Élève 1 :

Cours : (4) Matrices dans une base orthonormale de E d'un automorphisme orthogonal et d'une symétrie orthogonale de E.

Exercice 1

Déterminer les éléments caractéristiques de la rotation de \mathbb{R}^3 définie par l'expression analytique suivante :

$$\begin{cases} 3x' = -2x + 2y + z \\ 3y' = -2x + y + 2z \\ 3z' = x - 2y + 2z \end{cases}$$

Exercice 2 (Applications antisymétriques)

Soit E un ev euclidien et $f \in \mathcal{L}(E)$ antisymétrique.

- 1. Montrer que $id_E + f \in GL(E)$.
- 2. Montrer que $g = (\mathrm{id} f) \circ (\mathrm{id} + f)^{-1} \in \mathcal{O}^+(E)$ et $\mathrm{id} + g$ est inversible.
- 3. Réciproquement, soit $h \in \mathcal{O}^+(E)$ tq id +h soit inversible. Montrer qu'il existe f antisymétrique tel que $h = (\mathrm{id} f) \circ (\mathrm{id} + f)^{-1}$.

Élève 2:

Cours : (5) Toute isométrie vectorielle de l'espace vectoriel euclidien E de dimension n $(n \ge 2)$ est une composée d'au plus n réflexions de E.

Exercice 3

Déterminer la matrice de la rotation \mathcal{R} de \mathbb{R}^3 dans une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$ telle que $\mathcal{R}(\vec{u}) = \vec{u}$ avec $\vec{u}(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ et $\mathcal{R}(\vec{i}) = \vec{k}$. Donner son angle de rotation.

Exercice 4 (Matrices circulantes)

Soit $A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$. Montrer que A est une matrice de rotation si et seulement si a, b, c

sont les racines d'un polynôme de la forme $P=X^3-X^2+\lambda$ avec $\lambda\in\left[0,\frac{4}{27}\right]$.

La condition précédente étant réalisée, poser $\lambda = \frac{4}{27} \sin^2 \varphi$ et déterminer les éléments géométriques de la rotation représentée par A dans une base orthonormée directe d'un espace vectoriel euclidien.

1

Élève 3:

Cours : (6) Recherche de $SO_2(\mathbb{R})$.

Exercice 5

Soit E un espace vectoriel euclidien orienté de dimension 3, $\mathcal{B}=(\vec{e_1},\vec{e_2},\vec{e_3})$ une base orthonormée directe de E. Soit

$$\left(\begin{array}{ccc}
0 & -\gamma & \beta \\
\gamma & 0 - \alpha & \\
-\beta & \alpha & 0
\end{array}\right)$$

Montrer que I+S est inversible. On note

$$U = (I - S)(I + S)^{-1}$$

et u,s les endomorphismes dont les matrices dans $\mathcal B$ sont U et V. Montrer que u est une rotation d'axe $Vect(\vec v), \vec v$ étant le vecteur de coordonnées (α,β,γ) dans $\mathcal B$. Déterminer l'angle autour de $\vec v$ de cette rotation.

Exercice 6 (Condition pour que deux symétries commutent)

Soient H,K deux hyperplans de E eve, et s_H,s_K les symétries associées. Démontrer que s_H et s_K commutent si, et seulement si, H=K ou $H^\perp\subset K$.

Exercice 7 (Transformations orthogonales sur $\mathcal{M}_n(\mathbb{R})$)

 $E = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire : $(A \mid B) = \operatorname{tr}({}^t AB)$.

- 1. Vérifier que c'est un produit scalaire.
- 2. Soit $P \in \mathcal{O}(n)$. Montrer que les applications $\begin{cases} \phi_P : A \longmapsto AP \\ \psi_P : A \longmapsto P^{-1}AP \end{cases}$ sont orthogonales.
- 3. Réciproquement, si ϕ_P ou $\psi_P \in \mathcal{O}(\mathcal{M}_n(\mathbb{R}))$, est-ce que $P \in \mathcal{O}(n)$?