Élève 1 :

Cours : (1) Équivalents en 0 et en $\pm \infty$ d'une fonction polynômiale rélle non nulle.

Exercice 1 (Étude des racines d'une famille d'équations)

- 1. Montrer que l'équation cotan $x = \ln x$ possède, pour chaque entier naturel n, une unique racine x_n dans $]n\pi, (n+1)\pi[$, et que $\lim_{n\to\infty}(x_n-n\pi)=0$.
- 2. Montrer que $x_n n\pi \sim_{n \to \infty} \frac{1}{\ln n}$

Exercice 2 (Calcul de limites)

- 1. $\lim_{x\to 0} \left(\frac{1}{x}\right)^{\tan x}$
- 2. $\lim_{x\to 0} (\cos x + \sin x)^{\frac{1}{x}}$
- 3. $\lim_{x\to e} (\ln x)^{\tan\frac{\pi x}{2e}}$
- 4. $\lim_{x\to 0} \frac{m^x \sin mx n^x \sin mx}{\tan nx \tan mx}$ avec $(m,n) \in \mathbb{R}_+^{*2}, m \neq n$

Élève 2:

Cours: (2) Si I contient 0 et f est une fonction de I dans \mathbb{R} dérivable et nulle en 0, alors montrer que, si f'(0) est non nul, f(x) est équivalent en 0 à f'(0).x. Citer ensuite 10 applications de ce résultat.

Exercice 3 Soit u une fonction $u:I\to\mathbb{R}$, où I est un intervalle de \mathbb{R}^* dont 0 soit élément ou extrémité. On suppose que $\lim_{x\to 0}u(x)=0$, et que pour des réels $\lambda\in]0,1[,A\in\mathbb{R}^*$ et $a\in\mathbb{N}^*$, on $a:u(x)-u(\lambda x)\underset{x\to 0}{\sim}Ax^a$.

Démontrer qu'alors $u(x) \underset{x\to 0}{\sim} \frac{A}{1-\lambda^a} x^a$.

Application : considérer u définie sur \mathbb{R}^* par $u(x)=1-\frac{\sin x}{x}$ et montrer que $x-\sin x \underset{x\to 0}{\sim} \frac{x^3}{6}$.

1

Exercice 4 Étudier les suites de terme général :

- 1. $u_n = \left(\cos\frac{1}{\sqrt{n}}\right)^n$
- 2. $u_n = \left(\cos \frac{a}{n} + b \sin \frac{a}{n}\right)^n$ (a et b sont des réels fixés).

Élève 3:

Cours : (5) Si f et g sont deux fonctions strictement positives et équivalentes de limite nulle $(ou + \infty)$, alors ln(f) et ln(g) sont équivalentes.

Exercice 5 Soient u et v deux suites réelles que $u_n \underset{n \to +\infty}{\sim} v_n$. A-t-on $u_n^n \underset{n \to +\infty}{\sim} v_n^n$?

Exercice 6 Donner un équivalent simple des fonctions suivantes :

- au voisinage de 0:

- $x \mapsto (\cos x)^{\cot^2 x}$ - $x \mapsto \arccos(1-x)$ - $x \mapsto (1-\cos x)^{x^2} - x^{1-\cos x}$ - au voisinage de $+\infty$:

- $x \mapsto \left(\frac{\ln(x+1)}{\ln x}\right)^x - 1$ - $x \mapsto \left(\frac{\arctan(x+1)}{\arctan x}\right)^x - 1$ - $x \mapsto \left(\sin \frac{\pi x}{2x+1}\right)^{x^2}$

Exercice 7 (Famille de racines..)

On considère l'équation x = x.

- 1. Montrer que cette équation admet une racine unique dans $]n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}[$ pour tout $n \in \mathbb{N}.$
- 2. Donner un équivalent de x_n pour n tendant vers $+\infty$.