Visibly Pushdown Automata with Multiplicities:
Finiteness andK -Boundedness

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbo

Laboratoire d’'Informatique Fondamentale de Marseille,lAB CNRS, UMR 7279

Abstract. We propose an extension of visibly pushdown automata by sefin
weights (represented as positive integers) associatédnaitsitions, called visi-
bly pushdown automata with multiplicities. The multipticof a computation is
the product of the multiplicities of the transitions usedray this computation.
The multiplicity of an input is the sum of the ones of all itsassful compu-
tations. Finally, the multiplicity of such an automatonhe tsupremum of multi-
plicities over all possible inputs.

We show the problem of deciding whether the multiplicity of @itomaton is
finite can be solved in PE. We also consider th& -boundedness probleme.
whether the multiplicity is bounded by : we prove this problem to bex®TIME-
complete ifK is part of the input and in PmE if K is fixed.

As visibly pushdown automata are closely related to treeraata, we discuss
deeply the relationship of our extension with weighted tremata.

1 Introduction

Visibly pushdown automata/PA for short) have been proposed in [1] as an interesting
subclass of pushdown automata, strictly more expressatditiite state automata, but
still enjoying good closure and decidability propertiebey are pushdown automata
such that the behavior of the stadle. whether it pushes or pops, is visible in the
input word. Technically, the input alphabet is partitiorietb call, return and internal
symbols. When reading a call the automaton must push a syombthle stack, when
reading a return it must pop and when reading an internalnbecttouch the stack.
The partitioning of the alphabet induces a nesting streadfithe input word. Calls and
returns can be viewed as opening/closing brackets, andnested words are words
where every call symbol (resp. return symbol) has a matat@hgn (resp. call).

The original motivation for their introduction was for vication purposes, the
stack being used for the modelization of call/returns ofcfions. Another applica-
tion domain is the processing of XML documents. Indeed, nied trees in their linear
form can be viewed as well-nested words. Actually, the madalisibly pushdown
automata is expressively equivalent to that of finite treemata, see [1].

Itis standard to extend a class of automata with weightsdoljng a labeling func-
tion which assigns a weight to each transition. In this waevk, conside’VPA with
multiplicities (N-VPA for short) where weights are positive integers (multipiés).
The multiplicity of a run is the product of the multipliciseof the transitions that com-
pose it, and the multiplicity of a word is the sum of the of &laccepting runs. Finally,
the multiplicity of the automaton is the supremum of the riplittities of the words it
accepts. This model extends the model of finite state automigh multiplicities [10].

A special case of multiplicity is the degree of ambiguity ofvard, i.e. the num-
ber of accepting runs (obtained when every transition haghwd). The class of
finitely ambiguous automata has been investigated for aat®mn both words and
trees [5,15,12,13]. The interest in this class arised froenfact that it allows an ef-
ficient (polynomial) equivalence check. An analogy can kbanar with the context of
transducers where the equivalence problem is decidablénite-valued transducers
(and undecidable in general). In [11], the characteriratfcautomata whose multiplic-
ity is finite is used to build a characterization of finitewadl word transducers. The
present work is thus a first step towards the characterizatidinite-valued visibly
pushdown transducers, which is a relevant issue as this Inodeomparable with
bottom-up tree transducers (see [7]).

The first problem we consider is the finiteness of the muttipliof an automaton,
i.e. does there exisk’ € N such that the multiplicity is bounded by . To solve this
problem, we extend a characterization of finite state autainased on patterns to vis-
ibly pushdown automata. We also provide an algorithm todietlie presence of these
patterns in polynomial time. The second class of problerksabether the multiplicity
of an automaton is bounded Wy, whereK is given. This problem can be considered
under the hypothesis thdf is part of the input, or is fixed. We show that the prob-
lem is EXPTIME-complete in the first case, and can be solved in polynomia iin
the second case. Finally, we make a comparison of our regitltexisting results for
the equivalent model of tree automata with weights in theiseg(N, +, -). As this
equivalence is effective, we discuss the consequences oésuits in this context.

Definitions are given in Section 2. Comparisons with exgstiasults for tree au-
tomata with multiplicities are drawn in Section 3. In Sentiy we give the characteriza-
tion of infinite N-VPA based on original patterns and the decision procedureiasstc
We study finiteN-VPA in Section 5, and conclude with an application of our redwlts
tree automata in Section 6. Due to lack of space, detailsarffprand definitions about
tree automata are omitted, and can be found in the appendix.

2 Definitions

2.1 Preliminaries

All over this paper.2 denotes a finite alphabet partitioned into three disjoitg &%,
X andX,, denoting respectively theall, return andinternal alphabets. We denote by
27* the set of (finite) words oveX’ and bye the empty word. The length of a wotdis
denoted byu|. The set ofvell-nestedvords X - is the smallest subset 6f* such that
rcyr andforallc e X, allr € Xy, allu,v € Xy, cur € X anduv € X7 .
Letu = aqas---ai € X* be aword overr, and0 < ¢ < j < |u]l. Thenw, ;
denotes the word;; - - - ¢ if ¢ < 4, and the empty word if = j.
A positioni < |u| is apending callif o;11 € X and foralli < j < |u|, u;; &
X . Theheightof u at positioni, denotedh,, (), is the number of pending calls of
Uo,s, 1€ hy (1) = |[{j | 0 < j < ianda;1 is apending call ofig ; }|. The heightof
u is the maximal height of all the positions of h,, = maxo<;<x h., (). For instance,
h(crcrcc) = h(ccrcrr) =2.

2.2 Visibly Pushdown Automata with Multiplicities

Visibly pushdown automata [1] are a restriction of pushd@utomata in which the
stack behavior is imposed by the input word. On a call symtha,VPA pushes a
symbol on the stack, on a return symbol, it must pop the to®ywf the stack and on
an internal symbol, the stack remains unchanged.

Definition 1 (Visibly pushdown automata [1]).Avisibly pushdown automatqivPA)
over Y is a tupleA = (Q,I0,Qin, Qf) Where@ is a finite set of states (we let
n = |Q), Qin C Q is the set of initial states); C @ the set of final stated, is a
finite stack alphabet, = 0.wWd,.Wo, is the set of transitions, with. C Q x X, x I"'x Q,

0, CQx Y. xI'xQ,andd, CQ x X, x Q.

Configuration - Run - Degree of ambiguyconfigurationof a VPA is a pair(q,o) €
Q@ x I'* (wherel™ denotes the set of finite words ovE}. We denote byl the empty
word onI". Initial (resp. final) configurations are configurationstod form(q, L), with
q € Qin (resp.g € Qy).

A run of A on a sequence of transitioms = {t;}1<i<x from a configuration
(g,0) to a configuration(¢’, o’) over wordu € X* is a finite non-empty sequence
p = {(¢,0i)}o<i<k such thatgy = ¢, 09 = 0, ¢t = ¢/, o, = o’ and for each
1<i<k ti=(qi-1,0,%q) € 6c ando; = o;_17; Or t; = (Gi—1, 4, Vis ¢i) € Or
ando;_1 = 0%, Ort; = (qz'_l, (e79) Qi) € ¢, ando; = 0;_1, and flnallyu =Q1...0f.
We say that the run is labeled by the wardA run is acceptingf it starts in an initial
configuration and ends in a final configuration. Tdegree of ambiguityf a VPA A,
denotedia(A), is the maximal number of accepting runs for any possiblatimprd.

LanguageA word u is accepted bw iff there exists an accepting run d@f on«. The
languageof A, denoted by_(A), is the set of words accepted Hy Note that we require
here to end up with an empty stack, this restriction implies &ll accepted words are
well-nested. Unlike [1], we do not consider returns on engplgk and unmatched calls.
This assumption is done to avoid technical details but thregge framework could be
handled. More precisely, given a genev&lA A, one can build & PA A’ according to
Definition 1 such that accepting runs.4f are in bijection with those ofi. This can be
achieved by adding self-loops on initial states that alloywush a special symbol (for
the returns on empty stack) and self-loops on final statestloay to pop any symbols.
TrimmedA configuration(q, o) is reachablgresp.co-reachablgif there exista, € X*
andqy € Qi (resp.g; € Qy) such that(qo, L) = (¢,0) (resp. such thatg, o) =
(gf,1)). A VPA Ais trimmedif every reachable configuration is co-reachable, every
co-reachable configuration is reachable and if every staté lselongs to a reachable
configuration. In [4], we present a procedure which allowsritm a VPA and which
preserves the set of accepting runs. We also prove thatriiegure can be applied to
the model ofN-VPA (see below).

Path A path over a word, € X* is a sequence of transitions= {t;}1<;<x such that
there exists a run on labeled by the word:. Note that there may be different runs
on the same path, differing in their initial configuratiomhe empty path (on the empty
worde) is denoted byj.. A path is said accepting whenever there exists an accepiing
over it. Let a path over a wordu # ¢, then there exist statesandg such that any run

overn goes from a configuratiofp, o) to a configuratior{q, o) for someo, o’ € I'*.
We then say thag goes fronp to ¢, and writen : p — q.

Lemma 1.

a. Letu; € X*\ {e} andn; : p; X ¢; path overu; for i € {1,2,3} such that
uyug, ug € X% andninens is a path. Then:

wn?
= Vb i pa =2 g | uh € X \ {€}, mubns is a path,
— if p1 = ¢1 andps = g3, thenninen? is a path.
b. Assumd’ is trimmed. For any family{»;);c; of paths going fromp to ¢ on some
well-nested word: # ¢, there exists two paths, " such that for any € I, n'n;n”
is an accepting path.

We introduce the model afPA with multiplicities in N (N-VPA for short), where
transitions are labeled by positive integers:

Definition 2 (N-VPA). An N-VPA is a pair T = (A, \) composed of a/PA A =
(@, 1,9, Qin, Q) and a labeling functior : § — Ns.

The notions of configurations, runs and paths are lifted fkdPA to N-VPA. We
define the language of afVPA T = (A, \) as the language of.

Multiplicity For each transition € §, A(t) is called themultiplicity of ¢t. We denote by
L the valuemax{A(t) | t € 0}. Letn = {t;}1<i<r be a path ofd over the wordu
and letm; = A(t;) for 1 <4 < k. The multiplicity of » denoted(n) is [[, ;< ™.

Let a wordu # €, we writep ulm, g when there exists a path oveifrom p to ¢ with

multiplicity m. The multiplicity of the empty path. is 1.

We define thenultiplicity of a runp, denotedp), as the one of its underlying paih
Let awordu € £(T'). Themultiplicity of u, denoted) is the sum of the multiplicities
of the accepting runs for the word Themultiplicity of anN-VPA T', denotedT’), is
defined agT') = sup{(u) | u € L(T)}. Let K € N. We say thaf is bounded by¥ if
(T) < K. We say thaf is finite if we have(T') < +oc0, andinfinite otherwise.

Note that the degree of ambiguity oV&A is equal to the multiplicity of the corre-
spondingN-VPA where all the multiplicities of transitions are set to 1.

3 Relating Tree Automata andVPA

There is a strong relationship between words written ovearsignned alphabet and
(un)ranked trees. This relationship extends to recogsizéh VPA on one side and
tree automata on the other side. Stack trees encode wordedefver a partionned
alphabet?’ as binary trees and a tree automaton accepting preciseintioeled words
can be built in polynomial time [1]. Let us point out this Eticonstruction preserves
the language but not the computations in the sense that tloé @ecepting runs of the
two automata are not isomorphic; however, the constructiorbe slightly modified to
guarantee the isomorphism of computations [3]. Convergésyeasy to encode ranked
trees as well-nested visible words, and to build from a trgeraaton &/PA accepting
the encodings and preserving the accepting computationslas

Note that preserving (accepting) computations impliesttiedegree of ambiguity
of the encode®PA and of the target tree automaton are the same.

Hence, one may now wonder whether this relationship ext¢émdaodels with
weights and what are the results known for weighted treenaat® that carry over
N-VPA: this question is crucial as in one direction, it may be thsecthat problems
we want to address could be solved thanks to this relatipresid on the other direc-
tion, new results foN-VPA may carry over weighted tree automata almost for free.
Weighted tree automata [8] over the semirif\j +, .) allow to encodeN-VPA: the
weight of a node in a run is the product of the weight of its dtgh multiplied by the
one associated with the transition rule applied at this pitdeweight of a tree being the
sum of the weights of its accepting runs. Thanks to one-®isomorphism between
the transitions of th&-VPA and the ones of the tree automaton recognizing stack trees,
weights are preserved by this translation. Converselypveh@anked) tree automaton
is translated into & PA, a transition rule for some symbaolof the tree automaton is
encoded as two rules in thé&PA (one for a call symbola, one for a return symbad)),
the weight of the rule in the tree automaton being associaittdone of the twos, the
other one having multiplicity 1 (see Appendix C).

Let us briefly recap some known results for tree automata wilghts/costs. In
[14], (ranked) tree automata with polynomial costs are wared over several semir-
ings. The main ingredient of these automata is that a polyaloower a semiring is
attached to transitions : computing the cost of a node ansaonapply the polyno-
mial with variablesy; instanciated with the cost of th¢h child. However, the result
of the computation is the set of costs computed for each ¢éedepn (no combina-
tion is made with the accepting computations over the samet imee). Finiteness and
K-boundedness problems whose decidability issues are ssddfeelate to the finite-
ness and to thé&'-boundedness of this set of costs (shown to be im2Tfor many
semirings and in particula(N, +, .)) and is thus different from the problems we con-
sider here. These results are extended in [2] by considerorg general semirings but
without addressing complexity issues.

As already mentionned, the degree of ambiguity and the plicity of automata are
related. In particular, finiteness &f-boundedness problems of the degree of ambiguity
of tree automata provide lower bounds for the corresponidiniy-VPA.

However, the algorithms for finiteness of the degree of amibid12] (deciding
DA = da(4) < +4o0) in PTIME and of the cost of some tree automaton with costs
[14] (decidingMM = sup{{p) | p accepting computatign< +oc) in PTIME can be
combined to get a PE algorithm for finiteness of weighted tree automata, thaoks t
the following statementmax(DA, MM) < (A) < DA * MM. Thanks to (PTvME) en-
coding ofN-VPA into weighted tree automata preserving the degree of aritpignd
the multiplicities of encoded computations, we obtain aNrT algorithm for finite-
ness ofN-VPA. However, our approach provides a direct method basedR#fand
a rather intuitive algorithm compared to [12,14]. Moreowee will see in Section 6
that conversely, our approach leads to a new vision and a ndwegher simple PIME
algorithm for finiteness of weighted tree automata q@&r+, .).

[14] also relates degree of ambiguity and costs providedslkeef multi-dimensional
cost automata. We believe that this may be extended to th@wtation of multiplic-

ities. As pointed out in [14], this would yield an exponehtime-complexity method
to test K-boundedness, the algorithm being exponential in the déioenwhich is in
this case the number of states of the tree automaton (we hailghat this problem
with the binary encoding of{ being part of the input, fovPA and for tree automata
is ExPTIME-hard). However, we will present a much simpler approaclkedas [5] to
tackle this problem.

4 Characterization and decision of infiniteN-VPA

In this section, we give a characterization\dRA ensuring their infiniteness by means
of patterns. Then, based on this characterization, we eleM&T IME algorithm to solve
the finiteness problem. All over this section, we assumenanieédN-VPA T' = (A, \),

Wlth A= (Qa Fa 67 Qina Qf)
4.1 Characterization

We introduce the criteria depicted on Figures 1(a) and 1{bgkvcharacterize infinite
N-VPA. Pattern of Figure 1(a) coincides with patterns for finii&tes automata with
multiplicities (see [9,15,6]). Pattern of Figure 1(b) isespic to the model ofVPA.
Intuitively, the loop over a well-nested word is splitteddriwo loops on words; and
us, such that the concatenationus is a well-nested word but; is not well-nested. We
say thatT" contains a pattern whenever there exist word&’in states ofl” and paths
in T that fulfill all the conditions of the pattern. For instandewe consider pattern
(S1), we should find a word, € X7, two state®, ¢ € @ (which may be equal), three

pathsn, : p i, P2t p ulma, ¢ 03 q LN ¢ such thaty; 275 is a path, and

my > 1 ormn; # n. In these patterns, all words exceptare necessarily non-empty.
Note that these patterns also yield a characterizatiorfioite ambiguity by removing
the disjunctions on multiplicities (conditioms > 1).

(a) (S1)Well-nested caser € X,,. mn2ns is a path andn, > 1 orn # n2.

M1t ut|ma N3 : u1|ms N5 : u2|mb Ny : uz2lm]

M2 ui|ma n:wlm

g N L g

(b) (S2)Matched loops cases € Xy, uius € Xun, anduy & Xy,. mimenannsnan) is a path,
and eitherfny > 1 orm} > 1), or (i1 # n2 Or) # n3).

Fig. 1. Patterns characterizing infinite multiplicity.

We will show in this section that these criteria characteninite N-VPA:

Theorem 1. LetT be anN-VPA. T is infinite if and only ifT" complies with one of the
criteria (S1) and(S2).

To prove this result, we first show that if we have one of theeda then the mul-
tiplicity is infinite. In a second part we show that if the niplicity is infinite, then the
N-VPA complies with one of the criteria.

Lemma 2. LetT be anN-VPA. If T complies with(S1) or (S2), thenT is infinite.

Proof (Sketch)We sketch the proof for criterio(61), the case o{S2)being similar.
Letu € X7 andn, 12, ns be paths selected according to pattSh). We first suppose
that conditionn; > 1 holds. Asp, is a path going fromp to p andu € X%, ? is also
a path fromp to p. By applying iteratively Lemma 1.a, we can consider pgtivhose
multiplicity (n?) = m} grows to infinity wheni tends to+oco. As T is trimmed, by
Lemma 1.b, this gives accepting paths with multiplicity wieg to infinity. Consider
now the case where condition # 7 holds. Letk € N, andi,j € N such that
i+j =k—1.Asmnens is a path and: € X7, by Lemma 1.a, the pathi n2n3 is
a path over the word”*. Moreover, asg); # 1, all these paths are different whery
range over the set of integers such that j = k£ — 1. Whenk tends to infinity, we
obtain an arbitrarily large number of paths owérgoing fromp to ¢. As T is trimmed,
by Lemma 1.b, this gives arbitrarily many accepting pather @/same word. a

The proof of the converse (an infinite multiplicity implidesetpresence of one of the
criteria) relies on the two technical lemmas 4 and 5 which resent intuitively. To state
these Lemmas, we define the constant= (n?L)?|I"| and the function) : N — N
asy(z) = n(Nz)?". Consider a well-nested word and a well-nested subword, ,,
of it. Viewing u as a treeyu, , is an hedge of.. Pattern(S1)allows to increase the
multiplicity along a well-nested word thus, in the tree egentation of the nested word,
along an hedge. Lemma 4 states thdt dloes not comply witt{S1), then an hedge,, ,,
whose multiplicity is greater than(l) must contain a well-nested subwarg ., (with
x < 2’ <y < y)whose multiplicity is greater thah and whose height is larger.
Intuitively, the reason for which the multiplicity of the tigew,, , is large must be one
of its subtrees, and not an accumulation alepg, otherwisel” containg(S1).

Letu € X7, andk = |ul. Given two positions, j such thah < i < j < k and
u;j € Xy, we define a matrix, denotedduced;’;, representing intuitively how the
multiplicities of runs are modified by the subwoug ;. Formally,induced;’; is an ele-
ment ofN©*€, and forp, ¢ € Q, we letinduced;’; (p, ¢) be the sum of the multiplicities

of the paths; : p —5 ¢ of T for which there exist;, path ONug 4, N2 Path onu; , such
thatn, nns is an accepting path an
Finally, we also defing}; € Nass'; = >° . induced;;(p,q). We have:

Lemma 3. Letu € X7 and three positions, j, k such thald) < i < j < k < |u| and
Ui j, Uj ks Uik € Sy Then we havenduced;';, = inducedzj X induced}ﬁk, st < st
ands}, < 358 ke

Lemma 4. We suppose thaf’ is infinite but7T does not comply witlS1). Letu €
L(T),! € N5 andz,y be two positions such that< z < y < |u, uz, € X%, and
> ¢ (1). Then there exist two positioas< 2’ < 3’ < y such thatu, ,» € X

u
Sa:,y wn?

hu(2') = hy(x) + 1andsy, , > 1.

Proof (Sketch)The proofis based on a pumping on positions that correspotréés
of the hedge associated with. ,, i.e. positions inthe seP = {i e Ny | 2 < i <
yAug,; € Xk }. This approach is similar to that used in [6] for automata onds. For
eachi € P, we definer; = 53 ; andX; = {¢q € Q | induced; ;(p, q) > 0 for somep}.
Intuitively, r; corresponds to the multiplicity associated with the welsted subword
ug,; andX; is the set of states that can be reached after this subwarnt(ah accepting
path overu). For anyi < j, i, € P, we have thanks to Lemma 8, < r; and
Tj <7r; X S?-,j'

Suppose, for the sake of contradiction, that for any boasecutivéndices: < j
in P, we havesj'; < NI. Using the hypothesis, = s, > %(l) and the definition
of ¢, we can prove that this entails that there exist two positior. j in the setP
such that; < r; andX; = X;. Letv = u; ; andX = X;. We define a multigraph
X = (X,E)whereE C X x X x Nis defined as followsyp,q € X,m € N, for

each path : p lm, g such thaty'nn” is an accepting path om for some pathg’

on wordug,; andn” on wordu; ||, we construct an edge — ¢ € E. Thanks to
propertyr; < r;, we show that either there is a vertex with two outgoing edges’ is
composed of disjoint loops and contains an edge with label 1. In the former case,
we prove thafl” contains patter(IS1)with propertyn; # 7, while in the latter case, we
prove it containgS1)with propertym; > 1. This contradicts our hypothesis @h
Hence, we have proven that there exist two indices; in P such thats;fj > NI.

Then, we can extract fromand; the two expected indices andy’. a

Lemma 5. Let T be anN-VPA. If T is infinite, thenT complies with one of the two
criteria (S1) and(S2).

Proof (Sketch)Suppose thdl’ is infinite but does not comply witfS1), and prove it
complies with(S2). Let a wordu € £(T)) such that(u) > (1) whereH = 2",

By applying Lemma 4 iteratively, we can define a sequencergjttegreater thai/

of couples of positiong; = (z;,y;) of u. These couples represent nested hedges of
and their multiplicitiess};, are strictly decreasing. One can then proceed with a pumping
similar to that done in the proof of Lemma 4, and exhibit pat{&2). a

4.2 Decidability of finiteness

We show in this part how to decide in IME the presence of one of the patterns.

The algorithm (Figure 2) uses four bunches of inferencesraplied as a saturation
procedure: the first bunch builds a sgtof pairs(p, ¢) such that there exists a path over
a well-nested word from to ¢q. The second bunch builds a s&t of tuples composed
of 6 states and a boolean, which allows to decide the pres#rzattern(S1). The 6
states represent the source and the target of 3 paths ovearie well-nested word
and the boolean retains an information about a multipligityater thari or the fact
that different paths are considered. The third bunch buailgetS; of tuples composed
of 12 states and a boolean which allows to decide the presgngattern(S2). This
construction is based @ : the states aim to identify two sets of 3 paths over two words
u1 andusg, such that the second set pops the stack pushed by the firehsating that
ujug € X5,. The information stored in the boolean depends of one ofdtse Binally,

the last bunch builds a s&; which ensures that some tuple built & forms the
pattern(S1)in rule 4.1, or that some tuple built i§, represents the patte(82), which
in addition are connected through a well-nested word (d¢@rdoverSy) in rule 4.2.

Proposition 1. For anyN-VPA T, (T) € S; iff T is infinite.
Theorem 2. Finiteness folN-VPA is in PTIME.

pEQ (1.1) (p,a,q) €6, 1.2) (p,q) € So/, (¢,4") € So
(p,p) € So (p,q) € So (p,q") € So

(1.3)

(p,q) € So, (p',¢,7,p) € dc, (q,7,7,4") € dr
(',q) € So
p; € Q foralli € {1,2,3} t; = (pi,a,p;) €6, forallie {1,2,3}

2.1
(p17p17p27p27p37p37i)681() (p1, P, P2, D2, P3, D5, (t1 # t2 V 1)) € S1

(1.4)

2.2)

(p1,q1,p2, G2, 3,93, B) € S1, (a1, 41, G2, 2, g3, 45, B') € S1
(p1, 41, P2, G5, p3, 43, BV B') € S

(2.3)

(p1,q1,p2,92,p3, 93, B) € S,
ti = (p;7077i7pi) S 6C7t{L = (Qiﬂ’ﬁ%q;) S 67‘ for a” 1€ {17273}

(P1,q1, D2, G2, D3, 43, BV (t1 A t2 V) 15V @1 V1)) € St

(2.4)

(p1,Q1,p2,Q27p37QSyB) S 817 (Qéyp§7QQ7p/27q/17pin/) S 81
(p1,q1, P2, 2, P3,G3, G5, D5, 42, P>, 41,1, BV B') € Sa

(3.1)

ti = (p/i7077i7pi) € 6(37 tlz = (qm'f’,"ﬁ,q;) € 67‘7 for a” Z € {17273}
(P1,P1, P2, D2, P3, D3, 43,43, 42, G2, q1, 1, b1 L2 VI 13V o1 V @1) €S2

(3.2)

/ / / / / /

(p1, P1, P2, P2, D3, D5, 45, 43, G2, 92, q1, q1, B) € Sa,
(pY,p1,05,P2,P5,P3,43,43 , 42,42, q1, 41, B') € S2
(p?,P1, D5, P2, D3, 5, 43,43, G5, 92, 41,41, BV B') € Sa

(4,4") € So,

(p7p7p7 q,4,49, T) S 81 (p7p7p7 q,4,4, q/7 q/7 qup/7p/7p/7 T) S 82

() € S5 (4.1) (T) €55 (4.2)

with o1 = A(t1) > 1andp] = A(t]) > 1

(3.3)

Fig. 2. Inference rules for deciding finiteness

5 Finite bounds for N-VPA

5.1 Deciding K-bounded multiplicity

We consider atrimmeN-VPAT = (A, \), with A = (Q, I, 4, Qin, Q) and an integer

K € N5 represented in binary and describe an algorithm to decidghenT) < K.
The procedure we describe builds a sdtof n x n integer matrices by saturation,

where rows and columns of matrices are indexed by states dhe semantics of a

matrix M € M can be understood as follows: there exists a wokd X% such that,
for anyp,q € Q, the entryM (p, q) is equal to the sum of the multiplicities of paths
p % q. We have therfu) = ZqieQm,qfle M (qi,q5). For ann x n integer matrix
M, we denotg by M) the vaIueZq}EQm_’qfle M(Qi; qr)- _

The algorithm proceeds by building such matrices for wektad words of increas-
ing lengths. It starts with internal words of lengthand then extend words either by
concatenation, or by adding a matching pair of call/retymlsols.

We introduce the following notations: lét/. be the identity matrix. Let € X,
thenM, is the matrix defined by, (p, q) = A(¢) if there exist¢ = (p, a,q) € §,, and
M, (p,q) = 0 otherwise. Lety € I" and letc € X, (resp.r € X,), thenM, - (resp.
M,) is the matrix defined by, (p, ¢) = A(t) if there exists = (p, ¢,7,q) € 0,
andM. ~(p, ¢) = 0 otherwise (and similarly for matrixs,. -).

Finally, we introduce an extrapolation operafatray : N — N defined byExtrax (z) =
zif z < K, andExtrak (z) = K otherwise. This operator is naturally extended to inte-
ger matrices. Our algorithm is presented as Algorithm 1.

Algorithm 1 Decision of the/{-boundedness of aR-VPA
Require: AnN-VPA T andK € Ny

M = {Extrax (M,) |a € X, } U{M.}
2 M =10

3: repeat

4 M=MuUM

5: if 3M € M suchthatM) > K then
6

7

8

9

=

return fal se
end if
M = {ExtraK(Ml.Mg) | My, My € M} @]
{Extrax(zwep Meny M.My~) | M€ M,c€ Xeyr € X}
suntil MUM =M
10: return true

Theorem 3. Given anN-VPA T and K € N, the problem of determining whether
(T) < K is ExPTIME-complete.

This complexity should be compared with that of determinirtgther the ambigu-
ity of a finite state automaton is less th&nwhich is known to be PSACE-complete [5].

Proof (Sketch)The ExpTIME membership follows from the fact that all the matrices
built aren x n matrices whose entries are bounded®y For the hardness, we can
proceed to a reduction from the emptiness of the interseofié&” deterministic bottom-
up tree automata. One can first consider the tree automataimet as the disjoint
union of thesd< automata. Then one can turn this tree automaton imBaaccepting
the encodings of the trees as well-nested words, and witkoandrphic set of accepting
runs. Considering thig¥PA as anN-VPA T' (each multiplicity is set td), one can show
that the intersection of thE deterministic tree automata is empty (ff) < K. O

Computing the multiplicity of a finit®-VPA Consider now, given a finitl-VPA, the
problem consisting in computing its multiplicity. We degifrom the previous algorithm
a procedure solving this problem. The procedure simplyaegl as before the set of

10

matrices, without using the operatéxtra i, until saturation of the set of matrices. The
termination of the algorithm relies on the fact tfats finite and trimmed. Indeed, this
entails that coefficients computed are all bounded®By In particular, this proves that
the number of matrices built is bounded ﬁ%"Z, and:

Theorem 4. For all finite N-VPA T, the value of T') can be computed in tim@)©("").

5.2 Deciding K-bounded multiplicity (for a fixed K)

As a final result in this section, we investigate thiebounded multiplicity problem for
which the input is only afN-VPA T and we ask whethéfl’) < K. The algorithm from
Section 5.1 shows that this problem for a fix&dcan be solved in exponential time;
however, by adapting the approach used in [13] for ambigfityee automata,

Theorem 5. For a fixedK € N+, given anN-VPA T, deciding whethe(T') < K is
in PTIME.

Proof. We consider the family of/PA’s (A;)1<i<k such thatd; accepts words from
L(T) having a multiplicity greater tha’. More precisely,A; is a VPA that accepts
wordswu such that there aredifferent accepting rungy, . . ., p; of T overw verifying
> 1<;<ilpj) = K. Therefore A; simulates in parallel runs of” over the same word,
and for each of them keeps track of the current multiplicityits states by comput-
ing up to K. More precisely, foll' = (A, \), with A = (Q, I, 6, Qin, Q), we define
A; as(Qi, 1,01, Q%,, Q) where@; = (Q x [L.K])' x B>, I = (I')", @i, =
(Qin x {1})* x {0gixi }, Q% = {((q1,m1), ..., (@i, m:)) x {ldgixi } | (q1,..., @) €
(Qf), (X1<j<imy) > K}. B is the set of the x i square matrices of Booleans,
Op:x: (resp.ldgix:) the matrix containing only false values (resp. only trukiga ex-
cept on the main diagonal which is set to false). &et o5 W 6 W 6] where

ce Y. foralll <ji1<i,
tj = (ijca’Yjaqg‘)vtl = (%C,%,qf) € 0c
m, = Exfrz?K(/\((Qj,f, Y5> 4;)) * m;) and
M'[j,1] = M[j,l] v (t; #)

(((qlvml)a R (qiami)7M>a
c, (717 s afyi)a
((q1,m1), ... (q;,mz), M"))

5 =

o¢ andé; are defined similarly. Itis obvious that eadhcan be builtin polynomial time
in |T|. Finally, we test in polynomial time for emptiness each & & VPA A;. a

6 Backto Trees

Considering the polynomial encoding of (weighted) tre@mata intovPA (with mul-
tiplicities), we can deduce the two following results:

1. Determining whether the ambiguity of a tree automatas less thank, when A
and the binary encoding df are part of the input, is EPTIME-complete.

2. We exhibit a simple pattern characterizing infinite wegghtree automata ovéy,
which can be decided in RWE. Moreover, it turns out to be the disjunction of a
pattern for infinite ambiguity, and one for infinite cost (iretsense of [14]).

11

Point 1 should be compared with the RIE complexity of this problem wheK is

fixed (see [13]). Regarding point 2, we claim: (see Figure 3)

A weighted tree automatdfi overN is infinite iff there exists a one-hole context
C and computations; for i € {1,2,3} of T overC such thatp; : p <, P,

c c .
w21 p — q, ps3: ¢ — qforsomep, q € Q verifying (p1) > 1 0r 1 # po.
w1 p w2 p w3 q

p q q
Fig. 3. Patterns for infinite weighted tree automata

We can then derive a RWE algorithm for weighted tree automata rather similar to

the one we proposed fof-VPA (see Appendix C.3).

References

1.

2.

10.
11.

12.

13.

14.

15.

R. Alur and P. Madhusudan. Visibly pushdown language®réc. STOC '04pp 202-211,
2004.

B. Borchardt, Z. Fulép, Z. Gazdag, and A. Maletti. Bouraigfee automata with polynomial
costs.Journal of Automata, Languages and Combinatqrid¥2/3):107-157, 2005.

. M. Caralp. Automates a pile visible : ambiguité et valoatiMaster’s thesis, Aix-Marseille

Université, 2011.

. M. Caralp, P.-A. Reynier, and J.-M. Talbot. A polynomiabgedure for trimming visibly

pushdown automata. Technical Report hal-00606778, HALRSN-rance, 2011.

. T.-H. Chan and O. H. Ibarra. On the finite-valuedness prabior sequential machines.

Theoretical Computer Science, 2% 95-101, 1983.

. R. De Souza.Etude structurelle des transducteurs de norme barnBgD thesis, ENST,

France, 2008.

. E. Filiot, J.-F. Raskin, P.-A. R. Reynier, F. Servais, dnl. Talbot. Properties of visibly

pushdown transducers. Rroc. MFCS’10 vol. 6281 ofLNCS pp 355-367. Springer, 2010.

. Z. Fulép and H. VoglerHandbook of Weighted Automatzhapter Weighted Tree Automata

and Tree Transducers. Springer, 2009.

. A. Mandel and I. Simon. On finite semigroups of matricéeeor. Comput. S¢i5(2):101—

111, 1977.

J. SakarovitchElements of Automata Theor€ambridge University Press, 2009.

J. Sakarovitch and R. de Souza. On the decidability ohthed valuedness for transducers.
In Proc. MFCS’11 vol. 5162 ofLNCS pp 588-600. Springer, 2008.

H. Seidl. On the finite degree of ambiguity of finite tre¢éoaata.Acta Inf, 26(6):527-542,
1989.

H. Seidl. Deciding equivalence of finite tree autome®AM J. Comput.19(3):424-437,
1990.

H. Seidl. Finite tree automata with cost functioriheor. Comput. S¢i126(1):113-142,
1994.

A. Weber and H. Seidl. On the degree of ambiguity of finittomata.Theor. Comput. Sci.
88(2):325-349, 1991.

12

A Proofs of Section 4

A.1 Equivalent patterns

We present in an equivalent way the two pattef®%) and (S2). It is not difficult to
verify that(S1) (resp.(S2) is equivalent tqS1.a)or (S1.b)(resp.(S2.a)or (S2.b).

n:u|m m:u|m n3:u | ms

(a) Heavy cyclem > 1. (b) Dumbbell:nin2ns is a path and); # 2.

Fig. 4. (S1)Well-nested casai € Xy,.

(a) Heavy cyclemnn. is a (b) Dumbbell:n; n2nsnninin; is a path and
path and 21 > 1 orme > (m # m2 orni # nb). Multiplicities have
1). been omitted for readability.

Fig. 5. (S2)Matched loops caser € Xy, uiuz € Xy, anduy € Xy.

A.2 Proofof Lemmal

Proof. a. Letu; € ¥*\ {e} andn; = p; — ¢; be a path off for i € {1,2,3} such
thatuius, us € X, andminans is a path of7’. By definition of paths and since

u2

urugz, ug € X%, there exist three rung = (p1, L) == (q1,0), p2 = (pa2, L) —>
(g2, 1) andps = (p3,0’) = (g3, L) in T for 0,0’ € I'*. Sincenynzns is a path,
there exists some” < I'* such that(p;,c”) % (q1,0"0) =2 (q2,0"0") =%

(g3,0”) is arun ofT. Observe thati, € X, thus we have’’ o = ¢” ¢’ and thus

there exists

wn?

o = o'. It follows that for any pathy, = ps —2 ¢o with u, € X
arunp, = (p2, L) 2 (go, L) in T overn). Thus, there is the rufp;, o”)

(q1,0"0) 25 (q2,0"0) 25 (g3, 0”) in T overnyn,ns which is then a path o .
We consider now thai; = ¢; andps = ¢s. Observe that sincg; = (p1, L)
(p1,0) andps = (p3,0) — (ps, L) are runs ofl’ with uus € X7, p? andp? are
runs of T. Sinceuy € X7, thereis arumps = (p2, 1) L2y (g2, L) in T, and thus

ph = (p2,00) =2 (g2, 00) is also a run irl". Thenn?nqn? is a path off".

13

b. Let(n;)icr be a family of paths going fromto ¢ on some well-nested word # .
SinceT is trimmed, there exists € X* such that(p, o) is reachable. Let € I,
and arunp, L) < (g, L) over the well-nested word. Then, configuratioriq, o)
is reachable and thus, §%is trimmed, also co-reachable. Lgtbe a run which
leads from a configuratiofy;,,, L) (with ¢;, € Qi) to the configuratiortp, o) and
p" a run which leads from the configuratidq o) to a configuratior{¢s, L) (with
qr € Qy). Letn (resp.n’) be the path underlying rup (resp.p’). Then, for any
1 € I, the concatenationn;n’ is an accepting path &f. a

A.3 Proof of Lemma 2

Proof. Case 1T complies with(S1.a)
Letu € X¥ andn be a path selected according to pattédt.a) As is a path
going fromp to p andu € X%, , n? is also a path from to p. By applying iteratively
Lemma 1.a, we can consider pathwhose multiplicity(n®) = m® grows to infinity
wheni tends to+oco. As T is trimmed, by Lemma 1.b, this gives accepting paths
with multiplicity growing to infinity.

Case 2T complies with(S1.b)
Letu € X% andn,ne, n3 be paths selected according to patté®a.b) Letk €
Nso, andi, j € Nsuch that + j = k — 1. Asnnens3 is a path and: € X7, by
Lemma 1.a, the pathin.nj is a path over the word*. Moreover, asy; # 15, all
these paths are different wheéry range over the set of integers such that j =
k — 1. Whenk tends to infinity, we obtain an arbitrarily large number oftsaover
u* going fromp to ¢. As T is trimmed, by Lemma 1.b, this gives arbitrarily many
accepting paths over a same word.

Case 37T complies with(S2.a)
Letujug, w € X, andny,n, n, be paths selected according to the criteig2.a)
By applying iteratively Lemma 1.a, we can consider pgthn; whose multiplicity
mimm} grows to infinity wheni tends to+oo. As T' is trimmed, by Lemma 1.b,
this gives accepting paths with multiplicity growing to imifiy.

Case 4T complies with(S2.b)
Letuup,w € Xy, andni,n2,m3, 1,15, 15, m; be paths selected according to the
criterion (S2.b) By applying iteratively Lemma 1.a, we can consider palthn?
for any j € Nyo. As pathngnngj goes fromg to ¢/, Lemma 1.a entails that
nemimmy nb is a path. Then, the second point of Lemma 1.a entailsfhaty, 5
nhn} is a path for any € N. Letk € N, one can observe that for aiyj such
thati + j = k — 1, the pathyinangnns nhn} is over wordufwub, and goes fromp
to p’. As T is trimmed, by Lemma 1.b, this gives arbitrarily many acoeppaths
over a same word. a

A.4 Proof of Lemma 4

Proof. We first define the following set of positions it P = {i € Nyg | 2 <
i < yAug,; € X} Then for each € P, we definer; = S i andX; = {q €

14

Q | induced; ;(p,q) > 0for somep}. Intuitively, ; corresponds to the multiplicity
associated with the well-nested subwargl; and X; is the set of states that can be
reached after this subword (along an accepting path@védote that we have € P,

as we haves, , = ¢ € X, and.X, is the set of states that accepting path¥'ain u
can go through at positian. In particular, this entails, = s¥ , < n. For alli,j € P,
such that < j, we have: '

i+1,7

1. Vp € X;,3q € X, such thatthereis a pajch—» qinT

Uj,it1

2. Vq € X;,3p € X; such that there is a path——— ¢ in T’
3. T S Tj
4. 15 <1 xsi;

Propertieg3) and(4) follow Lemma 3. Let the sef’ be defined ag’ = {i € P | Vi €
P,j <i=r; <r;}. We note the elements @t in ascendmg order as,io, - - , e,
with ¢ = |C|. Then we have;, < Ti, foranyl <j < j' <ec.
We will now prove that there eX|sI15< j < e¢such thats¥
diction, we suppose that this property does not hiodd,

> NI. By contra-

’L’L+1

Vi<j<est < NI O]

1558541

height
P(l)

NI

¢ length
Xz Xy 9

Fig. 6. slj i1 < NI
Property) combined with property (4) implies;,,, < r;; x Nlforanyl <j <c.
We thus obtain;. < 7;, x (Ni)¢~!. By definition, we have;, = r, < n, and
Ti, = Sy, > W) = n(Nl) 2" We thus obtairc — 1 > 2", which entails that there
exist two indicesj # j’ such thatX;, = = X;,. We noteX = X, .Letv = u;;,.

By constructiorv € X7 . Now we construct the multigraphi, = (E,) with E, C

X x X x N defined as followsVp, g € Q, m € N, for each pathy = p ﬂ g such that

n’'nn’ is an accepting path om for some pathy’ on wordu ;, andn” on wordu; |/,
we construct an edge —+ ¢ € E,. Note in particular that if there are two different
paths on wordy with the same multiplicityn going from statep to stateq, then the
edgep = ¢ occurs twice in the multisef,.

Because of (1) and (2) and the fact thgt = X; ,, each vertex fronX has both an
in-degree and an out-degree greater or equal th&uppose for the sake of contradic-
tion that the two following properties hold simultaneously

(a) each arc of,, has a multiplicity equal tad,
(b) each node of, has an in-degree and an out-degree equal to

15

In this case, one can observe thatis a simple graph (not a multigraph), and then
thatinducedy , s exactly the incidence matrix of this graph. Moreover, gnaph

is functionalj, and thus this matrix is a permutation mattix As a consequence of
Lemma 3, we obtaiinduced; ; = inducedg_’ij, x M and therr;; = r; ,, whichis a
contradiction.

We now distinguish two cases whether assertion (a) or éms€lt) does not hold.
We first suppose that (b) holds and (a) does not hold. Con8igearc of £, that has
a multiplicity m > 1. Thanks to property (b), this arc belongs to a cycle in graph
This cycle then corresponds to a “heavy cycle7inin the sense of pattel$1.a)

Consider now that the assertion (b) is false. W.l.0.g., ¢hisils that there exists a
vertexp € X whose out-degree is at least two. By definition, there aredifferent

pathsn, ' in T' of the form:
n:p&qandn/:piujl

Note that the paths are distinct bpand ¢’ could be equal. Since each vertex bf
has at least one successpandq’ allow to reach a cycle along the word for some
[€ N5 . Moreover, since each vertex &f has at least one predecesgas accessible
from a cycle. The overall situation is depicted on Figure figrep; denote the state
around which are the cycles.

Fig. 7. Finding the dumbbell using graph, .

If o1 # 2, then the patter(S1.b)can be exhibited ifi" using states; to 2 and
a well-chosen iteration of the two cycles (in such a way thatgowers of word are
matching). The situation is similar i§; # 3. If 1 = 2 = 3, then patterr{S1.b)
is present inl" using the two different paths andr’. There are two different cycles
around state, one using) going through locationg, o> = 1 andp, and another one
usingn’ going through locationg’, 3 = 1 andp. These two cycles are different (as
n # 1), and can be iterated so that they are on the same wWdat somel > 0. This
yields the expected dumbbell.

Finally, we have proven that if Property)(holds, thenT' contains patterrfS1),
which contradicts our hypothesis. Thus there exists j < ¢ such thatsyw.j+1 > NI.
Let two positionse” andy” defined byy” = i;41 andz” = max{i € P | i < y"}.
By definition of C, we haver;; = r,». This means thaty ; = sg ., i.e.the sums
of multiplicities of accepting paths overbetween positions and:; on one side, and
betweenr andz” on the other side, are equal. This entails that when corisglére
same sums between positions larger thathe equality will also hold. In other terms,
we can deduce} ; = = sy, ; . Moreover, by our choice of” andy”, there is no
positionz € P such that” < z < y”. Two cases are possible, eithey. ,» € X,
Of Uz yv = cwr, With c € X, r € X, andw € X7 . The propertys¥, ., > NI

u
:E//,y

16

excludes the first case. We can thus consider positibrs 2/ + 1 andy’ = ¢y’ — 1
which fulfill the conditionse < 2/ < ¢/ <y, uyr,» € X%, andh,(2') = hy(x) + 1.
Finally, s%, ., > NI = (n”L)*|I'|l implies thats}, ,, > [as expected. O

height

X X

J ti+1

Flg 8. 8://#// Z Ll

A.5 Proof of Lemma5

Proof. To prove this result, we assume tHats infinite but does not comply wit{51),
and prove it complies wit(iS2).

Let a wordu € £(T) such that(u) > (1) whereH = 2"°, and letk = |u].
First, we define a partial functioh, : N x N — N x N. The domain ofp,, is the set of
couple of positiongz,y) such thad) <z <y < k, u,, € X7, andsy , > ¥(1).Let
(x,y) be a couple of positions iDom(®,,) andiy.. be the largest € N, such
thats; , > ¥(lmax), Then by Lemma 4 there exist two positiosfsandy’ such that

<z <y <y, ug,y € X, ho(z') =hy(z)+1landsy, > lmax. We pick(z’, y)

minimal in lexicographical order, and then defibg(z, ygj z (;', y'). We consider the
(finite) sequencéy;); € (N x N)N defined byy, = (0, k) and, fori > 1, ; is defined

iff xi_1 € Dom(®,), and then defined ag = &, (xi_1).

height

length

F|g 9. S:’y 2 w(lmax)

By definition of mappingp,,, we have for any > 1, h,,(x;) = hu(xi—1)+1. Since
h,, is finite this entails that sequen¢g;); is finite, and we represent it &g;)o<i<r-
Note that the sequence stops iff the last term does not b&ddgn(®,,), which means
thats;L < (1) (the other conditions are fulfilled). For each index i < L we define

avaluer; € N5, and a set of pairs of staté§ C @ x @ as follows: (we lety; = (z,y))
- =,
— X; = {(p1,p2) € Q x Q | there exista path = p; 22v 1y, a pathy’ on word

up, and a pathy” on wordu, ;. such thaty'nn” is an accepting path df}

17

Note that by definition of;;i, we haver;_; > r; foranyl < i < L. Let the se(C
defined ag” = {i € [0, L] NN | Vj € N,j < i = r; > r;}. We note the elements
of C in ascending order &, i1, ...,4. With ¢ = |C| — 1. Note thatr;, > T, for
0<j<j <c Wehaver;, =rg=s% = (u) > (1). By Lemma 4 this implies
ri, > (1) for 0 < h < min{H, c}. As we haver;, = r; = s% < (1), this
entailsc > H. Asthere are+ 1 elements irC, this implies that there exist two distinct
indices;j andj’ such thatX;, = X,

The rest of the proof follows the same lines as proof of Lemmiaud to identify
pattern(S2), we consider a graph where vertices are pairs of states. We le X ,
(x.y) = xi;, (@,¥) = Xi,, w1 = ug o be the "call loop” wordus = u,, be
the "return loop" word, andv = u,, be the well-nested word between the "call
loop" and the "return loop" (see pattef®2)). Now we construct the multigraph’ =
(X, E)whereE C X x X x N5 x Ny is defined as follows: for each pair of paths

m o p1 ol g 222 by such thaty'n,nmen’” is an accepting path on, for

some paths)’, n andn” on wordsuy ,,, w andu,, 5 respectively, we add the edge

(p1,q1) M (p2,¢2) in E. Note thatY is a multigraph, thus the same edge can

occur more than once if.
Note that a path i’ corresponds to a path ifi in the following sense: letpo, qo)

(m3,m3) (mf;m) u1|m}

(p1.q1) -+ (Ppu—1,qu—1) —— (pu,q,) be a path oft, thenpy ——

ug|mf w|m ua|mb

0
D1 Du—1 Du au Qu—1-""q1 % qo is a path ofl" that can
be extended to an accepting path, for some N .
Note that becausd’;, = Xij,, each vertex fromX has both an in-degree and an
out-degree greater or equal thanSuppose for the sake of contradiction that the two
following properties hold simultaneously:

(a) each arc of has a multiplicity equal t¢1, 1),
(b) each node oft has an in-degree and an out-degree equal to

In this case, one can observe thais a simple graph (not a multigraph), and then
thatr;, = Ti which is a contradiction.

We now distinguish two cases whether assertion (a) or &ss€lt) does not hold.
We first suppose that (b) holds and (a) does not hold. Congidarc ofE, that has a
multiplicity m > 1. Thanks to property (b), this arc belongs to a cycle in gr&pl®one
can verify that this cycle corresponds to a “heavy cycleTinin the sense of pattern
(S2.a)

Now we consider that assertion (b) does not hold. W.l.ohgs, éntails that there
exists(p, ¢) € X with at least two successors: there are two distinct edges

(m3,my) (m?,m3)

(p,q) —— (p1, 1) and(p,) —— (p2,q2)

We letp; = (p1,q1), w2 = (p2,92) and consider the four paths @f. n; =

u1|mi u1|m? uz\ug

ug |u
p—— P, =D — p2, N =4 22 p andn, = ¢ — ¢o. By con-
structionp; andy, can be equal but we have,, ;) # (n2,15).

18

Since each vertex of’ has at least one successpfr,andy- allow to reach cycles
in X'. Moreover, since each vertex &f has at least one predecesgprg) is reachable
from a cycle inX’. The overall situation is depicted on Figure 10.

Fig. 10.Finding the dumbbell using grapti.

We letps = (ps, q3), va = (p4,qs) andes = (ps, ¢5) and distinguish three cases.
If p3 # 4, then we can identify pattd52.b) using the path int’ going fromes to
w4 (the construction is similar to that done 4f) in the proof of Lemma 4). The same
reasoning holds ifbs # 5. If o3 = 4 = 5, then patterr{S2.b)can be exhibited
using the two different edges outgoing frém ¢). The constructions are similar to that
done on%, in the proof of Lemma 4. This concludes the proof. a

Flg 11.g03 75 ©4

E 1 1 1 E 1
u113+12+ ul14+12+ Ué4+l2+ UlQJ-HQ-F

Flg 12@3 = 4 = Y5

A.6 Proof of Proposition 1

Proof. We proceed successively wiffy, S1, S2 andSs.
We prove that for all couple = (p, ¢), ¢ € Sy if and only if the following property
holds:

Ju € XF andapathy:p = gof T (1)

First the forward direction. We proceed by induction. Wewhbat any couple iS5,
satisfies (1). A couple can be addedSpin four different ways:

rule 1.1 Let (p, p) be a couple added t§, by rule 1.1. S € Q. Observe that. is a
path ofT. Then(p, p) satisfies (1).

19

rule 1.2 Let(p, q) be a couple added t§ by rule 1.2. So there exists= (p, a, q) € ..
Observe that, € X, andp % ¢ is a path ofl” because of. Then(p,) satisfies
D).

rule 1.3 Let (p, ¢’) be a couple added 8, by rule 1.3. So there exis$p, q), (¢,q’) €
So. By induction there exist two words, «’ € X such thap = ¢ andg — ¢’

are paths of. Observe thatw’ € X% andp ““ ¢ is a path ofl". Then(p, ¢')
satisfies (1).
rule 1.4 Let (p,¢’) be a couple added 8, by rule 1.4. So there exisp,q) € So,
(', ¢,v,p) € 6. and(q,r,v,q’) € .. By induction there exists a word € X%
) cur

such thap % ¢ is a path ofl’. Observe thatur € X, p' = ¢ is a path ofT .
Then(p, ¢) satisfies (1).

Then the backward direction. By contradiction suppose ttharte exist, € X and
two state, ¢ € Q such thap % ¢ is a path ofl” but (p, q) ¢ Sy. We choose: such
that |u| is minimal. If ju| < 1, then by rule 1.1 and 1.2p,q) € So, contradiction.
Otherwise we can decomposein two ways: eitheru = wjus such thatu;,us €

ra \{e}, oru = cu'r such that € X, r € X, andu’ € X7,,. We consider the first
caseu; # e anduy # €, SO we can decompoge— g asp — p’ —2 q. Sinceu is
minimal we havdu| > |u;| and|u| > |us], this entails(p, p’) € Sp and(p’, q) € So.
Then by rule 1.3(p,q) € So, contradiction. Now we consider the second case. We
can decomposg = g asp = p’ v, ¢ = q. Sinceu is minimal and|u| > |u'],
(p',q") € So. Then by rule 1.4(p, q) € Sy, contradiction.

We prove that for all tuple = (p1, ¢1, 2, g2, P2, g3, B), ¢ € S if and only if the
following property holds:

Ju € ¥ and three paths; : p; — ¢; of T fori € {1,2,3}
suchthatB = (m # n2 # ne V () > 1)

First the forward direction. We show that every rule pressr{2). We proceed by in-
duction. We show that any tuple #y satisfies (2). A tuple can be addedSpin four
different ways:

(@)

rule 2.1 Let (p1,p1, p2, p2, ps3, p3, B) be a tuple added t§; by rule 2.1. So there exist
p; € Qfori € {1,2,3}. Observe that. is a path of". Then(p1, p1, p2, p2, Ps, s,
B) satisfies (2) withB = L.

rule 2.2 Let (p1, p}, p2, 5, 3, D5, B) be atuple added 6, by rule 2.2. So there exist
t; = (pi,a,q;) € 9§, fori € {1,2,3} such thatB = A(t;) > 1V (t1 # t2).
Observe that € X, andn; = p; Lgiisa path ofl" because of;. Then we have
(m) = A(t1) andny # 02 iff t1 # t2. Then(py, g1, p2, g2, p3, g3, B) satisfies (2).

rule 2.3 Let(p1, 4}, p2, ¢5, p3, ¢, B") be atuple added t6, by rule 2.3. So there exist
(P1,91,P2, 92, P3, 93, B), (91,41, 92, 43, 43, g5, B') € S1 suchthatB” = BV B'.
By induction there exist two words, v’ € X% such thaty; = p; 2 ¢; and

n =g v, q} are paths of " fori € {1,2,3}, with B = (1) > 1V 1. # 1 # 12
andB’ = (n}) > 1V n. # 1, # nh. Observe thatu’ € X% andn!’ = p; — ¢

20

is a path ofT". Moreover(ny) = (n1)(n;) and thus(n}) > 1iff (n;) > 1 or
(m) > 1. In addition, one also hag’ # 73 # . iff n. # m # 2 Orne # 1y #
n5. Finally, (n}) > 1V 0y # nJ # n. is logically equivalent taB v B’. Then
(p1, a1, P2, 45, 3, 43, B") satisfies (2).
rule 2.4 Let (p!, ¢1,vh, 45,14, g5, B') be atuple added 6, by rule 2.3. So there exist

(p1, 91,2, G2, 3,93, B) € S1,t; = (pj,c,7,pi) € 0 andt; = (qi,7,7,¢;) € o,
fori e {1,2,3} suchthatB’ = BV (A(t1) > 1V A(t]) > 1 Vit #ta V] #1t)).
By induction there exists a word € X such that);, = p; % ¢; is a path ofT’
with B = (1) > 1V 5. # m1 # 2. Observe thatur € X7, 1) = p, =5 ¢, is
a path ofT" and(n}) > 1V n] # ns # n. is logically equivalent tq B vV \(t1) >
1v)‘(t/l) >1Vi 7& to V t/l 7é t/2) Then(pl, q1,P2,42,P3,43, B/) satisfies (2)

Then the backward direction. By contradiction suppose tiharte exist, € X and
statesp;,¢; € Q such thaty; = p; — ¢; is a path ofT for i € {1,2,3}, but
(p1,q1,P2,92,P3,q3, B) ¢ S1 With B = (11) > 1V 11 # 2 # 1. We choose: such
that|u| is minimal. If |u| < 1, then by rule 2.1 and 2.2p1, ¢1, p2, 42, p3, g3, B) € S1,
contradiction. Otherwise we can decompasa two ways: eithet, = ujus such that
ur,ug € Xk \{e}, oru = cu’r such that € X, r € X, andu’ € X, . We consider
the first caseu; # e anduy # ¢, SO we can decomposg asn, = p; — p, and
n! = p} 2 q; fori € {1,2,3}. Sinceu is minimal, we haveu| > |u;| and|u| > |us|,
this entails(p1, py, pa, p5, ps, P, B') € S1 with B' = (n}) > 1V # ny # ne and
(P1,q1,P5, 92, P53, 43, B”) € Sy with B” = (i) > 1V # ny # ne. By rule 1.3,
(P1,q1,p2,92,P3,93, B' V B") € S1. Observe thatn) > 1V # 12 # 1. is logi-
cally equivalent taB’ v B”. Contradiction. Now we consider the second case. We can

decompose; asn; = nin)'n" wheren, = p; 5 pl,nl! = pi % ¢l andn! = ¢, & ¢
fo_rz' € {1,2,3}. Sinceu is minimal and|u| > |v/|, (p}, d}, P5, d5, D5, 45, B') € S
with B = (n{) > 1V n{ # ny # n.. Then by rule 1.4(p1, q1,p2, g2, p3, g3, B”) € S
with B” = (B" Vv (n}) > 1v n!) > 1Vvn # 0,V # ny), Observe that

1y >1Vm » is logically equivalent ta3”, contradiction.
(m) m#n gically eq

For the end of the proof we define the following notation:det.” be two words
such thatw' € XF, andn - p = ¢, 2 : ¢ — p’ be two paths of . Asuw’ € X*

wn?
’
u

there exis(p, L) = (¢,0) and(¢’,o’) = (p, L) two runs ofT for someo, o’ € I'*.
Then we write that); andn, arematching pathdéff o = ¢”.

We prOVe that for a” tuple = (pla q1,P2,492,P3,43, q:I}7p{3,7 qé)péa q/17pll7 B)1 c E
S, if and only if the following property holds:

Juu' € X7, and paths); : p; — ¢; andr, : ¢ N p; of Tfori € {1,2,3}
such thaty; andr), are matching paths af fori € {1,2,3} (3)
andB = (1 # n2 #ne Vo # my # e V (m) > 1V () > 1)

First the forward direction. We show that every rule preser{8). We proceed by in-
duction. We show that any tuple & satisfies (3). A tuple can be addedSgin three
different ways:

21

rule 3.1 Let (pla q1,P2,92,P3; 43, Q§7P§7 qéap/Qa q/17pll7 BH) be a tuple added tS> by
rule 3.1. So there exigp1, q1,p2, G2, 3, g3, B), (q1, P, 45, P, 43,05, B') € S1
such thatB” = B Vv B’. Then by (2) there exist, v’ € X, and paths); =

/

pi = g andry, = ¢, B, of Tfori € {1,2,3} with B = (1) > 1V #
neandB’ = (n]) > 1V n} # n,. Observe thatw’ € X7, andn; andn] for
any: € {1,2,3} are trivially matching paths as andw’ are well-nested. Then
(p17 q1,P2,492,P3, 43, Qéapga q/27p/27 qaaplla BN) satisfies (3)

rule 3.2 Let (pllaplapévp%pévp?n qs, qu q2, QQa q1, qlla B) be a tUpIe added t6, by
rule 3.2. So there exist = (p},c,v,p;) € d. andt, = (¢, r,7v,q;) € 6, for
i€ {1,2,3} such thatB =(A({t1)>1vV %\(tﬁ) > 1Vt #ta Vi) #th). We can
consider pathg; = p}, = p; andn, = ¢; = ¢/ fori € {1,2,3}. Observe thatr ¢
s 0i aNd; are matching paths o and(n # 12 Vrf £ n5V {m) > 1V (1) >
1) is logically equivalent taB. Then(p!, p1, 5, D2, Ph, D3, 43, 45, 42, 45, ¢1, 44, B)
satisfies (3).

rule 3.3 Let (pY, p', Py, P2, P5, D3, 43, 45, 42, 43, 41, 41, B”) be atuple added 5, by
rule 3.2. So there eX|$p/1/aplap/2/7p27p'gap3a g3, Qé/a q2, q/2/7 q1, qll/a B)! (plapllaPQa
Db, D3, D, 45543, ¢4, 42, 41, 1, B') € Sz such thatB” = B v B’. By induction
there exist four words, «’, 4’ anda such thatwa € X%, v'a’ € X%, matching

wn? wn?!
pathsy;, = p/ % p; and7; = ¢; — ¢/ and matching paths, = p; o, 2
andﬁg = qé SN qi fori {1,2,3},With B=m #n Vi #nV <771> >
1vi{m) >1landB =ny 05V, # 75V (ny) > 1V {f) > 1. Observe
thatuu'a'a € X%, n! = p? LN pi andn = ¢, % ¢/ are matching paths
of Tand(ny # ny vy # 74 v (n{) > 1V (7{) > 1) is logically equivalent to
BV B' = B".Then(py,p\,p3, 5, p5, Ps, 43, 45+ 42, 42, 41, 41, B”) satisfies (3).

Then the backward direction. By contradiction suppose tifiate exist two words:,
o' andp;, qi,q,,p, € Q such thatuu’ € X% . n; = pi — ¢ and?); = ¢, — p}
are matChing paths @t fori € {17 25 3}’ bUt(p17 q1,P2,492,P3, 43, Qéapil}a q/27p/27 qaaplla
B) ¢ Sowith B = (m) > 1V (@) >1Vm # Vg # 1. We chooseu
and v’ such thath, (Ju|) (the number of pending calls af) is minimal. There ex-
ists a unigue decomposition af (resp.u’) asu = wicwy (resp. asu’ = whrwy)
with wy, w], wewh € Xk, ¢ € Y. andr € X,.. We can thus decompose pathas

://_//_//h /_:_wl ~ /_/:~_c~_ ,_,,:N_wQ) dll
i Ui W erenz Di — Di, ; Pi — qi, ; q; — gq; ana simi ary
for path#; with pathsi’ = ¢/ > @, i = @, = #,, 7, = p, — pl. Since
wlawll S E\j\K/n we haVe(pl,ﬁl,pg,ﬁg,Hg,ﬁg,B/), (ﬁgapg)ﬁéapéaﬁllap/hB/) S 81
with B" = () > 1V # nyandB’ = (i) > 1V 7} # 7). Then by rule
3'11 we havqplvﬁ17p27f)27p37f)37f)é7pé7ﬁ/25p/Qaﬁllaplla B/ \ B/) S 82- FOIIOWing the
decompositionu = wjcws, wWe haveh, (|u]) > hy,|ws|. Sinceh,(|u]) is minimal,
this entails(g}, q1,G2,q2,q3, q3, qé, (jé, q/2, Cj/Q, qll, Cj/l, B”) S 52 with B” = (<77/1”> >
1V @y > 1vn £ 098 vy # 75). By rule 3.2 applied on matching path$
andﬁél’ we have(f)lv Q1aﬁ25 6271337 qﬁ% Qéaﬁga q/27f)/27 qaaﬁlla B/”) with B = <77£/> >
1v () > 1vnl #n #77 # 74. By applying twice the rule 3.3, we obtain
(p1, 41, P25 G2, P3, 43, G35 D3 45, P 41, P15 Be) € S2 with B. = B’V B’V B" v B",
We can verify thatB is logically equivalent withB,., contradiction.

22

We now prove thall € S; iff T is infinite. First the forward direction. There are

two possibility of the presence df in Ss:

rule 4.1 There existp, p,p,q,q,q, T) € S1 by rule 4.1. By property (2) of;, there
existu € X* and paths); = p % p, 1 = p = gandns = ¢ — ¢ of T with
(m) > 1 ormn # ne. This corresponds to the definition of patte3t thenT is
infinite.

rule 4.2 There exis{q,¢') € So and(p,p,p,4,9,9, ¢, ¢, ¢, p',p',p’, T) € Sz by rule
4.2. By property (1) ofSy and property (3) ofS,, there exist three words, v, w,

such thatu/,w € XF ,and paths) = ¢ = ¢, m =p = p, 0, =p = ¢,
m=p-=q¢n=q¢>=p,n=q>qandn;, = ¢ - ¢ such that); and
7, are matching paths & and{n;) > 1 or (n}) > 1 orn; # ny Or ny # n4. This
corresponds to the definition of patte®@, thenT" is infinite.

Then the backward direction. Sin€&s infinite, we are able to find patte8ior pattern
S2in T'. If patternS1is present irl’, then there exist € X, and paths); = p = p,
e =p - gandns = ¢ — g of T with () > 1 ormn # ny. By property (2) of
S1, (p,p,0,9,9,q, T) € S1. Then by rule 4.1 € S;. If patternS2is present irll’,
then there exist three words u’, w, such thatuw/,w € X7 , and paths) = ¢ = ¢/,
m=p=pny=p =pm=p=q¢n=q¢ —p o =q=>qand
ny = ¢ v, ¢’ such thaty; andn, are matching paths df and with () > 1 or
(m) > 1orm # na orn # n,. By property (1) ofSy and property (3) ofSe,

(¢,¢") € So and(p,p,p,4,4,4,¢,¢'.¢'.p',p',p', T) € So. Then by rule 4.2T € Ss.
0

B Complements to Section 5

Algorithm 2 Computation of the multiplicity of a finit&-VPA
Require: A finite N-VPA T
L M={M,|ae X, }U{M}
2 M =0
3: repeat
4 M=MUM
5
6
7

M = {Mi.Ms | M1, Mz € M} U
{Z«,er Mey MM,y | MeM,ce€ Xeyre X, yel'}
suntil MUM =M
: return max{(M) | M € M}

C From Tree Automata to VPA

C.1 Tree automata with multiplicities

Let ¥ = Yy U...U X be aranked alphabet. Fare X, the rank ofa, denoted
rk(a), equalsm iff a € X,,. Tx denotes the fre&’-algebra of finite ordered’-labeled

23

trees,i.e. Tx is the smallest seT satisfying(:) Xy C T, and(ii), if a € X, and

toy .-+ tm—1 € T,thena(to,...,tm—1) € T. Note that(i) can be viewed as a subcase
of (i) if we allow m to equall.
Lett = a(to,...,tm-1) € Tx for somea € X, with m > 0. The set of nodes of

t, S(t) is the subset oN* defined byS(t) = {e¢} U U}":_Olj - S(t;). t defines a map
oy S(t) — X mapping the nodes afto their labels. We have:

_Ja ifr=c¢e

a(r) = {atj(rl) if r =1/

Tree automataA finite tree automaton oveY is a tripleA = (Q, I, §) where:

— @ is afinite set of states

— I C Qs the set of initial states

-6C Ui:o Q x X, x Q™ is the set of transitions. Given a transition= (g, a, ¢o
...qm—1) € 0, we denote byk(7) the valuerk(a).

Lett = a(to,...,tm—1) € Ty andq € Q. A g-computation ofA for ¢ consists
of a transition(g, a,qo - .. gm—1) € § for the root andy;-computations of4 for the
subtreeg;, j € {0...m — 1}. Formally, a computatiop of A for ¢ can be viewed
as a mapp : S(t) — ¢ satisfying for anyr € S(t), if au(r) = a € %, then
o(r) =(¢,a,90 - gm-1) andforamp < j <m—1,(r-j) = (4,05, - - - Gy, 1)
wherea; = ay(r - j) andm; = rk(a;). ¢ is ag-computation of4 for ¢ wheneverp(e)
is of the form(q,a,qo - .. gm-1)- A g-computation is accepting iff € I. A treet is
accepted by iff there is an accepting computation dffor t. The language ofl is the
set of trees accepted byand is denoted by (A).

Weighted tree automata weighted tree automaton over the alphabednd the semir-
ing (N,+,-) is a pairT = (A4,)\) whered = (Q,I,6) is a tree automaton and
A d — N5 is a mapping assigning a multiplicity to each transitionAf No-
tions of computations, accepted computations and languaggelifted from tree au-
tomata to weighted tree automata. ltete L£(A). The multiplicity of a computa-
tion ¢ of A for ¢, denoted(y), is the product of the multiplicities composing itg.
(o) = HpesmA(e(r)). The multiplicity of ¢t € L(A), denoted(t), is defined as
(t) = > {{p) | ¢ accepting computation fat.

C.2 From tree automata (with multiplicities) to VPA (with multiplicities)

From trees to well-nested wo[dlset Y = Xy U...U X be aranked alphabet. We
defined the structured alphabgt= Y. U X, as follows:

Y.={{a|ae X}
Y.={a)|lae X}

The encoding of a treé € Ty is a well-nested word oveE, denotedenc(t),
and defined inductively as follows: if = a(to,...,tm—1) € Tx, thenenc(t) =
(a enc(to)...enc(tm—1) a). One can easily verify that for any € 7y, we have

enc(t) € Xy..

24

Automata translationLet ' = (A4, \) whereA = (Q, I,6) be a tree automaton with
multiplicities overX.. We define aiN-VPA 7" = (A’, \') such that!

L(T") = {enc(t) | t € L(T)} andVt € L(T), (t)7 = (enc(t)) 4)
We first define th&PA A" = (Q', I, ¢, Q] Q’f) over the alphabet as follows:

-Q ={(¢;9) | qeI,0<i<1}U{(r,i) | T €6,0<i<rk(r)}

—Q}Z{(q,l)lqef}
— =Q' xX

We now defing’ by its restrictionsy/, andé.. on call and return symbols respec-
tively:
PG NS o', iff one of the following cases holds:
s = (¢,0) ands’ = (7/,0) whereq € I andr’ = (q,a,q}...¢,,,_,) €0
s = (1,4) ands’ = (7/,0) wherer = (¢,b,q0...qm-1) € 9,4 < rk(7), and
7 =(qi,a,q ... 4 _1) €O

Intuitively, the states gives the rule that is applied, and at which position in tHe ru
we are. In the first case, this is an initialization rule, fome state;. We require that
the new ruler’ starts from a root in statg In the second case, we were applying rule
at positioni. Thus the current state was We thus require that the new rule we apply
(7') starts from a root in staig.

a),(s",a)

s ——~= ¢’ € 4. iff one of the following cases holds:

1. " =(q,0),s = (¢,1) ands = (7/,rk(7")) whereq € I and7’ = (q,a,q- ..
Tppr—1) €0

2. 8" =(1,i), s = (r,i+ 1) ands = (7', rk(r")) wherer = (¢,b,q0 . . . gm—1) € 9,
i < rk(r), andr’ = (¢i,a,qy...q,, 1) €6

To read a return symbol, we should have finished the rule we applying. This
is what is required with condition = (7/,rk(7’)) in both cases. Then, we recover
from the stack symbol” what is the rule we were applying on the root, and we move
one position forward in this rule. For instance, in the setoase, we go fronir, i) to
(1,7 + 1). We also check that the rule that is finished was on the gotel s& ¢ in the
first case, andg; in the second case.

Last, we define the multiplicity mapping as follows: for any transitio@ € 4/,

we let\'(d) = 1, and for any transitiod = s falea), o ¢ 0! wheres’ = (7/,0), we

let \'(d) = A(7’). Intuitively, a transition in the tree automaton is appliedce in the
VPA, once when the call symbol is read, and once when the retunbahis read. We
thus report its multiplicity only in the case of the call syohb

We claim:

Proposition 2. Let T = (A, \) be a tree automaton with multiplicities, afld =
(A’, \) be theN-VPA defined before. The set of accepting computation§ ¢ in
bijection with the set of accepting pathsBf andT” verifies property(4).

1 We use indexes to explicit whether the multiplicity is cortggLiwithinT or within 7"

25

C.3 A New Algorithm for Finiteness of Weighted Tree Automata

We consider a trimmed weighted tree automatbr- (=,Q, I, A, \) where= is a

ranked alphabet (with symbols of arity at maest =; being symbols of arity), Q is
a finite set of states] C (@ the set of initial states/ is a transition relation4 C

U, Q" x =; x Q) and) associates with each transition rule a positive integer.

We construct by saturation three séts S; andS of tuples built from states and
a Boolean respectively of the forfg:, ¢1,47,b), (¢1,4}, 92, d5, g3, 5, b), (b) where

¢i,q; € Q andb € B using the following inference rules from Figure 13.

T=a—q¢T =a—q¢,7"=a—=q¢"€A
(q,4'.q", 7 #7 VAT)>1) €S

(1.1)

the arity of f isk, forall 1 < j <k, (gj,¢},4¢},b;) € So
T=fla, o a) = ¢, = f(ds) = ¢ = flals o q) = €A
(0:4,4"V;b; VT #T'VAT) > 1) €So

pi € Qforalli € {1,2,3}
(p17p17p27p27p37p37j~) € Sl

2.1)

the arity of f is k, (p;, ¢;,p}, 4}, 0,4} ,b;) € S1forsomel < j <k
forall1 < ¢ <k, £+# 3, (g gz, 97, be) € So
T=fla, . a) ¢, = f(ds) = T = flads o a) > €A

(p.i7Q7p;7q/7p}/7q//7 \/j\j;ﬁl bj VT 7é T/ \4)‘(7—) > 1) € Sl

(p7p7p7 q,49,9, T) S Sl
(T) e s

(3.1)

(1.2)

2.2)

Fig. 13.Inference rules for deciding finiteness.

Intuitively, a triple(q, ¢’, ¢”, b) belongs taS; if there exists a tree having three runs
which label the root respectively by ¢’ andq” andb is true if the first one has used a
transition whose multiplicity is strictly greater than 1tbe first two runs differ at some

position in the transition rules they use. A tuple, g2, ¢1, ¢5, , 47, ¢4, b) belongs taS;
if there exists a context having three runs which label the bbthe context by;;, ¢}

andq{ respectively and the root by, ¢4 andg) respectively and is true if the first
one has used a transition whose multiplicity is strictlyagee than 1 or the first two
runs differ at some position in the transition rules they. ieally, the last rule is used

to identify the presence of the required pattern.
Obviously, this algorithm is in PiME.

26

