If y ⊆+ x1, · · · ,xn then dv [y;x1, · · · ,xn] ≥ 0,

where the drop function is, for y,x1, . . . ,xn ∈ C (S),

dv [y;x1, · · · ,xn] =def vσ (y) −
∑

∅,I ⊆{1, · · · ,n }

(−1) |I |+1vσ (xI) ,

where xI =
⋃

i ∈I xi andvσ (xI) = vσ (
⋃

i ∈I xi) when the union xI is a configuration and 0 otherwise.

Together these conditions ensure that the range of a probability valuation stays within [0, 1].

3.2.2 Categorical Structure. Copycat, being deterministic [Winskel 2012], can be turned into a

probabilistic strategy simply by giving to all configurations the value 1, i.e. vccA (x ∥ y) = 1 for all

x ∥ y ∈ C (CCA). The crucial point is composition, which relies on the proposition below.

Proposition 3.8. If σ : S → A⊥ ∥ B and τ : T → B⊥ ∥ C are probabilistic strategies, then
τ ⊙ σ : T ⊙ S → A⊥ ∥ C , equipped with the function

vτ ⊙σ : C (T ⊙ S) → [0,∞)

xT ⊙ xS 7→ vτ (xT) ×vσ (xS)

is a probabilistic strategy.

The proof follows from an analysis of properties of drop functions, see [Winskel 2013] for details.

Likewise, the monoidal product of strategies is extended to probabilistic strategies by setting, for

σ1 : S1 → A⊥
1
∥ B1 and σ2 : S2 → A⊥

2
∥ B2, vσ1 ∥σ2

(x1 ∥ x2) = vσ1
(x1) ×vσ2

(x2). Overall, we get:

Theorem 3.9. There is a compact closed category (PCG, ∥, (−)⊥) having games as objects, and as
morphisms probabilistic strategies up to isomorphism.

In the statement above, isomorphism is to be understood as an isomorphism between the

underlying strategies which additionally preserves the probability valuation. Though all categorical

laws hold up to isomorphism of probabilistic strategies, it is too strict for our purposes. Indeed, on

the game with one move sk+, the probabilistic strategies sk+
(1

2
)

sk+
(1

2
)
and sk+

(1)
are not isomorphic.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:14 Pierre Clairambault, Marc De Visme, and Glynn Winskel

3.2.3 Simulation Preorder. In this paper, we will occasionally need a coarser equivalence merging

these branches, considering probabilistic strategies up to the branching time information.

Definition 3.10. A simulation map from probabilistic strategy σ : S → A to σ ′
: S ′ → A is a

map of event structures f : S → S ′ (i.e. satisfying (1) and (2) of Definition 3.2) such that σ ′ ◦ f = σ ,
which is rigid i.e. for all s, s ′ ∈ S , s ≤S s ′ =⇒ f s ≤S ′ f s

′
; and such that for all y ∈ C (S ′),∑

f x=y

vσ (x) ≤ vσ ′(y).

We write σ ≼ σ ′
if there is such a map from σ to σ ′

. This preorder is a congruence: it is preserved
by all operations on strategies. In particular, for σ ≼ σ ′

, then τ ⊙σ ≼ τ ⊙σ ′
. Thus the corresponding

equivalence relation ≈, defined as σ ≈ σ ′
iff σ ≼ σ ′

and σ ′ ≼ σ , is also a congruence coarser than

isomorphism. Throughout this paper we treat strategies as concrete representatives and make it

explicit up to which equivalence equations hold.

Simulation equivalence merges branches, summing valuations: e.g. sk+
(1

2
)

sk+
(1

2
)
≈ sk+

(1)
.

4 LINEAR QUANTUM GAMES
We now come to the core technical contribution of this paper, quantum concurrent games. Our

definitions are inspired by putting together ideas from the probabilistic games presented above,

and the use of CPM for the interpretation of the quantum λ-calculus in [Pagani et al. 2014].

4.1 Quantum Games and Strategies
Before getting into the subject proper, let us start by presenting some of the guiding principles

and objectives behind the technical definitions. First of all, we expect the interpretation of a closed

term ⊢ t : qbit⊗n to be a mixed quantum state on n qubits, i.e. a density matrix. Likewise, the

interpretation of a term x : qbit⊗n ⊢ t : qbit⊗p should match the physically realizable quantum

transformations from mixed states on n qubits to mixed states on p qubits, i.e. superoperators.
Another guiding principle is that the quantum state should only involve components of the

type that are visited by the classical control flow. For instance, the term f : qbit ⊸ 1 ⊢ skip : 1

does not use its argument f and does not feed it a quantum state; accordingly its interpretation

should be purely classical. More generally, the full quantum state is revealed lazily as the control

flow visits quantum components. This is vital for the extension with replication in Section 6: for a

term ⊢ λxqbit. x : !(qbit ⊸ qbit), to avoid the use of infinite dimensional spaces, the semantics will

allocate new quantum resources lazily as Opponent calls new copies of the function. In particular,

interpreting a term ⊢ t : A where A is purely classical should yield a probabilistic strategy as in

the previous section, even if t involves some quantum space that disappears in an application of

one subterm to another. For instance, ⊢ meas (H (new 0)) : bit (see Example 2.2) will yield through

the interpretation the probabilistic strategy tt+
(1

2
)

ff+
(1

2
)
– the internal quantum state used in the

course of computation does not appear in the strategy.

4.1.1 Quantum Games. With all these ideas in place, we give the notion of quantum games.

Definition 4.1. A quantum game (A,HA) comprises A a game, and HA : A → Hilb associating

to any event a finite-dimensional Hilbert space.

We extend HA to any x ⊆ A (not only configurations) by HA(x) =
⊗

a∈x HA(a) – in particular

HA(∅) = I , i.e. complex numbers, the one-dimensional Hibert space. The constructions on games of

Section 3.1.1 are easily extended to quantum games, by statingHA⊥ (a) = HA(a)
∗
(the dual space),

and HA ∥B ((1,a)) = HA(a) andHB ((2,b)) = HB (b), so thatHA ∥B (xA ∥ xB) = HA(xA) ⊗ HB (xB).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:15

1 ⊸ (qbit ⊸ bit ⊗ bit) ⊗ ((bit ⊗ bit) ⊸ qbit)

λ+I

sk−I
(λ, λ)+I

q−
(C2)∗

(b1,b2)
−
I (b ′

1
,b ′

2
)−I

(b1,b2)
+
I (b ′

1
,b ′

2
)+I q+

C2
q+
C2

Fig. 11. The quantum game for 1 ⊸ (qbit ⊸ bit ⊗ bit) ⊗ ((bit ⊗ bit) ⊸ bit)

As an example, we give in Figure 11 the quantum game for the type (omitting the !) of our

program of Example 2.1 (we represent symbolically four events (tt, tt), (tt, ff), (ff, tt), and (ff, ff),
all conflicting, with two conflicting events (b1,b2) and (b ′

1
,b ′

2
)). This quantum game will indeed

arise as the interpretation of this type according to the definitions of Section 5, but for now we will

just argue that it captures the available computations on this type: first, a program of this type may

converge to an abstraction. When fed skip, it may converge to a pair of abstractions. Each of these

two functions may then be called. If the left hand side one is fed a qubit, it may return any pair of

booleans. Finally if the right hand side function is fed a pair of booleans, it may return a qubit.

In this example, each occurrence of bit ⊗ bit gives rise to one event for each pair of booleans.

However, it is not the case that there is one event per (pure or mixed) quantum state. In fact, in

the example above an occurrence of qbit gives rise to exactly one move (though the one on the

right is duplicated to match its several possible causal histories). This reflects that the value of a

qubit cannot directly impact the control flow: it has to be measured first, giving rise to classical

data on which the program can then branch. Instead, the quantum nature of qbit is reflected by

the annotation with the Hilbert space C2
(or its dual (C2)∗, which is of course isomorphic to C2

),

serving as base for the forthcoming annotations of configurations of strategies with operators.

4.1.2 Quantum Strategies. Finally, we are in a position to introduce quantum strategies. Recall that
in the probabilistic case, for σ : S → A, to any configuration x ∈ C (S) we associated a valuation

vσ (x) ∈ [0,∞) which a posteriori, by the other conditions appeared to be in [0, 1]. Likewise now, to
any x ∈ C (S) we will associate a positive operator Qσ (x) ∈ Pos(HA(σx)), similarly restricted by

the other conditions (the extent of these restrictions is investigated in Section 4.1.3).

Definition 4.2. A quantum strategy on A is a strategy σ : S → A, with a quantum valuation
for σ , an assignment which to each x ∈ C (S) associates Qσ (x) ∈ Pos(HA(σ x)), which is

• Normalised: Qσ (∅) = 1I , the identity operator on the unit space I = C,
• Oblivious: If x ⊆− y then Qσ (x) ⊗ idHA(σy\σx) = Qσ (y),
• Monotone: If y ⊆+ x1, · · · ,xn then dQ [y;x1, · · · ,xn] ≥L 0, where:

dQ [y;x1, · · · ,xn] =def Qσ (y) −
∑

∅,I ⊆{1, · · · ,n }

(−1) |I |+1
TrH(σxI \σy)(Qσ (xI)) .

Analogously to the probabilistic case, we take Qσ (xI) = Qσ (
⋃

i ∈I xi) when the union is a

configuration and to be 0, the zero operator, otherwise.

A difficulty in extending the “monotone” condition to the quantum case is that as events are

played the ambient Hilbert space grows, so the operators to be added act on different spaces. Hence,

we use the partial trace to bring back all terms of the sum to a common space. Alternative ways to

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:16 Pierre Clairambault, Marc De Visme, and Glynn Winskel

do so (e.g. completing, or taking the complete trace) suffer from various pathologies (typically, we

lose stability of the monotone condition under composition of strategies).

4.1.3 Quantum Strategies and Superoperators. We mention a few properties of the definition.

Firstly, if σ : S → A is a quantum strategy where A is classical (i.e. HA(a) = I for all a ∈ A),
then for any x ∈ C (S), Qσ (x) is a positive operator on C, i.e. multiplication by a non-negative real.

Through this correspondence, Definition 4.2 degenerates to Definition 3.7, so a quantum strategy

on a classical game is as expected just a probabilistic strategy. Secondly, consider σ : S → qbit⊗n ,
where qbit⊗n is the game with one move q+, annotated with space (C2)⊗n . Then, for any s ∈ S ,
Qσ ({s}) is a positive operator on (C2)⊗n of trace less than 1, i.e. a subdensity operator, the standard
notion of mixed quantum states. This observation, which applies in fact whenever there are no

Opponent events, can be generalized in their presence as follows.

Let σ : S → A be a quantum strategy, and x ∈ C (S) with σ x = xA. Let us write x
+
A (resp. x−A) for

the set of positive (resp. negative) events in xA. Then, by definition we have

Qσ (x) ∈ Pos(H(x−A) ⊗ H(x+A))

By the Choi-Jamiolkowski iso, this corresponds to
−Q+(x) : H(x−A)

∗ CPM
→ H(x+A), satisfying:

Proposition 4.3. For any x ∈ C (S), −Q+(x) : H(x−A)
∗ CPM
→ H(x+A) is a superoperator.

Proof. Iterating the “monotone” condition on a chain ∅ ⊆−⊆+ · · · ⊆−⊆+ x , we deduce that
TrH(x+A)

(Qσ (x)) ≤L idH(x−
A)
. It is a known refinement of the Choi-Jamiolkowski isomorphism that

under it, this condition matches that of a superoperator (see [Selinger 2004], Theorem 6.7(ii)). □

This proposition is an important consistency check for our notion of quantum strategy: it

formalizes the fact that just as in the probabilistic case (where valuations are a posteriori observed
to stay in [0, 1]), our conditions ensure that the quantum annotations we obtain make physical

sense. Constructing a model sufficiently powerful to interpret the quantum λ-calculus but where
quantum valuations remain physically realizable is not self-evident: for instance the interpretation

of [Pagani et al. 2014] relies on completely positive maps which are not superoperators.

4.2 A Compact Closed Category of LinearQuantum Strategies
We now investigate the compositional and categorical structures for quantum strategies.

4.2.1 Composition. In preparation for composition, we use the Choi-Jamiolkowski isomorphism

and the compact closed structure of CPM to give a more composition-friendly specialization of

quantum strategies in the case of strategies from a game A to a game B.
Let σ : S → A⊥ ∥ B be a quantum strategy, and x ∈ C (S) with σ x = xA ∥ xB . By definition

of quantum valuations, we have Qσ (x) ∈ Pos(HA⊥ ∥B (xA ∥ xB)) = Pos(HA(xA)
∗ ⊗ HB (xB)). It

corresponds through the Choi-Jamiolkowski isomorphism to a completely positive:

Q�
σ (x) : HA(xA)

CPM
→ HB (xB)

Unlike
−Q+(x),Q�(x) is not in general a superoperator. However, its formmakes it much easier to

compose quantum valuations when composing quantum strategies. Indeed, for quantum strategies

σ : S → A⊥ ∥ B and τ : T → B⊥ ∥ C , we can simply set the following strikingly simple

Q�
τ ⊙σ (xT ⊙ xS) = Q�

τ (xT) ◦ Q
�
σ (xS) : HA(xA)

CPM
→ HC (xC)

where σ xS = xA ∥ xB and τ xT = xB ∥ xC .
Again through the Choi-Jamiolkowski isomorphism, this provides a quantum valuation Qτ ⊙σ as

required by Definition 4.2. However, in order to prove that it satisfies the condition of a quantum

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:17

H(a1)
∗ H(b1)

∗

H(a1) H(b1).
. . . Q�

σ (x) . . .
H(an)

∗ H(bq)
∗

H(an) H(bq)

H(a′
1
)∗ H(b ′

1
)∗ϵH(a′

1
) ηH(b′

1
)

H(a′
1
) H(b ′

1
).

.
H(a′p)

∗
H(b ′r)

∗
ϵH(a′p) ηH(b′r)H(a′p) H(b ′r)

Fig. 12. Expansion ⇑y (Q�
σ (x))

H(a1)
∗ H(b1)

∗

H(a1) H(b1).
.

H(an)
∗ H(bq)

∗

H(an) H(bq)
Q�
σ (y)

ηH(a′
1
) ϵH(b′

1
)

.

.
ηH(a′p) ϵH(b′r)

Fig. 13. Reduction ⇓x (Q
�
σ (y))

strategy, it is convenient to first reformulate these conditions based on Q�
rather than Q; in

particular the completion in condition “oblivious” and the partial trace in condition “monotone”

need rephrasing. Consider σ : S → A⊥ ∥ B, and x ,y ∈ C (S) such that x ⊆ y. Furthermore, write

σ x = xA ∥ xB and σ y = yA ∥ yB . Then, the expansion and reduction, with respective type

⇑y (Q�
σ (x)) : HA(yA)

CPM
→ HB (yB) ⇓x (Q

�
σ (y)) : HA(xA)

CPM
→ HB (xB)

are defined via the compact closed structure of Hilb, as described in Figures 12 and 13 (where

xA = {a1, . . . ,an},xB = {b1, . . .bq}, yA \ xA = {a′
1
, . . . ,a′p } and yB \ xB = {b ′

1
, . . . ,b ′r }).

With that, the conditions for a quantum strategy from A to B become:

Proposition 4.4. Let σ : S → A⊥ ∥ B be a (classical) strategy, and Qσ : (x ∈ C (S)) → Pos(σ x) a
candidate quantum valuation. Then Qσ is a quantum valuation iff Q�

σ satisfies:

• Normalised: Q�(∅) = 1 : I
CPM
→ I ,

• Oblivious: If x ⊆− y then Q�(y) = ⇑y (Q�(x)),
• Monotone: If y ⊆+ x1, · · · ,xn then dQ� [y;x1, . . . ,xn] : H(yA)

CPM
→ H(yB), where

dQ� [y;x1, . . . ,xn] = Q�(y) −
∑

∅,I ⊆{1, ...,n }

(−1) |I |+1 ⇓y (Q
�(xI)) ,

again with Q�(xI) = Q�(
⋃

i ∈I xi) when the union is a configuration and the zero map otherwise.

The proof of this proposition follows directly from the compact closed structure of Hilb. Then,
the fact that Q�

τ ⊙σ satisfies the condition of Proposition 4.4 mimics that of the probabilistic case

[Winskel 2013], with the product of reals replaced by composition in CPM.

4.2.2 Categorical Structure. We need to equip the copycat strategy ccA : CCA → A⊥ ∥ A with

a quantum valuation. As composition of quantum strategies relies on composition in CPM, we

expect the quantum valuation of copycat to rely on the identities in CPM. Indeed, for balanced

configurations of the form x ∥ x ∈ C (CCA), we set Q
�
ccA (x ∥ x) = idH(x) : H(x)

CPM
→ H(x).

In general, configurations of copycat are x ∥ y where x ⊇+ x ∩ y ⊆− y; i.e. a balanced x ∩ y ∥

x ∩ y ∈ C (CCA) with a negative extension to x ∥ y. The definition is forced by obliviousness to be:

Q�
ccA (x ∥ y) = ⇑x ∥y (idH(x∩y)) : H(x)

CPM
→ H(y).

For the monoidal product, we again rely on that of CPM: given σ1 : S1 → A⊥
1
∥ B1 and σ2 : S2 →

A⊥
2
∥ B2, with x1 ∈ C (S1) and x2 ∈ C (S2) such that σ1 x1 = xA1

∥ xB1
and σ2 x2 = xA2

∥ xB2
, we set:

Q�
σ1 ∥σ2

(x1 ∥ x2) = Q�
σ1

(x1) ⊗CPM Q�
σ2

(x2) : H(xA1
) ⊗ H(xA2

)
CPM
→ H(xB1

) ⊗ H(xB2
)

Pairing the usual analysis of composition with algebraic manipulations in Hilb, we obtain:

Theorem 4.5. There is a compact closed category (QCG, ∥, (−)⊥) having quantum games as objects,
and as morphisms quantum strategies up to isomorphisms preserving quantum valuations.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:18 Pierre Clairambault, Marc De Visme, and Glynn Winskel

4.2.3 Simulation Equivalence. Just as in the probabilistic case, isomorphism of quantum strategies

is too strict for some purposes. The definition of simulation equivalence, as stated in Section 3.2.3,

extends transparently to the quantum case: for σ : S → A and σ ′
: S ′ → A, we have σ ≼ σ ′

iff there

is f : S → S ′ satisfying (1) and (2) of Definition 3.2, which is rigid (i.e. preserves the causal order)
and such that for all y ∈ C (S ′),

∑
f x=y Qσ (x) ≤L Qσ ′(y). Again we write ≈ for the corresponding

equivalence, which is preserved by all operations on strategies. We immediately get:

Proposition 4.6. The full subcategory of QCG (up to simulation equivalence) whose objects have
one positive event is equivalent to the category CPM≤1 of Hilbert spaces and superoperators.

5 ADEQUACY FOR THE AFFINE FRAGMENT
Before introducing the constructions required for replication and !, we interpret the affine (!-free)

fragment of the quantum λ-calculus: it is obtained by removing all types comprising !, along with

letrec. As divergence is no longer definable we add a new constant ⊥, with typing Γ ⊢ ⊥ : A.
To construct the interpretation, we will first describe the interpretation of the ambient affine

call-by-value λ-calculus, and then that of the quantum primitives. While we are not aware of a

reference for a games model of a linear/affine call-by-value λ-calculus, our methodology is certainly

not surprising, and is strongly related with Melliès’ account of tensorial logic [Melliès 2012].

From now on, by game we mean quantum game and by strategy we mean quantum strategy.

5.1 Call-By-Value Primitives
As is well-known in game semantics, the duality between call-by-name and call-by-value reflects

in games through the fact that call-by-name language are naturally modelled using negative games

[Abramsky et al. 2000; Hyland and Ong 2000], where Opponent always plays first, whereas call-

by-value languages are naturally modelled using positive games [Honda and Yoshida 1999], where

Player always plays first. The framework for quantum games described above is agnostic as to the

evaluation order. To apply it to call-by-value we restrict it to positive games.

5.1.1 Quantum Arenas. We start by defining positive games and negative strategies.

Definition 5.1. A game A is negative (resp. positive) iff all its minimal events are negative (resp.
positive). Likewise, a strategy σ : S → A is negative iff the minimal events of S are negative.

The categoryQCG+ of positive games has objects the positive games, and morphisms the negative
strategies σ : A +→ B; it is a subcategory of QCG. It might come as a surprise that though the games

are positive, strategies need to be negative, but in fact both for call-by-name and call-by-value,

evaluation is triggered by the evaluation environment. In the former case, it is done by requiring

an output, while in the latter it is done via the context, by feeding values for the free variables.

Indeed, strategies in QCG+ wait first for a move by Opponent, necessarily of the form of a minimal

move in A thought of as feeding an argument value to σ . The strategy may then perform further

computation in A, or return a value in B; reflecting the computational events in call-by-value.

Accordingly,QCG+ will be the target of our interpretation: a term Γ ⊢ t : Awill yield a morphism

JtK : JΓK +→ JAK in QCG+, where JΓK and JAK will both be certain positive games.

In fact, not all positive games will be reached by the interpretation. The following definition

captures more precisely the games arising through the interpretation of types.

Definition 5.2. A quantum arena is a positive quantum game A such that each x ∈ C (A) has at
most one minimal event, and that is alternating: if p1 _A p2, then polA(p1) , polA(p2).

The game of Figure 6 is an arena (with trivial quantum annotations), and so is Figure 11. In both

cases, there is only one initial move – in general there may be many; corresponding to the values

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:19

©­­«
1 ⊸ 1

λ+I

sk−I
sk+I

ª®®¬ ⊗
©­­«

bit
tt+I ff+I

ª®®®¬ ⊗
©­­«

qbit

q+
C2

ª®®®¬ =
©­­­«

(1 ⊸ 1) ⊗ bit ⊗ qbit

(λ, tt, q)+
C2

(λ, ff, q)+
C2

sk−I sk−I
sk+I sk+I

ª®®®¬
Fig. 14. Example for the tensor construction

©­­­­­«
(1 ⊸ 1) +→ bit

λ−7ww�
sk+

� %%,sk−
� %%,tt+

ª®®®®®¬
⊗

©­­­­­«
qbit +→ qbit
q−

� $$,q+

ª®®®®®¬
=

©­­­­­«
(1 ⊸ 1) ⊗ qbit +→ bit ⊗ qbit

(λ, q)−
'ppwsk+

� %%,sk−

�))0(tt, q)+

ª®®®®®¬
Fig. 15. Tensor construction on strategies

available on this type prior to further computation. For instance, the arena interpreting bit will be
the two-event tt+I ff+I , reflecting the observable outcome of a computation on bit.
Quantum arenas form a full subcategory QA of QCG+. They are closed under neither ∥ nor

(−)⊥, but they support other constructions. First, if N is a negative, alternating quantum game and

H is a finite-dimensional Hilbert space, then we introduce the down-shift ↓H N : it is the arena

comprising N , together with a new positive event • with Q↓H (•) = H , set below all events of N .

Secondly, from arenas A and B we form their sum A ⊕ B. It has components the same as in

A ∥ B, except for consistency, comprising sets XA ∥ ∅ or ∅ ∥ XB , for XA ∈ ConA, XB ∈ ConB . This

extends to strategies, yielding a coproduct in QA – we write ιA : A +→ A ⊕ B and ιB : B +→ A ⊕ B the

injections, and for σ1 : A1
+→ B and σ2 : A2

+→ B, we write [σ1,σ2] : A1 ⊕A2
+→ B for their co-pairing.

Though we defined only binary coproducts, it generalizes to arbitrary arity. With this we observe

that arenas are exactly the games of the form (for (NA,i)i ∈IA a family of negative alternating games)

A =
⊕
i ∈IA

↓HA,i NA,i .

Exploiting this decomposition we can define the tensor of arenas A and B, as the arena

A ⊗ B =
⊕

(i, j)∈IA×IB

↓HA,i ⊗HB, j (NA,i ∥ NB, j).

This captures the fact that a value on A ⊗ B is a pair v ⊗ w of values on A and B respectively;

accordingly a root of A ⊗ B corresponds to a pair of a root of A and a root of B. After this value
v ⊗w is played, the moves available are those enabled by v in A andw in B. We present in Figure

14 an example of application of the tensor construction. Anticipating on the interpretation of types,

we also give the corresponding types to help build up intuition on the correspondence.

5.1.2 Premonoidal Structure. The tensor also has an effect on strategies. For σ : A +→ A′
and

τ : B +→ B′
in QA we define σ ⊗ τ : A ⊗ B +→ A′ ⊗ B′

, also in QA. Intuitively, σ ⊗ τ acts as follows:

when initiated with (a,b)− on the left, it starts σ on a− and τ on b−, in parallel, as long as they both

play on the left hand side. Whenever they are both ready to play a value on the right hand side, they

synchronise and play the pair together; and then the remaining part of the two strategies is played

in parallel (our sequential interpretation will only use the case where one side is the identity, and

so remain sequential). We illustrate the construction in Figure 15 (omitting quantum annotations).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:20 Pierre Clairambault, Marc De Visme, and Glynn Winskel

To avoid an unwieldy concrete construction, we characterise the tensor of strategies uniquely

via its action on configurations. Two configurations x = xA ∥ xA′ ∈ C (A⊥ ∥ A′) and y = yB ∥ yB′ ∈

C (B⊥ ∥ B′) are compatible if xA , ∅ iff yB , ∅, and xA′ , ∅ iff yB′ , ∅. If it is so, then by merging

the minimal events of xA and yB , and those of xA′ and yB′ , we get x ⊔ y ∈ C ((A ⊗ B)⊥ ∥ (A′ ⊗ B′)).

Proposition 5.3. Let σ : S → A⊥ ∥ A′ and τ : T → B⊥ ∥ B′. Then, there is

σ ⊗ τ : S ⊔T → (A ⊗ B)⊥ ∥ (A′ ⊗ B′),

unique up to iso, such that (1) C (S ⊔T) is order-isomorphic to the set of pairs (xS ,xT) ∈ C (S) ×C (T)
such that σ xS and τ xT are compatible, ordered by the product inclusion (we write xS ⊔xT ∈ C (S ⊔T)
for the configuration corresponding to (xS ,xT)); (2) we have (σ ⊗ τ)(xS ⊔ xT) = (σ xS) ⊔ (τ xT); and
(3) we have Q�

σ ⊗τ (xS ⊔ xT) = Q�
σ (xS) ⊗ Q�

τ (xT).

The tensor is functorial in both components, i.e. (σ2 ⊗ B) ⊙ (σ1 ⊗ B) � (σ2 ⊙ σ1) ⊗ B, and
symmetrically; but not bifunctorial: for σ : A +→ A′

and τ : B +→ B′
, the three strategies σ ⊗l τ =

(A′⊗τ)⊙ (σ ⊗B), σ ⊗r τ = (σ ⊗B′)⊙ (A⊗τ), and σ ⊗τ , may all be distinct. In other words, (QA, ⊗, I)
is a premonoidal category [Power and Robinson 1997], which is expected for call-by-value. The

two ⊗l and ⊗r , already appearing in [Honda and Yoshida 1999] denote pairings with respectively

a left-then-right and right-then-left evaluation strategy. In our concurrent setting, to these two is

adjoined the symmetric σ ⊗ τ , evaluating the two in parallel. Our sequential interpretation will use

⊗l , matching the operational semantics; while our parallel interpretation will use ⊗.

5.1.3 Thunkability and Values. The thunkable strategies will be semantic counterparts of values.

Definition 5.4. A strategy σ : S → (A⊥ ∥ B) in QA is thunkable iff for every minimal s−
1
∈ S ,

there is exactly one s+
2
∈ S such that s1 _S s2, mapping to B. Furthermore, dQ [{s1}; {s1, s2}] = 0.

This definition corresponds to the instantiation, in our particular case, of Führmann’s semantic

notion of values as thunkable maps [Führmann 1999]. It will be crucial later that the interpretation

of values will yield thunkable strategies, and that thunkable strategies enjoy the following property:

Lemma 5.5. If σ : A +→ B in QA is thunkable, then it is in the center of the premonoidal category
QA, meaning that for all τ : A′ +→ B′, we have σ ⊗l τ = σ ⊗r τ (= σ ⊗ τ).

Besides, thunkable strategies are stable under composition, so QA has a subcategory QAt whose

objects are arenas, and morphisms are thunkable strategies. From the lemma above, it follows

that the premonoidal structure of QA informs a monoidal structure on QAt : the tensor becomes

bifunctorial; in fact the three tensors of Section 5.1.2 coincide on thunkable strategies.

5.1.4 Closure. We introduce the structure matching the affine arrow type.

Definition 5.6. If A and B are two arenas, writing A =
⊕

i ∈IA ↓HA,i NA,i , their arrow is

A ⊸ B =↓I

(⊕
i ∈IA

↓HA,i (NA,i ∥ B
⊥)

)⊥
.

This is reminiscent of the usual arrow construction for call-by-value games [Honda and Yoshida

1999]. It is helpful to see how it describes the computational events available in call-by-value over

an arrow type. First, the initial move coming from the ↓I expresses evaluation to a lambda, with no

Hilbert space. Then Opponent may feed a value on A, corresponding to one of the incompatible

↓HAi
. In turn, Player may either keep playing on the component N⊥

A,i , or play in B.
Let us write I : QAt → QA for the obvious inclusion functor. The constructions on strategies

corresponding the arrow type along with the required equations are all summed up by the following.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:21

Jx1 : A1, . . . ,xn : An ⊢ xi : AiK = w ⊗ ccAi ⊗ w
JΓ ⊢ λxA. t : A ⊸ BK = λJAK(JtK)

J∆,Ω ⊢ t ⊗ u : A ⊗ BK = JtK ⊗l JuK
J∆,Ω ⊢ letxA ⊗ yB = t inu : CK = JuK ⊙ (JΩK ⊗ JtK)

JΓ ⊢ t : AℓK = foldJAK ⊙ JΓ ⊢ t : 1 ⊕ (A ⊗ Aℓ)K
JΓ ⊢ split : Aℓ ⊸ 1 ⊕ (A ⊗ Aℓ)K = λJAℓK(unfoldJAK) ⊙ wJΓK

J∆,Ω ⊢ match t with (xA1
: u1 | xA2

: u2) : CK = [Ju1K, Ju2K] ⊙ (JtK ⊗ JΩK)
JΓ ⊢ skip : 1K = wJΓK

JΓ ⊢ ⊥ : AK = ⊥JAK ⊙ wJΓK
J∆,Ω ⊢ t u : BK = evA,B ⊙ (JtK ⊗l JuK)

J∆,Ω ⊢ t ; u : AK = JtK ⊗l JuK
JΓ ⊢ inl (t) : A ⊕ BK = ιA ⊙ JtK
JΓ ⊢ inr (t) : A ⊕ BK = ιB ⊙ JtK

Fig. 16. Interpretation of the classical affine fragment

Proposition 5.7. For any arena A, we have an adjunction QAt

I(−⊗A)
++

⊢ QA
A⊸−

kk .

In other words, for all arenas A,B there is an evaluation evA,B : (A ⊸ B) ⊗ A +→ B; and
for every σ : A ⊗ B +→ C there is a unique (up to iso) thunkable λB (σ) : A +→ (B ⊸ C) s.t.
evB,C ⊙ (λB (σ) ⊗ B) � σ . Altogether, we have a structure that could naturally be called a linear
closed Freyd category, by extension of the usual usage [Power and Thielecke 1999].

5.1.5 Interpretation. We now describe the interpretation of the classical affine primitives. The unit

type 1 is interpreted by the arena with only one move sk+ (and trivial Hilbert space), also written 1.

For lists, we simply set, for any arena A, Aℓ =
⊕

n∈NA
⊗n
. Up to isomorphism of arenas we have

Aℓ � 1⊕ (A⊗Aℓ). This isomorphism easily lifts toQA, yielding strategies foldA : 1⊕ (A⊗Aℓ) +→ Aℓ

and unfoldA : Aℓ +→ 1 ⊕ (A ⊗ Aℓ), inverse to each other up to isomorphism of strategies.

The interpretation closely follows the structure introduced. Each type A yields an arena JAK
by matching classical type constructors with their corresponding arena constructions. Contexts
Γ = x1 : A1, . . . ,xn : An are interpreted as tensors

⊗
1≤i≤nJAiK. Typing judgements Γ ⊢ t : A are

interpreted as strategies JtK : JΓK +→ JAK in QA. Values Γ ⊢ v : A are interpreted as thunkable

JvK : JΓK +→ JAK. We display in Figure 16 the interpretation of the classical affine fragment, writing

wA : A +→ 1 for the affine projection which to any value in A reacts by playing sk+ on the right, and

⊥A : 1 +→ A for the diverging strategy with no positive moves. To aid readability, we omit structural

isomorphisms for ⊗ (associativity, symmetry, unit), and only display the term on the right hand

side. Finally, the case for matching relies on the distributivity A ⊗ (B ⊕ C) � (A ⊗ B) ⊕ (A ⊗ C).

5.1.6 On Sequentiality. In Figure 16, the clauses for t u and t ⊗ u use ⊗l . It is familiar from the

categorical models of call-by-value that the two bifunctors ⊗l and ⊗r offer two possibilities for the

interpretation, notably of t u and t ⊗u, matching respectively the left-then-right and right-then-left

evaluation strategies for call-by-value. Our choice to use ⊗l in Figure 16 permits a closer relationship

with the operational semantics, which follows a left-then-right strategy. In semantic terms, this

natural choice yields a sequential strategy. We will not use this sequentiality in the remainder of the

development, but as it is an important aspect of our model, we recall from [Castellan et al. 2014]:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:22 Pierre Clairambault, Marc De Visme, and Glynn Winskel

qbit |
meas // bit

q−
C2

� ##+ � &&-ff+C tt+
C

Q�
meas({q−}) = trC2 :C2

CPM
→ C

Q�
meas({q−, ff

+}) = meas0:C2
CPM
→ C

Q�
meas({q−, tt+}) = meas1:C2

CPM
→ C

bit |
new // qbit

ff−C

� ((/

tt−
C

� ((/q+
C2

q+
C2

Q�
new({ff

−}) = id
CPM
C :C

CPM
→ C

Q�
new({tt

−}) = id
CPM
C :C

CPM
→ C

Q�
new({ff

−, q+}) = new0 :C
CPM
→ C2

Q�
new({tt

−, q+}) = new1 :C
CPM
→ C2

⊗n
i=1

qbit |
U // ⊗n

i=1
qbit

(q, . . . , q)−
(C2)n

�))/
(q, . . . , q)+

(C2)n

Q�
U ({(q, . . . , q)−}) = tr(C2)n :(C2)⊗n

CPM
→ C

Q�
U ({(q, . . . , q)−,

(q, . . . , q)+}) = Û :(C2)⊗n
CPM
→ (C2)⊗n

Fig. 18. Quantum strategies for quantum primitives

Definition 5.8. A strategy σ : S → A is sequential if (1) for each s ∈ S , [s] is a total order (i.e. ≤S
is forest-shaped), and (2) if [s] extends with some distinct positive s1, s2, then [s] ∪ {s1, s2} < ConS .

Condition (2) expresses that Player does not spawn parallel threads (so all Player branchings

are non-consistent), and (1) that he does not merge existing ones. All basic strategies used in the

interpretation are sequential, and sequentiality is preserved by composition. Note that sequentiality

does not mean that the strategy is totally ordered overall, but that as long as Opponent also remains

sequential, only one thread will be live throughout computation. For instance, the strategy displayed

in Figure 10 is sequential, although there is a non-conflicting Opponent branching.

The strategies in previously existing call-by-value games [Abramsky and McCusker 1997; Honda

and Yoshida 1999] are inherently sequential (not in the formal sense above – sequentiality is

hardwired into these models). In contrast, our setting allows strategies that are not sequential.

This means that besides using ⊗l and ⊗r , we have a third option: replacing ⊗l with the parallel ⊗

(1 ⊸ 1) ⊗ (1 ⊸ 1) ⊸ 1

λ+&oov
(λ, λ)−

)qqx 	 ��(
sk+

� ##+
sk+

� ##+
sk−

�))0
sk−

� ##+
sk+

Fig. 17. A parallel strategy

in the clauses for t u and t ⊗ u; we write J−K∥ for the corresponding
parallel interpretation. From a program, it yields a strategy imple-

menting its parallel evaluation: in expressions t u, the function and

argument are converted to values in parallel before substitution is per-

formed – and likewise for t ⊗u. As an illustration we display in Figure

17 the parallel interpretation of λx . let f 1⊸1 ⊗д1⊸1 = x in lety ⊗z =
(f skip) ⊗ (д skip) iny; z, to be compared with its sequential interpre-

tation equal to that in Figure 7. From now on, J−K means either of the

two – our constructions and proofs rely on laws satisfied by both and work either way.

5.2 Soundness and Adequacy for the AffineQuantum λ-Calculus
We now complete the interpretation of the affine fragment and prove its adequacy.

5.2.1 Interpretation of Quantum Primitives. As expected, we set JqbitK to be the arena with one

(positive) move q, with H(q) = C2
; also referred to as qbit. We introduce in Figure 18 quantum

strategies meas : qbit +→ bit, new : bit +→ qbit, along with one U : qbit⊗n +→ qbit⊗n for each

unitary of arity n. Using those, we complete the interpretation of the affine fragment with:

JΓ ⊢ meas : qbit ⊸ bitK = λqbit(meas) ⊙ wJΓK

JΓ ⊢ new : bit ⊸ qbitK = λbit(new) ⊙ wJΓK

JΓ ⊢ U : qbit⊗n ⊸ qbit⊗nK = λqbit⊗n (U) ⊙ wJΓK

Together with Figure 16, this concludes the interpretation of the affine fragment. To illustrate it

we show in Figure 19 the interpretation of a term, along with the two key steps for its computation.

5.2.2 Convex Sums. In preparation for our proof of soundness and adequacy, we introduce one

final operation on quantum strategies: sub-probabilistic sums (or convex sums).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:23

qbit ⊸ qbit⊗2
|

Jf (new ff)K // qbit⊗2

λ−I3uu~
q+
C2 � ''.

(q, q)−
C4

�))0(q, q)+
C4

Q�({λ−}) = id
CPM
C :C

CPM
→ C

Q�({λ−, q+}) = meas0 :C2
CPM
→ C

Q�({. . . (q, q)−}) = meas0 ⊗ trC4 :C8
CPM
→ C

Q�({. . . (q, q)+}) = meas0 ⊗ id
CPM
C4

:C8
CPM
→ C4

qbit⊗2
|

J(measx)⊗yK // bit ⊗ qbit
(q, q)−

C4

� &&- �))0(ff, q)+C2
(tt, q)+C2

Q�({(q, q)−}) = trC4 :C4
CPM
→ C

Q�({(q, q)−, (ff, q)+})

= meas0 ⊗ id
CPM
C2

:C4
CPM
→ C2

Q�({(q, q)−, (tt, q)+})

= meas1 ⊗ id
CPM
C2

:C4
CPM
→ C2

qbit ⊸ qbit⊗2
|

JMK // bit ⊗ qbit
λ−I8ww�

q+
C2

� &&-
(q, q)−

C4

� $$, �))/
(ff, q)+C2

(tt, q)+C2

Q�({λ−, q+}) = meas0 :C2
CPM
→ C

Q�({. . . (ff, q)+}) = meas00 ⊗ id
CPM
C2

:C6
CPM
→ C2

Q�({. . . (tt, q)+}) = meas01 ⊗ id
CPM
C2

:C6
CPM
→ C2

Fig. 19. Interpretation ofM = letx ⊗ y = f (new ff) in (meas x) ⊗ y

Given a finite family of strategies (σi : Si → A)i ∈I and positive real coefficients (pi)i ∈I such
that

∑
i ∈I pi ≤ 1, we require

∑
i ∈I piσi : S → A, a strategy on A, acting like σi with probability pi .

Intuively, S is the sum of all the Si s, as in the sum of arenas. However, this sum includes multiple

copies of the possible minimal negative events of A, failing receptivity. Therefore all these copies
need to be merged. Rather than showing the corresponding concrete construction we state the

following, where C (S)+ denotes the configurations of S with at least one positive event.

Proposition 5.9. Let (σi : Si → A)i ∈I and (pi)i ∈I be families as above.
Then, there is σ : S → A, unique up to iso, such that (1) C (S)+ is order-isomorphic to the disjoint

union
⊎

i ∈I C (Si)
+ – for x ∈ C (Si)

+ we write (i,x) ∈ C (S)+ to emphasize the correspondence; (2) for
all (i,x) ∈ C (S)+, σ (i,x) = σi x ; and (3) for all (i,x) ∈ C (S)+, Qσ (i,x) = piQσi x .
We write

∑
i ∈I piσi for this σ : S → A.

5.2.3 Computational Adequacy. In order to prove adequacy, we need to give an interpretation

to the configurations used in the operational semantics (see Section 2.3). Recall that those have

the form [q, ℓ, t] with q ∈ (C2)⊗n , ℓ = |x1 . . . xn⟩ and xπ (1) : qbit, . . . ,xπ (n) : qbit ⊢ t : A with π a

permutation of {1, . . . ,n}; informing a unitary π : (C2)⊗n → (C2)⊗n . Then, we set:

J[q, ℓ, t]K = JtK ⊙ π̂ ⊙ q̂ : 1 +→ JAK

silently coercing π̂ : (C2)⊗n
CPM
→ (C2)⊗n and q̂ : I

CPM
→ (C2)⊗n to strategies via Proposition 4.6.

Invariance. The core argument for correctness of the model is the following invariance lemma.

Lemma 5.10. For any [q, ℓ, t], with [q, ℓ, t]
pi
→ [qi , ℓi , ti] (i ∈ I) all its possible reductions,

J[q, ℓ, t]K �r
∑
i ∈I

piJ[qi , ℓi , ti]K

Proof. By induction on the operational semantics, relying directly either on the structures of

Section 5.1 or on equations pertaining to the standard encoding of quantum structures in CPM. □

Note that I is finite and

∑
i ∈I pi ≤ 1: branching in the operational semantics, coming from

measures, generates two branches with respective weights |α |2 and |β |2 (where |α |2 + |β |2 = 1). So

the tree of all reductions from a configuration is finitely branching. It has also finite depth: since

the language under study is affine, it is easy to find a decreasing measure for all reductions.

Adequacy. As convergence is defined on closed terms ⊢ t : 1, we have a closer look at their

interpretation: they yield strategies JtK : 1 +→ 1, which (up to simulation equivalence) correspond

via Proposition 4.6 to superoperators from C to C, i.e. linear maps x 7→ αx with α ∈ [0, 1]. We write

JtK ⇓α accordingly. Relying on these observations and the invariance lemma, we easily deduce:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:24 Pierre Clairambault, Marc De Visme, and Glynn Winskel

Theorem 5.11. Let ⊢ t : 1 be a term of the affine fragment. Then, t ⇓p iff JtK ⇓p for all p ∈ [0, 1].

In the next and last technical section of this paper, we enrich the model with symmetry to handle

replication, and generalize the theorem above to the full quantum λ-calculus.

6 REPLICATION AND THE FULL QUANTUM λ-CALCULUS
As usual, replication can be obtained by creating copies of the replicated moves [Abramsky et al.

2000]. But one must then express that these copies are indistinguishable. In concurrent games, this

was achieved by concurrent games with symmetry [Castellan et al. 2014, 2015], later generalized to

probabilistic games [Castellan et al. 2018], simply requiring probability valuations to be invariant

under symmetry. We now extend it to the quantum case, and complete our interpretation.

6.1 Quantum Games With Symmetry
Our setting puts together the thin concurrent games with symmetry of [Castellan et al. 2015] (see

details in [Castellan et al. 2016]) and the quantum annotations of this paper, required to be invariant

under properties. By lack of space we include few explanations and motivations on the definitions

of symmetry, for that we direct the reader to [Castellan et al. 2016].

6.1.1 Symmetry on Event Structures and Games. First of all, we recall symmetry [Winskel 2007].

Definition 6.1. A symmetry on an event structure E is a set �E comprising bijections θ : x � y
where x ,y ∈ C (E) are configurations (we write θ : x �E y if θ ∈ �E) satisfying:

• Groupoid. For any x ∈ C (E), idx ∈ �E ; and �E is closed under inverse and composition.

• Restriction. For any θ : x �E y and x ′ ⊆ x such that x ′ ∈ C (E), there exists a (necessarily
unique) θ ′ ⊆ θ such that θ ′ : x ′ �E y

′
;

• Expansion. For any θ : x �E y and x ⊆ x ′ ∈ C (E), there exists a (not necessarily unique)

θ ⊆ θ ′ such that θ ′ : x ′ �E y
′
.

One may regard �E as a sort of proof-relevant equivalence relation – we will write simply x �E y
for the corresponding equivalence relation. The last two conditions amount to �E being a history-

preserving bisimulation. We refer to elements of �E as symmetries. It follows from “restriction” that

symmetries are order-isomorphisms (with configurations ordered by ≤E). Two events e1, e2 ∈ E are

symmetric (written e1 �E e2) iff (e1, e2) ∈ θ ∈�E for some θ ; or equivalently if [e1] �E [e2].

We can now define quantum games with symmetry, or ∼-games.

Definition 6.2. A ∼-game comprises (A,HA, �A, �
+
A, �

−
A)where (A,HA) is a quantum game, with

three symmetries such that �+A, �
−
A ⊆ �A, subject to additional conditions [Castellan et al. 2016].

Finally, we require that if a �A a′, thenHA(a) = HA(a
′).

Any θ : x �A y induces a unitary in Hilb betweenH(x) andH(y) obtained by the action of θ
on the tensors H(x) =

⊗
a∈x H(a) and H(y) =

⊗
a∈y H(a); we write it H(θ) : H(x) � H(y).

Constructions on quantum games extend: we have have �A⊥=�A, �
+
A⊥=�

−
A and �−A⊥=�

+
A. Like-

wise, �A∥B comprises θA ∥ θB : xA ∥ xB � yA ∥ yB such that θA : xA �A yA and θB : xB �B yB .
We introduce now the key operation that introduces symmetry in games interpreting types.

Definition 6.3. Let N be a negative ∼-game, meaning that all minimal events in N are negative.

Then, its bang !N has event structure the infinitary parallel composition ∥N N (its events are pairs

(i,a) where a ∈ N and i ∈ N is the copy index); and quantum valuation H!N ((i,a)) = HN (a).
Finally, for a bijection between configurations θ : ∥i xi � ∥j yj , we have

• θ ∈ �!N iff there is a permutation π on natural numbers, and for each i ∈ N a symmetry

θi : xi �N yπ (i), such that for all (i,a) ∈ ∥i xi we have θ (i,a) = (π (i),θi (a));

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:25

• θ ∈ �−
!N iff there is a permutation π on natural numbers, and for each i ∈ N a symmetry

θi : xi �
−
N yπ (i), such that for all (i,a) ∈ ∥i xi we have θ (i,a) = (π (i),θi (a));

• θ ∈ �+
!N iff for all i ∈ N there is θi : xi �N yi s.t. for all (i,a) ∈ ∥i xi we have θ (i,a) = (i,θi (a)).

This illustrates the meaning of the three symmetries: besides the global �A, �
+
A and �−A keep track

of which player has changed their copy indices. As detailed in [Castellan et al. 2016], this information

is crucial in proving that weak isomorphism (Definition 6.5) is preserved by composition.

6.1.2 Quantum Strategies With Symmetry. We can now define our quantum strategies with sym-

metry, called ∼-strategies. Those are simply the strategies with symmetry of [Castellan et al. 2016],

where the quantum valuation is further required to be invariant under symmetry.

Definition 6.4. A ∼-strategy on A is a quantum strategy σ : S → A, together with a symmetry

�S on S , first subject to the conditions from [Castellan et al. 2016]:

• Symmetry-preservation. If θ : x �S y, then σ θ = {(σ s1,σ s2) | (s1, s2) ∈ θ } : σ x �A σ y ;
• Strong-receptivity. If θ : x �S y, if σ θ ∪ {(a−

1
,a−

2
)} : x ∪ {a1} �A y ∪ {a2}, then θ ∪ {(s1, s2)} :

x ∪ {s1} �S y ∪ {s2} where σ s1 = a1 and σ s2 = a2 come from receptivity;

• Thin. If x ∈ C (S), if idx ⊆+ θ ∈ �S , then θ = idy for some y ∈ C (S);

where, additionally, for any θ : x �S y we have
�H(σ θ)(Qσ (x)) = Qσ (y).

For ∼-strategies σ : S → A⊥ ∥ B, the last condition amounts to the fact that for all θ : x �S y

H(xA)
Q�
σ (x)//

�H(θA) ��

H(xB)�H(θB)��
H(yA)

Q�
σ (y)// H(yB)

with σ θ = θA ∥ θB (writing θA : xA �A yA and θB : xB �B yB), the
diagram on the right commutes in CPM. For ∼-strategies σ : S → A⊥ ∥

B and τ : T → B⊥ ∥ C , symmetries θ : xT ⊙ xS �T ⊙S yT ⊙ yS exactly

correspond to pairs comprising θT : xT �T yT and θS : xS �S yS
matching on B, i.e. such that σ θS = θA ∥ θB and τ θT = θB ∥ θC ; we write again θT ⊙ θS :

xT ⊙ xS �T ⊙S yT ⊙ yS to emphasize the correspondence. From the above, preservation of quantum

state under symmetry is preserved by composition. Thanks to symmetry, more strategies can

be considered equivalent: weak isomorphism, more permissive than than isomorphism, relates

strategies via bijections intuitively allowing different choices of copy indices for Player moves.

Definition 6.5. Two ∼-strategies σ : S → A and σ ′
: S ′ → A are weakly isomorphic iff there is

a bijection φ : S � S ′, preserving and reflecting all structure (including symmetry and quantum

valuations), and such that for all x ∈ C (S), we have {(σ s,σ ′ (φ s)) | s ∈ x} ∈ �+A.

We obtain a compact closed category ∼-QCG with objects ∼-games, and morphisms ∼-strategies

up to weak isomorphism. It admits two (dual) subcategories ∼-QCG+ and ∼-QCG−, with objects

respectively positive and negative games, and morphisms negative strategies. As expected:

Proposition 6.6. The construction ! of Definition 6.3 extends to a linear exponential comonad

[Hyland and Schalk 2003] on the symmetric monoidal category (∼-QCG−, ∥).

This also holds on the category ∼-QCGalt
− whose objects are additionally alternating.

For instance, the contraction δA : !A +→ !A ∥ !A, following a bijection N � N + N, should be

associative: the two natural ways to obtain !A +→ !A ∥ !A ∥ !A should coincide – but that only

holds up to symmetry. The significant challenge of showing that composition preserves weak

isomorphism is addressed in [Castellan et al. 2016] and undisturbed by quantum annotations.

6.1.3 Simulation Equivalence. For simulation equivalence, we cannot anymore askmaps to preserve

labeling, since they need to relate strategies playing distinct but symmetric events.

Definition 6.7. A simulation map from ∼-strategy σ : S → A to σ ′
: S ′ → A is f : S → S ′,

satisfying axioms (1) and (2) of Definition 3.2, which is rigid and satisfies:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:26 Pierre Clairambault, Marc De Visme, and Glynn Winskel

JΓ,x : !A ⊢ x : AK = dJAK ⊙ (wJΓK ⊗ !JAK)
J!Γ,∆ ⊢ v : !(A ⊸ B)K = (!JvK) ⊙ ν ⊙ (J!ΓK ⊗ wJ∆K)

J∆, !Γ ⊢ letrec f A⊸B xA = t inu : CK = JuK ⊙ (J∆K ⊗ J!ΓK ⊗ Y(λ!

JAK(JtK)) ⊙ (J∆K ⊗ cΓ)

Fig. 20. Interpretation of the non-linear rules

(a) For all x ∈ C (S), θx = {(σs,σ ′(f s)) | s ∈ x} ∈ �+A;

(b) For all y ∈ C (S ′),
∑

f x=y θ̂x (Qσ (x)) ≤L Qσ ′(y).

We write σ ≼ σ ′
if there is such a simulation map, and σ ≈ σ ′

for the equivalence.

We do not require σ ′ ◦ f = σ , relaxing it to a commutation up to positive symmetry on A – this

use of the positive symmetry is crucial to ensure that ≼ is stable under composition. The analogue

of Proposition 4.6 still holds: the full subcategory of ∼-QCG having as objects those with one

positive event and morphisms up to simulation equivalence is equivalent to CPM≤1
.

6.2 Interpretation of the FullQuantum λ-Calculus
We call ∼-arenas those ∼-games whose underlying game is an arena and where symmetries act

as the identity on minimal events – the subcategory ∼-QA has ∼-arenas as objects, and negative

∼-strategies as morphisms. The structure in Section 5 extends transparently with symmetry, and

yields the same adjunction as in Proposition 5.7. The interpretation of the affine fragment works in

∼-QA in exactly the same way, the basic arenas and strategies involved having trivial symmetry.

6.2.1 Exponential on Positive Games. To transport ! to positive games, we use the following.

Lemma 6.8. The SMC (∼-QCGalt
− , ∥) is equivalent to (∼-QA

1

t , ⊗), the full subcategory of ∼-QAt
whose objects are positive ∼-arena with one minimal event •+, with trivial Hilbert spaceH(•) = I .

Indeed, σ : ↓A +→ ↓B in ∼-QA1

t waits for •
−
, after which it plays •+ with coefficient 1. The

remaining behaviour yields σ ′
: A +→ B negative. This correspondence yields the equivalence

claimed. In particular, ! transports to a linear exponential comonad on (∼-QA1

t , ⊗), defined on

objects as !(↓A) =↓(!A), whose components follow from Lemma 6.8.

6.2.2 Recursion-Free Fragment. At this point we can interpret the recursion-free fragment. The

crucial observation is that ! is restricted to types of the form A ⊸ B, having as required one unique
minimal event; so we may define J!(A ⊸ B)K = !JA ⊸ BK. This provides us with morphisms

cJA⊸BK : J!(A ⊸ B)K +→ J!(A ⊸ B)K ⊗ J!(A ⊸ B)K in ∼-QA1

t satisfying naturality and comonoid

laws up to symmetry, and allowing us to refine the clauses of Figures 16 to deal with sharing

of the non-linear context. Furthermore, the first two lines of Figure 20 show the interpretation

of the two new rules for non-linear variables and promotions, which make use respectively of

ν : J!ΓK → !J!ΓK obtained through the comultiplication δA : !A +→ ‼A and monoidality of !; and the

co-unit dA : !A +→ A, natural in ∼-QA1

t – note that the promotion rule is restricted to values, which

permits the use of the functorial action of !.

6.2.3 Recursion. Finally, we interpret recursion. The methodology is completely standard. First

we define an order on ∼-strategies on a ∼-game A as follows.

Definition 6.9. Given σ : S → A,σ ′
: S ′ → A two ∼-strategies, we write σ ⊑ σ ′

iff (1) S ⊆ S ′, (2)
if x �S ′ y and x ∈ C (S) implies y ∈ C (S), and (3) all components of σ and σ ′

coincide on S .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

Game Semantics for Quantum Programming 32:27

We stress that the definition above applies to concrete strategies, rather than equivalence classes.

It yields an order preserved by all operations on strategies, additionally admitting suprema of all

directed sets computed in the usual way. From σ : !Γ ⊗ !(A ⊸ B) +→ !(A ⊸ B) in ∼-QA1

t we then

compute, for each n ≥ 0, an approximant ∼-strategy Yn(σ) : !Γ +→ !(A ⊸ B) as detailed below:

Y0(σ) = λ
!

A(⊥) Yn+1(σ) = σ ⊙ (!Γ ⊗ Yn(σ)) ⊙ cΓ

where λ!

A(σ) : !Γ +→ !(A ⊸ B), from σ : !Γ ⊗ A +→ B, inlines an abstraction and a promotion.

For all n ≥ 0, we have Yn(σ) : !Γ +→ !(A ⊸ B) in ∼-QAt , and furthermore (Yn)n≥1 is an ω-
chain for ⊑, therefore it has a supremum Y(σ) = supn≥1

Yn(σ); satisfying the fixpoint equation

Y(σ) � σ ⊙(!Γ⊗Y(σ))⊙cΓ , and used in the final clause of Figure 20. This concludes the interpretation.
Relying essentially on the definition of recursion and the categorical properties of the exponential,

it follows that Lemma 5.10 still holds for the interpretration of the full quantum λ-calculus.

6.2.4 Adequacy. We exploit the construction of recursion as a supremum of finite approximations.

We define the bounded recursion operator letrecn f A⊸B xA = t inu for all n ∈ N with same

typing rule as letrec f A⊸B xA = t inu, but reductions (ignoring the quantum store):

letrec0 f
A⊸B xA = t inu → u[λxA.⊥/f]

letrecn+1 f
A⊸B xA = t inu → u[λxA. letrecn f A⊸B xA = t in t/f]

The language where all recursion is bounded can be interpreted in ∼-QA easily, simply by setting

J∆, !Γ ⊢ letrecn f A⊸B xA = t inu : CK = JuK ⊙ (J∆K ⊗ J!ΓK ⊗ Yn(λ!

JAK(JtK)) ⊙ (J∆K ⊗ cΓ)

which satisfies the invariance lemma. Furthermore, it follows from standard techniques that just as

the affine quantum λ-calculus, there is a bound to the possible reduction length in the bounded

language. Hence the proof of Theorem 5.11 transports. It remains to extend this to the full calculus.

Theorem 6.10. Let ⊢ t : 1 be a term. Then, t ⇓p iff JtK ⇓p for all p ∈ [0, 1].

Proof. For all n ∈ N, t ↾ n is t where recursion is replaced by that bounded by n. For each n ∈ N,
we write t ↾ n ⇓ pn . Recall that computing t ⇓p involves a potentially infinite sum; each partial sum

approximating it can be replicated in t ↾ n for sufficiently large n. It follows that p = supn∈N pn .
On the other hand, by definition of Y and continuity of operations on strategies, we have

JtK = supn∈NJt ↾ nK. Writing JtK ⇓p′ and Jt ↾ nK ⇓p′n , it is direct to deduce that p ′ = supn∈N p
′
n as

well. But by adequacy for the bounded calculus, pn = p
′
n for all n ∈ N – so p = p ′ as well. □

7 CONCLUSION
In contrast to the model of [Pagani et al. 2014], our monotone conditions ensure that quantum
annotations remain bounded (see Proposition 4.3). Because of that and our being more intensional,

our model also features less “junk” and is close to a definability result. However, the problem of

building a fully abstract model for the quantum λ-calculus remains a challenging open problem.

We believe that the present contribution is a significant step in this direction.

Another intriguing question is whether we can link our model with the recent operational

account of the quantum λ-calculus, based on the Geometry of Interaction [Dal Lago et al. 2017].

Interestingly their GoI is parallel, like our parallel interpretation. A connection, if possible, would

link the compositional aspects brought up by our model with their more operational description.

ACKNOWLEDGMENTS
We are grateful to Frank Roumen for numerous discussions on the mathematics of quantum

computation. We acknowledge support of the French LABEX MILYON (ANR-10-LABX- 0070), the

ERC Advanced Grant ECSYM, and the Collegium de Lyon.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

32:28 Pierre Clairambault, Marc De Visme, and Glynn Winskel

REFERENCES
Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (2000),

409–470. https://doi.org/10.1006/inco.2000.2930

Samson Abramsky and Guy McCusker. 1997. Call-by-Value Games. In Computer Science Logic, 11th International Workshop,
CSL ’97, Annual Conference of the EACSL, Aarhus, Denmark, August 23-29, 1997, Selected Papers. 1–17. https://doi.org/10.

1007/BFb0028004

Samson Abramsky and Paul-André Melliès. 1999. Concurrent Games and Full Completeness. In 14th Annual IEEE Symposium
on Logic in Computer Science, Trento, Italy, July 2-5, 1999. 431–442. https://doi.org/10.1109/LICS.1999.782638

Simon Castellan and Pierre Clairambault. 2016. Causality vs. Interleavings in Concurrent Game Semantics. In 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada. 32:1–32:14.
https://doi.org/10.4230/LIPIcs.CONCUR.2016.32

Simon Castellan, Pierre Clairambault, Hugo Paquet, and GlynnWinskel. 2018. The concurrent game semantics of Probabilistic

PCF. (2018). To appear in the proceedings of LICS 2018.

Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. 2017. Games and Strategies as Event Structures.

LMCS 13, 3 (2017).
Simon Castellan, Pierre Clairambault, and Glynn Winskel. 2014. Symmetry in concurrent games. In Joint Meeting of

the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. 28:1–28:10. https:

//doi.org/10.1145/2603088.2603141

Simon Castellan, Pierre Clairambault, and Glynn Winskel. 2015. The Parallel Intensionally Fully Abstract Games Model of

PCF. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. 232–243.
https://doi.org/10.1109/LICS.2015.31

Simon Castellan, Pierre Clairambault, and Glynn Winskel. 2016. Concurrent Hyland-Ong Games. (2016).

https://arxiv.org/abs/1409.7542.

Pierre Clairambault, Julian Gutierrez, and Glynn Winskel. 2012. The Winning Ways of Concurrent Games. In Proceedings of
the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. 235–244.
https://doi.org/10.1109/LICS.2012.34

Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. 2017. The geometry of parallelism: classical,

probabilistic, and quantum effects. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. 833–845. http://dl.acm.org/citation.cfm?id=3009859

Yannick Delbecque. 2011. Game Semantics for Quantum Data. Electr. Notes Theor. Comput. Sci. 270, 1 (2011), 41–57.

https://doi.org/10.1016/j.entcs.2011.01.005

Claudia Faggian and Mauro Piccolo. 2009. Partial Orders, Event Structures and Linear Strategies. In Typed Lambda
Calculi and Applications, 9th International Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings. 95–111.
https://doi.org/10.1007/978-3-642-02273-9_9

Carsten Führmann. 1999. Direct Models for the Computational Lambda Calculus. Electr. Notes Theor. Comput. Sci. 20 (1999),
245–292. https://doi.org/10.1016/S1571-0661(04)80078-1

Simon J. Gay. 2006. Quantum programming languages: survey and bibliography. Mathematical Structures in Computer
Science 16, 4 (2006), 581–600. https://doi.org/10.1017/S0960129506005378

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102. https://doi.org/10.1016/0304-3975(87)90045-4

Jean-Yves Girard. 1989. Geometry of interaction 1: Interpretation of System F. In Studies in Logic and the Foundations of
Mathematics. Vol. 127. Elsevier, 221–260.

Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. 2002. Quantum cryptography. Reviews of modern
physics 74, 1 (2002), 145.

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. 212–219.
https://doi.org/10.1145/237814.237866

Russell Harmer and Guy McCusker. 1999. A Fully Abstract Game Semantics for Finite Nondeterminism. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. 422–430. https://doi.org/10.1109/LICS.1999.782637

Ichiro Hasuo and Naohiko Hoshino. 2017. Semantics of higher-order quantum computation via geometry of interaction.

Ann. Pure Appl. Logic 168, 2 (2017), 404–469. https://doi.org/10.1016/j.apal.2016.10.010

Kohei Honda and Nobuko Yoshida. 1999. Game-Theoretic Analysis of Call-by-Value Computation. Theor. Comput. Sci. 221,
1-2 (1999), 393–456. https://doi.org/10.1016/S0304-3975(99)00039-0

J. M. E. Hyland and C.-H. Luke Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285–408.
https://doi.org/10.1006/inco.2000.2917

Martin Hyland and Andrea Schalk. 2003. Glueing and orthogonality for models of linear logic. Theor. Comput. Sci. 294, 1/2
(2003), 183–231. https://doi.org/10.1016/S0304-3975(01)00241-9

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/BFb0028004
https://doi.org/10.1007/BFb0028004
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.4230/LIPIcs.CONCUR.2016.32
https://doi.org/10.1145/2603088.2603141
https://doi.org/10.1145/2603088.2603141
https://doi.org/10.1109/LICS.2015.31
https://doi.org/10.1109/LICS.2012.34
http://dl.acm.org/citation.cfm?id=3009859
https://doi.org/10.1016/j.entcs.2011.01.005
https://doi.org/10.1007/978-3-642-02273-9_9
https://doi.org/10.1016/S1571-0661(04)80078-1
https://doi.org/10.1017/S0960129506005378
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/LICS.1999.782637
https://doi.org/10.1016/j.apal.2016.10.010
https://doi.org/10.1016/S0304-3975(99)00039-0
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1016/S0304-3975(01)00241-9

Game Semantics for Quantum Programming 32:29

André Joyal, Ross Street, and Dominic Verity. 1996. Traced monoidal categories. InMathematical Proceedings of the Cambridge
Philosophical Society, Vol. 119. Cambridge University Press, 447–468.

Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. 2013. Weighted Relational Models of Typed Lambda-

Calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28,
2013. 301–310. https://doi.org/10.1109/LICS.2013.36

Octavio Malherbe. 2013. Categorical models of computation: partially traced categories and presheaf models of quantum
computation. Ph.D. Dissertation. University of Ottawa.

Octavio Malherbe, Philip Scott, and Peter Selinger. 2013. Presheaf Models of Quantum Computation: An Outline. In

Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky - Essays Dedicated to Samson
Abramsky on the Occasion of His 60th Birthday. 178–194. https://doi.org/10.1007/978-3-642-38164-5_13

Paul-André Melliès. 2005. Asynchronous Games 4: A Fully Complete Model of Propositional Linear Logic. In 20th IEEE
Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings. 386–395. https:

//doi.org/10.1109/LICS.2005.6

Paul-André Melliès. 2012. Game Semantics in String Diagrams. In Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. 481–490. https://doi.org/10.1109/LICS.2012.58

Paul-André Melliès and Samuel Mimram. 2007. Asynchronous Games: Innocence Without Alternation. In CONCUR 2007
- Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings.
395–411. https://doi.org/10.1007/978-3-540-74407-8_27

Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information.

Michele Pagani, Peter Selinger, and Benoît Valiron. 2014. Applying quantitative semantics to higher-order quantum

computing. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. 647–658. https://doi.org/10.1145/2535838.2535879

John Power and Edmund Robinson. 1997. Premonoidal Categories and Notions of Computation. Mathematical Structures in
Computer Science 7, 5 (1997), 453–468. https://doi.org/10.1017/S0960129597002375

John Power and Hayo Thielecke. 1999. Closed Freyd- and kappa-categories. In ICALP’99 (LNCS), Vol. 1644. Springer.
Silvain Rideau and Glynn Winskel. 2011. Concurrent Strategies. In LICS ’11, June 21-24, 2011, Toronto, Canada. 409–418.
Peter Selinger. 2004. Towards a quantum programming language. Mathematical Structures in Computer Science 14, 4 (2004),

527–586. https://doi.org/10.1017/S0960129504004256

Peter Selinger and Benoît Valiron. 2006. A lambda calculus for quantum computation with classical control. Mathematical
Structures in Computer Science 16, 3 (2006), 527–552. https://doi.org/10.1017/S0960129506005238

Peter Selinger and Benoît Valiron. 2008. On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended

Abstract). Electr. Notes Theor. Comput. Sci. 210 (2008), 123–137. https://doi.org/10.1016/j.entcs.2008.04.022

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

SIAM J. Comput. 26, 5 (1997), 1484–1509. https://doi.org/10.1137/S0097539795293172

Glynn Winskel. 1986. Event Structures. In Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II,
Proceedings of an Advanced Course, Bad Honnef, 8.-19. September 1986. 325–392. https://doi.org/10.1007/3-540-17906-2_31

Glynn Winskel. 2007. Event Structures with Symmetry. Electr. Notes Theor. Comput. Sci. 172 (2007), 611–652. https:

//doi.org/10.1016/j.entcs.2007.02.022

Glynn Winskel. 2012. Deterministic concurrent strategies. Formal Asp. Comput. 24, 4-6 (2012), 647–660. https://doi.org/10.

1007/s00165-012-0235-6

Glynn Winskel. 2013. Distributed Probabilistic and Quantum Strategies. Electr. Notes Theor. Comput. Sci. 298 (2013), 403–425.
https://doi.org/10.1016/j.entcs.2013.09.024

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 32. Publication date: January 2019.

https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1007/978-3-642-38164-5_13
https://doi.org/10.1109/LICS.2005.6
https://doi.org/10.1109/LICS.2005.6
https://doi.org/10.1109/LICS.2012.58
https://doi.org/10.1007/978-3-540-74407-8_27
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1016/j.entcs.2008.04.022
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1016/j.entcs.2007.02.022
https://doi.org/10.1016/j.entcs.2007.02.022
https://doi.org/10.1007/s00165-012-0235-6
https://doi.org/10.1007/s00165-012-0235-6
https://doi.org/10.1016/j.entcs.2013.09.024

	Abstract
	1 Introduction
	2 The Quantum -calculus
	2.1 Syntax and Typing
	2.2 Pure Quantum States and Their Operations
	2.3 Operational Semantics
	2.4 Mixed Quantum States and Completely Positive Maps

	3 Linear probabilistic games
	3.1 Games and Non-Deterministic Strategies
	3.2 Probabilistic Strategies

	4 Linear Quantum Games
	4.1 Quantum Games and Strategies
	4.2 A Compact Closed Category of Linear Quantum Strategies

	5 Adequacy for the affine fragment
	5.1 Call-By-Value Primitives
	5.2 Soundness and Adequacy for the Affine Quantum -Calculus

	6 Replication and the full quantum -calculus
	6.1 Quantum Games With Symmetry
	6.2 Interpretation of the Full Quantum -Calculus

	7 Conclusion
	Acknowledgments
	References

