
The Qualitative Collapse of Concurrent Games
Pierre Clairambault

CNRS, Aix Marseille Univ, LIS
Marseille, France

Pierre.Clairambault@cnrs.fr

Abstract—We construct an interpretation-preserving functor
from a category of concurrent games to the category of Scott
domains and Scott-continuous functions. We give a concrete de-
scription of this functor, extending earlier results on the relational
collapse of game semantics. The crux is an intricate combinatorial
lemma allowing us to synchronize states of strategies which
involve the same resources, but with different multiplicity.

Putting this together with the previously established relational
collapse, this provides a new proof of the qualitative-quantitative
correspondence first established by Ehrhard in his celebrated
extensional collapse theorem. Whereas Ehrhard’s proof is indirect
and rests on an abstract realizability construction, our result
gives a concrete, combinatorial description of the extraction of
quantitative information from a qualitative model.

I. INTRODUCTION

A. General Introduction

The heart of denotational semantics is certainly domain
theory, where types are interpreted as partially ordered sets,
and programs as (continuous) functions between those. This
idea, originally pioneered by Scott and Strachey [SS71], has
spread wide and far, and underlies much of the modern theory
of programming languages. In the terminology of this paper,
this functional semantics is qualitative: it tracks the amount of
information about the input needed to compute a given part of
the output, but not how many times that information is needed,
or how many times the argument of a function is evaluated.

Another deeply influential discovery, in that field of re-
search, is Girard’s invention of linear logic [Gir87]. Linear
logic is a logic of resources; it gives a special status to
those functions that are linear in the sense that they evaluate
their argument exactly once. Starting with the interpretation
of λ-terms as normal functors [Gir88], linear logic prompted
the development of denotational models that are sensitive to
resources, in the sense that they also record the multiplicity
of resource usage: in the terminology of this paper, they
are quantitative. Quantitative models have been under active
development in the following three decades, with a number
of remarkable achievements. For instance, quantitative models
(and their type-theoretic presentations as non-idempotent inter-
section types) provide a semantic characterization of execution
time [dC18]. Their resource-sensitivity lets them track numer-
ous quantitative aspects of computation [LMMP13], or provide

This work was supported by the ANR project DyVerSe (ANR-19-CE48-
0010-01); by the Labex MiLyon (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007),
operated by the French National Research Agency (ANR); and by the PEPR
integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030.

models of properly quantitative computational effects, such as
probabilistic choice [EPT18] or quantum effects [PSV14], for
which they give fully abstract models [EPT18], [CdV20].

The drawback of this quantitative aspect, however, is that
they are infinitary. Even for the simply-typed λ-calculus with
a finite interpretation for ground types, they give infinitary
semantics, because they rely on finite multisets to represent the
arrow type. A “proof” that a certain point is in the quantitative
semantics of a term (which can often be represented as a
derivation in a non-idempotent intersection type system), is
really a de-temporised, “static” representation of the full exe-
cution. In contrast, the functional models as in domain theory,
and their syntactic presentations as idempotent intersection
type systems, remain finitary: for instance, they give a finite
interpretation to simply-typed programs with finite ground
types. They talk by bounded means of an unbounded object:
the execution – this is the key to their algorithmic use in e.g.
higher-order model-checking [Aeh06], [KO09].

There is a fascinating scientific tension between these
qualitative and quantitative models. On the one hand, they
are remarkably similar: with the right presentation, the only
significant difference in their construction is whether the
exponential modality should be based on finite sets or finite
multisets. On the other hand, the associated proof methods
are very different: quantitative models are infinitary, but their
connection with the execution is simple logically (though it
can still be subtle combinatorially), allowing them to provide
useful program approximants [BM20]; qualitative models are
finitary, but linking them with execution requires tools with
considerable logical complexity, such as logical relations.
Surprisingly, this tension has been somewhat little studied,
perhaps also because the two families of models correspond
to different communities. However, there is one important
paper that strikes right at that tension: Ehrhard’s result that
the linear Scott model of the simply-typed λ-calculus is the
extensional collapse of its relational model [Ehr12]. Ehrhard’s
proof entails, in particular, that a point a in the qualitative
model is in the semantics of a program M iff it has a
“quantitativation” a′ in the quantitative semantics of M . At
the core of this result is the construction of a model that
is somewhat hybrid between qualitative and quantitative; of
quantitative relations which behave well with respect to a
preorder relation rearranging resources. But this hybrid model
is obtained by formulating and maintaining an invariant (by
biorthogonality) implying this quantitativation, it gives us no
combinatorial understanding of that process, and no way to

compute it in concrete cases.
Here, we provide a combinatorial understanding of this

quantitativation process, using game semantics. Game se-
mantics is another quantitative denotational model, originally
developed to attack the famous full abstraction problem for
PCF [AJM00], [HO00]. Game semantics enriches the rela-
tional model with time or causality, presenting interactive
executions of a program with its runtime environment as plays
on a game whose rules are determined by the type. Despite
its clear intellectual affiliation with quantitative semantics,
understanding the precise relationship between games and
relational models has required a longstanding line of re-
search [BDER97], [Ehr96], [Mel06], [Mel05], [Bou09]. In the
modern dress of thin concurrent games [CCW19], [Cla24a],
building on concurrent games on event structures [RW11] and
in the footsteps of Melliès’s insightful work on asynchronous
games [Mel05], this relationship now appears as a simple
forgetful interpretation-preserving functor to the relational
model, erasing the “dynamic” causal dependency coming from
the program, keeping only the “static” causal dependency from
the type – this is summed up in [Cla24a], see also [CCPW18],
[CdV20], [COP23] for quantitative or bicategorical extensions.

In this paper, we complement this “relational collapse”
with a related interpretation-preserving functor to the linear
Scott model, a linear decomposition of a (full subcategory of)
Scott domains due independently to Huth [Hut93] and Winskel
[Win98]. To construct a Scott domain from a game, we
equip the latter with adequate notions of morphisms, cartesian
morphisms, which allow the rearrangment (contraction and
weakening) of resources. The crux of the issue is then to show
that this collapse operation to the linear Scott model preserves
composition: this rests on a crucial proposition (Proposition
5) showing that if innocent strategies can synchronize up to
cartesian morphisms, then one can find adequate expansions
of the states making them synchronize on the nose. This forms
the core of our combinatorial account of Ehrhard’s quantita-
tivation result: because our games model has interpretation-
preserving functors to both the relational model and the Scott
model, we also reprove the precise connection between the two
(Theorem 8). This is also a contribution to the line of work
connecting game semantics to “static” semantics, targetting for
the first time a qualitative semantics: Scott domains.

Let us now move to a more technical introduction.

B. The Relational Model and Quantitative Semantics

1) The relational model: We assume that the reader is
familiar with the category Rel of sets and relations (see e.g.
[Ehr12] for a reference). Rel is a Seely category [Mel09]: its
monoidal product is the cartesian product of sets, its cartesian
product is given by the disjoint union, and its exponential
modality ! sends a set A to the set Mf (A) of finite multisets of
elements of A. We adopt standard conventions for multisets:
a list notation [a1, . . . , an] possibly with repetitions, with the
empty multiset written []. Multiset union is written +.

As Rel is a Seely category, one can consider the Kleisli
category for the exponential comonad !, which is cartesian

(o → o) → o → o
q−

q+

q−

q+

q−

q+

q−

q+

Fig. 1. Example of a play

(o1 → o2) → o3 → o4

q−4

,rrz
q+2
_���

q+2
E||� y��"

q+3 q+3

q−1

3 55>

q−1

, 22:

q−1

3 55>

Fig. 2. Its position

closed. It thus supports the interpretation of the simply-typed
λ-calculus: this sends any type A to a set JAK via1 JoK = {⋆}
and JA → BK = Mf (JAK)×JBK. this set JAK is often referred
to as the web of A. Likewise, any well-typed term ⊢ M : A
yields JMK ⊆ JAK a subset of the web. One may think of
elements of JAK as sort of detemporalized execution traces,
and indeed they do correspond to plays in the game semantics
sense where time has been suppressed. For example, we have

([([⋆], ⋆), ([⋆, ⋆], ⋆)], ([⋆, ⋆], ⋆)) (1)

in Jλfx. f (f x) : (o → o) → o → oK, interpreted as an
execution of the term which calls f twice. For one of these
calls, f calls its argument once; the other time, twice – so
the term ends up using x twice. The same element can be
rewritten as an expression [[⋆] ⊸ ⋆, [⋆, ⋆] ⊸ ⋆] ⊸ [⋆, ⋆] ⊸
⋆ where [⋆, ⋆] is regarded as ⋆ ∩ ⋆ with ∩ a commutative
but non-idempotent operation, informing a presentation of the
relational model as a non-idempotent intersection type system.

2) Rel and game semantics: Game semantics present com-
putation as an exchange of moves between two players: Player
(+), who plays for the program under scrutiny, and Opponent
(−), who plays for the execution environment. In this setting,
an execution traditionally appears as a play, a chronological se-
quence of moves linked with so-called pointers indicating their
hierarchical relationships. As an example, we show in Figure 1
a play in (the strategy for) λfx. f (f x). It is read from top
to bottom, and each move is placed under the corresponding
type component. Opponent starts computation, which prompts
the evaluation of f with q+. Then f calls its argument, which
prompts the evaluation of the second occurrence of f . After
that, f calls its argument twice, and x gets evaluated twice.
Moves are linked with so-called justification pointers, carrying
the hierarchical relationships between variable calls.

Intuitively, one moves from (traditional) game semantics
to relational semantics by forgetting time [BDER97]: from
Figure 1 this yields the tree of Figure 2 (ignoring solid arrows),
where the correspondence between moves and atoms in the
type is conveyed via subscripts. This turns out to be an alter-
native representation of [[⋆] ⊸ ⋆, [⋆, ⋆] ⊸ ⋆] ⊸ [⋆, ⋆] ⊸ ⋆
encountered earlier – carrying the same information about
variable calls, their multiplicity and dependencies. Modern

1The interpretation is parametrised by an interpretation for the base type.
In this paper we use the singleton type for simplicity, but we show in the
long version [Cla24b] how to extend that to an arbitrary set.

presentations of game semantics [Mel05], [RW11], [CCRW17]
reject time; instead, positions as pictured in Figure 2 are
primitive. In concurrent games, such positions are enriched
instead with causal wiring conveying the causal dependencies
from the term, pictured with solid arrows _ in Figure 2.

3) Rigidity and symmetries: Positions, those trees matching
points in the relational model, are unordered: children of a
same node which correspond to the same type component can
be permuted at will – this corresponds to the fact that elements
of !A in the relational model are multisets.

In thin concurrent games, strategies play not on these quo-
tiented structures, but rather on chosen concrete representatives
called configurations. There, distinct copies of moves are kept
separate by attributing each an identifier, an integer called its
copy index. We draw in Figure 3 concrete representatives for
the position of Figure 2, where copy indices appear in grey.

This feature of working with concrete representatives of
positions is not unique to thin concurrent games: it is com-
mon in categorifications of the relational model, such as
generalized species of structure [FGHW08]. There, types are
interpreted not as sets comprising quotiented structures, but
as groupoids, with objects concrete representatives of non-
idempotent intersection types obtained as in Rel but with
lists ⟨α1, . . . , αn⟩ instead of finite multisets. In quantitative
semantics, these concrete representatives of quotiented objects
are often referred to as rigid. In this categorified situation,
the quotient is replaced with explicit morphisms generated by
permutations between elements of these lists.

Likewise thin concurrent games are rigid; and concrete
configurations are related by so-called symmetries, forest iso-
morphisms which can only change copy indices. In Figure
3 we show two symmetries, which are the tree isomorphisms
respecting the topological position of nodes. In thin concurrent
games, the polarity of moves lets us set apart sub-groupoids
of polarized symmetries : some symmetries, dubbed positive,
only change the copy index of positive moves; while others,
dubbed negative, only reindex negative moves. Not every
symmetry is negative or positive: the composite symmetry
in Figure 3 is neither. But every symmetry factors as a
composition of the two, as in Figure 3.

C. From Quantitative to Qualitative

1) Idempotent intersection types: In terms of intersection
types, being qualitative means α ∩ α = α, i.e. that ∩ is
idempotent: an expression α1∩ . . .∩αn no longer corresponds
to the finite multiset [α1, . . . , αn], but to the set {α1, . . . , αn}.
But brutally enforcing α ∩ α = α in this way fails: the finite
powerset endofunctor on Rel fails to be a comonad.

This can be fixed by moving from sets to preorders, insisting
that relations are down-closed. This preorder can be presented
as a subtyping relation, typically with ⋆ ≤ ⋆ and

ᾱ2 ≤ ᾱ1 β1 ≤ β2

ᾱ1⊸ β1 ≤ ᾱ2⊸ β2

∀i ∈ I ∃j ∈ J αi ≤ βj

[αi | i ∈ I] ≤ [βj | j ∈ J]
(2)

noting that the order is contravariant on the left hand side for
the arrow. Note in particular that we have ᾱ ∩ ᾱ ≤ ᾱ and

[] ≤ ᾱ which reminds us of the logical laws of contraction
and weakening, in that sense this preorder is cartesian. Types
can still be multisets, but idempotence follows from the equiv-
alence generated by this preorder: indeed, ᾱ ≤ ᾱ∩ [] ≤ ᾱ∩ ᾱ
also. This view on idempotent intersection types is implicit
in the linear Scott model, the linear decomposition of Scott
domains discovered by Huth [Hut93] and Winskel [Win98].

The heart of Ehrhard’s extensional collapse theorem [Ehr12]
is then that the interpretation of a simply-typed λ-term in the
linear Scott model is simply the down-closure of its relational
interpretation, linking the qualitative and the quantitative.

2) Cartesian maps: As non-idempotent intersection types
may be categorified into a groupoid, the preorder ≤ should
be refined into a category: this is achieved, for instance,
through the cartesian closed bicategory of cartesian distrib-
utors [Oli21]. In this setting, given a category A, a morphism
from ⟨αi | i ∈ I⟩ to ⟨βj | j ∈ J⟩ in !A consists of a
function h : I → J , together with a family (fi)i∈I where
fi : αi → βf(i) in A – we call this a cartesian morphism,
as !A is the opposite of the free cartesian category over A. A
morphism from α1⊸ β1 to α2⊸ β2 consists of morphisms
f : α2 → α1 and g : β1 → β2, reflecting (2).

In this paper, we achieve an analogous categorification in
thin concurrent games, turning the groupoid of configurations
into a category of configurations. Drawing inspiration from
symmetries and the contraction maps above, a natural guess
is that morphisms should simply be forest morphisms which
preserve the type component. For instance, we could have

q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

⇝

q−4,0

q+2,0 q+3,0

q−1,0

contracting all copies down to copy index 0. But this does
not take into account the contravariance on the left hand side
of arrows. The missing ingredient is to account for polarity
– negative contraction maps can only contract and weaken
negative moves, while positive contraction maps can only
contract and weaken positive moves, as in Figure 4. Cartesian
morphisms are obtained as relational compositions

−+⇝⇝ = +⇝ −⇝+⇝ −⇝. . . +⇝ −⇝

which are therefore no longer forest morphisms, but do induce
the adequate preorder on (symmetry classes of) configurations.

3) Cartesian matching problems: The main contribution of
this paper is to extend this into a structure-preserving functor
from a category of thin concurrent games into the linear Scott
model. This builds on earlier results on the relational collapse
of thin concurrent games: informally, a strategy σ : A ⊢ B
from A to B is an aggregate of states xσ , with

xσ
A

7→

xσ 7→ xσ
B

projections obtained – ignoring the issue of taking symmetry
classes – by simply forgetting the causal arrows _ displayed
e.g. in Figure 2. The relational collapse of σ then gathers all

q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

∼=−

q−4,1

q+2,0 q+2,4 q+3,2 q+3,6

q−1,13 q−1,2 q−1,4

∼=+

q−4,1

q+2,1 q+2,5 q+3,6 q+3,2

q−1,13 q−1,2 q−1,4

Fig. 3. Concrete configurations with copy indices

q−4,0

q+2,0 q+2,1 q+3,0

q−1,12 q−1,4 q−1,2

+⇝

q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

−⇝

q−4,1

q+2,0 q+2,4 q+3,2 q+3,6

q−1,1 q−1,0

Fig. 4. Cartesian morphisms

pairs (xσ
A, x

σ
B). But to reach the linear Scott model, we need

to build a relation that is down-closed! We shall achieve this
by sending σ to all pairs (yA, yB) such that we have

yA
+−⇝⇝ xσ

A

7→xσ 7→ xσ
B

−+⇝⇝ yB ,

i.e. simply the down-closure with respect to +−⇝⇝. This does
yield a valid morphism in the linear Scott model. But this
leaves us with the hard task to show that this down-closure
remains functorial. So for σ : A ⊢ B and τ : B ⊢ C, given

xσ 7→ xσ
B

−+⇝⇝ xB
−+⇝⇝ xτ

B

7→xτ ,

we must find a synchronization zτ⊙σ in τ ⊙ σ whose (down-
closure of the) projection on A,C is the same. An analogous
property is necessary with respect to symmetries to construct
thin concurrent games [Cla24a, Proposition 7.4.4]. But here,
the situation is significantly more complex: both xσ and xτ

are trying to duplicate and erase each other, and we must find
a satisfactory state where all these duplications and erasures
are satisfied – we call this a cartesian matching problem.

In game semantics we approach the question concretely, and
provide a combinatorial argument to resolve such matchings.
This is the crux; from there it is not hard to provide an
interpretation-preserving functor to the linear Scott model.

D. Outline.

Of course, this general idea comes with various technical
hurdles. First, we must introduce thin concurrent games, along
with their relational collapse. This already comes with a
significant technical set-up on top of thin concurrent games:
typically, those configurations that match points in the re-
lational model must be identified via a payoff mechanism.
One must also introduce the slightly unorthodox concept
of a relative Seely (∼-)categories, a weakening of Seely
categories, as the structure of plain Seely categories is not
preserved by the relational collapse. Additionally, defining
cartesian morphisms demands a fairly concrete description of
the games considered, referring explicitly to copy indices: for
that we import from [Cla24a] the rather clunky notion of mixed
board. Altogether, this content is well-covered in other sources
[Cla24a], [COP23], which our presentation follows.

In Section II, we recall thin concurrent games and their
relational collapse. In Section III we refine our games to allow
the collapse to the linear Scott model; we introduce and study
cartesian morphisms on a mixed board. In Section IV we solve
cartesian matching problems, and derive our main results.

II. THIN CONCURRENT GAMES

A. Basic Concurrent Games

The framework of concurrent games [MM07], [FP09],
[RW11] is not merely a game semantics for concurrency, but
a deep reworking of the basic mechanisms of game semantics
using causal “truly concurrent” structures from concurrency
theory [NPW79], which we must first introduce.

1) Event structures: Concurrent games and strategies are
based on event structures. An event structure represents the
behaviour of a system as a set of possible computational events
equipped with dependency and incompatibility constraints.

Definition 1. An event structure (es) is E = (|E|,≤E ,#E),
where |E| is a (countable) set of events, ≤E is a partial order
called causal dependency and #E is an irreflexive symmetric
binary relation on |E| called conflict, satisfying:

finite causes: ∀e ∈ |E|, [e]E = {e′ ∈ |E| | e′ ≤E e} finite,
vendetta: ∀e1 #E e2, ∀e2 ≤E e′2, e1 #E e′2 .

Operationally, an event can occur if all its dependencies
are met, and no conflicting events have occurred. A finite set
x ⊆f |E| down-closed for ≤E and comprising no conflicting
pair is called a configuration – we write C (E) for the set
of configurations on E, naturally ordered by inclusion. If x ∈
C (E) and e ∈ |E| is such that e ̸∈ x but x∪{e} ∈ C (E), we
say that e is enabled by x and write x ⊢E e. For e1, e2 ∈ |E|
we write e1 _E e2 for the immediate causal dependency, i.e.
e1 <E e2 with no event strictly in between. Finally, two events
e1, e2 ∈ |E| are in immediate conflict, written e1 E e2, if
e1 #E e2, and this conflict is not inherited by vendetta. A
map of es from E to F is a function f : |E| → |F | such that:
(1) for all x ∈ C (E), the direct image fx ∈ C (F); and (2)
for all x ∈ C (E) and e, e′ ∈ x, if fe = fe′ then e = e′.

2) Games and strategies: Throughout this paper, we will
gradually refine our notion of game. For now, a plain game is
simply an event structure A together with a polarity function
polA : |A| → {−,+} which specifies, for each event a ∈ A,
whether it is positive (i.e. due to Player / the program) or
negative (i.e. due to Opponent / the environment). Events are
often called moves, and annotated with their polarity.

A strategy is an event structure with a projection map to A:

Definition 2. Consider A a plain game. A strategy on A,
written σ : A, is an es σ together with a map ∂σ : σ → A
called the display map, satisfying two conditions [Cla24a].

We skip the conditions, which are used only through lemmas
and propositions proved elsewhere. Note also that though a
strategy does not come with a polarity function for the moves
in σ, they do inherit a polarity through ∂σ .

As a simple example, the usual game B for booleans is

q−

tt+ ff+

drawn from top to bottom: Opponent initiates computation
with the first move q, to which Player can react with tt or ff .

Strategies give a “proof-relevant” account of execution, in
the sense that moves and configurations of the game can have
multiple witnesses in the strategy. For example, on the left
below, b and c are both mapped to the same move tt:

σ
∂σ // B

a
F}}�

& ,,

x��!

q−

b � 66c
� // tt+ ff+

=:

B

q−
Azz� }��$

tt+ tt+

We denote immediate causality by _ in strategies, and by
dotted lines for games – this lets us represent the strategy in a
single diagram, as on the right above. Similar diagrams may
represent not entire games and strategies but configurations of
games and strategies, which implicitly inherit a partial order.

3) Morphisms between strategies: For σ and τ two strate-
gies on A, a morphism from σ to τ , written f : σ ⇒ τ , is a
map of event structures f : σ → τ preserving the dependency
relation ≤ (we say it is rigid) and such that ∂τ ◦ f = ∂σ .

4) +-covered configurations: A strategy is completely char-
acterized by a subset of its configurations, called +-covered.

For a strategy σ on a game A, a configuration x ∈ C (σ)
is +-covered if all its maximal events are positive. We write
C+(σ) for +-covered configurations of σ, ordered by ⊆.

Lemma 1. Consider a plain game A, and strategies σ, τ : A.
If f : C+(σ) ∼= C+(τ) is an order-isomorphism such that

∂τ ◦ f = ∂σ , then there is a unique isomorphism of strategies
f̂ : σ ∼= τ such that for all x ∈ C+(σ), f̂(x) = f(x).

This immediate consequence of [Cla24a, Lemma 6.3.4] is
the first hint of a methodology central to this paper: in concur-
rent games, we rarely reason at the level of individual events,
preferring whenever possible to reason with configurations,
especially when linking with relational-like models.

B. A ∼-category of concurrent games and strategies

We now show how games and strategies are organized
into a ∼-category – that is, a bicategory where 2-cells are
degenerated so that each hom-set forms a setoid2.

1) Strategies between games: If A is a plain game, its dual
A⊥ is A with reversed polarity; thus C (A) = C (A⊥). The
parallel composition A ∥ B of A and B is simply A and B
side by side, with no interaction – its events are the tagged
disjoint union |A ∥ B| = |A|+ |B| = {1} × |A| ⊎ {2} × |B|,
and other components are inherited. The hom A ⊢ B is simply
defined as A⊥ ∥ B. We write xA ∥ xB for the configuration
of A⊗B that has xA ∈ C (A) on the left and xB ∈ C (B) on
the right, and likewise for xA ⊢ xB ∈ C (A ⊢ B), informing

− ∥ − : C (A)× C (B) ∼= C (A ∥ B) , (3)
− ⊢ − : C (A)× C (B) ∼= C (A ⊢ B) (4)

order-isomorphisms. A strategy from A to B is a strategy on
the game A ⊢ B. Note that if σ : A ⊢ B and xσ ∈ C (σ), by
convention we write ∂σ(x

σ) = xσ
A ⊢ xσ

B ∈ C (A ⊢ B).
Our first example of a strategy between games is copycat

ccA : A ⊢ A, the identity morphism on A in our ∼-category.
Concretely, copycat on A has the same events as A ⊢ A, but
adds immediate causal links between copies of the same move
across components. Via Lemma 1, the following characterizes
copycat up to isomorphism [Cla24a, Lemma 6.4.4].

Proposition 1. If A is a game, there is an order-isomorphism

cc (−) : C (A) ∼= C+(ccA)

such that for all x ∈ C (A), ∂ ccA
(cc x) = x ⊢ x.

So the copycat strategy is essentially the diagonal relation.
2) Composition: Consider σ : A ⊢ B and τ : B ⊢ C. We

define their composition τ ⊙ σ : A ⊢ C. Concurrent games
are a dynamic model, and to successfully synchronize, σ and
τ must agree to play the same events in the same order.

We say that configurations xσ ∈ C (σ) and xτ ∈ C (τ)
are matching if xσ

B = xτ
B = xB . If so, it induces a

synchronization between events of xσ and xτ . If the causal
constraints of σ and τ are globally compatible through this
synchronization – i.e. there is no deadlock – we say that xσ and
xτ are causally compatible (the precise definition [Cla24a]
plays no role in this paper). The composition of σ and τ is
the unique (up to iso) strategy whose +-covered configurations
are essentially causally compatible pairs of +-covered con-
figurations. Writing CC(σ, τ) for causally compatible pairs
(xσ, xτ) ∈ C+(σ)× C+(τ) (ordered componentwise):

Proposition 2. Consider strategies σ : A ⊢ B and τ : B ⊢ C.
There is a strategy τ ⊙ σ : A ⊢ C, unique up to iso, with

−⊙− : CC(σ, τ) ∼= C+(τ ⊙ σ)

an order-isomorphism s.t. for all xσ ∈ C+(σ) and xτ ∈
C+(τ) causally compatible, ∂τ⊙σ(x

τ ⊙ xσ) = xσ
A ⊢ xτ

C .

2Games and strategies actually form a proper bicategory [COP23]. Here we
only consider a ∼-category, as the coherence laws play no role in the paper.

See [Cla24a, Proposition 6.2.1]. This description of compo-
sition emphasizes the conceptual difference between a static
model, in which composition is based merely on matching
pairs, and a dynamic model, based on causal compatibility
and sensitive to deadlocks. We get [Cla24a, Theorem 6.4.11]:

Theorem 1. There is a ∼-category CG with: (1) objects,
plain games; (2) morphisms from A to B, strategies σ : A ⊢
B; and equivalence relation, isomorphism of strategies.

C. Adding Symmetry

The ambiant ∼-category in which this paper takes place
is not quite CG, but a refinement sensitive to symmetry.
We now go from CG to TCG by replacing the set of
configurations C (A) with a groupoid of configurations S (A)
whose morphisms are chosen bijections called symmetries.

1) Event structures with symmetry: We start with [Win07]:

Definition 3. An isomorphism family on es E is a groupoid
S (E) with objects configurations, and morphisms certain
bijections between configurations, satisfying two conditions.

We call (E,S (E)) an event structure with symmetry (ess).

We call morphisms in S (E) symmetries, and write θ :
x ∼=E y if θ : x ≃ y with θ ∈ S (E). The domain dom(θ)
of θ : x ∼=E y is x, and likewise its codomain cod(θ) is y. A
map of ess E → F is a map of es such that the bijection

fθ
def
= fx

f−1

≃ x
θ≃ y

f
≃ fy,

is in S (F) for every θ : x ∼=E y (recall that f restricted to
any configuration is bijective). This exactly amounts to making
f : S (E) → S (F) a functor of groupoids. There is a 2-
category ESS of ess, maps of ess, and natural transformations
between the induced functors. For f, g : E → F such a natural
transformation is necessarily unique [Win07], and corresponds
to the fact that for every x ∈ C (E) the composite bijection

f x
f−1

≃ x
g
≃ g x (5)

via local injectivity of f and g, is in S (F). So this is an
equivalence, denoted f ∼ g – we say f, g are symmetric.

2) Thin games: To match the polarized structure, a game
with symmetry is an ess with two sub-symmetries, one for
each player (see e.g. [Mel03], [CCW19], [Paq22]).

Definition 4. A thin concurrent game (tcg) is a game
A with isomorphism families S (A),S+(A),S−(A) s.t.
S+(A),S−(A) ⊆ S (A), symmetries preserve polarity, and

(1) if θ ∈ S+(A) ∩ S−(A), then θ = idx for x ∈ C (A),
(2) if θ ∈ S−(A), θ ⊆− θ′ ∈ S (A), then θ′ ∈ S−(A),
(3) if θ ∈ S+(A), θ ⊆+ θ′ ∈ S (A), then θ′ ∈ S+(A),

where θ ⊆p θ′ is θ ⊆ θ′ with (pairs of) events of polarity p.

Elements of S+(A) are positive; they intuitively corre-
spond to symmetries carried by positive moves, introduced
by Player. We write θ : x ∼=+

A y if θ ∈ S+(A) – and
symmetrically for S−(A). We have [Cla24a, Lemma 7.1.18]:

Lemma 2. For A a tcg and θ : x ∼=A z, there are unique
y ∈ C (A), θ− : x ∼=−

A y and θ+ : y ∼=+
A z s.t. θ = θ+ ◦ θ−.

We extend with symmetry the basic constructions on games:
the dual A⊥ has the same symmetries as A, but S+(A

⊥) =
S−(A) and S−(A

⊥) = S+(A); the parallel composition
A1 ∥ A2 has symmetries those θ1 ∥ θ2 : x1 ∥ x2

∼=A1∥A2
y1 ∥

y2, where each θi : xi
∼=Ai

yi, and similarly for positive and
negative symmetries; the hom A ⊢ B is A⊥ ∥ B.

3) Thin strategies: We now extend strategies:

Definition 5. A strategy on tcg A, written σ : A, is an ess σ
with a map of ess ∂σ : σ → A forming a strategy in the sense
of Definition 2, subject to two additional conditions [Cla24a].

Thin strategies σ : A ⊢ B and τ : B ⊢ C are composed by
equipping τ ⊙ σ (Proposition 2) with an isomorphism family.
If S +(σ) is the restriction of S (σ) to +-covered configu-
rations, write CC(S +(σ),S +(τ)) for the pairs (φσ, φτ) of
symmetries which are matching, i.e. φσ

B = φτ
B and whose

domain (or equivalently, codomain) are causally compatible.

Proposition 3. Consider σ : A ⊢ B and τ : B ⊢ C thin
strategies. There is a unique symmetry on τ⊙σ with a bijection

(−⊙−) : CC(S +(σ),S +(τ)) ≃ S +(τ ⊙ σ)

commuting with dom and cod and compatible with display
maps, i.e. (φτ ⊙ φσ)A = φσ

A and (φτ ⊙ φσ)C = φτ
C .

This follows from [Cla24a, Proposition 7.3.1]. This makes
τ⊙σ : A ⊢ C a thin strategy. In order to form a ∼-category, it
is necessary to give the adequate equivalence relation between
thin strategies. For two maps f, g : E → A into a tcg, we
write f ∼+ g if f ∼ g and for every x ∈ C (E) the symmetry
obtained as (5) is positive. This lets us give the next definition:

Definition 6. Let σ, τ : A ⊢ B be thin strategies. A positive
morphism of strategies from σ to τ is a rigid map of ess
f : σ → τ such that ∂τ ◦ f ∼+ ∂σ . We write f : σ ⇒ τ to
mean that f is a positive morphism from σ to τ .

A positive iso f : σ ∼= τ is an invertible positive morphism.

Positive isomorphisms will provide the equivalence relation
for the ∼-categorical structure. It must be compatible with
composition: this demands, given f : σ ⇒ σ′ : A ⊢ B and
g : τ ⇒ τ ′ : B ⊢ C, to form a horizontal composition

g ⊙ f : τ ⊙ σ ⇒ τ ′ ⊙ σ′ : A ⊢ C ,

which requires us to transport xτ ⊙ xσ ∈ C+(τ ⊙ σ) to
C+(τ ′ ⊙ σ′) via f and g. However, the issue is that f(xσ)
and g(xτ) may not be matching: the hypotheses at hand only
yield θ : f(xσ)B ∼=B g(xτ)B a mediating symmetry – hence
to achieve our goals, we use [Cla24a, Proposition 7.4.4]:

Proposition 4. Consider xσ ∈ C+(σ), θB : xσ
B
∼=B xτ

B , x
τ ∈

C+(τ) causally compatible. Then, there are unique yτ ⊙yσ ∈
C+(τ ⊙σ) with φσ : xσ ∼=σ yσ and φτ : xτ ∼=τ yτ , such that
φσ
A ∈ S−(A) and φτ

C ∈ S+(C), and φτ
B ◦ θ = φσ

B .

Altogether, this allows us to construct:

⊗ −1 0 +1
−1 −1 −1 −1
0 −1 0 +1
+1 −1 +1 +1

` −1 0 +1
−1 −1 −1 +1
0 −1 0 +1
+1 +1 +1 +1

Fig. 5. Payoff for ⊗ and `

Theorem 2. There is a ∼-category TCG with: (1) objects,
thin concurrent games; (2) morphisms, strategies σ : A ⊢ B;
(3) equivalence, positive isomorphism.

D. Boards

Following earlier work [Cla24a], we add structure identify-
ing configurations that correspond to the relational web.

Definition 7. A board is a tcg A with κA : C (A) →
{−1, 0,+1} a payoff function, subject to conditions [Cla24a].

A −-board is additionally negative (i.e. minimal events are
negative) and initialized (i.e. κA(∅) ≥ 0). A −-board A is
strict if κA(∅) = 1 and its initial moves are in conflict. It is
well-opened if it is strict with exactly one initial move.

The payoff function κA assigns a value to each configu-
ration. Configurations x with payoff 0 are called complete,
written x ∈ C 0(A). Otherwise, κA assigns a responsibility
for why a configuration is non-complete: if κA(x) = −1 then
Player is responsible, otherwise it is Opponent.

The objects of our forthcoming category will be −-boards.
The first basic −-boards are the units. In the presence of the
payoff function the empty tcg ∅ splits into two units, the top
⊤ with κ⊤(∅) = 1, and the one, written 1, with κ1(∅) = 0. To
interpret the base type we shall use a strict board, also written
o, with only one move q− and κo(∅) = 1, κo({q}) = 0.

1) Dual, tensor and par: The dual extends with payoff via
κA⊥(x) = −κA(x). Parallel composition splits into:

Definition 8. Consider A and B two boards. Their tensor
A⊗B and their par A`B are A ∥ B enriched with:

κA•B(xA ∥ xB) = κA(xA) • κB(xB)

for • ∈ {⊗,`} defined on payoff values in Figure 5.

If A and B are −-boards, A ⊢ B denotes A⊥`B. The isos
(3) and (4) refine to bijections for • ∈ {⊗,`,⊢}:

− • − : C 0(A)× C 0(B) ∼= C 0(A •B) . (6)

2) The with: The sum E+F of two ess E and F is E ∥ F
with added pairwise conflicts between events of E and F .

This directly extends to tcgs. If A,B are tcgs and xA ∈
C (A), we write (1, xA) ∈ C (A+B) as a shorthand for {1}×
xA and likewise for (2, xB) = {2} × xB ∈ C (A + B) for
xB ∈ C (B). Note that all configurations of A + B have the
form (1, xA) for xA ∈ C (A) or (2, xB) for xB ∈ C (B). For
non-empty configurations, this decomposition is unique.

Definition 9. Consider S and T two strict −-boards. Their
with S & T is the strict −-board with tcg the sum S + T
and κS&T (1, xS) = κS(xS) and κS&T (2, xT) = κT (xT) for
non-empty configurations and κS&T (∅) = 1.

This construction will give a cartesian product in the sub-
category of strict −-boards. In the sequel, we shall use the
obvious n-ary generalization of the product. Any strict −-
board S decomposes uniquely (up to forest isomorphism) as
S ∼= &i∈ISi, where each Si is well-opened.

3) Linear closure: We start with a restricted case:

Definition 10. Consider A a −-board and S well-opened.
Then, A⊸ S has tcg set as A ⊢ S except for:

causality: ≤A⊸S = ≤A⊢S ⊎ {((2, s0), (1, a)) | a ∈ A}

where min(S) = {s0}, yielding a well-opened −-board.

This corrects the non-negativity of A ⊢ S, by forcing the
missing dependency. In the sequel, we shall need A⊸ S not
only when S is well-opened but when it is strict. In that case,
A⊸ S may be defined directly via strict boards, as done in:

Definition 11. Consider A a −-board, and S a strict −-board,
with S ∼= &i∈ISi. Then, we define A⊸ S = &i∈I(A⊸ Si).

4) Exponential: We start with a construction on ess:

Definition 12. The bang !E of an ess E has components:

events: |!A| = N× |A|
causality: (i, a1) ≤!A (j, a2) ⇔ i = j ∧ a1 ≤A a2

conflict: (i, a1) #!A (j, a2) ⇔ i = j ∧ a1 #A a2

with θ ∈ S (!A) iff there is π : N ≃ N and (θn)n∈N ∈ S (A)N

s.t. for all (i, a) ∈ dom(θ), θ(i, a) = (π(i), θi(a)).

In (i, e) ∈ !E, we refer to i as a copy index. Here,
symmetries express that copy indices can be reindexed at will.
This directly extends to tcgs, see e.g. [Cla24a] for details.

E. The Relative Seely Category of Sequential Innocence

Finally, the results of this paper will not hold for all
strategies, but only those of a restricted shape.

1) Deterministic sequential innocence: We first introduce:

Definition 13. Consider A a board, and σ : A a strategy.
We say that σ is deterministic sequential innocent (dsinn)

iff it is negative, winning (i.e. for all xσ ∈ C+(σ),
κA(∂σ x

σ) ≥ 0), and ≤σ is an Opponent-branching forest.

Winning ensures that strategies are well-behaved with re-
spect to payoff: in particular, a closed interaction between
winning strategies always yields a complete position, which is
essential for the relational collapse. Requiring an Opponent-
branching forest makes σ mimic a syntactic tree; this ensures
that composition is deadlock-free, like relational composition.

Copycat strategies on −-boards are automatically determin-
istic sequential innocent. Deterministic sequential innocence
is also stable under composition, which ensures [Cla24a]:

Theorem 3. There is a ∼-category DSInn with: −-boards;
dsinn strategies; up to positive isomorphism.

2) Relative Seely categories: DSInn is a Seely category,
but this structure is not preserved by the relational collapse
[COP23]. The categorical notion matchin the structure that is
preserved is called a relative Seely category [CP21], [Cla24a]:

Definition 14. A relative Seely category is a symmetric
monoidal category (C,⊗, 1) equipped with a full subcate-
gory Cs which has finite products preserved by the inclusion
J : Cs ↪→ C; with the following data and axioms:

• For every B ∈ C there is B ⊸ − : Cs → Cs with
Λ(−) : C(A⊗B,S) ≃ C(A,B⊸ S) a bijection natural
in A ∈ C and S ∈ Cs.

• There is a J-relative comonad ! : Cs → C. This means
that we have, for every S ∈ Cs, an object !S ∈ C and
a dereliction morphism derS : !S → S, and for every
σ : !S → T , a promotion σ! : !S → !T .

• ! : (Cs,&,⊤) → (C,⊗, 1) is symmetric strong monoidal,

subject to a few coherence conditions [Cla24a].

Any Seely category is a relative Seely category with C = Cs.
For any relative Seely category, the Kleisli category associated
with !, denoted C!, is cartesian closed: it has objects those of
Cs, morphisms C!(S, T) = C(!S, T), products &, and internal
hom S ⇒ T = !S ⊸ T . A relative Seely functor from C to
D is a functor F : C → D together with isomorphisms

t⊗A,B : FA⊗ FB ∼= F (A⊗B)

t&S,T : FS & FT ∼= F (S & T)

t⊸A,S : FA⊸ FS ∼= F (A⊸ S)

and t1 : 1 ∼= F1, t⊤ : ⊤ ∼= F⊤, t!S : !FS ∼= F !S satisfying
appropriate naturality and coherence conditions [Cla24a]. This
ensures that F lifts to a cartesian closed functor F! : C! → D!.

3) The relative Seely category DSInn: From now on, by
strategy we mean a morphism in DSInn.

Given σ : A ⊢ B and τ : C ⊢ D, their tensor σ : A⊗ C ⊢
B ⊗ D has ess σ ∥ τ with the obvious display map. For −-
boards Γ, S, T with S, T strict, σ : Γ ⊢ S and τ : Γ ⊢ T , the
pairing has ess σ + τ with the obvious display map, and the
projections πS : S & T ⊢ S and πT : S & T ⊢ T are copycat
strategies. The currying of σ : Γ⊗A ⊢ B is Λ(σ) : Γ ⊢ A⊸
B with ess σ, and display map the only sensible reassignment,
the evaluation evA,S : (A ⊸ S) ⊗ A ⊢ S is the obvious
copycat strategy. The promotion of σ : !S ⊢ T has ess !σ, and
the display map following a bijection N× N ≃ N on the left
hand side. The dereliction strategy derA : !A ⊢ A is defined
as a copycat strategy, opening one copy with copy index 0.
Finally, the Seely isomorphisms are seeS,T : !S⊗!T ∼= !(S&T)
defined again by the obvious copycat strategy, and the obvious
isomorphism !⊤ ∼= 1 between empty games. Altogether:

Theorem 4. The components above make DSInn a relative
Seely category; where the strict full subcategory DSInns is
restricted to strict −-boards.

Therefore, the Kleisli category DSInn! is cartesian closed.

s⊢A,B : R(A)×R(B) ≃ R(A ⊢ B)

s⊗A,B : R(A)×R(B) ≃ R(A⊗B)

s1 : 1 ≃ R(1)
s!S : Mf (R(S)) ≃ R(!S)
s⊤ : ∅ ≃ R(⊤)

s&S,T : R(S) +R(T) ≃ R(S & T)

s⊸A,S : R(A)×R(S) ≃ R(A⊸ S)

Fig. 6. Structural collapse bijections

q−4
*qqx

q+2,0
_���

q+2,1
Azz� }��$

q+3,1 q+3,3

q−1,0

0 44<

q−1,0

* 118

q−1,1

0 44< ⇝

q−4

q+2 q+2 q+3 q+3

q−1 q−1 q−1

Fig. 7. The relational collapse : forgetting the dynamic order

F. Relational Collapse
1) Collapsing games: From a board, the web as in the

relational model is got as the symmetry classes of null payoff:

R(A) = {x ∈ C (A) | κA(x) = 0}/∼=A (7)

called the positions of a board A. Here, we use symbols
x, y, z . . . to range over symmetry classes of configurations –
note the different font than for configurations.

This is compatible with constructions: there are relatively
straightforward bijections presented in Figure 6 where A,B
are any −-boards and S, T are strict. As an immediate corol-
lary we get a bijection, for every simple type A:

sA : JAKRel ≃ R(JAKDSInn) (8)

by induction on A – and similarly for a context Γ.
2) Collapsing strategies: Now, we send a strategy σ : A ⊢

B to those positions reached by +-covered configurations:

R(σ) = {(xA, xB) ∈ R(A)×R(B)

| ∃xσ ∈ C+(σ), xσ
A ∈ xA, xσ

B ∈ xB} .

This is illustrated in Figure 7, with one +-covered configu-
ration arising from the interpretation of λfx. f (f x) : (o1 →
o2) → o3 → o4, labelling the occurrences of the base type to
match the moves in the diagram. This operation forgets the
dynamic causal links _, along with copy indices.

3) A Relative Seely Functor: The main difficulty is to prove
preservation of composition; and in particular the causal com-
patibility clause of Proposition 2. This relies on a deadlock-
free lemma ensuring that innocent strategies cannot deadlock,
see e.g. [Cla24a]. For the additional structure, preservation is
witnessed by the bijections of Figure 6, which altogether form
the components of [Cla24a, Corollary 10.4.15]:

Theorem 5. The above provide the components for R(−) :
DSInn → Rel a relative Seely functor.

In particular R! : DSInn! → Rel! is cartesian closed, so:

Corollary 1. Consider Γ ⊢ M : A a simply-typed λ-term.
Then, JMKRel! = sA ◦R(JMKDSInn!

) ◦ !s−1
Γ .

III. FROM GAMES TO THE LINEAR SCOTT MODEL

A. The Linear Scott Model

1) The basic category: The linear Scott model can be
presented either as a category of functions between certain
complete lattices, or equivalently, as a category of relations
between certain preordered sets [Ehr12] – we opt for the latter:

Definition 15. ScottL has: (1) objects, preorders (|A|,≤A);
(2) morphisms from A to B, relations α ⊆ |A| × |B| which
are down-closed: if (a, b) ∈ α and a ≤A a′, b ≤B b′,
then (a′, b′) ∈ α. Composition is relational composition, and
identities are obtained as idA = {(a, a′) | a′ ≤A a}.

We write Aop for the opposite preorder. The product
preorder has (a, b) ≤A×B (a′, b′) iff a ≤A a′ and b ≤B b′. If
X ⊆ |A|, we write [X]A for its down-closure in A.

2) Seely category: ScottL is symmetric monoidal: if A
and B are preorders, then A ⊗ B = A × B. The monoidal
unit is 1 = ({⋆},=), and the functorial action of ⊗ is as in
the relational model, while structural morphisms are the down-
closure of their relational counterparts. Likewise, the cartesian
structure of Rel adapts to ScottL transparently, with A&B =
A+ B the disjoint union of the two preorders; ⊤ = (∅, ∅) is
terminal. The pairing operation is the same as in Rel, and
projections in ScottL are obtained as the down-closure of
those in Rel. We additionally set A ⊸ B = Aop × B –
again, currying is as in Rel, and evaluation in ScottL is
the down-closure of evaluation in Rel. Altogether, this makes
ScottL a cartesian symmetric monoidal closed category.

For the exponential, we set |!A| = Mf (|A|) and

µ ≤!A ν ⇔ ∀a ∈ supp(µ), ∃a′ ∈ supp(ν), a ≤A a′ ,

where the support supp(µ) of µ ∈ Mf (X) is the set of x ∈ X
with non-zero multiplicity. Again, this preorder is built on the
same set as the exponential for the plain relational model.
Together with the other components [Ehr12], this yields:

Theorem 6. This makes ScottL a Seely category.

This Seely category ScottL will be the target of our
qualitative collapse. Though the exponential is built from finite
multisets, this model does not actually record quantitative
information, as morphisms are down-closed.

We omit the presentation of ScottL as a category of
functions, but we do mention that there is a full and faithful
cartesian closed functor ScottL! → Scott to the usual
category of Scott domains and Scott-continuous functions, so
that ScottL! can be regarded as a full subcategory of Scott
(with objects being algebraic complete lattices) [Ehr12].

For A a game, we now intend to make R(A) a preorder by
adjoining the adequate notion of cartesian morphism.

B. Mixed Boards

The definition of cartesian morphisms relies on copy in-
dices. But whereas moves in boards arising from types do have
copy indices, these have no official status in thin concurrent
games, and this must first be corrected. For this we adopt the

(o1 → o2) → o3 → o4

q−4

q+2 q+3

q−1

Fig. 8. Interpretation of (o → o) → o → o as an arena

notion of mixed board, introduced in [Cla24a] to link thin
concurrent games with standard Hyland-Ong games.

1) Arenas: The boards obtained from simple types are
themselves an expansion of a simpler structure called an arena:

Definition 16. An arena comprises A = (|A|,polA,≤A) a
countable, negative, alternating forest. Additionally we fix, for
each move a ∈ |A|, a set Ind(a) which is either N or {∗}.

This resembles Hyland-Ong arenas, with a slight change
in presentation so as to remain close to boards. The new
component is the set Ind(a), which indicates which moves
are duplicable by specifying the admissible copy indices.

We briefly present the main constructions on arenas. First,
for the atom, we write o for the arena with exactly one
(negative) move q−, with Ind(q−) = {∗}: this move is not
duplicable. If A is an arena, the exponential !A has the same
components as A (we do not duplicate the moves), but we
set Ind!A(a−) = N for every a− minimal: we set the initial
moves as duplicable. The parallel composition A ∥ B adapts
transparently to arenas, with the Ind(−) function inherited.
Note that any arena may be written as A ∼= ∥i∈I Ai with Ai

well-opened. If A and B are arenas with B well-opened, then
A⊸ B is an arena (again with Ind inherited); this extends to
B not well-opened with A⊸ (∥i∈I Bi) = ∥i∈I A⊸ Bi.

Altogether, this lets us interpret simple types as arenas with
JoKAr = o and JA → BK = !JAKAr⊸ JBKAr: moves are not
explicitly duplicated, but simply marked with the admissible
copy indices. We show in Figure 8 the interpretation of the
simple type (o → o) → o → o as an arena.

2) Mixed boards: Mixed boards pair a −-board with an
arena – here pred(−) denotes the unique predecessor of a
non-minimal move, exploiting that boards are forests:

Definition 17. A mixed board is (A,A) with A a −-board,
A an arena, with two functions lblA : |A| → |A| and indA :
|A| → N ⊎ {∗}, with lblA a label forest morphism and indA
an indexing function s.t. indA(a) ∈ Ind(a) for all a ∈ A,
satisfying additional conditions [Cla24a]. A mixed board is
strict if A is strict and Ind(a) = {∗} for every a ∈ A minimal.

We use underlined metavariables to range over events of
the underlying arena. The additional conditions express that
the board is an “expanded” version of the arena, where moves
can be copied at will by assigning new copy indices. The
mixed board for the atom is (o, o) with lbl : q− 7→ q− and
ind : q− 7→ ∗ – we shall denote this mixed board by o. The
tensor of mixed boards has A⊗B = A ∥ B, with components

q−4,0

q+2,0 q+2,4 q+3,2 q+3,6

q−1,12 q−1,4 q−1,2

⇝

q−4,0

q+2,5 q+3,2 q+3,6 q+3,7

q−1,2

Fig. 9. A structural map on (o1 → o2) → o3 → o4

inherited, and the with is defined likewise. The bang of strict
S has !S = !S (i.e. with just Ind(s) = N for s ∈ S minimal
and other components unchanged). The linear arrow A⊸ S
is extended to mixed boards in the obvious way.

C. Cartesian Morphisms

On mixed boards, we may now define cartesian morphisms.
1) Structural maps: From now on, fix a mixed board A.

Definition 18. A structural map f : x⇝ y, for x, y ∈ C (A),
is a forest morphism f : x → y preserving labels.

In Figure 9 we give an example of a structural map, where
q+3,2 and q+3,6 are sent to themselves, and the other assignments
are forced. Note that all copy indices can be changed freely.
The structural map contracts both positive and negative moves,
while q+3,7 is not reached – it is regarded as weakened.

Structural maps form a category, and one can consider the
associated preorder with configurations as elements, and x ≤ y
iff there is some structural map f : x ⇝ y. However, this
preorder is not actually the one we need, because it is not
compatible with the linear arrow construction of preorders.
Indeed, recall that in ScottL, the linear arrow was A⊸ B =
Aop×B contravariant on the left hand side, whereas structural
maps on A⊸ B are covariant on both sides. To recover the
appropriate variance, we must account for polarities:

Definition 19. Given f : x⇝ y, we define the conditions:

−-total: if a+ ∈ x, f a+ _ b− in y, there is a+ _ c−

in x s.t. f c− = b−; for all b− minimal
in y there is c− in x s.t. f c− = b−.

+-total: if a− ∈ x, f a− _ b+, there is a− _ c+

in x such that f c+ = b+,
−-preserving: if a− ∈ x, indA (f a) = indA a,
+-preserving: if a+ ∈ x, indA (f a) = indA a,

we call a structural map positive iff it is −-preserving and
−-total; we call it negative iff it is +-preserving and +-total.
For these notions, we use notations f : x +⇝ y and f : x −⇝ y.

Positive structural maps can only contract and weaken
positive moves, and likewise for negative maps. It follows from
the conditions on mixed boards that positive (resp. negative)
symmetries are positive (resp. negative) structural maps.

2) Cartesian morphisms: Cartesian morphisms take posi-
tive maps covariantly and negative maps contravariantly.

Definition 20. A cartesian morphism χ : x1
−+⇝⇝ xn is any

composite relation, for x1, . . . , xn ∈ C (A):

x1
+⇝ x2

−⇝x3 . . . xn−2
+⇝ xn−1

−⇝xn

A cartesian morphism χ : x −+⇝⇝ y is a relation between x
and y, i.e. χ ⊆ x × y, but it is in general not functional in
either direction. We give in Figure 10 an example cartesian
morphism (without the structural maps to alleviate notation).

As we will need to build structural maps gradually, we shall
make use of the following partial variants:

Definition 21. A partial positive map, written f : x +p⇝ y, is
a structural map satisfying −-preserving (but not −-total).

Likewise, a partial negative map, written f :−p⇝ y, is a
structural map satisfying +-preserving (but not +-total).

If R ⊆ A × B is a relation from A to B, we write R⊥ ⊆
B × A for the reverse relation. We will also apply this to
functions, regarded as functional relations.

Lemma 3. Consider χ : x −+⇝⇝ z a cartesian morphism.
There are unique y ∈ C (A), χ− : y −⇝ x, χ+ : y +⇝ z, s.t.

χ+ ◦ χ⊥
− ⊆ χ. Additionally, the inclusion is an equality.

In particular, every cartesian morphism χ : x −+⇝⇝ y can be
written uniquely as a relational composition x −⇝· +⇝ y.

D. Reconstructing the Preorder

From the relational collapse, we must equip the set R(A) of
positions of A from (7) with a preorder derived from cartesian
morphisms. The obvious route is to start by defining it on
configurations: for x, y ∈ C (A), we set x +−⇝⇝ y iff there is
χ : y −+⇝⇝ x, noting the inversion in directions. As symmetries
are structural maps and each symmetry has a positive-negative
factorization (Lemma 2), this lifts to symmetry classes – we
write x +−⇝⇝ y if x +−⇝⇝ y holds for any x ∈ x and y ∈ y.

Definition 22. For any mixed board A, S(A) := (R(A), +−⇝⇝).

This is compatible with all the constructions on preorders
involved in the relative Seely structure of ScottL. More
precisely, the bijections of Figure 6 can be verified to be com-
patible with the preorder, i.e. to yield preorder-isomorphisms.

IV. QUALITATIVE COLLAPSE

To generalize this to strategies, the basic idea is simple: we
simply take the down-closure of the relational collapse:

S(σ) = [R(σ)]S(A)op×S(B) ∈ ScottL[S(A),S(B)] (9)

It is clear that this is a morphism in ScottL, and S(ccA) =
idS(A) for every A. We also easily have oplax functoriality:

Lemma 4. Consider A,B and C mixed boards, and σ : A ⊢
B, τ : B ⊢ C. Then, S(τ ⊙ σ) ⊆ S(τ) ◦S(σ).

However, the inequality S(τ) ◦ S(σ) ⊆ S(τ ⊙ σ) is
more problematic, and demands an analogue of Proposition
4 for cartesian morphisms. Given (yA, yC) ∈ S(τ) ◦ S(σ),
unfolding definitions yields witnesses xσ ∈ C+(σ) and
xτ ∈ C+(τ) along with a cartesian morphism χ : xσ

B
−+⇝⇝ xτ

B .
From this, we want some yτ ⊙ yσ ∈ C+(τ ⊙ σ) such that
yσA

+−⇝⇝ xσ
A and xτ

C
+−⇝⇝ yτC . In the sequel, we shall refer to

this data as, respectively, a cartesian (matching) problem, and
a solution to the problem. Both strategies are actively trying

q−4,0

q+2,0 q+2,4 q+3,2

q−1,12 q−1,4 q−1,2

−⇝

q−4,0

q+2,0 q+2,4 q+3,2

q−1,12 q−1,2q
−
1,12 q−1,2

+⇝

q−4,0

q+2,0 q+3,2 q+3,6

q−1,12 q−1,2

Fig. 10. A cartesian morphism

Fig. 11. Example resolution of a cartesian matching problem

to duplicate and erase each other, and a solution is a situation
where both strategies have reached a state where they have all
the resources they need, not more and not less.

Example 1. Given n,m ∈ N, write ⊢ Mσ = λfx. fn x :
(o → o) → o → o and g : (o → o) → o → o ⊢ Mτ =
λx. gm x : (o → o) → o → o, the Church integer for n
and Mτ that for m (on different types). Interpreting those
(with a promotion for Mσ) yields σ ∈ DSInn[1, B] and τ ∈
DSInn[B,C] with B = !J(o → o) → o → oK and C =
J(o → o) → o → oK. As events in B in C correspond to
atoms in those types, we write B as (a → b) → c → d and
C as (e → f) → g → h to ease the correspondence.

The upper part of Figure 11 presents a cartesian problem
involving σ and τ . On the upper left part, we have the typical
(unduplicated) configuration of σ, displayed onto B as the
configuration indicated (omitting copy indices). Likewise, on
the upper right corner, we have the typical (unduplicated)
configuration of τ , larger than for σ because of η-expansion,
displayed to B as shown. There is a cartesian morphism as
shown, linking all pairs of moves with the same label.

Resolving this problem involves performing all the neces-
sary duplications: τ makes m copies of σ, but the first copy
of σ makes n copies of the m−1 remaining calls of σ, and so
on. . . The solution appears in the bottom part of the diagram,
consisting in the indicated expansions of the configurations of
σ and τ , whose display on B now match.

The example above illustrates that solving a cartesian prob-

lem can involve an exponential blowup in the size of the
configurations – indeed, we know that the Church integer for
m applied to that for n normalizes to the Church integer for
nm, witnessing the nm calls to the event f+ in the duplicated
version of the configuration for τ in the diagram. In general,
the situation is far worse: the size of the solution is not
elementary in the size of the problem, witnessing the usual
bounds in the normalization of the simply-typed λ-calculus.

From this explosion, it is clear that the resolution of a
cartesian problem will be non-trivial. In particular, we rely
on a non-trivial termination argument, introduced next.

A. Bounding Interactions

Here we provide an upper bound on the size of solutions to
cartesian problems – this relies on earlier work on the size of
interactions in Hyland-Ong games [Cla11], [Cla13], [Cla15].

1) Structural maps in strategies: Our first step is:

Definition 23. For σ : A ⊢ B and xσ, yσ ∈ C (σ), a partial
structural map is a forest morphism f : xσ → yσ such that
∂σ f = fA ⊢ fB for fA : xσ

A ⇝ yσA and fB : xσ
B ⇝ yσB ,

where ∂σ f , the display of f to A ⊢ B, is obtained as

xσ
A ⊢ xσ

B

∂−1
σ≃ xσ f→ yσ

∂σ≃ yσA ⊢ yσB .

We write f : xσ p⇝ yσ . It is a structural map, written
f : xσ ⇝ yσ , if f s _σ t+ implies s _σ u+ s.t. f(u+) = t+.

Structural maps are contraction maps acting on strategies
rather than games. Call a branch of σ any ρ1 _σ . . . _σ ρn

with ρ1 ∈ min(σ) – write br(σ) for the set of branches of
σ and br(xσ) for the branches within xσ ∈ C (σ). Structural
maps automatically send any branch to a symmetric one, i.e.
for any ρ ∈ br(xσ), f induces a symmetry f↾ρ : ρ ∼=σ f ρ.

2) The upper bound: Now fix σ : A ⊢ B, τ : B ⊢ C
with xσ ∈ C (σ), xτ ∈ C (τ) and a cartesian morphism χ :
xσ
B

−+⇝⇝ xτ
B . We call the τ -size of (xσ, χ, xτ) the minimal n

s.t. every branch of xσ
A ∥ xτ is smaller than 2n; its σ-size

the minimal p such that every branch of xσ ∥ xτ
C is smaller

than 2p; its depth the minimal d + 2 such that every branch
of xτ

C is smaller than d+2, every branch of xσ
B , x

τ
B is smaller

than d+1, and every branch of xσ
A is smaller than d. Finally,

its branching degree is the minimal b such that (regarded as
trees), xσ and xτ have branching degree smaller than b. Then:

Lemma 5. Consider (xσ ∈ C (σ), χ, xτ ∈ C (τ)) as above
with τ -size less than n ≥ 1, σ-size less than p ≥ 1, depth less
than d ≥ 3 and branching degree less than b ≥ 2.

Then, for any yσ ∈ C (σ) and yτ ∈ C (τ) matching such
that there are partial structural maps χσ : yσ p⇝ xσ , χτ :
yτ p⇝ xτ with χσ

A : yσA
−p⇝ xσ

A and χτ
C : yτC

+p⇝ xτ
C , we have

#(yτ ⊛ yσ) ≤ b
2d−3

(
pn+1−1

p−1 −1
)
.

for 2k0 = k and 2n+1
k = 22

k
n .

This is a consequence of [Cla15, Theorem 4.17], exploiting
that a branch of yτ ⊛ yσ yields a pointer structure, i.e. a P-
visible and O-visible interaction as in Hyland-Ong games.

The assumption that χσ
A is negative and χτ

C positive is
crucial: it ensures that yσ and yτ do not have more duplications
by the external Opponent than in xσ and xτ , so that the upper
bound to the branching degree of xσ, xτ transports to yσ, yτ

and to yτ ⊛ yσ . Finally, as #yσ ≤ #(yτ ⊛ yσ) and likewise
for τ , the same upper bound applies to #yσ and #yτ .

B. The Scott Collapse

1) Solving cartesian problems: We now formally define:

Definition 24. Consider σ : A ⊢ B and τ : B ⊢ C. A
cartesian (matching) problem is the data of xσ ∈ C (σ),
xτ ∈ C (τ) and a cartesian morphism χ : xσ

B
−+⇝⇝ xτ

B .
A solution is given by yσ ∈ C (σ), yτ ∈ C (τ), χσ, χτ s.t.:

xσ xσ
B
oo χ

−+ // xτ
B xτ

yσχσ

gg

yB
χσ
B

gg

⊆ χτ
B

77

yτ χτ

77

with χσ
A : yσA

−⇝ xσ
A and χτ

C : yτC
+⇝ xτ

C .

This captures the notion of cartesian matching problem
introduced in the introduction. Now, we solve them:

Proposition 5. Consider σ : A ⊢ B and τ : B ⊢ C.
Then any cartesian problem for σ, τ has a unique solution.

Sketch. Existence. Fix xσ ∈ C (σ), xτ ∈ C (τ), χ : xσ
B

−+⇝⇝ xτ
B

a cartesian problem. We can find a partial solution, i.e. as
above with χσ, χτ partial – indeed one can take yσ = yτ = ∅.
Such partial solutions are partially ordered by componentwise

inclusion. By Lemma 5, there is a bound N ∈ N on the
cardinal of yτ ⊛yσ for partial solutions; thus there is a partial
solution of maximal size. From now on, we fix a partial
solution yσ, yτ , χσ, χτ of maximal size; it follows that it is
actually a total solution, as any breach of totality yields an
extension contradicting maximality.

Uniqueness follows easily by deterministic sequential inno-
cence and the fact that χσ

A is negative and χτ
C positive.

2) A relative Seely functor: The property above is the key
conceptual contribution of this work. The functoriality of the
collapse to the linear Scott model immediately follows.

Theorem 7. We have a relative Seely S : DSInn → Scott.

The required structural isomorphisms are simply (the down-
closure of) those of Figure 6. Most required conditions are
straightforward, save for the preservation of promotion which
requires some care. As a relative Seely functor, it induces a
cartesian closed functor S! which therefore preserves the in-
terpretation of the simply-typed λ-calculus. In other words, for
any Γ ⊢ M : A, JMKScottL!

= [sA] ◦S(JMKDSInn!
) ◦ [!sΓ].

This concludes the link between thin concurrent games and
the linear Scott model – which is, again, a cartesian closed
subcategory of the usual category of Scott domains. We may
now leverage it to study the direct link between the relational
model and the linear Scott model, in the spirit of [Ehr12]:

Theorem 8. For any Γ ⊢ M : A, JMKScottL!
= [JMK]Rel!].

This is direct from their description in terms of JMKDSInn!
.

We conclude with a few remarks. Firstly, this is done
with the interpretation of the base type fixed to a singleton
JoK = {⋆}. In the full version in supplementary material this is
extended to an arbitrary set. The crux of the argument remains
Proposition 5, but with additional technicalities that we had
to omit because of space limitations. Secondly, this reproves
Ehrhard’s correspondance between qualitative and quantitative
models, not his extensional collapse theorem that does not
seem to immediately follow. We do not see it as a limitation,
as we see the link between qualitative and quantitative as the
influencial and impactful part of Ehrhard’s paper.

V. CONCLUSIONS

In addition to reproving Ehrhard’s result by different means,
this result is a stepping stone for other work in progress.

The first one is an infinitary extension of Theorem 7, also
accounting for infinitary executions, i.e. infinite configurations;
we believe this result is key to a complete semantic under-
stading of the decidability of higher-order model-checking
[Ong06]. The second one is a bicategorical extension: from
the result therein, it is not too hard to send strategies
to cartesian distributors [Oli21]. If we manage to prove
(pseudo-)functoriality; we could get a bicategorical version of
Ehrhard’s result, leveraging earlier results in [COP23].

ACKNOWLEDGMENT

The author would like to thank Charles Grellois for intense
black board discussions which motivated this development.

REFERENCES

[Aeh06] Klaus Aehlig. A finite semantics of simply-typed lambda
terms for infinite runs of automata. In Zoltán Ésik, editor,
Computer Science Logic, 20th International Workshop, CSL
2006, 15th Annual Conference of the EACSL, Szeged, Hungary,
September 25-29, 2006, Proceedings, volume 4207 of Lecture
Notes in Computer Science, pages 104–118. Springer, 2006.
doi:10.1007/11874683_7.

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria.
Full abstraction for PCF. Inf. Comput., 163(2):409–470, 2000.

[BDER97] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent
Regnier. Timeless games. In Mogens Nielsen and Wolfgang
Thomas, editors, Computer Science Logic, 11th International
Workshop, CSL ’97, Annual Conference of the EACSL, Aarhus,
Denmark, August 23-29, 1997, Selected Papers, volume 1414 of
Lecture Notes in Computer Science, pages 56–77. Springer, 1997.
doi:10.1007/BFb0028007.

[BM20] Davide Barbarossa and Giulio Manzonetto. Taylor subsumes
scott, berry, kahn and plotkin. Proc. ACM Program. Lang.,
4(POPL):1:1–1:23, 2020.

[Bou09] Pierre Boudes. Thick subtrees, games and experiments. In
Pierre-Louis Curien, editor, Typed Lambda Calculi and Ap-
plications, 9th International Conference, TLCA 2009, Brasilia,
Brazil, July 1-3, 2009. Proceedings, volume 5608 of Lecture
Notes in Computer Science, pages 65–79. Springer, 2009. doi:
10.1007/978-3-642-02273-9_7.

[CCPW18] Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn
Winskel. The concurrent game semantics of probabilistic PCF.
In LICS, pages 215–224. ACM, 2018.

[CCRW17] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn
Winskel. Games and strategies as event structures. Log. Methods
Comput. Sci., 13(3), 2017.

[CCW19] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Thin
games with symmetry and concurrent hyland-ong games. Log.
Methods Comput. Sci., 15(1), 2019.

[CdV20] Pierre Clairambault and Marc de Visme. Full abstraction for
the quantum lambda-calculus. Proc. ACM Program. Lang.,
4(POPL):63:1–63:28, 2020. doi:10.1145/3371131.

[Cla11] Pierre Clairambault. Estimation of the length of interactions in
arena game semantics. In FoSSaCS, volume 6604 of Lecture
Notes in Computer Science, pages 335–349. Springer, 2011.

[Cla13] Pierre Clairambault. Bounding skeletons, locally scoped terms
and exact bounds for linear head reduction. In TLCA, volume
7941 of Lecture Notes in Computer Science, pages 109–124.
Springer, 2013.

[Cla15] Pierre Clairambault. Bounding linear head reduction and visible
interaction through skeletons. Log. Methods Comput. Sci., 11(2),
2015.

[Cla24a] Pierre Clairambault. Causal investigations in interactive seman-
tics, 2024. Habilitation à Diriger les Recherches.

[Cla24b] Pierre Clairambault. The qualitative collapse of concurrent
games. CoRR, abs/2410.11389, 2024. URL: https://arxiv.org/
abs/2410.11389.

[COP23] Pierre Clairambault, Federico Olimpieri, and Hugo Paquet.
From thin concurrent games to generalized species of struc-
tures. In 38th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2023, Boston, MA, USA, June 26-29,
2023, pages 1–14. IEEE, 2023. doi:10.1109/LICS56636.
2023.10175681.

[CP21] Pierre Clairambault and Hugo Paquet. The quantitative collapse
of concurrent games with symmetry. CoRR, abs/2107.03155,
2021.

[dC18] Daniel de Carvalho. Execution time of λ-terms via de-
notational semantics and intersection types. Math. Struct.
Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/
S0960129516000396.

[Ehr96] Thomas Ehrhard. Projecting sequential algorithms on strongly
stable functions. Ann. Pure Appl. Log., 77(3):201–244, 1996.
doi:10.1016/0168-0072(95)00026-7.

[Ehr12] Thomas Ehrhard. The scott model of linear logic is the ex-
tensional collapse of its relational model. Theor. Comput. Sci.,
424:20–45, 2012.

[EPT18] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full
abstraction for probabilistic PCF. J. ACM, 65(4):23:1–23:44,
2018. doi:10.1145/3164540.

[FGHW08] Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn
Winskel. The cartesian closed bicategory of generalised species
of structures. Journal of the London Mathematical Society,
77(1):203–220, 2008.

[FP09] Claudia Faggian and Mauro Piccolo. Partial orders, event
structures and linear strategies. In TLCA, volume 5608 of Lecture
Notes in Computer Science, pages 95–111. Springer, 2009.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102,
1987. doi:10.1016/0304-3975(87)90045-4.

[Gir88] Jean-Yves Girard. Normal functors, power series and λ-calculus.
Ann. Pure Appl. Log., 37(2):129–177, 1988. doi:10.1016/
0168-0072(88)90025-5.

[HO00] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for
PCF: i, ii, and III. Inf. Comput., 163(2):285–408, 2000. doi:
10.1006/inco.2000.2917.

[Hut93] Michael Huth. Linear domains and linear maps. In Stephen D.
Brookes, Michael G. Main, Austin Melton, Michael W. Mis-
love, and David A. Schmidt, editors, Mathematical Foundations
of Programming Semantics, 9th International Conference, New
Orleans, LA, USA, April 7-10, 1993, Proceedings, volume 802
of Lecture Notes in Computer Science, pages 438–453. Springer,
1993. doi:10.1007/3-540-58027-1_21.

[KO09] Naoki Kobayashi and C.-H. Luke Ong. A type system equiv-
alent to the modal mu-calculus model checking of higher-order
recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14
August 2009, Los Angeles, CA, USA, pages 179–188. IEEE
Computer Society, 2009. doi:10.1109/LICS.2009.29.

[LMMP13] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele
Pagani. Weighted relational models of typed lambda-calculi.
In 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013,
pages 301–310. IEEE Computer Society, 2013. doi:10.1109/
LICS.2013.36.

[Mel03] Paul-André Mellies. Asynchronous games 1: Uniformity by
group invariance, 2003.

[Mel05] Paul-André Melliès. Asynchronous games 4: A fully complete
model of propositional linear logic. In LICS, pages 386–395.
IEEE Computer Society, 2005.

[Mel06] Paul-André Melliès. Asynchronous games 2: The true concur-
rency of innocence. Theor. Comput. Sci., 358(2-3):200–228,
2006.

[Mel09] Paul-André Melliès. Categorical semantics of linear logic.
Panoramas et synthèses, 27:15–215, 2009.

[MM07] Paul-André Melliès and Samuel Mimram. Asynchronous games:
Innocence without alternation. In CONCUR, volume 4703 of
Lecture Notes in Computer Science, pages 395–411. Springer,
2007.

[NPW79] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri
nets, event structures and domains. In Semantics of Concurrent
Computation, volume 70 of Lecture Notes in Computer Science,
pages 266–284. Springer, 1979.

[Oli21] Federico Olimpieri. Intersection type distributors. In 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS
2021, Rome, Italy, June 29 - July 2, 2021, pages 1–15. IEEE,
2021. doi:10.1109/LICS52264.2021.9470617.

[Ong06] C.-H. Luke Ong. On model-checking trees generated by higher-
order recursion schemes. In 21th IEEE Symposium on Logic in
Computer Science LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006.
doi:10.1109/LICS.2006.38.

[Paq22] Hugo Paquet. Bi-invariance for uniform strategies on event
structures. In MFPS, 2022.

[PSV14] Michele Pagani, Peter Selinger, and Benoı̂t Valiron. Applying
quantitative semantics to higher-order quantum computing. In
Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 647–658. ACM, 2014. doi:10.1145/
2535838.2535879.

https://doi.org/10.1007/11874683_7
https://doi.org/10.1007/BFb0028007
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.1145/3371131
https://arxiv.org/abs/2410.11389
https://arxiv.org/abs/2410.11389
https://doi.org/10.1109/LICS56636.2023.10175681
https://doi.org/10.1109/LICS56636.2023.10175681
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/0168-0072(95)00026-7
https://doi.org/10.1145/3164540
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0168-0072(88)90025-5
https://doi.org/10.1016/0168-0072(88)90025-5
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1007/3-540-58027-1_21
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1109/LICS52264.2021.9470617
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/2535838.2535879

[RW11] Silvain Rideau and Glynn Winskel. Concurrent strategies. In
LICS, pages 409–418. IEEE Computer Society, 2011.

[SS71] Dana S Scott and Christopher Strachey. Toward a mathematical
semantics for computer languages, volume 1. Oxford University
Computing Laboratory, Programming Research Group Oxford,
1971.

[Win98] Glynn Winskel. A linear metalanguage for concurrency. In
Armando Martin Haeberer, editor, Algebraic Methodology and
Software Technology, 7th International Conference, AMAST ’98,
Amazonia, Brasil, January 4-8, 1999, Proceedings, volume 1548
of Lecture Notes in Computer Science, pages 42–58. Springer,
1998. doi:10.1007/3-540-49253-4_6.

[Win07] Glynn Winskel. Event structures with symmetry. Electron. Notes
Theor. Comput. Sci., 172:611–652, 2007.

https://doi.org/10.1007/3-540-49253-4_6

	Introduction
	General Introduction
	The Relational Model and Quantitative Semantics
	The relational model
	Rel and game semantics
	Rigidity and symmetries

	From Quantitative to Qualitative
	Idempotent intersection types
	Cartesian maps
	Cartesian matching problems

	Outline.

	Thin Concurrent Games
	Basic Concurrent Games
	Event structures
	Games and strategies
	Morphisms between strategies
	+-covered configurations

	A -category of concurrent games and strategies
	Strategies between games
	Composition

	Adding Symmetry
	Event structures with symmetry
	Thin games
	Thin strategies

	Boards
	Dual, tensor and par
	The with
	Linear closure
	Exponential

	The Relative Seely Category of Sequential Innocence
	Deterministic sequential innocence
	Relative Seely categories
	The relative Seely category DSInn

	Relational Collapse
	Collapsing games
	Collapsing strategies
	A Relative Seely Functor

	From Games to the Linear Scott Model
	The Linear Scott Model
	The basic category
	Seely category

	Mixed Boards
	Arenas
	Mixed boards

	Cartesian Morphisms
	Structural maps
	Cartesian morphisms

	Reconstructing the Preorder

	Qualitative Collapse
	Bounding Interactions
	Structural maps in strategies
	The upper bound

	The Scott Collapse
	Solving cartesian problems
	A relative Seely functor

	Conclusions
	References

