Élève 1:

Cours : (4) Étude locale de la courbe C d'équation polaire $r=f(\theta)$ dans \mathbb{R} , avec f dans $C^1(D,\mathbb{R})$, en $M_0=O$ de paramètre θ_0 dans I.

Exercice 1

Soit $\omega \in \mathbb{R}$. On se propose de résoudre le système différentiel suivant :

$$\begin{cases} x' = x - \omega y \\ \omega y' = x + \omega y \end{cases}$$

On utilisera deux méthodes distinctes..

Exercice 2 (Courbe polaire) Après avoir étudié la courbe associée à l'équation suivante, la tracer :

$$\rho = 1 + \sin 3\theta$$

Élève 2:

Cours : (2) Ensemble $S_{\mathbb{K}}$ des solutions sur I à valeurs dans \mathbb{K} de (E_0) quand (E_c) a deux solutions distinctes s_1 et s_2 dans \mathbb{K} .

Exercice 3 (Courbe polaire) Après avoir étudié la courbe associée à l'équation suivante, la tracer :

$$\rho = \frac{\cos 2\theta}{1 + \sin \theta}$$

Exercice 4 Résoudre les équations différentielles suivantes :

- 1. $y'' 2y' + 2y = xe^x$
- 2. $y'^2 + y^2 = 1$

Élève 3:

Cours : (6) Équation polaire dans \mathbb{R} d'une conique P de foyer O.

Exercice 5 (Changement de variable)

1. Soit $f:]-\infty, 1[\to \mathbb{R}$ dérivable sur \mathbb{R} , et $g: \mathbb{R} \to \mathbb{R}, t \mapsto f(1-e^t)$. Montrer que f est solution sur $]-\infty, 1[$ de l'équation différentielle

$$y'' + \frac{1}{(1-x)^2}y = 0 (E)$$

si et seulement si g est solution sur \mathbb{R} d'une équation différentielle que l'on précisera. On dit alors qu'on a fait le changement de variable $x = 1 - e^t$ dans (E).

2. Résoudre alors l'équation différentielle (E) sur $]-\infty,1[$.

Exercice 6 (Courbe polaire) Après avoir étudié la courbe associée à l'équation suivante, la tracer :

$$\rho = \frac{\sin \theta}{\theta}$$