
Properties of Visibly Pushdown Transducers!

Emmanuel Filiot1 Jean-François Raskin1 Pierre-Alain Reynier2
Frédéric Servais1 Jean-Marc Talbot2

1 Université Libre de Bruxelles (U.L.B.)
2 LIF, Université Aix-Marseille & CNRS

Abstract. Visibly pushdown transducers (VPTs) form a strict subclass of push-
down transducers (PTs) that extends finite state transducers with a stack. Like
visibly pushdown automata, the input symbols determine the stack operations.
It has been shown that visibly pushdown languages form a robust subclass of
context-free languages. Along the same line, we show that word transductions
defined by VPTs enjoy strong properties, in contrast to PTs. In particular, func-
tionality is decidable in PTIME, k-valuedness is in NPTIME and equivalence of
(non-deterministic) functional VPTs is EXPTIME-C. Those problems are unde-
cidable for PTs. Output words of VPTs are not necessarily well-nested. We iden-
tify a general subclass of VPTs that produce well-nested words, which is closed
by composition, and for which the type checking problem is decidable.

1 Introduction

Visibly pushdown languages (VPLs) form a robust subclass of context-free languages
(CFLs) [2]. This class strictly extends the class of regular languages and still enjoys
strong properties: closure under all Boolean operators and decidability of emptiness,
universality, inclusion and equivalence. On the contrary, context-free languages are not
closed under complement nor under intersection, moreover universality, inclusion and
equivalence are all undecidable. Along the same line, we study the class of visibly
pushdown transductions, a subclass of pushdown transductions, and we show that while
extending regular transductions it also preserves desired properties.

Visibly pushdown automata (VPAs), that characterize VPLs, are obtained as a re-
striction of pushdown automata. In these automata the input symbols determine the
stack operations. The input alphabet is partitioned into call, return and internal sym-
bols: if a call is read, the automaton must push a symbol on the stack; if it reads a
return, it must pop a symbol; and while reading an internal symbol, it can not touch,
not even read, the stack. Visibly pushdown transducers (VPTs) are obtained by adding
outputs to VPAs: each time the VPA reads an input symbol it also outputs a word. No
restriction is imposed on the output word.

! Work supported by the projects: (i) QUASIMODO (FP7- ICT-STREP-214755), (ii) GASICS
(ESF-EUROCORES LogiCCC), (iii)Moves: “Fundamental Issues in Modelling, Verification
and Evolution of Software”, http://moves.ulb.ac.be, a PAI program funded by the
Federal Belgian Gouvernment, and (iv) ECSPER (ANR-JC09-472677) and SFINCS (ANR-
07-SESU-012), two projects supported by the French National Research Agency.

A transducer is k-valued if it transforms an input word into at most k (output) words.
It is functional if it is 1-valued. The functionality problem for finite state (word) trans-
ducers has been extensively studied. The first proof of decidability was given in [19],
and later in [4]. The first PTIME upper bound has been proved in [10], more generally
this algorithm can be used for deciding k-valuedness. Also, this proof can be refined to
get an NLOGSPACE upper bound [9]. An efficient procedure for testing functionality
has been given in [3]. Those problems are undecidable for PTs.

We claim that VPTs form a rather robust model between finite-state transducers
(FSTs) and pushdown transducers (PTs). Our main contribution is to show that interest-
ing problems are decidable for VPTs: inclusion of the domain into a VPL, functionality
(in PTIME), equivalence of functional transducers (EXPTIME-C), and most notably k-
valuedness (in NPTIME). VPTs are not closed under composition and the type check-
ing is undecidable. We exhibit the class of well-nested VPTs (wnVPTs), a subclass
of VPTs, closed under composition and with decidable type checking (EXPTIME-C).
As the output words are well-nested, this class is well-suited to model unranked tree
transformations. To the best of our knowledge, this is the first class of unranked tree
transducers that supports concatenation of tree sequences with decidable k-valuedness.

Visibly pushdown transducers have been first introduced in [18]. In that paper,VPTs

allow for ε-transitions that can produce outputs and only a single letter can be produced
by each transition. Using ε-transitions causes many interesting problems to be undecid-
able, such as functionality and equivalence (even of functional transducers). In contrast
to [18], in this paper we consider visibly pushdown transducers where ε-transitions are
not allowed, but where the transitions can output a word. Moreover, no visibly restric-
tion is imposed on the output word. Therefore in the sequel we call the transducers
of [18] ε-VPTs, and VPTs will denote the visibly pushdown transducers considered
here. VPTs are exactly the so called nested word to word transducers of [23]. XML-
DPDTs [14], equivalent to left-to-right attribute grammars, correspond to the determin-
istic VPTs.

Deciding equivalence of deterministic (and therefore functional) VPTs has been
shown to be in PTIME [23]. However, functional VPTs can be exponentially more
succinct and are strictly more expressive than deterministic VPTs. In particular, non-
determinism is often needed to model functional transformationswhose current produc-
tion depends on some input which may be arbitrary far away from the current input. For
instance, the transformation that swaps the first and the last input symbols is functional
but non-determinism is needed to guess the last input. The proof of [23] is based on a
reduction to the morphism equivalence problem on a context-free language, which is
known to be decidable in PTIME [17]. In this paper, we show that the same reduction
can be applied to prove that functionality is decidable in PTIME for VPTs, and as a
consequence, equivalence of functional transducers is decidable. Moreover we extend
this result by showing that the k-valuedness problem for VPTs can be reduced to the
multiple morphism equivalence problem on a CFL which was proved to be decidable
in [11]. Finally, we show this last problem can be decided in NPTIME.

While functionality and equivalence are decidable, the class of visibly pushdown
transductions, characterized by VPTs, is not closed under composition and the type
checking problem is undecidable.We identify a subclass of VPTs in which a connection
is imposed between stack symbols and nesting of outputs. We call the resulting class

well-nested visibly pushdown transducers (wnVPTs), as it only accepts well-nested
input words and the output condition ensures that output words are also well-nested. As
a subclass of VPTs, it enjoys all the good properties stated above, and in addition it is
closed under composition and type checking is EXPTIME-C. This class is of particular
interest for XML document transformations as well-nested words can naturally model
such documents.

Relation to tree transducers We distinguish ranked trees from unranked trees, whose
nodes may have an arbitrary number of ordered children. There is a strong connec-
tion between wnVPTs and unranked tree transducers. Indeed, unranked trees over an
arbitrary finite alphabet Σ can be naturally represented by well-nested words over the
structured alphabet Σ × {c} ∪ Σ × {r}. wnVPTs are therefore well-suited to model
tree transformations. To the best of our knowledge, wnVPTs consist in the first (non-
deterministic) model of unranked tree transformations (that support concatenation of
tree sequences) for which k-valuedness and equivalence of functional transformations
are decidable. Finite (ranked) tree transducers [5] on binary encodings of unranked
trees do not support concatenation, they are incomparable to wnVPTs, as they allow
for copy, which is not the case of wnVPTs, but cannot define all context-free languages
as codomain, what wnVPTs can do, as they support concatenation of tree sequences.
Functionality is known to be decidable in PTIME for tree transducers [20]. More gen-
erally, finite-valuedness of (and equivalence of finite-valued) tree transducers is decid-
able [21]. However, those results cannot be lifted to unranked trees, as unranked tree
transformations have to support concatenation of tree sequences, making usual binary
encodings unsuitable. Considering finite tree transducers, their ability to copy subtrees
is the main concern when dealing with k-valuedness. However for wnVPTs, it is more
their ability to concatenate sequences of trees which makes this problem difficult. While
concatenation of tree sequences cannot be modeled by ranked tree transducers on binary
encodings, it can be simulated bymacro (ranked) tree transducers (MTTs) by using pa-
rameters [8]. This makeswnVPTs strictly less expressive thanMTTs. However, equiva-
lence is decidable for the subclass of linear size increase deterministicMTTs, which are
equivalent to deterministic MSO tree transductions [7, 6]. In particular, k-valuedness is
still open for MTTs. There have been several attempts to generalize ranked tree trans-
ducers to unranked tree transducers [15, 16, 14], but again, k-valuedness is still open.

Organization of the paper In Section 2, we define VPTs as an extension of VPAs. In
Section 3, we give basic results about properties of VPTs. We prove in Section 4 the
PTIME decidability of functionality forVPTs as well as the NPTIME result for deciding
k-valuedness of VPTs. Finally, well-nested transducers are introduced in Section 5.

2 Visibly Pushdown Transducers

Let Σ be a finite alphabet partitioned into two disjoint sets Σc andΣr denoting respec-
tively the call and return alphabets1. We denote by Σ∗ the set of (finite) words over Σ

1 In contrast to [2], we do not consider internal symbols i, as they can be simulated by a (unique)
call ci followed by a (unique) return ri. All our results extend trivially to alphabets with inter-
nal symbols. We make this assumption to simplify notations.

and by ε the empty word. The length of a word u is denoted by |u|. The set of well-
nested wordsΣ∗

wn
is the smallest subset ofΣ∗ such that ε ∈ Σ∗

wn
and for all c ∈ Σc, all

r ∈ Σr, all u, v ∈ Σ∗
wn
, cur ∈ Σ∗

wn
and uv ∈ Σ∗

wn
. The height of a well-nested word is

inductively defined by h(ε) = 0, h(cur) = 1 + h(u), and h(uv) = max(h(u), h(v)).

Visibly Pushdown Languages A visibly pushdown automaton (VPA) [2] on finite words
over Σ is a tuple A = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q, respec-
tively F ⊆ Q, the set of initial states, respectively final states, Γ the (finite) stack
alphabet, and δ = δc % δr where δc ⊆ Q × Σc × Γ × Q are the call transitions,
δr ⊆ Q × Σr × Γ × Q are the return transitions.

On a call transition (q, a, q′, γ) ∈ δc, γ is pushed onto the stack and the control goes
from q to q′. On a return transition (q, γ, a, q′) ∈ δr, γ is popped from the stack.

Stacks are elements of Γ ∗, and we denote by ⊥ the empty stack. A run of a VPA

A on a word w = a1 . . . al is a sequence {(qk, σk)}0≤k≤l, where qk is the state and
σk ∈ Γ ∗ is the stack at step k, such that q0 ∈ I , σ0 = ⊥, and for each k < l, we have
either: (i) (qk, ak+1, γ, qk+1) ∈ δc and σk+1 = σkγ; or (ii) (qk, ak+1, γ, qk+1) ∈ δr,
and σk = σk+1γ. A run is accepting if ql ∈ F and σl = ⊥. A word w is accepted by
A if there exists an accepting run of A over w. L(A), the language of A, is the set of
words accepted by A. A language L over Σ is a visibly pushdown language if there is
a VPA A overΣ such that L(A) = L.

In contrast to [2] and to ease the notations, we do not allow return transitions on
the empty stack and we accept on empty stack only. Therefore the words accepted by a
VPA are well-nested (every call symbol has a matching return symbol and conversely).

Visibly Pushdown Transducers As finite-state transducers extend finite-state automata
with outputs, visibly pushdown transducers extend VPAs with outputs. To simplify no-
tations, we suppose that the output alphabet is Σ, but our results still hold for an arbi-
trary output alphabet.

Definition 1 (Visibly pushdown transducers).A visibly pushdown transducer2 (VPT)
on finite words over Σ is a tuple T = (Q, I, F, Γ, δ) where Q is a finite set of states,
I ⊆ Q is the set of initial states, F ⊆ Q the set of final states, Γ is the stack alpha-
bet, δ = δc % δr the (finite) transition relation, with δc ⊆ Q × Σc × Σ∗ × Γ × Q,
δr ⊆ Q × Σr × Σ∗ × Γ × Q.

A configuration of a VPT is a pair (q, σ) ∈ Q × Γ ∗. A run of T on a word u =
a1 . . . al ∈ Σ∗ from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence
ρ = {(qk, σk)}0≤k≤l such that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each
1 ≤ k ≤ l, there exist vk ∈ Σ∗ and γk ∈ Γ such that (qk−1, ak, vk, γk, qk) ∈ δc

and either ak ∈ Σc and σk = σk−1γk, or ak ∈ Σr and σk−1 = σkγk. The word
v = v1 . . . vl is called an output of ρ. We write (q, σ)

u/v
−−→ (q′, σ′) when there exists a

run on u from (q, σ) to (q′, σ′) producing v as output. The transducer T defines a binary
word relation !T " = {(u, v) | ∃q ∈ I, q′ ∈ F, (q,⊥)

u/v
−−→ (q′,⊥)}.

2 In contrast to [18], there is no producing ε-transitions (inserting transitions) but a transition
may produce a word and not only a single symbol. Moreover, the images of a word may not
be necessarily well-nested.

The domain of T (denoted by Dom(T)), resp. the codomain of T (denoted by
CoDom(T)), is the domain of !T ", resp. the codomain of !T ". Note that the domain of
T contains only well-nested words, which is not necessarily the case of the codomain.

Consider the VPT T of Figure 1. Call (resp. return) symbols are denoted by c (resp.
r). The domain of T is Dom(T) = {c1(c2)nc3r3(r2)nr1 | n ∈ N}. For each word
of Dom(T), there are two accepting runs, corresponding respectively to the upper and
lower part of T . For instance, when reading c1, it pushes γ1 and produces either d
(upper part) or dfc (lower part). By following the upper part (resp. lower part), it pro-
duces words of the form dfcab(cabcab)ngh (resp. dfc(abc)nab(cab)ngh). Therefore T
is functional.

c1/dfc, γ1
c3/ab, γ3 r3/ε, γ3

c1/d, γ1

c3/f, γ3 r3/cab, γ3

r1/gh, γ1

r1/gh, γ1

c2/ε, γ2 r2/cabcab, γ2

c2/abc, γ2 r2/cab, γ2

Fig. 1. A functional VPT on Σc = {c1, c2, c3} and Σr = {r1, r2, r3}.

3 Properties of VPTs

In this section, we present results about expressiveness of VPTs and decision problems.
We let VPLs, resp. CFLs, denote the class of visibly pushdown languages, resp. context-
free languages, overΣ.

Proposition 1 (Domain and codomain). Let T be a VPT, let L be a VPL. The domain
Dom(T) of T is a VPL and the language T (L) is a CFL. Moreover, for any CFL L′ over
Σ, there exists a VPT whose codomain CoDom(T) is L′. All these constructions can
effectively be done in polynomial time.

Proof (Sketch). By projecting the transitions of a VPT T on the input (resp. on the
output), we obtain a VPA (resp. a pushdown automaton) which defines Dom(T) (resp.
CoDom(T)). As a consequence, given L ∈ VPL, by restrictingDom(T) to L which can
be done by a classical product construction, we obtain T (L) is a CFL. To produce as
output a CFL L′ on alphabet Σ, it is already known [2] that there exists a VPL L′′ on
a structured alphabet Σ̂ and a renaming π : Σ̂ → Σ such that π(L′′) = L′. The VPT

implements π. +,

As a consequence of Proposition 1 and of the fact that language inclusion for VPAs

is EXPTIME-C, we can test whether a VPL is included in the domain of a given VPT

and conversely. This is of particular interest for XML transformations as it amounts to
decide if any document valid for an input XML schema will be transformed. This is
undecidable for ε-VPTs and PTs.

Thanks to non-determinism, transductions defined by VPTs are closed under union.
This is not the case however for composition and inverse. Non-closure under com-
position can be simply proved by using Proposition 1 and by producing two VPTs

whose composition transforms a VPL into a non CFL language. More formally, let
Σ = {c1, r1, c2, r2, c3, r3} be an alphabet where ci’s are call symbols and ri’s are
return symbols. We let li = ciri for i = 1, 2, 3. First consider the following VPL lan-
guage: L1 = (c1)n (r2)n (l3)∗. We can easily construct a VPT that transforms L1 into
the language L2 = (c1)n (l2)n (r3)∗. Applying the identity transducer on L2 produces
the non CFL language L3 = (c1)n (l2)n (r3)n. This identity transducer has a domain
which is a VPL and thus it extracts from L2 the well-nested words which form the non
CFL set L3. Non closure under inverse is a consequence of the fact that, for any VPT

T , for any word w, T (w) is a finite set while a word w can be the image of an infinite
number of input words. Finally, note that, as in the case of FSTs, VPTs are not closed
under intersection (easy coding of PCP).

The following problem is known as the translation membership problem [13].

Proposition 2 (Translation Membership). Let T be a VPT and (u, v) ∈ Σ∗ × Σ∗,
the problem of deciding whether (u, v) ∈ !T " is in PTIME.

Proof. We can first restrict T to a transducer T |u such that Dom(T |u) = {u} and
T |u(u) = T (u). By Proposition 1, membership in CoDom(T |u) can be tested in
PTIME. +,

Theorem 1 (Type Checking).Given a VPT T and two VPAs A1,A2, it is undecidable
if T (L(A1)) ⊆ L(A2).

Proof. Given an instance (u1, v1), (u2, v2), . . . , (un, vn) of PCP defined on the finite
alphabet Σ, we associate with this instance a CFL and a VPL language defined on
the alphabet Σc = Σ and Σr = {1 . . . n}. For all j, we let lj = |uj|. The CFL

language is L1 = {vi1 . . . vik
#(ik)lk . . . (i1)l1 | i1, . . . , ik ∈ Σr}. The VPL language

is L2 = {ui1 . . . uik
#(ik)lk . . . (i1)l1 | i1, . . . , ik ∈ Σr}. Clearly the PCP instance is

negative if and only if L1 is included in L2. By Proposition 1, there exists a VPT T
whose image is L1 and by definition, there exists a VPA that accepts L2, because VPAs

are closed under complementation. +,

4 On k-valuedness of VPTs

Let k ∈ N. A VPT T is k-valued if for all u ∈ Σ∗, |{v | (u, v) ∈ !T "}| ≤ k. T is
functional if it is 1-valued. Two VPTs T1, T2 are equivalent if !T1" = !T2". In this
section, we prove that deciding if a VPT is k-valued is decidable in NPTIME (for a
fixed k), and in PTIME for k = 1. The proof is done via a reduction to the multiple
morphism equivalence problem on a context-free language, which was proved to be

decidable in [11]. This reduction extends the one of [23], which was used to prove
the decidability of equivalence of deterministic (and therefore functional) VPTs (k =
1). By using a recent result of [24] on the complexity of constructing an existential
Presburger formula for the Parikh image of a pushdown automaton, we give an upper
bound for the multiple morphism equivalence problem. When there is only one pair of
morphisms, this problem is known to be in PTIME [17].

Let Σ1, Σ2 be two finite alphabets. A morphism is a mapping Φ : Σ∗
1 → Σ∗

2 such
that Φ(ε) = ε and for all u, v ∈ Σ∗

1 , Φ(uv) = Φ(u)Φ(v). A morphism can be finitely
represented by its restriction on Σ1, i.e. by the set of pairs (a, Φ(a)) for all a ∈ Σ1.
Therefore its size is |Σ| + Σa∈Σ |Φ(a)|.

Definition 2 (Multiple Morphism Equivalence on Context-Free Languages).Given
* pairs of morphisms (Φ1, Ψ1), . . . , (Φ", Ψ") fromΣ∗

1 to Σ∗
2 and a context free language

L on Σ1, (Φ1, Ψ1), . . . , (Φ", Ψ") are equivalent on L if for all u ∈ L, there exists i such
that Φi(u) = Ψi(u).

The next result was proved to be decidable in [11] on any class of languages whose
Parikh images are effectively semi-linear. In the case of context-free languages, we
show that it can be decided in NPTIME. The main part of our proof is to show that,
for a fixed k, the emptiness of one-reversal pushdown machine with k counters is in
NPTIME.

Theorem 2. Let * be fixed. Given * pairs of morphisms and a pushdown automatonA,
testing whether they are equivalent on L(A) can be done in NPTIME. It is in PTIME if
* = 1 and if the context-free language is given by a grammar in Chomsky normal form
(Plandowski [17]).

Proof. In order to prove this theorem, we briefly recall the procedure of [11] in the
particular case of pushdown machines. It relies on the emptiness problem of reversal-
bounded pushdown machines with a fixed number of counters. Let k, m ∈ N, an m-
reversal pushdown machine with k counters (m-k-RBPM) on an alphabet Σ is a push-
down automaton on Σ augmented with k counters. Each counter can be incremented
or decremented by one and tested for zero, but the number of alternations between a
nondecreasing and a non-increasing mode is bounded by m in any computation. The
emptiness problem for such machines is decidable [12]. In order to decide the mor-
phism equivalence problem of * pairs of morphisms on a CFL L, the idea is to construct
an 1-2*-RBPM that accepts the language L′ = {w ∈ L | Φi(w) -= Ψi(w) for all i}.
Clearly, L′ = ∅ iff the morphisms are equivalent on L. Let A be the pushdown au-
tomaton that accepts L. We construct a pushdown automaton A′ augmented with 2*
counters c11, c12, . . . , c"1, c"2 that simulatesA on the input word and counts the lengths
of the outputs by the 2* morphisms. For all i ∈ {1, . . . , *}, A′ guesses some position
pi where Φi(w) and Ψi(w) differ: it increments in parallel (with ε-transitions) the coun-
ters ci1 and ci2 and non-deterministically decides to stop incrementing after pi steps.
Then when reading a letter a ∈ Σ1, the two counters ci1 and ci2 are decremented by
|Φi(a)| and |Ψi(a)| respectively (by possibly several transitions as the counters can be
incremented by at most one at a time). When one of the counter reaches zero A′ stores
the letter associated with the position (in the control state). At the end of the compu-
tation, for all i ∈ {1, . . . , *}, one has to check that the two letters associated with the

position pi in Φi(w) and Ψi(w) are different. If n is the number of states of A and m
is the maximal length of an image of a letter a ∈ Σ1 by the 2* morphisms, then A′

has O(n · m · |Σ2|2") states, because for all 2* counters one has to store the letters at
the positions represented by the counter values. This is polynomial as * is fixed. Note
that the resulting machine is 1-reversal bounded (counters are first set to zero and are
incremented up to a position in the output word, and then are decremented to zero).

We now show that the emptiness of a one-reversal pushdown machine A with k
counters on an alphabet Σ is in NPTIME. Wlog, we assume that each counter starts
and ends with zero value, which is the case in the previous reduction. The NPTIME
upper bound remains true without this assumption. For this, we recall the construction
of [11] for testing emptiness of reversal-boundedmachines with counters. The idea is to
construct a semi-linear set for the Parikh image ofA.3 The emptiness ofA then reduces
to the emptiness of its Parikh image. Following [11], one extends the alphabet Σ with
3k letters +j,−j , sj -∈ Σ intended to simulate the increasing, decreasing transitions of
the j-th counter, and the transitions that do not change the j-th counter (skip).We denote
by Σ+ this alphabet. We construct a pushdown automaton B on Σ+ that simulates A.
When reading a letter a ∈ Σ, B tries to apply a transition of A, and passes into a mode
in which it verifies that the next letters correspond to the increasing, decreasing or skip
actions on the counters of the transition. Moreover, since A is 1-reversal bounded, B
has to ensure that each counter does at most one reversal. The language of B is the set
of words of the form w = a1t1a2t2 . . . antn where ai ∈ Σ and each ti is a word of
the form bi

1 . . . bi
k where bi

j ∈ {+j,−j , sj}, j ∈ {1, . . . , k}. Moreover, we require that
(i) there exists a run of B on a1 . . . an ending up in a final state such that the counter
actions of the transitions corresponds to t1 . . . tn (ii) for all j ∈ {1, . . . , k}, b1

j . . . bn
j ∈

{+j, sj}∗{−j, sj}∗ (one reversal). Let ψ(w) = a1 . . . an and ψj(w) = b1
j . . . bn

j for all
j ∈ {1, . . . , k}. Condition (i) is enforced by a simple simulation of A, and condition
(ii) is enforced by adding vectors of {+,−}k to the control states indicating whether
the j-th counter is in increasing or decreasing mode. Note that L(A) ⊆ ψ(L(B)),
but this inclusion may be strict, as we do not require that the counters end up in a
zero value. More formally, we have L(A) =

⋂k
j=1{ψ(w) | w ∈ L(B) and ψj(w) ∈

s∗j (+j .s
∗
j)

"(−j .s
∗
j)

", * ≥ 0}.
As L(B) is a context-free language, it is known by Parikh’s theorem that the Parikh

image of L(B) is semi-linear. Therefore there exists an existential Presburger formula
φ with |Σ|+3k free variables (xa)a∈Σ and (x+j

, x−j
, xsj

)j∈{1,...,k} which defines the
Parikh image of L(B). Moreover, this formula can be constructed in time O(|B|) [24].
Finally, the formula ∃x+1

∃x−1
∃xs1

. . . ∃x+k
∃x−k

∃xsk
φ ∧

∧k
j=1 x+j

= x−j
defines

exactly the Parikh image of L(A). Since B can be constructed in O(|A| · 2k) (which
is polynomial as k is fixed) and the satisfiability of existential Presburger formulas is
in NP [24], one gets an NP algorithm to test the emptiness of A. We can conclude the
proof by combining this result to the reduction of the multiple morphism equivalence
problem described in the first part of the proof. +,

Following ideas introduced in [3] for deciding functionality of FSTs, we define a
notion of product for the class of VPTs. The k-power of T simulates k parallel execu-
3 The Parikh image of a language L ⊆ Σ∗ over an ordered alphabet Σ = {a1, . . . , an} is the
set {(#a1

(u), . . . , #an(u)) | u ∈ L} where#ai(u) is the number of occurences of ai in u.

tions on the same input. Note that this construction is possible for VPTs (but not for
general PTs) because two runs along the same input have necessarily the same stack
behavior. Let T = (Q, I, F, Γ, δ) be a VPT and OT the set of outputs words occurring
in the transitions of T , i.e. OT = {u | ∃(p

a/u
−−→ q) ∈ δ}. As this set is finite, it can be

regarded as an alphabet. The k-power of T is a VPT from words overΣ to words over
(OT)k defined as follows:
Definition 3 (k-Power). The k-power of T , denoted T k, is the VPT defined from Σ
to (OT)k by T k = (Qk, Ik, F k, Γ k, δk) where the transition relation δk = δk

c % δk
r is

defined for all α ∈ {c, r} and all a ∈ Σα by:

(q1, . . . , qk)
a|(u1,...,uk),(γ1,...,γk)
−−−−−−−−−−−−−−→ (q′1, . . . , q

′
k) ∈ δk

α iff qi
a|ui,γi
−−−−→ q′i ∈ δα ∀1 ≤ i ≤ k

For all k ≥ 0, we define the morphisms Φ1, . . . , Φk as follows:
Φi : (OT)k → Σ∗

(u1, . . . , uk) 1→ ui

Clearly, we obtain the following equivalence:
Proposition 3. T is k-valued iff (Φi, Φj)1≤i&=j≤k+1 are equivalent on CoDom(T k+1).

By Proposition 1 the languageCoDom(T k) is a context-free language. By Theorem
2, as CoDom(T k) is represented by an automaton of polynomial size if k is fixed, we
get:
Theorem 3 (k-valuedness). Let k ≥ 0 be fixed. The problem of deciding whether a
VPT is k-valued is in NPTIME. It is in PTIME if k = 1.

To get the PTIME bound when k = 1, one can construct a context-free grammar
GT in Chomsky normal form whose language is exactly the codomain of T 2.

Given two functional VPTs, they are equivalent iff their union is functional and
they have the same domains. The domains being VPLs, testing their equivalence is
EXPTIME-C. Therefore as a consequence of Theorem 3, we have:
Theorem 4 (Equivalence). Testing equivalence of functional VPTs is EXPTIME-C.

We end this section with a result on k-ambiguity ofVPTs. A VPT is k-ambiguous if
its underlying VPA is k-ambiguous, i.e. for each input word there are at most k accept-
ing runs. The notion of k-ambiguity is stronger than k-valuedness. k-ambiguity can be
tested in PTIME for tree automata. The standard construction to obtain a tree automaton
(top-down or bottom-up) equivalent to a given VPA preserves the number of accepting
runs, however it can yield an exponential blowup [1]. Therefore the PTIME bound can-
not be obtained directly from this translation. For a given k, a PTIME construction to
test k-ambiguity for VPAs can be obtained with a straightforward generalization of the
construction for finite state automata. Basically, one constructs a VPA that simulates
k+1 runs of the originalVPA (this is possible because the stack are synchronized), and
records which of these runs are different. It will accept any word that is accepted by the
original VPA with k + 1 different runs. If k is fixed, this construction can be done in
PTIME, moreover testing emptiness of VPAs is in PTIME.
Proposition 4 (k-Ambiguity). Let k ∈ N be fixed. Given a VPA A, resp. a VPT T , the
problem of deciding whether A, resp. T , is k-ambiguous is in PTIME.

5 Well-nested VPTs

We have seen that VPTs are not closed under composition and their type checking
problem is undecidable. In this section we introduce a natural subclass of VPTs that is
closed for composition and for which the type checking is decidable.

The undecidability of the type checking is a consequence of the fact that the stack
of the transducers and the stack of the output VPA are not synchronized, because no
(visibly) restriction is imposed on the output words. Similarly, non-closure under com-
position is a consequence of the fact that the stack of both VPTs are not synchronized.
To overcome those problems we introduce a restriction between the stack symbols and
the output words.

Definition 4. A VPT T = (Q, I, F, Γ, δ) is well-nested (wnVPT) if
for all (q1, c, u, γ, q′1) ∈ δc and (q2, r, v, γ, q′2) ∈ δr, we have uv ∈ Σ∗

wn
.

This restriction ensures that all output words are well-nested.

Lemma 1. For all wnVPTs T and all words w ∈ Σ∗
wn
, T (w) ⊆ Σ∗

wn
.

We now show that this class of transducers is closed under composition and has a
decidable type checking problem.

Proposition 5 (Closure properties). The class of wnVPTs is effectively closed under
union and composition.

Proof (Sketch).
We first need an additional notion in order to present the construction of the compo-

sition of two such transducers. A word is return-matched (resp. call-matched) if there
is no unmatched returns (resp. calls). Let m(w) be equal to the number of unmatched
returns (resp. unmatched calls) if w is call-matched (resp. return-matched).

It is easy to show that a VPT T = (Q, I, F, Γ, δ) is well-nested iff (i) for all
(q, α, w, γ, q′) ∈ δc (resp. δr), the word w is return-matched (resp. call-matched),
and (ii) there exists a function val : Γ → N (called a valuation) such that for all
(q, α, w, γ, q′) ∈ δ, we have val(γ) = m(w). This valuation is unique and can be com-
puted in linear time.

Let Ti = (Qi, Ii, Fi, Γi, δi), i ∈ {1, 2}, be two wnVPTs, and vali their associ-
ated valuation. We define their composition T as the tuple (Q1 × Q2, I1 × I2, F1 ×
F2, Γ, δ, val). Intuitively, it is a synchronized product in which the synchronization is
not letter to letter, but is based on mappings vali. More precisely, the stack alphabet Γ
of T is defined as the finite set {(γ1, σ2) ∈ Γ1 × Γ ∗

2 | val1(γ1) = |σ2|}. The valuation
val is defined by val(γ1, σ2) = val2(σ2) where the extension of val2 to Γ ∗

2 is defined
as follows: if σ2 = γ2,1γ2,2 . . . γ2,n then val2(σ2) =

∑n
i=1 val2(γ2,i). Call transitions

are defined, for c ∈ Σc, by (q1, q2)
c/w,(γ1,σ2)
−−−−−−−→ (q′1, q

′
2) ∈ δc if and only if there exists

v ∈ Σ∗ such that q1
c/v,γ1

−−−−→ q′1 ∈ δ1
c , and (q2,⊥)

v/w
−−→ (q′2, σ2) is a run in the trans-

ducer T2. Note that as T1 is well-nested, we have val1(γ1) = m(v), and then, as T2 is a
VPT, val1(γ1) = |σ2|. Return transitions are defined similarly and one can verify that
T is a wnVPT and that the construction is correct. +,

Functionality Equivalence Type checking ∪ ◦
/ k-valuedness of functional (against VPL)

FST NL/P PSPACE-C EXP-C Yes Yes
dVPT - P [23] Undec No No
VPT P/NP Exp-c Undec Yes No
wnVPT P/NP Exp-c Exp-c Yes Yes
ε-VPT [18] Undec Undec EXP-C [18] Yes No
dPT - Dec[22] Undec No No
PT Undec Undec Undec Yes No

Table 1. Decision problems and closure properties

Theorem 5 (Type Checking). Given a wnVPT T , two VPAs A1, A2, the problem of
deciding if T (L(A1)) ⊆ L(A2) is EXPTIME-C. It is in PTIME if A2 is deterministic.

Proof. For the EXPTIME-HARD part, first note that we can construct a wnVPT Tid

whose domain is the set of well-nested words on the structured alphabet Σ and whose
relation is the identity relation. Given any VPA A1, A2, we have that Tid(L(A1)) ⊆
L(A2) if and only if L(A1) ⊆ L(A2). This later problem is EXPTIME-C [2].

To prove it is in EXPTIME, we consider the wnVPT T2 whose domain is L(A2) and
whose relation is the identity relation. As wnVPTs are closed under composition, we
can construct a wnVPT T ′ such that T ′ = T ◦ T2. Then we can note that Dom(T ′) =
T−1(L(A2)). As T (L(A1)) ⊆ L(A2) if and only if L(A1) ⊆ T−1(L(A2)) and as all
those transducers and automata can be constructed in polynomial time, we conclude
that we can decide our problem in EXPTIME by checking the former inclusion using
the algorithm for language inclusion between VPA. +,

6 Conclusion

Table 1 summarizes the known results on several classes of word transducers. The re-
sults of this paper are in bold face. PTs denotes the class of pushdown transducers, and
deterministic classes are denoted with a preceding d. Undecidability of ambiguity and
functionality for PTs is well-known and can for example be proved by reduction of the
emptiness problem for the intersection of two CFLs. Undecidability of the equivalence
problem for two functional PTs is a direct consequence of the undecidability of the
equivalence problem for CFLs. Undecidability of these problems for ε-VPTs can be
proved in the exact same way since we can embed any CFL into the domain of such a
transducer [18]. The undecidability of type checking for dPTs and PTs against VPLs

can be proved as in Theorem 1. Finally, note that for all classes where equivalence of
functional transducers is decidable, the complexity depends on the complexity of testing
equivalence of their domains.

As future works, we would like to investigate several problems. The first problem
is the sequentiality problem for VPTs [3]. In particular, this problem asks whether a
given VPT is equivalent to an input-deterministic VPT. Input-determinism is relevant
to XML streaming transformations, as very large documents have to be processed on-
the-fly without storing the whole document in memory. A second problem is to decide
if two k-valued VPTs are equivalent.

References

1. R. Alur. Marrying words and trees. In PODS, volume 5140 of LNCS, pages 233–242, 2007.
2. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–211, 2004.
3. M.-P. Béal, O. Carton, C. Prieur, and J. Sakarovitch. Squaring transducers: an efficient pro-
cedure for deciding functionality and sequentiality. TCS, 292(1):45–63, 2003.

4. M. Blattner and T. Head. Single-valued a-transducers. JCSS, 15(3):310–327, 1977.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. http://www.grappa.univ-
lille3.fr/tata, 2007.

6. J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO defin-
able. SICOMP, 32:950–1006, 2003.

7. J. Engelfriet and S. Maneth. The equivalence problem for deterministic MSO tree transducers
is decidable. IPL, 100(5):206–212, 2006.

8. J. Engelfriet and H. Vogler. Macro tree transducers. JCSS, 31(1):71–146, 1985.
9. E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. On functionality of visibly
pushdown transducers. CoRR, abs/1002.1443, 2010.

10. E. M. Gurari and O. H. Ibarra. A note on finite-valued and finitely ambiguous transducers.
MST, 16, 1983.

11. T. Harju, O. H. Ibarra, J. Karhumaki, and A. Salomaa. Some decision problems concerning
semilinearity and commutation. JCSS, 65, 2002.

12. O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. JACM,
25(1):116–133, 1978.

13. K. Inaba and S. Maneth. The complexity of translation membership for macro tree transduc-
ers. CoRR, abs/0910.2315, 2009.

14. C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on XML
streams. VLDB, 16(3):317–342, 2007.

15. S. Maneth and F. Neven. Structured document transformations based on XSL. In DBPL,
volume 1949 of LNCS, pages 80–98, 2000.

16. T. Perst and H. Seidl. Macro forest transducers. IPL, 89(3):141–149, 2004.
17. W. Plandowski. Testing equivalence of morphisms on context-free languages. In ESA, pages

460–470, 1994.
18. J.-F. Raskin and F. Servais. Visibly pushdown transducers. In ICALP, volume 5126 of LNCS,

pages 386–397, 2008.
19. M. P. Schützenberger. Sur les relations rationnelles. In Automata Theory and Formal Lan-

guages, volume 33 of LNCS, pages 209–213, 1975.
20. H. Seidl. Single-valuedness of tree transducers is decidable in polynomial time. TCS,

106(1):135–181, 1992.
21. H. Seidl. Equivalence of finite-valued tree transducers is decidable. MST, 27(4):285–346,

1994.
22. G. Sénizergues. T(A) = T(B)? In ICALP, volume 1644 of LNCS, pages 665–675, 1999.
23. S. Staworko, G. Laurence, A. Lemay, and J. Niehren. Equivalence of deterministic nested

word to word transducers. In FCT, volume 5699 of LNCS, pages 310–322, 2009.
24. K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn clauses. In

CADE, volume 3632 of LNCS, pages 337–352, 2005.

