
On the expressivity of linear recursion schemes
Pierre Clairambault
Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France

Andrzej S. Murawski
Department of Computer Science, University of Oxford, UK

Abstract
We investigate the expressive power of higher-order recursion schemes (HORS) restricted to

linear types. Two formalisms are considered: multiplicative additive HORS (MAHORS), which
feature both linear function types and products, and multiplicative HORS (MHORS), based on
linear function types only.

For MAHORS, we establish an equi-expressivity result with a variant of tree-stack automata.
Consequently, we can show that MAHORS are strictly more expressive than first-order HORS, that
they are incomparable with second-order HORS, and that the associated branch languages lie at the
third level of the collapsible pushdown hierarchy.

In the multiplicative case, we show that MHORS are equivalent to a special kind of pushdown
automata. It follows that any MHORS can be translated to an equivalent first-order MHORS in
polynomial time. Further, we show that MHORS generate regular trees and can be translated to
equivalent order-0 HORS in exponential time. Consequently, MHORS turn out to have the same
expressive power as 0-HORS but they can be exponentially more concise.

Our results are obtained through a combination of techniques from game semantics, the geometry
of interaction and automata theory.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases higher-order recursion schemes, linear logic, game semantics, geometry of
interaction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.43

Funding Pierre Clairambault: Supported by ANR RAPIDO (ANR-14-CE25-0007) and Labex
MiLyon (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007), operated by the French National Research Agency (ANR).
Andrzej S. Murawski: Supported by a Royal Society Leverhulme Trust Senior Research Fellowship
(LT170023).

Acknowledgements We would like to thank Sylvain Salvati for consultations on formal languages.

1 Introduction

Higher-order recursion schemes (HORS) have recently emerged as a promising technique for
model-checking higher-order programs [17]. Linear higher-order recursion schemes (LHORS)
were introduced in [5] to facilitate a finer analysis of HORS by mixing intuitionistic and
linear types. In this paper, we investigate the expressivity of their purely linear fragment.

First, we consider multiplicative additive HORS (MAHORS), which in addition to the
linear function types (() feature product types (&), and thus allow for sharing but not
re-use. We show that MAHORS are equivalent to a tree-generating variant of tree-stack
automata (TSA), originally introduced to capture multiple context-free languages in the
word language setting [7]. The translation from MAHORS to TSA amounts to representing
the game semantics of MAHORS in the spirit of abstract machines derived from Girard’s
Geometry of Interaction (GoI) [11, 6]. The GoI view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related to the
syntactic structure of the term. Somewhat suprisingly, so far this nearly automata-theoretic

© Pierre Clairambault and Andrzej S. Murawski;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 43; pp. 43:1–43:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 On the expressivity of linear recursion schemes

Γ, x ∶ ϕ ∣ ∆ ⊢ x ∶ ϕ Γ ∣ ∆, x ∶ ϕ ⊢ x ∶ ϕ
Γ ∣ ∆ ⊢ t ∶ ϕ1 & ϕ2

Γ ∣ ∆ ⊢ πi t ∶ ϕi Γ ∣ ∆ ⊢ � ∶ ϕ

Γ ∣ ∆1 ⊢ t ∶ ϕ(ψ Γ ∣ ∆2 ⊢ u ∶ ϕ
Γ ∣ ∆1,∆2 ⊢ t u ∶ ψ

Γ ∣ ∆, x ∶ κ ⊢ t ∶ ϕ
Γ ∣ ∆ ⊢ λxκ. t ∶ κ(ϕ

Γ ∣ ∆ ⊢ ti ∶ ϕi (i ∈ {1,2})
Γ ∣ ∆ ⊢ ⟨t1, t2⟩ ∶ ϕ1 & ϕ2

Figure 1 Typing rules for the additive linear λ-calculus

flavour of GoI has not been exploited to establish connections with automata models, and
we believe we are the first to do so explicitly. As a consequence, we can conclude that the
branch languages of trees generated by MAHORS are multiple context-free and, thus, that
they belong to the third level of the collapsible pushdown hierarchy [12]. In addition, we
show that MAHORS are strictly more expressive than first-order HORS1, and that they are
not comparable with second-order HORS.

Secondly, we consider multiplicative HORS (MHORS), featuring linear function types
only. In this case, our earlier MAHORS-to-TSA translation specialises to a translation into a
special kind of tree-generating pushdown automata (LPDA) in which reachable configurations
must be reached in a unique run. We show that MHORS and LPDA are equi-expressive and,
moreover, that any MHORS can be translated to an equivalent MHORS of order 1. Further,
using reachability techniques for pushdown automata, we show that LPDA are equivalent to
bounded pushdown automata that forget elements stored at the bottom of the stack after the
stack height exceeds a certain depth. It follows that MHORS generate regular trees, though
the MHORS representation may be exponentially more succinct than order-0 HORS.

2 Linear Recursion Schemes

In this section we introduce the object of study of this paper, MAHORS and MHORS.
The main ingredient of MAHORS is the linear λ-calculus with products – also called the

additive linear λ-calculus, as the product is an additive connective in the sense of Linear
Logic [10]. The following definitions follow [5], restricting type formers to linear connectives
(note that [5] imposes some syntactic restrictions on the shape of types and terms that we
can drop here to simplify presentation, as they play no role in the technical development).

Types are formed with the ground type o and the connectives (and &. We define the
typed terms directly by the typing rules of Figure 1. Typing judgments have the form
Γ ∣ ∆ ⊢ t ∶ ϕ, where Γ and ∆ are two lists of variable declarations. Intuitively, ∆ is the main
context containing variables that can be used at most once (such terms are often called affine
but we opt for the name linear nonetheless). In contrast, Γ comprises duplicable variables
that may be reused at will, as witnessed by the application rule. In M(A)HORS, Γ will be
used only for terminal and non-terminal symbols. Linear λ-terms are equipped with standard
reduction rules; we write ▷β for β-reduction for functions and products, whose definition
can be found e.g. in [5]. Any term t has a normal form, written BT(t).

Trees arise as ground-type terms typable in replicable contexts representing a ranked
alphabet. Recall that in HORS, a symbol b of arity n is represented as a constant b ∶ o →

1 Type order is defined by ord(o) = 0 and ord(θ → θ′) = max(ord(θ) + 1,ord(θ′)). The order of a HORS
is the highest order of (the types of) its non-terminals.

P. Clairambault and A. S. Murawski 43:3

⋅ ⋅ ⋅ → o→ o with n arguments. Here, a ranked alphabet Σ may be represented in two distinct
ways: multiplicatively, with b ∶ o(. . .(o(o, or additively, with b ∶ &no(o, where &no

stands for o&⋯& o (n copies)2. The choice does not impact how finite trees are represented:
in both cases a ▷β-normal Σ ∣ _ ⊢ t ∶ o (if not �) must start with a variable from Σ with some
arity n, followed by n ▷β-normal sub-trees; i.e. it represents a tree (with certain branches
possibly leading to �). The multiplicative vs additive distinction matters in the definition of
schemes, though: with additive typing, resources (variables) may be shared when calculating
two sub-branches of an infinite tree, which is disallowed with multiplicative typing.

Linear recursion schemes consist of a system of recursive equations, where each clause is
given by a λ-term with a restricted shape. A term Γ ∣ _ ⊢ t ∶ ϕ is called applicative if it is
▷β-normal, and has the form λxϕ1

1 . . . λxϕn
n . t′ where t′ has no abstraction.

I Definition 1. A Multiplicative Additive Recursion Scheme (MAHORS) is a 4-
tuple G = ⟨Σ,N ,R, S⟩ where: (1) Σ is a ranked alphabet; (2) N is a finite set of typed
non-terminals; we use upper-case letters F,G,H, . . . to range over them. We denote the type
of F by N(F) and write F ∶ N (F); (3) S ∈ N is a distinguished start symbol of type o; and
(4) R is a function associating to each F in N an applicative term Σ,N ∣ _ ⊢ R(F) ∶ N(F),
with Σ represented additively. A MHORS is defined as a MAHORS where Σ is represented
multiplicatively and the typing of N does not involve products.

If G = ⟨Σ,N ,R, S⟩ is a MAHORS, then for each F ∈ N and n ∈ N there is Σ ∣ _ ⊢
unfn(F) ∶ N(F) defined by unf0(F) = � and unfn+1(F) = R(F)[unfn(G)/G ∣ G ∈ N]. The
family (unfi(F))i∈N forms a chain for ≤ defined as usual by � ≤ t, closed by congruence. As
evaluation is monotone, (BT(unfi(F))i∈N also forms a chain, hence it has a lub which may
be defined as the ideal completion of finite normal terms Σ ∣ _ ⊢ t ∶ o ordered by ≤. We may
then define BT(G) = ⊔i∈N BT(unfi(S)), the infinite tree generated by G.

Our schemes comprise an explicit divergence symbol �. This is unusual, but does not
affect expressivity as it could always be defined with a new non-terminal with rule R(Ω) = Ω.
Finally, we identify silently trees and terms Σ ∣ _ ⊢ t ∶ o.

3 Finite Memory Game Semantics and Geometry of Interaction

Game semantics is a semantic technique to give a compositional interpretation of higher-order
programs [14]. By presenting higher-order computation as a game between two players
embodying the program and its execution environment (Player for the program, Opponent
for the environment), it effectively reduces higher-order computation to an exchange of
tokens between terms. At first forgetting recursion, we briefly review the interpretation of
the linear λ-calculus with products in simple games, then introduce its refined interpretation
as finite-memory strategies, which will inform the translation of M(A)HORS to TSA.

3.1 Games and strategies
A game is a tuple A = ⟨MA, λA, PA⟩ where MA is a set of moves, λA ∶ MA → {O,P} is
a polarity function (we write MO

A = λ−1
A ({O}) and MP

A = λ−1
A ({P})), and PA ⊆ M∗

A is a
non-empty prefix-closed set of valid plays, whose elements are O-starting and alternating:
if s = s1 . . . sn ∈ PA, then λA(s1) = O and λA(si) ≠ λA(si+1). We write ε ∈ PA for the empty
play and s ⊑ s′ for the prefix ordering.

2 [5] considers also intermediate typings, but this does not contribute extra expressivity.

MFCS 2019

43:4 On the expressivity of linear recursion schemes

(o1 (o2) (o3 (o4
○4●2○1 ●3

Figure 2 A play on J(o(o)(o(oK Figure 3 Composition of history-free skeletons

Games represent types. Plays in a game for a type ϕ represent executions on ϕ following
(for this paper) a call-by-name evaluation strategy. For instance, Figure 2 shows a play in the
game for (o(o)(o(o, read from top to bottom. We use indices on atom occurrences
and moves for disambiguation, but the usual convention in game semantics is to signify the
identity of moves simply by their position under the corresponding type component. After
Opponent (○, the environment) starts computation by the initial move on the right, Player
(●, the program) responds by interrogating its function argument. Opponent, playing for this
argument, calls its argument. Player terminates by calling its second argument. This play is,
in fact, the maximal play of the interpretation of λfo(o. λxo. f x ∶ (o(o)(o(o.

Each type ϕ may be interpreted as a game JϕK. The game JoK has MJoK = {○} with
λ(o) = O, and PJoK = {ε, ○}. To match the type constructor (, the linear arrow game
A(B has as moves the tagged disjoint union MA(B =MA +MB = {1} ×MA ∪ {2} ×MB

with polarity λA(B(1, a) = λA(a) and λA(B(2, b) = λB(b), where O = P and P = O.
The plays PA(B include all O-starting, alternating sequences s ∈ M∗

A(B such that the
restrictions s � A ∈ M∗

A and s � B ∈ M∗
B, defined in the obvious way, are in PA and PB

respectively. Hence, A(B can be viewed as playing the two games A and B in parallel,
with the polarity reversed in A, in such a way that any play must start in B and Player is
able to switch between the components. With these definitions the reader can check that
J(o(o)(o(oK = (JoK(JoK)((JoK(JoK) includes four moves corresponding to the
four atom occurrences, and has only two maximal plays: the one in Figure 2, and ○4●3.

The tensor game A⊗B has moves MA⊗B =MA +MB , polarity λA⊗B(1, a) = λA(a) and
λA⊗B(2, b) = λB(b), and plays are those s ∈M∗

A⊗B that are alternating, O-starting and such
that s � A ∈ PA and s � B ∈ PB. Dually to (, it follows from the definition that here only
O can change between components. The product game A&B has the same moves and
polarity as A⊗B, but only the plays where either s � A or s � B is empty. Hence, with their
first move, Opponent fixes the component in which the rest of the game will be played.

A strategy σ on A, written σ ∶ A, is σ ⊆ P ev
A (writing P ev

A for the set of even-length
plays) which is non-empty, closed under even-length prefix, and deterministic, in the sense
that if sab, sab′ ∈ σ, then b = b′. The interpretation of terms yields strategies; for instance

Jλfo(o. λxo. f x ∶ (o(o)(o(oK = {ε, ○4●2, ○4 ●2 ○1●3}

is a strategy on J(o(o)(o(oK with moves following the naming convention of Figure 2.
The interpretation of terms exploits a number of constructions on strategies. In particular,

to compute the composition of σ ∶ A (B and τ ∶ B (C we first let σ, τ interact by
considering all sequences in (MA +MB +MC)∗ whose restrictions to A,B and B,C are
respectively in σ and τ ; and then project those to PA(C to obtain τ ○ σ ∶ A(C. We omit
the details [14]. Overall, the structure needed to interpret the linear λ-calculus with products
is succinctly summarized by stating that games and strategies form a symmetric monoidal
closed category with products [14] – to any _ ∣ x1 ∶ ϕ1, . . . , xn ∶ ϕn ⊢ t ∶ ϕ this lets us associate
JtK ∶ ⊗1≤i≤nJϕiK(JϕK in such a way that this is invariant under reduction – note however

P. Clairambault and A. S. Murawski 43:5

(o1 (o2) (((o3 (o4) & (o5 (o6))
○4●2○1 ●3

(o1 (o2) (((o3 (o4) & (o5 (o6))
○6●2○1 ●5

Figure 4 The two maximal plays of contraction on Jo(oK.

that in this paper, we avoid the categorical language as much as possible.

3.2 History-free and finite memory strategies
A strategy σ ∶ A is history-free if its behaviour only depends on the last move, i.e. there is a
partial function f ∶MO

A ⇀MP
A such that for all s ∈ σ, for all sa ∈ PA, we have sab ∈ σ iff f(a)

is defined and b = f(a). It is key in AJM games [1] that, without products, terms yield history-
free strategies. If σ ∶ A is history-free, it is characterized by the corresponding partial function
f ∶MO

A ⇀MP
A , known as its history-free skeleton. For instance, the strategy Jλfo(o. λxo. f xK

with a unique maximal play in Figure 2, has history-free skeleton {○4 ↦ ●2, ○1 ↦ ●3}.
One can also directly interpret terms as history-free skeletons: this is usually referred to

as Geometry of Interaction [11], which has close ties with game semantics [3]. In particular,
composition of history-free strategies can be performed directly on skeletons. If σ ∶ A(B

and τ ∶ B(C are history-free, their history-free skeletons, which have the types

fσ ∶MP
A +MO

B ⇀MO
A +MP

B fτ ∶MP
B +MO

C ⇀MO
B +MP

B ,

may be composed via feedback on B, pictured in Figure 3. For any Opponent move in
A(C, we apply the corresponding function fσ or fτ . As long as the response is in B, we
keep applying fσ and fτ alternately. This process may stay in B forever (a livelock, in which
case the composition fτ○σ is undefined), but otherwise we eventually get a Player move in
A(C as required; defining a partial function fτ○σ ∶MO

A(C ⇀MP
A(C . One may visualize a

token entering on the left carrying an Opponent move, then bouncing in B until it eventually
exits on the right. Other constructions used in the interpretation may be presented similarly,
altogether giving (for the linear λ-calculus) a presentation of evaluation through a finite
automaton called a token machine, where a token enters through an Opponent move, and
bounces through the term until it eventually exits, giving the result of computation [18].

This is our starting point to represent evaluation of M(A)HORS via an automaton.
However, there is an issue: strategies for linear λ-terms with products are not in general history-
free. For instance, Figure 4 displays the two maximal plays of a contraction/duplication
strategy Jλfo(o. ⟨f, f⟩ ∶ (o (o) (((o (o) & (o (o))K. It reacts to ○1 differently
depending on the history. To account for this, one may replace partial functions f ∶MO

A ⇀MP
A

with f ∶MO
A ×M⇀MP

A ×M, i.e. transducers, whereM, the memory, is a finite set (see the
memoryful geometry of interaction of [13] – however, we are not aware of this being used to
define finite memory strategies). We give below a definition in this spirit, adapted to ease the
translation to TSA and to deal with the branching in M(A)HORS due to terminal symbols.

We fix a ranked alphabet Σ (the multiplicative/additive distinction plays no role here).

I Definition 2. A transducer T on a game A, written T ∶ A, is T = ⟨M− ⊎M+,m0, δ−, δ+⟩
whereM− is a finite set of passive memory states with a distinguished initial memory
state m0 ∈ M−,M+ is a finite set of active memory states, and transition functions:

δ− ∶ M− ×MO
A → M+

δ+ ∶ M+ ⇀ M+ + M− ×MP
A + {b(m1, . . . ,m∣b∣) ∣mi ∈ M+, b ∈ Σ} .

MFCS 2019

43:6 On the expressivity of linear recursion schemes

δT ⊙S+ ((m−
S ,m

+
T)) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(m−
S ,m

′) if δT+ (m+
T) =m′

b((m−
S ,m1), . . . , (m−

S ,m∣b∣)) if δT+ (m+
T) = b(m1, . . . ,m∣b∣)

((m−
S ,m

−
T), (2, c)) if δT+ (m+

T) = (m−
T , (2, c))

(δS− (m−
S , (2, b)),m−

T) if δT+ (m+
T) = (m−

T , (1, b))

δT ⊙S+ ((m+
S ,m

−
T)) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(m′,m−
T) if δS+ (m+

S) =m′

b((m1,m
−
T), . . . , (m∣b∣,m−

T)) if δS+ (m+
S) = b(m1, . . . ,m∣b∣)

((m−
S ,m

−
T), (1, a)) if δS+ (m+

S) = (m−
S , (1, a))

(m−
S , δ

T
− (mT− , (1, b))) if δS+ (m+

S) = (m−
S , (2, b))

Figure 5 Positive transitions of the composition of strategic transducers

Any transducer T on JoK will be called closed. Apart from the forced initial δ−(m0, ○), it
is a finite tree-generating automaton, producing a tree Tree(T). But in general transducers
may play on arbitrary games. In passive states, a transducer is waiting for an Opponent move,
while in active states, it is performing internal computation that may result in a terminal
symbol or in a Player move and the transition to a passive state. If δ+(m) = b(m1, . . . ,m∣b∣),
it produces the terminal symbol b; exploring the ith child results in continuing with mi.

Like strategies, transducers can be composed.

I Definition 3. Let S = (MS
− ⊎MS

+ ,m
S
0 , δ

S
− , δ

S
+) ∶ A(B and T = (MT

− ⊎MT
+ ,m

T
0 , δ

T
− , δ

T
+) ∶

B (C be transducers. The transducer T ⊙ S on game A(C has MT ⊙S
− = MS

− ×MT
−

and MT ⊙S
+ = MS

+ ×MT
− ⊎MS

− ×MT
+ , with initial state (mS0 ,mT0). The transition func-

tion is defined via δT ⊙S− ((m−
S ,m

−
T), (2, c)) = (m−

S , δ
T
− (m−

T , (2, c))), δT ⊙S− ((m−
S ,m

−
T), (1, a)) =

(δS− (m−
S , (1, a)),m−

T), and positive transitions given in Figure 5.

Besides composition, all operations on strategies used in the interpretation of the linear
λ-calculus with products have a counterpart on transducers. Altogether, for any Σ ∣ x1 ∶
ϕ1, . . . , xn ∶ ϕn ⊢ t ∶ ϕ, this yields a transducer jto ∶ ⊗1≤i≤nJϕiK (JϕK. In particular, if
Σ ∣ _ ⊢ t ∶ o, this yields a closed transducer jto ∶ JoK. It is obtained directly by induction on
syntax following denotational semantics, and in particular in polynomial time. We can prove:

I Proposition 4. For any Σ ∣ _ ⊢ t ∶ o, Tree(jto) = BT(t).

The proof works by linking transducers with game semantics. The simple game semantics
presented above cannot directly deal with the presence of non-terminals replicable at will
and the associated branching, so we must first extend it to “tree-generating game semantics”.
The details, though rather direct, are too lengthy for the paper, so we instead present the
connection ignoring the terminal symbols.

Ignoring branching transitions, transducers generate strategies. Writing m− a→m+ when
δ−(m−, a) =m+, m+

1 →m+
2 when δ+(m+

1) =m+
2 and m+ b→m− when δ+(m+) = (m−, b); the set

Traces(T) comprises all sequences s1 . . . s2n ∈M∗
A such that (with m0, . . . ,mn ∈ M−)

m0
s1→→∗s2→ m1

s3→→∗s4→ m2 . . . mn−1
s2n−1→ →∗s2n→ mn .

We say that T is a strategic transducer if for all s ∈ Traces(T) ∩ PA, if sa ∈ PA and
sab ∈ Traces(T), then sab ∈ PA. Then, Traces(T) ∩ PA is a strategy written Strat(T). We
say that σ ∶ A has finite memory if σ = Strat(T) for a strategic transducer T . We also
recover history-free strategies as those for whichM− is a singleton. For instance, the strategy
in Figure 4 is generated usingM− = {m0,m1} andM+ =M− ×MO

Jo(oK, δ−(m,a) = (m,a),
δ+(_ , ○4) = (m0, ●2), δ+(_ , ○6) = (m1, ●2), δ+(m0, ○1) = (m0, ●3) and δ+(m1, ○1) = (m1, ●5).

Proposition 4 boils down to the fact that all constructions on transducers in the inter-
pretation preserve strategic transducers, and match operations on strategies – for instance,
Strat(T ⊙ S) = Strat(T) ○ Strat(S). This entails that for all t, Strat(jto) = JtK. But for
closed transducers jto and tree-generating game semantics, Tree(jto) = Strat(jto). Since game
semantics is invariant under reduction, JtK = JBT(t)K = BT(t), and Proposition 4 follows.

P. Clairambault and A. S. Murawski 43:7

Figure 6 Illustration of a state of the n-th unfolding

4 Game Semantics to TSA

The previous section lets us associate, to any Σ ∣ _ ⊢ t ∶ o, a finite tree-generating automaton.
We extend this with recursion in two steps: first we evaluate finite unfoldings using finite
automata, and then we build a single automaton with additional memory (a Tree Stack
Automaton) whose runs amount to dynamically exploring these finite unfoldings.

4.1 Unfolding recursive calls
Let us fix a M(A)HORS G = ⟨Σ,N ,R, S⟩. By definition, for each F ∈ N we have Σ,N ∣ _ ⊢
R(F) ∶ N(F). Let N ∈ N be such that for all F,G ∈ N , G appears at most N times in R(F).
For all F ∈ N , we choose a term Σ ∣ N1, . . . ,NN ⊢ R′(F) ∶ N(F) obtained by giving different
names G1, . . . ,Gp (p ≤ N) to all occurrences of G ∈ N in R(F). How these names are assigned
does not matter. Although R′ differs from R, it can be equivalently used to define the finite
approximations of BT(G). For each F ∈ N and n ∈ N, we redefine Σ ∣ _ ⊢ unfn(F) ∶ N(F)
by setting unf0(F) = �, and unfn+1(F) = R′(F)[unfn(G)/Gi ∣ G ∈ Ni,1 ≤ i ≤ N]. Although
defined differently, this gives the same result as in Section 2.

But, unlike the original unfolding, this one can be replicated with strategic transducers.
For each F ∈ N , the interpretation of the previous section yields a strategic transducer:

jR′(F)o ∶ ⊗
1≤i≤N

⊗
G∈N

JN(G)K(JN(F)K .

The unfolding above can then be replicated as follows.

I Proposition 5. Setting T 0
F = � with all positive transitions undefined, and T n+1

F = jR′(F)o⊙
(⊗1≤i≤N ⊗G∈N T nG) ∶ JN(F)K, for all n ∈ N, we have Tree(T nS) = BT(unfn(S)).

Proof. By the substitution lemma for symmetric monoidal closed categories with products,
syntactic substitution matches composition in the denotational model. It follows by induction
that for all F ∈ N , for all n ∈ N, junfn(F)o and T nF are transducers generating the same finite
memory strategy. By Proposition 4, Tree(T nS) = Tree(junfn(S)o) = BT(unfn(S)). J

Figure 6 displays the structure of transducer compositions arriving at the finite tree
automaton T nS , for a M(A)HORS G whereR(S) has two occurrences of F and two occurrences

MFCS 2019

43:8 On the expressivity of linear recursion schemes

of G, R(F) has two occurrences of G, and R(G) has two occurrences of F . Each node stands
for the matching strategic transducer (corresponding to a non-terminal), edges represent
compositions. Running T nS passes control between the composed transducers, with always
exactly one active after the initial transition. Figure 6 shows a possible state during a run:
the grey area marks nodes that have already been explored. Outside of the grey area, the
(local) transducer memory must be m0. The green node is active, and all others passive.
Following the transition function of jR(G)o, we may next update the local memory m4,
produce a terminal and branch, or update to a passive state and send control up or down.

4.2 Tree Stack Automata
Now we give a single automaton with infinite memory whose bounded restrictions match
the approximations above. It has a stack to deal with recursion, such that each state of the
stack corresponds to a node in Figure 6. As these nodes stand for strategic transducers, they
all have a finite memory. Accordingly, the automaton maintains a store associating, to each
previously visited stack state/node, its local memory, accessed or updated only when visiting
that node. We think of the store as a tree: the stack alphabet denotes directions, and stack
values denote positions in the tree, i.e. nodes in (the infinite version of) Figure 6. Pushes
and pops correspond to moving up and down the tree. Such an automata model is known
as a Tree Stack Automaton (TSA) [7] – here, we introduce tree-generating TSA.

I Definition 6. A tree-generating TSA A is a tuple ⟨Σ,Q,Γ,M, δ, q0, γ0,m0⟩ where Σ is a
ranked alphabet of terminals, Q is a set of states, Γ is a finite stack alphabet,M is a finite
memory alphabet, q0 ∈ Q is the starting state, γ0 /∈ Γ is the bottom-of-stack marker and
m0 ∈ M is the initial local memory. Letting Γ● = Γ⊎ {γ0}, the transition function δ has type:

δ ∶ Q ×M× Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q ×M× ({upγ ∣γ ∈ Γ} + {down}) .

Informally, the transitions operate as follows. Initially, only γ0 is on the stack. Subse-
quently, given state q, local memory m, and top of the stack γ ∈ Γ●:
1. if δ(q,m, γ) = q′, the automaton changes state to q′, leaving the stack and local memory

unchanged;
2. if δ(q,m, γ) = b(q1, . . . , q∣b∣), it outputs b ∈ Σ and branches – to explore the ith child

(1 ≤ i ≤ ∣b∣) it proceeds to state qi leaving other components unchanged;
3. if δ(q,m, γ) = (q′,m′,upγ′), it updates the local memory to m′, changes state to q′ and

pushes γ′ onto the stack / moves up in direction γ′ (if this is the first visit to that node,
its local memory is set to m0);

4. if δ(q,m, γ) = (q′,m′,down), it updates the local memory to m′ and the state to q′, and
then pops / moves down (we adopt the convention that γ0 cannot be popped so, if γ = γ0
in this case, the automaton blocks).

Running a TSA A produces a possibly infinite tree Tree(A).
In the degenerate case whereM= {m0}, tree-generating TSAs turn out to be precisely

tree-generating deterministic pushdown automata (PDA): the local memory cannot store
information, so only the stack remains. In general, however, it is not hard to see that TSAs
are Turing-complete; fortunately we will only need TSAs satisfying a further condition called
restriction [7]. A tree-generating TSA is k-restricted if every node can be accessed from
below at most k times. It is restricted if it is k-restricted for some k ∈ N.

We implement the evaluation of a MAHORS G with a restricted TSA A(G) with states

Q = (∑
F ∈N

MO
⊗1≤i≤N ⊗G∈N JN(G)K(JN(F)K) + (∑

F ∈N
MjR′(F)o

+).

P. Clairambault and A. S. Murawski 43:9

(Move(F,a), (F,m),_) ↦ State(F, δF− (m,a))
(State(F,m),_ ,_) ↦ State(F,m′) if δF+ (m) =m′

(State(F,m),_ ,_) ↦ b(State(F,m1), . . . ,State(F,m∣b∣)) if δF+ (m) = b(m1, . . . ,m∣b∣)
(State(F,m),_ ,_) ↦ (Move(G, (2, a)), (F,m′),up(F,i)) if δF+ (m) = (m′, (1, i,G, a)) with a ∈MO

N(G)
(State(G,m),_ , (F, i)) ↦ (Move(F, (1, i,G, a)), (G,m′),down) if δG+ (m) = (m′, (2, a)) with a ∈MP

N(G)

Figure 7 Transition function for the GoI TSA.

We use constructors Move and State to refer to elements from the left and right components
of Q respectively. The memory alphabet isM=∑F ∈NM

jR′(F)o
− / ≡, where ≡ is the smallest

equivalence relation with (F,m0) ≡ (G,m0) for all F,G ∈ N . We writem0 for this equivalence
class, providing the initial memory state. The stack alphabet is Γ = N ×N where N is the
smallest integer such that all non-terminals have fewer than N occurrences in R(F), for all
F ∈ N . The start state is q0 = Move(S, ○) and the transition function is given in Figure 7.

The TSA A(G) is designed so that a run of stack size bounded by n simulates a run of
T nS . When in state State(F,m), the automaton is currently operating in a F node of T nS (as
in Figure 6), performing internal computation following δF+ . If this internal computation
produces a move, this move will be addressed either up or down the stack, depending of
whether it is a Player move in N(F) (in which case we must move down), or an Opponent
move in ⊗1≤i≤N ⊗G∈N JN(G)K (in which case we must move up, passing the control to a
recursive call). If the state is State(G,m) and the top of the stack is (F, i), that means that
we are currently running non-terminal G, which was called as the i-th occurrence of G in F .
So the stack, together with the non-terminal symbol in the state, indicate the address of a
node in Figure 6. When moving up or down the stack, we first change to a transient state
Move(F,a) in which the automaton reads the input move using δF− and resumes as above.

I Theorem 7. For any MAHORS G, there exists a restricted TSA A(G) (constructed in
polynomial time) such that Tree(A(G)) = BT(G).

Proof. For n ≥ 1, write Treen(A(G)) for the tree obtained from the truncated run-tree where
the stack size is bounded by n− 1 (where γ0 has size 0). By construction, this truncated run-
tree is weakly bisimilar to that of T nS . In particular, Treen(A(G)) = Tree(T nS) = BT(unfn(S))
by Proposition 5, so Tree(A(G)) = BT(G) by continuity.

This TSA is restricted: for any type ϕ, there is a bound on the length of plays in PJϕK –
in fact MJϕK is finite, and plays in PJϕK cannot use the same move twice. Let k be an upper
bound to the maximal length of a play in P⊗G∈N JN(G)K. Then, A(G) is k-restricted. Indeed,
fix a stack value γn+1γn . . . γ0 with γn+1 = (F, i). Then, all transitions moving between
γn+1 . . . γ0 and γn . . . γ0 carry a move from M⊗G∈N JN(G)K. By construction, the sequence of
such moves forms a play in P⊗G∈N JN(G)K. Hence, it is bounded by k. J

If the input scheme is an MHORS then each R′(F) is interpreted by a history-free
strategy: MjR′(F)o

− is a singleton. Consequently, A(G) has trivial memory and is in fact
simply a PDA. This PDA is still k-restricted but also satisfies a stronger linearity property:

I Lemma 8. Let G be an MHORS. Then the tree-generating PDA A(G) is linear, in the
sense that the associated graph of reachable configurations is a tree.

Proof. A strategic transducer on A is reversible if for each a ∈MP
A there is at most one

m ∈ M+ such that δ+(m) = (_ , a) and for each m ∈ M+ there is at most one (m′, a) ∈
M− ×MO

A such that δ−(m′, a) = m or at most one m′ ∈ M+ such that δ(m′) = m, and the
two possibilities are mutually exclusive. Reversible strategic transducers are closed under

MFCS 2019

43:10 On the expressivity of linear recursion schemes

all operations used in the interpretation, hence if Σ ∣ ∆ ⊢ t ∶ A involves no product, jto is
reversible (this phenomenon is well-known in GoI [6]). This entails that A(G) is linear. J

5 TSA to MAHORS

In this section we show how to simulate a k-restricted TSA A = ⟨Σ,Q,Γ,M, δ, q0, γ0,m0⟩ in
MAHORS, i.e. we establish the converse of Theorem 7.

Let B = ∣Γ∣ and Γ = {γ1,⋯, γB}. Nodes of the tree store will be represented using non-
terminals Fu1,⋯,uB ;d

q,m,γ , where (q,m, γ) ∈ Q ×M× Γ● represent the current state, node label
and top of the stack respectively, d (1 ≤ d ≤ k+1) is the number of times the node has already
been visited from below and each uj (0 ≤ uj ≤ k, 1 ≤ j ≤ B) is the number of times that the
jth child has been visited from below. For brevity, we will write u⃗ instead of u1,⋯, uB .

For 1 ≤ d ≤ k, F u⃗;d
q,m,γ has B+1 arguments: the first B arguments are used to simulate upγj

(1 ≤ j ≤ B) and the last one corresponds to down. Each of the arguments is a Q-indexed tuple
of continuations, so that projection can be used to select the right component to model the
associated state change. When moving up the tree (upγj

), we call the jth argument passing
as an argument another continuation that makes it possible to return (move down) later.
Dually, when moving down the tree, we call the last argument passing as an argument a
continuation that represents a further visit up. Using these ideas, one could code unrestricted
TSA in an untyped setting, but we shall rely on carefully crafted types that allow, for each
node, for up to k visits from below. In particular, if the automaton is moving down having
visited a node k times from below, the corresponding upwards continuation for the k + 1 visit
is of type o, i.e. it is not usable for any future calls. The rules for 1 ≤ d ≤ k are summarised
in the table below, using λ notation for brevity (for F u⃗;k+1

q,m,γ we set F u⃗;k+1
q,m,γ x1⋯xB = �).

δ(q,m, γ) rule
q′ F u⃗;d

q,m,γ x1⋯xBy = F u⃗;d
q′,m,γ x1⋯xBy

b(q1,⋯, q∣b∣) F u⃗;d
q,m,γ x1⋯xBy = b ⟨F u⃗;d

q1,m,γ x1⋯xBy,⋯, F u⃗;d
q∣b∣,m,γ x1⋯xBy⟩

(q′,m′,down) F u⃗;d
q,m,γ x1⋯xBy = (πq′y) ⟨F u⃗;d+1

q′′,m′,γ x1⋯xB ∣ q′′ ∈ Q⟩
(q′,m′,upγj

) F u⃗;d
q,m,γ x1⋯xBy = (πq′xj) ⟨λzTj .F

u⃗+ej ;d
q′′,m′,γ x1⋯xj−1zxj+1⋯xBy ∣ q′′ ∈ Q⟩

In the down case, note that the q′th component of y is used to model state change and
that the continuation features m′ instead of m to reflect the local memory update. Note also
the change from d to d + 1, which updates the count of visits from below.

In the up case, the q′th component of xj is used to model state change and the direction
of the upward move (γj). The use of the same γ on both sides captures the same position on
the stack and m′ is used on the rhs to simulate the local memory update. d does not change,
because the continuation represents revisiting the node from above (rather than from below).
However, once the node is revisited from above in the future, its jth child will have been
visited uj + 1 times from below: hence the change to uj (we write u⃗ + ej for u⃗ with the jth
component incremented by 1). In the up case, we use a λ-term inside a rule to highlight the
intention more clearly, this can be avoided by using an auxiliary non-terminal.

The start symbol S ∶ o has rule S = (F 0,⋯,0;1
q0,m0,γ0

)N1⋯NB⟨� ∣ q ∈ Q⟩. The divergent terms
correspond to our convention that the automaton blocks when down is called at the root node.
Nj (1 ≤ j ≤ B) stands for ⟨Nq,j ∣ q ∈ Q⟩, where Nq,j are auxiliary non-terminals that represent
nodes visited for the first time. They are subject to the rule Nq,jy = F 0,⋯,0;1

q,m0,γj
N1⋯NBy.

The scheme depends on types of the form Ti (0 ≤ i ≤ k) defined by Tk = o and Ti =
(Ti+1(o) (o, where T stands for &q∈QT , i.e. ∣Q∣ copies of T . In particular, we have
F u⃗;d
q,m,γ ∶ Tu1 (⋯(TuB

(Td−1 and Nq,j ∶ T0.

P. Clairambault and A. S. Murawski 43:11

I Theorem 9. For any restricted TSA, there exists an equivalent MAHORS (constructible
in exponential time).

In conjunction with Theorem 7, this shows that MAHORS and restricted TSA are equivalent.

6 Expressivity of MAHORS

It is easy to see that any (classic) first-order recursion scheme (1-HORS) can be viewed
as a MAHORS, simply by giving the terminals types of the form o& ⋯ & o(o. Hence,
MAHORS are at least as expressive as first-order HORS. Next, informed by results from the
preceding sections, we can discuss their relationship with schemes of higher orders. Because
our TSA model is a tree-generating variant of the automata from [7], which capture multiple
context-free languages [21], we can immediately conclude the following.

I Lemma 10. The branch language of a tree generated by a MAHORS is multiple context-free.

Thanks to the Lemma, we can show that MAHORS and second-order HORS are incomparable.

I Example 11. There exists a second-order HORS, which is not equivalent to any MAHORS.
For example, consider the 2-HORS given by: S = Fb, Ff = a(f$)(F (Gf)), Gfx = f(fx),
where a ∶ o → o → o, b ∶ o → o and $ ∶ o are terminals and F ∶ (o → o) → o and G ∶ (o →
o) → o→ o are non-terminals. The scheme generates an infinite tree whose finite branches
correspond to the language L = {anb2n−1

$ ∣n ≥ 1}. Because it is known that L is not multiple
context-free [21, Lemma 3.5], it cannot be the branch language of a MAHORS by Lemma 10.

I Example 12. We give a MAHORS that is not equivalent to any second-order HORS,
exploiting the fact that the language L = {w#w#w ∣w ∈D}, where D is the Dyck language
(D = ε ∣ [D]D), is not indexed [8] (see also page 2 of [16]). The MAHORS given below (using
λ-syntax for brevity) has been obtained by lifting the grammar rules for D to triples of words,
encoded with the type T3 = ((o(o)((o(o)((o(o)(o)(o. Consequently, it
generates a tree whose finite branches are the words of L prefixed by a segment of b’s and
followed by $. The terminal b ∶ (o& o)(o represents rule choice and the other terminals
([,],# ∶ o (o, $ ∶ o) are used to build the word. The scheme relies on the following
non-terminals: S ∶ o, D ∶ T3, K ∶ (o(o)((o(o)((o(o) and I ∶ o(o, which are
subject to the following rules:

S =D(λxyz.x(#(y(#(z$))))), Kxyv = [(x(](yv))), Iv = v,
Df = b⟨fIII,D(λx1y1z1.D(λx2y2z2.f(Kx1x2)(Ky1y2)(Kz1z2)))⟩

If the scheme were equivalent to a 2-HORS, the language of its branches would be accepted
by a 2-CPDA [12], i.e. it would be indexed [2]. However, indexed languages are closed under
homomorphism, so L would be indexed too, because erasing b’s and $ is a homomorphism.

Lemma 10 identifies a strong restriction on branch languages of trees generated by
MAHORS. Since multiple context-free languages form a subset of third-order collapsible
pushdown languages [20], it is natural to ask whether every MAHORS might be equivalent to
a third-order HORS. One could try to establish this, for example, by showing that, for every
restricted TSA, there is an equivalent MAHORS that uses third-order types. Unfortunately,
our proof of Theorem 7 uses types whose order grows linearly in the restriction parameter
k. At the time of writing, we believe this necessary to capture the complexity of run-trees
generated by our (infinite-)tree-generating TSA, though we are aware that similar hierarchies
for (finite-)word languages and (finite-)tree languages do collapse, e.g. second-order abstract

MFCS 2019

43:12 On the expressivity of linear recursion schemes

categorial grammars [19, 15]. The main difficulty that prevents us from translating TSA
into MAHORS of order 3 is that there may be infinitely many (sub)runs that start from a
given node, visit only nodes above it and return to the same node, and all such runs have to
be captured in a single MAHORS. In contrast, for word languages, when TSA are seen as
acceptors of finite words, it suffices to focus on the representation of a single run [7].

7 Multiplicative HORS (MHORS)

In this section we consider MHORS, i.e. &-free MAHORS. Recall from Lemma 8 that, for any
MHORS, there exists an equivalent linear PDA (LPDA) ⟨Σ,Q,Γ, δ, q0, γ0⟩ with transition
function δ ∶ Q × Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q × ({upγ ∣γ ∈ Γ} + {down}) such
that any reachable configuration must be reachable through a unique path. Next we prove
the converse using first-order MHORS only. In combination with Lemma 8, this amounts to
a polynomial-time translation from arbitrary MHORS to first-order MHORS.

In what follows, we view an LPDA as a pushdown system with a successor relation ⇒, in
order to exploit standard reachability techniques [4, 9]. We work with configurations of the
form (q, t) ∈ Q × (Γ●)∗. As we do not have the space to review all the necessary definitions,
let us just recall that the techniques employ multi-automata over Γ● to recognise sets of
configurations. Multi-automata are finite-state machines with multiple initial states, one for
each state of the analysed pushdown system. Let iq be the initial state of a multi-automaton
corresponding to q ∈ Q. Then a multi-automaton is said to recognise (q, t) if it accepts t once
started from iq (this corresponds to processing stack content top-down). In particular, we
take advantage of the following facts.

For any LPDA A, there exists a multi-automaton Aera, constructible in polynomial time,
which captures erasable stack content, i.e. {(q, t) ∈ Q × Γ∗ ∣ ∃q′ ∈ Q. (q, t) ⇒∗ (q′, ε)}.
Using terminology from [4], this corresponds to pre∗(Q × {ε}). Hence, given A, one can
calculate the relation RA = {(q, γ, q′) ∈ Q × Γ ×Q ∣ (q, γ) ⇒∗ (q′, ε)} in polynomial time.
For any LPDA A, there exists a multi-automaton Area, constructible in polynomial time,
which represents all configurations reachable from (q0, γ0), i.e. all (q, tγ0) such that
(q0, γ0) ⇒∗ (q, tγ0). This corresponds to representing post∗({(q0, γ0)}) [9].

I Lemma 13. For any LPDA A, there exists an equivalent MHORS (of order 1) and its
construction can be carried out in polynomial time.

Proof. The translation is similar to the PDA-to-1-HORS translation in [12] except that
reachability analysis (RA) is used to identify places where variables actually get used. This
is needed to produce a term that is linearly typable. J

Consequently, LPDA and MHORS are equivalent. We end this section by showing they
generate regular trees. Our first lemma states that, if the stack of an LPDA grows sufficiently,
there is a point after which elements lying below a certain level will no longer be accessible.

I Lemma 14. Let s ∈ Γ∗. There exists a bound Hs ≥ 0 such that, for any t ∈ Γ∗, if (q, tsγ0)
is reachable and ∣t∣ >Hs then there is no q′ such that (q, t) ⇒∗ (q′, ε).

Proof. Consider X = {(q, sγ0) ∣ (q0, γ0) ⇒∗ (q, sγ0)}. Observe that 0 ≤ ∣X ∣ ≤ ∣Q∣. Because
we work with an LPDA, there can be at most ∣Q∣ runs from (q0, γ0) to X. Let Hs be
the maximum stack height occurring in these runs (take 0 if X = ∅). Suppose (q, tsγ0) is
reachable and ∣t∣ > Hs. If we had (q, t) ⇒∗ (q′, ε) for some q′ then there would be a run
(q0, γ0) ⇒∗ (q, tsγ0) ⇒∗ (q′, sγ0) in which the stack height exceeds Hs (because it visits
(q, tsγ0)). This contradicts the choice of Hs. J

P. Clairambault and A. S. Murawski 43:13

The above bound depends on s. We show that there is a uniform bound, polynomial
with respect to the size of A. First, given s ∈ Γ∗, the multi-automaton Area discussed earlier
can be modified to represent {(q, t) ∣ (q0, γ0) ⇒∗ (q, tsγ0)} simply by changing the accepting
states of Area (to those from which an original accepting state is reachable via an sγ0-labelled
path). Let Asrea be the resultant automaton. Note that the size of Asrea is bounded by a
polynomial in ∣A∣ that is independent of s, because the only difference between Asrea and
Area is the set of accepting states, and its size bounded by ∣Q∣.

Observe that {(q, t) ∣ (q0, γ0) ⇒∗ (q, tsγ0), (q, t) ⇒∗ (q′, ε) for some q′} is exactly the set
of configurations that are represented by both Asrea and Aera. Consider the product A′ of
the two multi-automata. By Lemma 14, A′ cannot have reachable loops. Consequently, the
longest word that it accepts from any initial state is bounded by the number of states of the
automaton, which is polynomial in ∣A∣. As this reasoning is independent of s, we obtain:

I Lemma 15. For any LPDA A, there exists a bound H, polynomial in ∣A∣, such that, for
any s, t ∈ Γ∗, if (q, tsγ0) is reachable and ∣t∣ >H then there is no q′ such that (q, t) ⇒∗ (q′, ε).

This implies that an LPDA can only use H top elements from its stack, i.e. its stack
can be simulated by a finite state automaton, which is exponentially bigger. Because any
0-HORS is also an MHORS, MHORS and 0-HORS are equivalent, i.e. they generate exactly
the regular trees. However, it is worth noting that MHORS may be more succinct.

I Example 16. The MHORS built from terminals a, b ∶ o(o, non-terminals S ∶ o,Fi ∶ o(o

(1 ≤ i ≤ n) with S = Fn(bS), F0(x) = ax and Fi(x) = Fi−1(Fi−1x) for 1 ≤ i ≤ n generates an
infinite branch (a2n

b)ω, which could only be generated by a 0-HORS of exponential size in n.

References
1 Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.

Inf. Comput., 163(2):409–470, 2000. URL: https://doi.org/10.1006/inco.2000.2930, doi:
10.1006/inco.2000.2930.

2 Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. Safety is not a restriction at level 2
for string languages. In Proceedings of FOSSACS, volume 3441 of Lecture Notes in Computer
Science, pages 490–504. Springer, 2005.

3 Patrick Baillot. Approches dynamiques en sémantique de la logique linéaire: jeux et géométrie
de l’interaction. PhD thesis, Aix-Marseille 2, 1999.

4 Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown
automata: Application to model-checking. In Proceedings of CONCUR, volume 1243 of Lecture
Notes in Computer Science, pages 135–150. Springer, 1997.

5 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski. Linearity in higher-order
recursion schemes. PACMPL, 2(POPL):39:1–39:29, 2018.

6 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal lambda-machines.
Theor. Comput. Sci., 227(1-2):79–97, 1999.

7 Tobias Denkinger. An automata characterisation for multiple context-free languages. In
Proceedings of DLT, volume 9840 of Lecture Notes in Computer Science, pages 138–150.
Springer, 2016.

8 Joost Engelfriet and Sven Skyum. Copying theorems. Inf. Process. Lett., 4(6):157–161, 1976.
9 Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient algorithms

for model checking pushdown systems. In Proceedings of CAV, volume 1855 of Lecture Notes
in Computer Science, pages 232–247. Springer, 2000.

10 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
11 Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System F. Studies in Logic

and the Foundations of Mathematics, 127:221–260, 1989.

MFCS 2019

https://doi.org/10.1006/inco.2000.2930
http://dx.doi.org/10.1006/inco.2000.2930
http://dx.doi.org/10.1006/inco.2000.2930

43:14 On the expressivity of linear recursion schemes

12 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. ACM Trans. Comput. Log., 18(3):25:1–25:42,
2017.

13 Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interaction:
from coalgebraic components to algebraic effects. In Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, pages 52:1–52:10, 2014. URL: https://doi.org/10.1145/2603088.
2603124, doi:10.1145/2603088.2603124.

14 Martin Hyland. Game semantics. Semantics and logics of computation, 14:131, 1997.
15 Makoto Kanazawa. Second-order abstract categorial grammars as hyperedge replacement

grammars. Journal of Logic, Language and Information, 19(2):137–161, 2010.
16 Makoto Kanazawa and Sylvain Salvati. The copying power of well-nested multiple context-free

grammars. In Proceedings of LATA, volume 6031 of Lecture Notes in Computer Science, pages
344–355. Springer, 2010.

17 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Proceedings of POPL, pages 416–428, 2009.

18 Olivier Laurent. A token machine for full Geometry of Interaction. In Proceedings of TLCA,
pages 283–297, 2001. URL: https://doi.org/10.1007/3-540-45413-6_23, doi:10.1007/
3-540-45413-6_23.

19 Sylvain Salvati. Encoding second order string acg with deterministic tree walking transducers.
In Proceedings of FG, pages 143–156. CSLI Publications, 2006.

20 Sylvain Salvati. MIX is a 2-MCFL and the word problem in Z2 is captured by the IO and the
OI hierarchies. J. Comput. Syst. Sci., 81(7):1252–1277, 2015.

21 Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-free
grammars. Theor. Comput. Sci., 88(2):191–229, 1991.

A Additional material (Section 2)

[5] considers intermediate (between multiplicative and additive) typings for terminals, which
have the form b ∶ &n1o(⋯(&nk

o(o. This does not contribute any extra expressivity
with respect to the additive typing b ∶ &∑k

i=1 ni
o(o.

This is because b ∶ &n1o(⋯(&nk
o(o can be replaced with a new non-terminal

Nb ∶ &n1o(⋯(&nk
o(o and the rule

Nbx1⋯xk = b⟨π1x1,⋯, πn1x1,⋯, π1xk,⋯πnk
xk⟩

where b ∶ &∑k
i=1 ni

o(o.

B Additional material (Section 3)

In this section we give the details for the TSA evaluation of MAHORS given in Section 3. In
this appendix, we assume some basic familiarity with game semantics and categorical logic.

B.1 Tree-generating game semantics
We build on the well-known symmetric monoidal closed category Gam of simple games. We
do not give a detailed construction for this category, but it can be found for instance in
[14]. We shall first generalize it to deal with strategies that may produce, and branch, on
non-terminals. Let us fix a tree signature Σ. The construction does not depend on whether
terminals are typed additively or multiplicatively (but we will come back to that later).

https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1145/2603088.2603124
http://dx.doi.org/10.1145/2603088.2603124
https://doi.org/10.1007/3-540-45413-6_23
http://dx.doi.org/10.1007/3-540-45413-6_23
http://dx.doi.org/10.1007/3-540-45413-6_23

P. Clairambault and A. S. Murawski 43:15

I Definition 17. We define a game (M,P,λ) with M = Σ ⊎N, λ(b) = − for b ∈ Σ, λ(n) = +
for n ∈ N, and non-empty plays (prefixes of) those sequences

b1n1 . . .bpnp
such that for all 1 ≤ i ≤ p, ni ≤ ∣bi∣.

Overloading notations we still write Σ for this game – this should cause no confusion.

In games coming from the interpretation of types, no move may be played several times.
In contrast in Σ, there is no limitation as to how many times a certain move may be played.
Because of that we get:

I Lemma 18. There are strategies eΣ ∶ Σ (1 and dΣ ∶ Σ (Σ ⊗ Σ making (Σ, e,d) a
comonoid in Gam.

Proof. First, we define eΣ simply as the empty strategy.
If s1, s2 ∈ PΣ, write s1 & s2 for the set of plays resulting from interleavings of s1 and s2.

We then define

dΣ = {s ∈ PΣ1(Σ2⊗Σ3 ∣ ∀t ⊑+ s, t � Σ1 ∈ (t � Σ2 & t � Σ3)}

where the different copies of Σ are marked for disambiguation. It is routine to check that
this is a strategy and that it satisfies the comonoid laws. J

Because Σ is a comonoid, it follows that Σ⊗− is a comonad on Gam. We write GamΣ for
its Kleisli category. GamΣ inherits all the categorical structure from Gam, that is to say, it is
symmetric monoidal closed category with products, and as such supports the interpretation
of the affine λ-calculus with products and free variables in Σ duplicable at will.

In particular, the interpretation of a terminal b ∶ &p1o(. . .(&pno(o is the strategy:

JbK ∶ Σ⊗ (&∑piJoK) → JoK

playing b on the left, and if Opponent calls the argument (i, j), so does Player. Furthermore:

Jb(⟨t1,j ∣ 1 ≤ j ≤ p1⟩, . . . , ⟨tn,j ∣ 1 ≤ j ≤ pn⟩)K = JbK ○Σ ⟨ti,j ∣ 1 ≤ i ≤ n,1 ≤ j ≤ pi⟩

In other words, the games model treats all terminal symbols as purely additively typed.
This reflects the fact that syntactically, every MAHORS can be re-typed with all terminals
typed purely additively. This however comes with a loss of information, because multiplicative
branching implies that no sharing is allowed between the branches. This will become
particularly relevant for the part of our development that concerns MHORS. Hence we will
later add further information on strategies for MHORS to recover a posteriori the linearity
information coming from multiplicative branching.

Now, strategies on Σ(o can be regarded as trees – apart from the initial move ○, we
have only player playing terminal symbols and Opponent playing directions allowing us to
explore the tree. We keep silent the implicit conversion between distinct representations of
trees as normal terms Σ ∣ _ ⊢ t ∶ o and as strategies on Σ(o; in particular the interpretation
of a normal term yields directly the representation of the same tree as a strategy.

Leveraging the categorical structure we just established, we have:

I Theorem 19. For any Σ ∣ _ ⊢ t ∶ o, we have

JtK = BT(t)

leaving implicit the syntactic correspondence between trees and strategies on Σ(o.

Proof. From the categorical laws the interpretation preserves the reduction, and then it is
an immediate verifications for the normal forms. J

MFCS 2019

43:16 On the expressivity of linear recursion schemes

B.2 Finite memory and history-free strategies
To generate finite memory and history-free strategies, we use the strategic transducers
of Definition 2. In the main text, the definition of the strategy generated by a strategic
transducer ignores the terminal symbols – here, we must extend it to deal with those.

Let T = (M− ⊎M+,m0, δ−, δ+) be a strategic transducer on A. Then, we define a labeled
transition system whose nodes areM− ⊎M+ ⊎ {mb ∣m ∈ M+,b ∈ Σ}.

m−
a→ m+ if a ∈M−

A and δ−(m−, a) =m+
m+

ε→ m′
+ if δ+(m+) =m′

+

m+
b→ m− if b ∈M+

A and δ+(m+) = (m−, b)
m+

b→ mb
+ if δ+(m+) = b(. . .)

mb
+

i→ m′
i if δ+(m+) = b(m′

1, . . . ,m
′
∣b∣)

We refine the definition of Traces(T) given in the main text to take account of the
terminal symbols. If s ∈ M∗

Σ(A, for m,m′ ∈ M− ⊎M+ ⊎ {mb ∣ m ∈ M+,b ∈ Σ}, we define
m

s⇒ m′ as the smallest relation such that m ε⇒ m, and if m s⇒ m′ and m′ s
′
→ m′′, then

m
ss′⇒m′′. The traces of T are those s ∈M∗

Σ(A such that m0
s⇒m for some m.

I Proposition 20. If T is a strategic transducer on A, then if s ∈ Strat(T), if sa ∈ PΣ(A

and sab ∈ Traces(T), then sab ∈ PΣ(A as well.

Proof. Ignoring the part of the play on Σ, this is by definition of strategic transducers. To
this the present definition adds subsequences bi in Σ, preserving correctness in Σ(A. J

If T is a strategic transducer on A, then Plays(T) is a strategy on Σ(A. By construction
it is non-empty set of even-length plays closed by even-length prefixes. It is deterministic as
a strategic transducer is deterministic (its transitions are given by functions). We say that a
strategy σ ∶ Σ(A has finite memory if it is generated by a strategic transducer.

Furthermore, we say that a strategy σ ∶ Σ(A is history-free if it is generated by a
strategic transducer withM− a singleton set. At first sight, this seems different from the
traditional notion of history-free strategy. Indeed, the traditional notion is too strict to deal
correctly with the presence of Σ here. For instance, all symbols in Σ share the same moves
for the subsequent directions, so the strategy for e.g. b(b(�)) would not be history-free in
the tranditional sense as the same move (the direction 0) yields the move b the first time
and no response the second time. Our revised notion of history-free treats Σ in a distinct
way as it should. An history-free strategy in the present sense that does not play on Σ is
exactly a history-free strategy in the traditional sense; so we regard the present notion as a
generalization of history-freeness in the context of tree-generating strategies.

In particular, all plain copycat strategies are history-free. This includes all the structural
isomorphism from the symmetric monoidal closed structure of Gam. However, there are of
course more finite-memory strategies than history-free. In particular, we have the following.

I Lemma 21. Let A be a game. Then, the duplication strategy:

δA ∶ Σ⊗A(A&A

has finite memory.

Proof. Note that the strategy does not play in Σ, but we include it anyway as it is a
structural morphism in the Kleisli category GamΣ.

P. Clairambault and A. S. Murawski 43:17

We have to provide a strategic transducer for δA. For clarity, let us label the copies of
A in A(A&A as A1 (A2 &A3. In the rest of the argument, the subscripts on moves
indicate in which components they rest, while their polarity annotation is that taken for the
full game.

Our strategic transducer has M− = {m0,ml,mr} and M+ = M− ×MΣ⊗A1(A2&A3 . Its
negative transition function is δ−(m,a) = (m,a). Its positive transition function is

δ+ ∶ M+ → M− ×M+
Σ⊗A1(A2&A3

(_ , a−2) ↦ (ml, a
+
1)

(_ , a−3) ↦ (mr, a
+
1)

(ml, a
−
1) ↦ (ml, a

+
2)

(mr, a
−
1) ↦ (mr, a

+
3)

and undefined otherwise – note that its codomain does not use all the output possibilities for
a positive transition function of a strategic transducer. It is straightforward to check that
this is a strategic transducer, and that it generates δA. J

In general, the symmetric monoidal closed category with products GamΣ admits a sub-
smcc with products of history-free strategies. To establish that, we must show that all usual
operations on strategies can be replicated on strategic transducers in a compatible way.

I Proposition 22. Let S ∶ A(B and T ∶ B(C be strategic transducers. Then, T ⊙ S is
a strategic transducer and

Strat(T ⊙ S) = Strat(T) ○Σ Strat(S)

In particular, the composition of finite memory strategies is a finite memory strategy, and
the composition of history-free strategies is history-free.

Proof. ⊆. If s ∈ Strat(T ⊙S), then there is (m0,m0)
s⇒ (m1,m2) in T ⊙S. Projecting these

transitions on S and T , we get two sequences m0
sS⇒m1 and m0

sT⇒m2 where sS ∈ PΣ⊗A(B

and sT ∈ PΣ⊗B(C . Note that the fact that these are indeed correct plays follows from
Proposition 20. By construction, these plays are such that sS � B = sT � B. By induction
on the transitions in T ⊙ S for s, exploiting that the definition of T ⊙ S follows the usual
state diagram of interactions in simple games, this lets us build u ∈ τ ~ (Σ ⊗ σ) whose
projections yields sS and sT and where moves in Σ,A,C appear in the same order in u as in
s. This yields s′ ∈ τ ○ (Σ⊗ σ) ∶ Σ⊗Σ⊗A(C differing only from s in that the calls to Σ
from S and T appear in different components. Composing with duplication on Σ, we get
s ∈ Strat(T) ○Σ Strat(S) as required.

⊇. If s ∈ Strat(T)○Σ Strat(S), then there is a witness u ∈ Strat(T)~(Σ⊗Strat(S)), with
projections tS = u � Σ1,A,B ∈ Strat(S) and tT = u � Σ2,B,C ∈ Strat(T) are respectively
obtained by sequences of transitions from m0 in S and T . Following the state diagram
of interactions, it is direct to synchronise these two sequences of transitions and obtain a
sequence of transitions on T ⊙ S generating s.

The conclusion on history-free strategies follows fromMT ⊙S
− =MS

− ×MT
− . J

Other constructions on strategies are straightforward as there is no interaction between
them. In particular, if S1 ∶ A1 (B1 and S2 ∶ A2 (B2, the tensor strategic transducer
S1 ⊗S2 hasMS1⊗S2

− =MS1
− ×MS2

− andMS1⊗S2
+ =MS1

− ×MS2
+ ⊎MS1

+ ×MS2
− and transition

functions defined componentwise in the obvious sense. It is direct to prove that S1 ⊗ S2 is a
strategic transducer and that Strat(S1 ⊗ S2) = Strat(S1) ⊗Σ Strat(S2). Overall, we have:

MFCS 2019

43:18 On the expressivity of linear recursion schemes

I Theorem 23. There are two sub symmetric monoidal closed categories of GamΣ, written
Gamhf

Σ and Gamfm
Σ , where strategies are respectively history-free and finite memory strategies.

Moreover, the latter also has products.

In particular, this means that besides the interpretation J−K of the linear λ-calculus with
products in GamΣ, there is also a function interpreting each linear λ-term with products
Σ ∣ Γ ⊢ t ∶ A as a strategic transducer jto ∶ JΓK(JAK such that Strat(jto) = JtK. In particular,
if Σ ∣ _ ⊢ t ∶ o, it follows that Tree(jto) = Strat(jto) = JtK = BT(t).

C Auxiliary material (Section 4.2)

Our automata are a variant of tree stack automata proposed in [7], adapted to generate
deterministically a potentially infinite tree. The automata feature finite-state control and a
tree-shaped memory. In tree nodes one can store and update elements of a finite memory
alphabet M. To keep track of the current position in the tree, [7] introduces an implicit
stack pointer. In our definition the stack is integrated into the machine and the automaton
has access to the top stack symbol. This allows us to conclude immediately that the model
reduces to a pushdown automaton forM= {⋆}. Otherwise, the difference is immaterial for
expressivity, because one could maintain the information about the top stack symbol using
state and tree memory3.

I Definition 24. A tree-generating TSA A is a tuple ⟨Σ,Q,Γ,M, δ, q0,m0, γ0⟩ where Σ is a
ranked alphabet of non-terminals, Q is a set of states, Γ is a finite stack alphabet,M is a
finite memory alphabet, δ is the transition function, q0 ∈ Q is the starting state, m0 ∈ M is
the starting memory, and γ0 is the bottom-of-stack symbol (corresponding to the root of the
tree memory). The transition function has the following type

δ ∶ Q ×M× Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q ×M× ({upγ ∣γ ∈ Γ} + {down}) ,

where Γ● = Γ ⊎ {γ0}, writing γ0 for the bottom-of-stack marker.

I Definition 25. A TSA configuration ξ is a tuple (q, p, ρ), where q ∈ Q, p ∈ Γ∗γ0 and
ρ ∶ Γ∗γ0 ⇀M×N>0 is such that dom(ρ) is non-empty, finite and suffix-closed, and p ∈ dom(ρ).

ρ gives information about node labels and the number of times a particular node has been
visited. p corresponds to the current stack, which indicates the current position in the tree.
Because dom(ρ) is non-empty and suffix-closed, we must have γ0 ∈ dom(ρ). The initial
configuration is ξ0 = (q0, γ0,{γ0 ↦ (m0,1)}). The run-tree of A is the tree rooted at ξ0
obtained by following the rules given below, where ξ Ð→ b(ξ1,⋯, ξ∣b∣) denotes branching and
ξ Ð→ ξ′ a silent transition. Each rule is predicated on π1(ρ(p)) =m.

δ(q,m, γ) = q′

(q, γp, ρ) Ð→ (q′, γp, ρ)

δ(q,m, γ) = b(q1, . . . , q∣b∣)

(q, γp, ρ) Ð→ b((q1, γp, ρ),⋯, (q∣b∣, γp, ρ))

3 Because our model features a stack, we use γ to refer to the stack alphabet and M to refer to the
memory alphabet. [7] uses Γ for the latter.

P. Clairambault and A. S. Murawski 43:19

δ(q,m, γ) = (q′,m′,upγ′)

(q, γp, ρ) Ð→ (q′, γ′γp, ρ′)

where

ρ′(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ(s) s ∈ dom(ρ), s ≠ γp, γ′γp
(m′, i) s = γp, ρ(s) = (m, i)
(m0,1) s = γ′γp, s /∈ dom(ρ)

(m′′, i + 1) s = γ′γp, ρ(s) = (m′′, i)

δ(q,m, γ) = (q′,m′,down)

(q, γp, ρ) Ð→ (q′, p, ρ′)

where

ρ′(s) = { ρ(s) s ∈ dom(ρ), s ≠ γp
(m′, i) s = γp, ρ(s) = (m, i)

This transition fires only if γ ≠ γ0, i.e. the automaton gets stuck if down is executed when
the bottom-of-stack symbol is at the top of the stack.

A run is a prefix of any branch of the run-tree.

I Definition 26. A TSA is k-restricted if no node is entered from below more than k

times in any run. Formally, for any configuration (q, p, ρ) reachable from ξ0, we have
img ρ ⊆M× {1,⋯, k}.

D Additional material (Section 5)

This is a formal account of the translation. Consider a k-restricted TSAA = ⟨Σ,Q,Γ,M, δ, q0, γ0,m0⟩
with

δ ∶ Q ×M× Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q ×M× ({upγ ∣γ ∈ Γ} + {down}) .

Let B = ∣Γ∣ and Γ = {γ1,⋯, γB}. Given a type T , let us write T for &q∈QT , i.e. ∣Q∣ copies of
T . The construction of a MAHORS that is equivalent to the given TSA depends on types Ti
(0 ≤ i ≤ k) defined by

Ti = {
o i = k
(Ti+1(o)(o 0 ≤ i < k

The corresponding MAHORS GA = ⟨Σ,N ,R, S⟩ is defined as follows.
Terminals: Σ
Nonterminals N :

S ∶ o

Nq,j ∶ T0
F u⃗;d
q,m,γ ∶ Tu1 (⋯(TuB

(Td−1

Gu⃗;d;j
q,m,γ ∶ Tu1 (⋯Tuj−1 (Tuj+1⋯(TuB

((Td(o)(Tuj (o

Ωo ∶ o

ΩT1(o ∶ T1(o

where q ∈ Q, 1 ≤ j ≤ B, m ∈ M, γ ∈ Γ●, u⃗ = (u1,⋯, uB) ∈ {0,⋯, k}B and d ∈ {1,⋯, k + 1}.

MFCS 2019

43:20 On the expressivity of linear recursion schemes

Rules R:

Start

S = F 0,⋯,0;1
q0,m0,γ0

N1⋯NBD
Nq,jy = F 0,⋯,0;1

q,m0,γj
N1⋯NBy

for any q ∈ Q, 1 ≤ j ≤ B, where

Nj ≡ ⟨Nq,j ∣ q ∈ Q⟩ ∶ T0
D ≡ ⟨ΩT1(o ∣ q ∈ Q⟩

and ≡ stands for syntactic equality.
δ(q,m, γ) = q′ (state change)

F u⃗;d
q,m,γ x1⋯xBy = F u⃗;d

q′,m,γ x1⋯xBy

where u⃗ ∈ {0,⋯, k}B , 1 ≤ d ≤ k and (q,m, γ) ∈ Q ×M× Γ●.
δ(q,m, γ) = b(q1,⋯, q∣b∣) (branching)

F u⃗;d
q,m,γ x1⋯xBy = b ⟨F u⃗;d

q1,m,γ x1⋯xBy,⋯, F u⃗;d
q∣b∣,m,γ x1⋯xBy⟩.

where u⃗ ∈ {0,⋯, k}B , 1 ≤ d ≤ k and (q,m, γ) ∈ Q ×M× Γ●.
δ(q,m, γ) = (q′,m′,down)

F u⃗;d
q,m,γ x1⋯xBy = (πq′y) ⟨F u⃗;d+1

q′′,m′,γ x1⋯xB ∣ q′′ ∈ Q⟩.

where u⃗ ∈ {0,⋯, k}B , 1 ≤ d ≤ k and (q,m, γ) ∈ Q ×M× Γ●.
δ(q,m, γ) = (q′,m′,upγj

)

F u⃗;d
q,m,γ x1⋯xBy = (πq′xj) ⟨Gu⃗+ej ;d;j

q′′,m′,γ x1⋯xj−1xj+1⋯xBy ∣ q′′ ∈ Q⟩,
Gu⃗;d;j
q,m,γ x1⋯xj−1xj+1⋯xByz = F u⃗;d

q,m,γ x1⋯xj−1zxj+1⋯xBy.

where u⃗ ∈ {0,⋯, k}B , 1 ≤ d ≤ k and (q,m, γ) ∈ Q ×M× Γ●.
Auxiliary rules to induce divergences:

Ωo = Ωo
ΩT1(ox = ΩT1(ox

F u⃗;k+1
q,m,γ x1⋯xB = Ωo

for u⃗ ∈ {0,⋯, k}B and (q,m, γ) ∈ Q ×M× Γ●.

In order to prove that the TSA-to-MAHORS translation is correct, it is necessary to
understand how a TSA configuration ξ = (q, p, ρ) can be represented using an applicative
term Tξ. We start with an auxiliary definition.

IDefinition 27. Given r ∈ dom(ρ) such that ρ(r) = (mr, dr), let u⃗r be the vector (ur,1,⋯, ur,B)
defined by

ur,i = { 0 γir /∈ dom(ρ)
π2(ρ(γir)) γir ∈ dom(ρ)

P. Clairambault and A. S. Murawski 43:21

Suppose ρ(p) = (m,d). The term Tξ will use the non-terminal

F u⃗p;d
q,m,γp

∶ Tup,1 (⋯(Tup,B
(Td−1

as its head variable, where γp is the topmost (leftmost) element of p.
The first B arguments of F u⃗p;d

q,m,γ will correspond to visiting nodes above p. We call
them upwards continuations. Note that, because these future visits are from below, the
non-terminals involved carry a superscript (dr + 1) equal to the number of times the node
has already been visited plus 1.

I Definition 28. Let r = γjrr
′ ∈ Γ∗γ0. The term Ur is then defined as follows

Ur ≡ { ⟨Nq,jr ∣ q ∈ Q⟩ r /∈ dom(ρ)
⟨F u⃗r;dr+1
q,mr,γjr

Uγ1r⋯UγBr ∣ q ∈ Q⟩ r ∈ dom(ρ), ρ(r) = (mr, dr)

Note that this definition refers to Uγir when defining Ur. This is well-founded, because
dom(ρ) is finite. Observe that we have Ur ∶ Tdr if r ∈ dom(ρ) (and ρ(r) = (mr, dr)) and
Ur ∶ T0 otherwise.

Because d ≤ k, the non-terminal F u⃗p;d
q,m,γ has a (B + 1)th argument. It will correspond

to visiting the node below p and we call it a downwards continuation. Note that, because
the visit will be from above, the non-terminals involved will carry a superscript (dr′) that
coincides with the number of times the node has been visited so far.

I Definition 29. Given r ∈ dom(ρ) such that ρ(r) = (mr, dr), define the term Dr ∶ Tdr (o

as follows.

Dr ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨ΩT1(o ∣ q ∈ Q⟩ r = γ0

⟨Gu⃗r′ ;dr′ ;jr
q,mr′ ,γjr′

Uγ1r′⋯Uγjr−1r′Uγjr+1r′⋯UγBr′Dr′ ∣ q ∈ Q⟩ r = γjrr
′, r′ = γjr′ r

′′

ρ(r′) = (mr′ , dr′)

This definition is inductive and relies on the fact that γ0 ∈ dom(ρ) and dom(ρ) is suffix-closed.
Note that ur′,jr = dr, so in the second case the term indeed has type Tdr (o.

I Definition 30. Given a configuration ξ = (q, p, ρ) such that ρ(p) = (m,d) and p = γpr′, the
corresponding term Tp ∶ o is defined to be

Tp ≡ F u⃗p;d
q,m,γp

Uγ1p⋯UγBpDp.

The correctness of the translation can now be established by showing that the MAHORS
rules simulate the configuration graph of the TSA faithfully. Let ξ0 be the initial TSA
configuration and observe that

Tξ0 ≡ F 0,⋯,0;1
q0,m0,γ0

Uγ1γ0⋯UγBγ0Dγ0 ≡ F 0,⋯,0;1
q0,m0,γ0

N1⋯NBD

and that S = F 0,⋯,0;1
q0,m0,γ0

N1⋯NBD is a rule in the corresponding MAHORS, i.e. S = Tξ0 .
This means that the "starting points" of both formalisms coincide. Next we perform a case
analysis of MAHORS rules, showing that every step based on rules from GA corresponds to
a transition in A, and vice versa.

I Definition 31. An applicative term M built from terminals and non-terminals of GA is
called a F -term if M is of the form F u⃗;d

q,m,γ⋯. Similarly, we define G- and N -terms.

Suppose M ≡ Tξ for some ξ and M =M ′ (one-step) according to R. Then M is a F -term
and the following cases arise for M ′.

MFCS 2019

43:22 On the expressivity of linear recursion schemes

M ′ is an F -term.

This is the case if the rule for (state change) was used to derive M =M ′. Because
M ≡ Tξ, we have M ′ ≡ Tξ′ , where ξ Ð→ ξ′ (via δ(q,m, γ) = q′).

M ′ ≡ b⟨M1,⋯,MB⟩
In this case the (branching) rule must have been used. Because M ≡ Tξ, we have
Mi ≡ Tξi for ξ1,⋯, ξB such that ξ Ð→ b(ξ1,⋯, ξB).

M ′ ≡ (πq′ . . .)⋯. In this case, the up or down rule must have been used.
If up then, because M ≡ Tξ, after applying the projection rule, one obtains an F - or
an N -term. In the former case, it will represent the configuration ξ′ such that ξ Ð→ ξ′

(via δ(q,m, γ) = (q′,m′,upγ′)). In the latter case, after a single application of the rule
for N , we can conclude the same.
If down then, because M ≡ Tξ, after applying the projection rule, one obtains a G- or
�-term. In the former case, after a single application of the rule for G, we arrive at a
term that represents ξ′ such that ξ Ð→ ξ′ (via δ(q,m, γ) = (q′,m′,down)). The �-case
can arise only for M ≡ F u⃗;d

q,m,γ0
⋯. Because M ≡ Tξ, we can conclude that ξ has only γ0

on the stack, i.e. the TSA cannot move.
This shows that A can simulate RA. For the converse, since we already established S = Tξ0 ,
it suffices to observe that

if M ≡ Tξ and ξ Ð→ ξ′ then:
if ξ Ð→ ξ′ by (state change) we have M = Tξ′ (by a single F -rule);
if ξ Ð→ ξ′ by (up) then we have M = M ′ = Tξ′ (by F -rule+projection) or M = M ′ =
M ′′ = Tξ′ (by F -rule+projection+N -rule);
if ξ Ð→ ξ′ by (down) then we have M =M ′ =M ′′ = Tξ′ (by F -rule+projection+G-rule);

if M ≡ Tξ and ξ Ð→ b(ξ1,⋯, ξB) then M = b⟨Tξ1 ,⋯,TξB
⟩ (by F -rule).

Altogether we can conclude A and RA generate the same infinite tree.

E Auxiliary material (Section 6)

Recall the grammar for the Dyck language:

D ∶∶= ε ∣ [D]D.

We are going to recast it in terms of triples of identical words. To represent words over
{[,]}, we use the type W = o(o and terminals [,] ∶W . The empty word then corresponds
to the identity function I ∶ W . To represent triples of words of type W , we use the type
T3 = (W (W (W (o) (o on the understanding that a triple ⟨M1,M2,M3⟩ is
represented by λf.fM1M2M3 ∶ T3.

Then the Dyck grammar can be lifted to type T3 as follows, where the terminal b ∶ o(
o(o represents choice between the two rules.

Df = b⟨fIII,Concat (BracketD)Df⟩

where
Bracket ∶ T3(T3 represents a function that adds outermost brackets to each component
of the given triple ((x, y, z) ↦ ([x], [y], [z])),
Concat ∶ T3(T3(T3 concatenates components of two triples ((x1, y1, z1), (x2, y2, z2) ↦
(x1x2, y1y2, z1z2)).

P. Clairambault and A. S. Murawski 43:23

The two terms are defined below.

BracketX f = X(λxyz.f(Bx)(By)(Bz))
Bwv = [(w(]v))

ConcatX1X2 f = X1(λx1y1z1.X2(λx2y2z2.f(Cx1x2)(Cy1y2)(Cz1z2)))
Cw1w2v = w1(w2v)

It follows that

Concat (BracketD)Df =D(λx1y1z1.D(λx2y2z2.f(Kx1x2)(Ky1y2)(Kz1z2))),

where Kw1w2v = [(w1(](w2v))). This yields the equation used in the main body of the
paper:

Df = b⟨fIII,D(λx1y1z1.D(λx2y2z2.f(Kx1x2)(Ky1y2)(Kz1z2)))⟩.

By unfolding the right-hand side one can obtain an infinite tree whose leaves are labelled with
terms of the form fMMM , where M ranges over (representations of) words from the Dyck
language. In order to generate branches that end in words from L = {w#w#w ∣w ∈D}, it now
suffices to merge the components of the triples into single words by passing a concatenating
function:

S =D(λxyz.x(#(y(#(z$))))).

Note the use of two new terminals: # ∶W to separate the words and $ ∶ o to end the branch.
Above we have used λ-syntax for brevity. Below we give an equivalent definition based

on applicative terms, obtained by introducing auxiliary non-terminals for various subterms
of the λ-terms.

S = D(Init)
Initxy z = x(#(y(#(z$)))))

S f = b⟨fIII,D(Ef)⟩
I v = v

E f x1 y1 z1 = D(Ffx1y1z1)
F f x1 y1 z1 x2 y2 z2 = f(K x1 x2)(K y1 y2)(K z1 z2)

Kw1w2 v = [(w1(](w2v)))

F Auxiliary material (Section 7)

First we explain how to define a pushdown system PA = ⟨Q,Γ●,∆⟩ [4], where ∆ ⊆ Q × Γ● ×
Q × (Γ●)∗, from a PDA ⟨Σ,Q,Γ, δ, q0, γ0⟩ whose transition function has the form

δ ∶ Q × Γ● ⇀ Q + {b(q1, . . . , q∣b∣) ∣ qi ∈ Q, b ∈ Σ} +Q × ({upγ ∣γ ∈ Γ} + {down}).

We define ∆ as the smallest set satisfying the rules below.
If δ(q, γ) = q′ then (q, γ, q′, γ) ∈ ∆.
If δ(q, γ) = b(q1, . . . , q∣b∣) then (q, γ, qi, γ) ∈ ∆ for any 1 ≤ i ≤ ∣b∣.
If δ(q, γ) = (q′,upγ′) then (q, γ, q′, γ′γ) ∈ ∆.
If δ(q, γ) = (q′,down) and γ ≠ γ0 then (q, γ, q′, ε) ∈ ∆.

The condition γ ≠ γ0 corresponds to our convention that TSA block if down is executed on
a stack containing γ0 at the top. The corresponding configuration graph has Q × (Γ●)∗ as
nodes and edges ⇒ are defined by

(q1, γw) ⇒ (q2,w
′w),

MFCS 2019

43:24 On the expressivity of linear recursion schemes

where (q1, γ, q2,w
′) ∈ ∆ and w ∈ (Γ●)∗. Note that this graph is more general than the

TSA configuration graph defined earlier, e.g. it contains configurations with empty stack or
without γ0. However, the two coincide on configurations reachable from (q0, γ0).

In the paper we take advantage of reachability analysis for pushdown systems [4, 9]. In
particular, the relation RA = {(q, γ, q′) ∈ Q × Γ ×Q ∣ (q, γ) ⇒∗ (q′, ε)} can be calculated in
polynomial time. Recall that an LPDA is PDA with a linearity property: any configuration
reachable from (q0, γ0) can be reached via a unique path.

I Lemma 32. For any LPDA A, there exists an equivalent MHORS (of order 1) and its
construction can be carried out in polynomial time.

Proof. W.l.o.g. assume Q = {1,⋯,N} and use the following non-terminals S ∶ o, F(q,γ) ∶
o(⋯(o
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

(o. The translation uses the same term representation of stacks as the 1-CPDA

to 1-HORS translation in [12] except that reachability analysis (RA) is used to identify places
where the variables actually get used. Intuitively, F(q,γ)x1⋯xN represents a configuration
where γ is at the top of the stack, and each xi corresponds to a configuration that would be
reached if γ was popped and the automaton transitioned to state i.

For rules, we take S = F(q0,γ0)�⋯� and

F(q,γ)x1⋯xN =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(q′,γ)x1⋯xN δ(q, γ) = q′ (state change)
bB1⋯B∣b∣ δ(q, γ) = b(q1,⋯, q∣b∣) (branching)

xq′ δ(q, γ) = (q′,down) (pop)
F(q′,γ′)D1⋯DN δ(q, γ) = (q′,upγ′) (push)

where Bi ≡ F(qi,γ)yi1⋯yiN , Di ≡ F(i,γ)zi1⋯ziN and

yij ≡ { xj (qi, γ, j) ∈ RA
� otherwise zij ≡ { xj (q′, γ′, i), (i, γ, j) ∈ RA

� otherwise

Because the intended target of the translation is the setting of MHORS, we need to show
that, in each of the rules above, every xj occurs at most once on the right-hand side. This is
easy to see for the (pop) and (state change) cases, so it remains to check (branching) and
(pushing). We are going to argue that, if linearity were violated, we can actually replace the
rhs with �, because the corresponding configurations would never be reached.

Consider the branching case first and suppose that xj occurs twice in bB1⋯B∣b∣. Then we
must have (qi1 , γ, j) ∈ RA and (qi2 , γ, j) ∈ RA for i1 ≠ i2. Observe that then no configuration
of the form (q, γ�), where � ∈ (Γ●)∗, can be reachable from (q0, γ0), because a run from
(q0, γ0) to (q, γ�) can be extended (via (qi1 , γ�) and (qi2 , γ�) respectively) to two different
runs to (j,�), which would contradict linearity. Consequently, we can set F(q,γ)x1⋯xN = �.

Finally, consider the push case and suppose xj occurs twice in F(q′,γ′)D1⋯DN , i.e.
there exist i1 ≠ i2 such that (q′, γ′, i1), (i1, γ, j) ∈ RA and (q′, γ′, i2), (i2, γ, j) ∈ RA. We
argue that then no configuration of the shape (q, γ�) is reachable from (q0, γ0). Indeed,
if this were the case, we could extend the run (from (q0, γ0) to (q, γ�)) with (q, γ�) ⇒
(q′, γ′γ�) ⇒∗ (ik, γ�) →∗ (j,�) for k = 1,2, i.e. (j,�) would be reachable via two runs,
contradicting linearity. Consequently, if xj happens to occur twice, we can replace the rule
with F(q,γ)x1⋯xN = �. J

	Introduction
	Linear Recursion Schemes
	Finite Memory Game Semantics and Geometry of Interaction
	Games and strategies
	History-free and finite memory strategies

	Game Semantics to TSA
	Unfolding recursive calls
	Tree Stack Automata

	TSA to MAHORS
	Expressivity of MAHORS
	Multiplicative HORS (MHORS)
	Additional material (Section 2)
	Additional material (Section 3)
	Tree-generating game semantics
	Finite memory and history-free strategies

	Auxiliary material (Section 4.2)
	Additional material (Section 5)
	Auxiliary material (Section 6)
	Auxiliary material (Section 7)

