
Visibly Pushdown Automata with Multiplicities:
Finiteness andK-Boundedness

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot

Laboratoire d’Informatique Fondamentale de Marseille, AMU & CNRS, UMR 7279

Abstract. We propose an extension of visibly pushdown automata by means of
weights (represented as positive integers) associated with transitions, called visi-
bly pushdown automata with multiplicities. The multiplicity of a computation is
the product of the multiplicities of the transitions used along this computation.
The multiplicity of an input is the sum of the ones of all its successful compu-
tations. Finally, the multiplicity of such an automaton is the supremum of multi-
plicities over all possible inputs.
We show the problem of deciding whether the multiplicity of an automaton is
finite can be solved in PTIME. We also consider theK-boundedness problem,i.e.
whether the multiplicity is bounded byK: we prove this problem to be EXPTIME-
complete ifK is part of the input and in PTIME if K is fixed.
As visibly pushdown automata are closely related to tree automata, we discuss
deeply the relationship of our extension with weighted treeautomata.

1 Introduction

Visibly pushdown automata (VPA for short) have been proposed in [1] as an interesting
subclass of pushdown automata, strictly more expressive that finite state automata, but
still enjoying good closure and decidability properties. They are pushdown automata
such that the behavior of the stack,i.e. whether it pushes or pops, is visible in the
input word. Technically, the input alphabet is partitionedinto call, return and internal
symbols. When reading a call the automaton must push a symbolon the stack, when
reading a return it must pop and when reading an internal it cannot touch the stack.
The partitioning of the alphabet induces a nesting structure of the input word. Calls and
returns can be viewed as opening/closing brackets, and well-nested words are words
where every call symbol (resp. return symbol) has a matchingreturn (resp. call).

The original motivation for their introduction was for verification purposes, the
stack being used for the modelization of call/returns of functions. Another applica-
tion domain is the processing of XML documents. Indeed, unranked trees in their linear
form can be viewed as well-nested words. Actually, the modelof visibly pushdown
automata is expressively equivalent to that of finite tree automata, see [1].

It is standard to extend a class of automata with weights, by adding a labeling func-
tion which assigns a weight to each transition. In this work,we considerVPA with
multiplicities (N-VPA for short) where weights are positive integers (multiplicities).
The multiplicity of a run is the product of the multiplicities of the transitions that com-
pose it, and the multiplicity of a word is the sum of the of all its accepting runs. Finally,
the multiplicity of the automaton is the supremum of the multiplicities of the words it
accepts. This model extends the model of finite state automata with multiplicities [10].

A special case of multiplicity is the degree of ambiguity of aword, i.e. the num-
ber of accepting runs (obtained when every transition has weight 1). The class of
finitely ambiguous automata has been investigated for automata on both words and
trees [5,15,12,13]. The interest in this class arised from the fact that it allows an ef-
ficient (polynomial) equivalence check. An analogy can be drawn with the context of
transducers where the equivalence problem is decidable forfinite-valued transducers
(and undecidable in general). In [11], the characterization of automata whose multiplic-
ity is finite is used to build a characterization of finite-valued word transducers. The
present work is thus a first step towards the characterization of finite-valued visibly
pushdown transducers, which is a relevant issue as this model is incomparable with
bottom-up tree transducers (see [7]).

The first problem we consider is the finiteness of the multiplicity of an automaton,
i.e. does there existK ∈ N such that the multiplicity is bounded byK. To solve this
problem, we extend a characterization of finite state automata based on patterns to vis-
ibly pushdown automata. We also provide an algorithm to decide the presence of these
patterns in polynomial time. The second class of problems asks whether the multiplicity
of an automaton is bounded byK, whereK is given. This problem can be considered
under the hypothesis thatK is part of the input, or is fixed. We show that the prob-
lem is EXPTIME-complete in the first case, and can be solved in polynomial time in
the second case. Finally, we make a comparison of our resultswith existing results for
the equivalent model of tree automata with weights in the semiring (N,+, ·). As this
equivalence is effective, we discuss the consequences of our results in this context.

Definitions are given in Section 2. Comparisons with existing results for tree au-
tomata with multiplicities are drawn in Section 3. In Section 4, we give the characteriza-
tion of infiniteN-VPA based on original patterns and the decision procedure associated.
We study finiteN-VPA in Section 5, and conclude with an application of our resultsto
tree automata in Section 6. Due to lack of space, details of proofs and definitions about
tree automata are omitted, and can be found in the appendix.

2 Definitions

2.1 Preliminaries

All over this paper,Σ denotes a finite alphabet partitioned into three disjoint setsΣc,
Σr andΣι, denoting respectively thecall, returnandinternalalphabets. We denote by
Σ∗ the set of (finite) words overΣ and byǫ the empty word. The length of a wordu is
denoted by|u|. The set ofwell-nestedwordsΣ∗

wn
is the smallest subset ofΣ∗ such that

Σ∗
ι ⊆ Σ∗

wn
and for allc ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗

wn
, cur ∈ Σ∗

wn
anduv ∈ Σ∗

wn
.

Let u = α1α2 · · ·αk ∈ Σ∗ be a word overΣ, and0 ≤ i ≤ j ≤ |u|. Thenui,j
denotes the wordαi+1 · · ·αj if i < j, and the empty word ifi = j.

A position i < |u| is apending callif αi+1 ∈ Σc and for alli < j ≤ |u|, ui,j 6∈
Σ∗

wn
. Theheightof u at positioni, denotedhu(i), is the number of pending calls of

u0,i, i.e. hu(i) = |{j | 0 ≤ j < i andαj+1 is a pending call ofu0,i}|. Theheightof
u is the maximal height of all the positions ofu: hu = max0≤i≤k hu(i). For instance,
h(crcrcc) = h(ccrcrr) = 2.

2

2.2 Visibly Pushdown Automata with Multiplicities

Visibly pushdown automata [1] are a restriction of pushdownautomata in which the
stack behavior is imposed by the input word. On a call symbol,the VPA pushes a
symbol on the stack, on a return symbol, it must pop the top symbol of the stack and on
an internal symbol, the stack remains unchanged.

Definition 1 (Visibly pushdown automata [1]).A visibly pushdown automaton(VPA)
overΣ is a tupleA = (Q,Γ, δ,Qin, Qf) whereQ is a finite set of states (we let
n = |Q|), Qin ⊆ Q is the set of initial states,Qf ⊆ Q the set of final states,Γ is a
finite stack alphabet,δ = δc⊎δr⊎δι is the set of transitions, withδc ⊆ Q×Σc×Γ×Q,
δr ⊆ Q× Σr × Γ ×Q, andδι ⊆ Q×Σι ×Q.

Configuration - Run - Degree of ambiguityA configurationof aVPA is a pair(q, σ) ∈
Q × Γ ∗ (whereΓ ∗ denotes the set of finite words overΓ). We denote by⊥ the empty
word onΓ . Initial (resp. final) configurations are configurations of the form(q,⊥), with
q ∈ Qin (resp.q ∈ Qf).

A run of A on a sequence of transitionsη = {ti}1≤i≤k from a configuration
(q, σ) to a configuration(q′, σ′) over wordu ∈ Σ∗ is a finite non-empty sequence
ρ = {(qi, σi)}0≤i≤k such thatq0 = q, σ0 = σ, qk = q′, σk = σ′ and for each
1 ≤ i ≤ k, ti = (qi−1, αi, γi, qi) ∈ δc andσi = σi−1γi or ti = (qi−1, αi, γi, qi) ∈ δr
andσi−1 = σiγi, or ti = (qi−1, αi, qi) ∈ δι andσi = σi−1, and finallyu = α1 . . . αk.
We say that the run is labeled by the wordu. A run isacceptingif it starts in an initial
configuration and ends in a final configuration. Thedegree of ambiguityof a VPA A,
denotedda(A), is the maximal number of accepting runs for any possible input word.

LanguageA word u is accepted byA iff there exists an accepting run ofA onu. The
languageofA, denoted byL(A), is the set of words accepted byA. Note that we require
here to end up with an empty stack, this restriction implies that all accepted words are
well-nested. Unlike [1], we do not consider returns on emptystack and unmatched calls.
This assumption is done to avoid technical details but the general framework could be
handled. More precisely, given a generalVPA A, one can build aVPA A′ according to
Definition 1 such that accepting runs ofA′ are in bijection with those ofA. This can be
achieved by adding self-loops on initial states that allow to push a special symbol (for
the returns on empty stack) and self-loops on final states that allow to pop any symbols.

TrimmedA configuration(q, σ) is reachable(resp.co-reachable) if there existsu ∈ Σ∗

andq0 ∈ Qin (resp.qf ∈ Qf) such that(q0,⊥)
u
−→ (q, σ) (resp. such that(q, σ)

u
−→

(qf ,⊥)). A VPA A is trimmedif every reachable configuration is co-reachable, every
co-reachable configuration is reachable and if every state of A belongs to a reachable
configuration. In [4], we present a procedure which allows totrim a VPA and which
preserves the set of accepting runs. We also prove that this procedure can be applied to
the model ofN-VPA (see below).

PathA path over a wordu ∈ Σ∗ is a sequence of transitionsη = {ti}1≤i≤k such that
there exists a run onη labeled by the wordu. Note that there may be different runs
on the same path, differing in their initial configurations.The empty path (on the empty
wordǫ) is denoted byηǫ. A path is said accepting whenever there exists an acceptingrun
over it. Let a pathη over a wordu 6= ǫ, then there exist statesp andq such that any run

3

overη goes from a configuration(p, σ) to a configuration(q, σ′) for someσ, σ′ ∈ Γ ∗.
We then say thatη goes fromp to q, and writeη : p

u
−→ q.

Lemma 1.

a. Let ui ∈ Σ∗ \ {ǫ} and ηi : pi
ui−→ qi path overui for i ∈ {1, 2, 3} such that

u1u3, u2 ∈ Σ∗
wn

, andη1η2η3 is a path. Then:

– ∀η′2 : p2
u′

2−→ q2 | u′2 ∈ Σ∗
wn

\ {ǫ}, η1η′2η3 is a path,
– if p1 = q1 andp3 = q3, thenη21η2η

2
3 is a path.

b. AssumeT is trimmed. For any family(ηi)i∈I of paths going fromp to q on some
well-nested wordu 6= ǫ, there exists two pathsη′, η′′ such that for anyi ∈ I, η′ηiη′′

is an accepting path.

We introduce the model ofVPA with multiplicities inN (N-VPA for short), where
transitions are labeled by positive integers:

Definition 2 (N-VPA). An N-VPA is a pair T = (A, λ) composed of aVPA A =
(Q,Γ, δ,Qin, Qf) and a labeling functionλ : δ → N>0.

The notions of configurations, runs and paths are lifted fromVPA to N-VPA. We
define the language of anN-VPA T = (A, λ) as the language ofA.

Multiplicity For each transitiont ∈ δ, λ(t) is called themultiplicity of t. We denote by
L the valuemax{λ(t) | t ∈ δ}. Let η = {ti}1≤i≤k be a path ofA over the wordu
and letmi = λ(ti) for 1 ≤ i ≤ k. The multiplicity of η denoted〈η〉 is

∏

1≤i≤kmi.

Let a wordu 6= ǫ, we writep
u|m
−−→ q when there exists a path overu from p to q with

multiplicity m. The multiplicity of the empty pathηǫ is 1.
We define themultiplicityof a runρ, denoted〈ρ〉, as the one of its underlying pathη.

Let a wordu ∈ L(T). Themultiplicity of u, denoted〈u〉 is the sum of the multiplicities
of the accepting runs for the wordu. Themultiplicity of anN-VPA T , denoted〈T 〉, is
defined as〈T 〉 = sup{〈u〉 | u ∈ L(T)}. LetK ∈ N. We say thatT is bounded byK if
〈T 〉 ≤ K. We say thatT is finite if we have〈T 〉 < +∞, andinfiniteotherwise.

Note that the degree of ambiguity of aVPA is equal to the multiplicity of the corre-
spondingN-VPA where all the multiplicities of transitions are set to 1.

3 Relating Tree Automata andVPA

There is a strong relationship between words written over a partionned alphabet and
(un)ranked trees. This relationship extends to recognizers with VPA on one side and
tree automata on the other side. Stack trees encode words defined over a partionned
alphabetΣ as binary trees and a tree automaton accepting precisely theencoded words
can be built in polynomial time [1]. Let us point out this latter construction preserves
the language but not the computations in the sense that the set of accepting runs of the
two automata are not isomorphic; however, the constructioncan be slightly modified to
guarantee the isomorphism of computations [3]. Conversely, it is easy to encode ranked
trees as well-nested visible words, and to build from a tree automaton aVPA accepting
the encodings and preserving the accepting computations aswell.

4

Note that preserving (accepting) computations implies that the degree of ambiguity
of the encodedVPA and of the target tree automaton are the same.

Hence, one may now wonder whether this relationship extendsto models with
weights and what are the results known for weighted tree automata that carry over
N-VPA: this question is crucial as in one direction, it may be the case that problems
we want to address could be solved thanks to this relationship and on the other direc-
tion, new results forN-VPA may carry over weighted tree automata almost for free.
Weighted tree automata [8] over the semiring(N,+, .) allow to encodeN-VPA: the
weight of a node in a run is the product of the weight of its children multiplied by the
one associated with the transition rule applied at this node, the weight of a tree being the
sum of the weights of its accepting runs. Thanks to one-to-one isomorphism between
the transitions of theN-VPA and the ones of the tree automaton recognizing stack trees,
weights are preserved by this translation. Conversely, when a (ranked) tree automaton
is translated into aVPA, a transition rule for some symbola of the tree automaton is
encoded as two rules in theVPA (one for a call symbol〈a, one for a return symbola〉),
the weight of the rule in the tree automaton being associatedwith one of the twos, the
other one having multiplicity 1 (see Appendix C).

Let us briefly recap some known results for tree automata withweights/costs. In
[14], (ranked) tree automata with polynomial costs are considered over several semir-
ings. The main ingredient of these automata is that a polynomial over a semiring is
attached to transitions : computing the cost of a node amounts to apply the polyno-
mial with variablesxi instanciated with the cost of theith child. However, the result
of the computation is the set of costs computed for each accepted run (no combina-
tion is made with the accepting computations over the same input tree). Finiteness and
K-boundedness problems whose decidability issues are addressed relate to the finite-
ness and to theK-boundedness of this set of costs (shown to be in PTIME for many
semirings and in particular,(N,+, .)) and is thus different from the problems we con-
sider here. These results are extended in [2] by consideringmore general semirings but
without addressing complexity issues.

As already mentionned, the degree of ambiguity and the multiplicity of automata are
related. In particular, finiteness orK-boundedness problems of the degree of ambiguity
of tree automata provide lower bounds for the correspondingfor N-VPA.

However, the algorithms for finiteness of the degree of ambiguity [12] (deciding
DA = da(A) < +∞) in PTIME and of the cost of some tree automaton with costs
[14] (decidingMM = sup{〈ρ〉 | ρ accepting computation} < +∞) in PTIME can be
combined to get a PTIME algorithm for finiteness of weighted tree automata, thanks to
the following statement :max(DA,MM) ≤ 〈A〉 ≤ DA ∗MM. Thanks to (PTIME) en-
coding ofN-VPA into weighted tree automata preserving the degree of ambiguity and
the multiplicities of encoded computations, we obtain a PTIME algorithm for finite-
ness ofN-VPA. However, our approach provides a direct method based onVPA and
a rather intuitive algorithm compared to [12,14]. Moreover, we will see in Section 6
that conversely, our approach leads to a new vision and a new and rather simple PTIME

algorithm for finiteness of weighted tree automata over(N,+, .).

[14] also relates degree of ambiguity and costs provided theuse of multi-dimensional
cost automata. We believe that this may be extended to the computation of multiplic-

5

ities. As pointed out in [14], this would yield an exponential time-complexity method
to testK-boundedness, the algorithm being exponential in the dimension which is in
this case the number of states of the tree automaton (we will show that this problem
with the binary encoding ofK being part of the input, forVPA and for tree automata
is EXPTIME-hard). However, we will present a much simpler approach based on [5] to
tackle this problem.

4 Characterization and decision of infiniteN-VPA

In this section, we give a characterization onVPA ensuring their infiniteness by means
of patterns. Then, based on this characterization, we devise a PTIME algorithm to solve
the finiteness problem. All over this section, we assume a trimmedN-VPA T = (A, λ),
with A = (Q,Γ, δ,Qin, Qf).

4.1 Characterization

We introduce the criteria depicted on Figures 1(a) and 1(b) which characterize infinite
N-VPA. Pattern of Figure 1(a) coincides with patterns for finite-state automata with
multiplicities (see [9,15,6]). Pattern of Figure 1(b) is specific to the model ofVPA.
Intuitively, the loop over a well-nested word is splitted into two loops on wordsu1 and
u2, such that the concatenationu1u2 is a well-nested word butu1 is not well-nested. We
say thatT contains a pattern whenever there exist words inΣ∗, states ofT and paths
in T that fulfill all the conditions of the pattern. For instance,if we consider pattern
(S1), we should find a wordu ∈ Σ∗

wn
, two statesp, q ∈ Q (which may be equal), three

pathsη1 : p
u|m1

−−−→ p, η2 : p
u|m2

−−−→ q, η3 : q
u|m3

−−−→ q such thatη1η2η3 is a path, and
m1 > 1 or η1 6= η2. In these patterns, all words exceptw are necessarily non-empty.
Note that these patterns also yield a characterization of infinite ambiguity by removing
the disjunctions on multiplicities (conditionsm > 1).

p q
η2 : u | m2

η1 : u | m1 η3 : u | m3

(a) (S1)Well-nested case:u ∈ Σ∗
wn

. η1η2η3 is a path andm1 > 1 or η1 6= η2.

p q q′ p′
η2 : u1|m2 η : w|m η′2 : u2|m

′
2

η1 : u1|m1 η3 : u1|m3 η′3 : u2|m
′
2 η′1 : u2|m

′
1

(b) (S2)Matched loops case:w ∈ Σ∗
wn

, u1u2 ∈ Σ∗
wn

, andu1 6∈ Σ∗
wn

. η1η2η3ηη′3η
′
2η

′
1 is a path,

and either (m1 > 1 orm′
1 > 1), or (η1 6= η2 or η′1 6= η′2).

Fig. 1. Patterns characterizing infinite multiplicity.

We will show in this section that these criteria characterize infiniteN-VPA:

6

Theorem 1. LetT be anN-VPA. T is infinite if and only ifT complies with one of the
criteria (S1) and(S2).

To prove this result, we first show that if we have one of the criteria then the mul-
tiplicity is infinite. In a second part we show that if the multiplicity is infinite, then the
N-VPA complies with one of the criteria.

Lemma 2. LetT be anN-VPA. If T complies with(S1) or (S2), thenT is infinite.

Proof (Sketch).We sketch the proof for criterion(S1), the case of(S2)being similar.
Letu ∈ Σ∗

wn
andη1, η2, η3 be paths selected according to pattern(S1). We first suppose

that conditionm1 > 1 holds. Asη1 is a path going fromp to p andu ∈ Σ∗
wn

, η21 is also
a path fromp to p. By applying iteratively Lemma 1.a, we can consider pathηi whose
multiplicity 〈ηi〉 = mi

1 grows to infinity wheni tends to+∞. As T is trimmed, by
Lemma 1.b, this gives accepting paths with multiplicity growing to infinity. Consider
now the case where conditionη1 6= η2 holds. Letk ∈ N>0, andi, j ∈ N such that
i + j = k − 1. As η1η2η3 is a path andu ∈ Σ∗

wn
, by Lemma 1.a, the pathηi1η2η

j
3 is

a path over the worduk. Moreover, asη1 6= η2, all these paths are different wheni, j
range over the set of integers such thati + j = k − 1. Whenk tends to infinity, we
obtain an arbitrarily large number of paths overuk going fromp to q. AsT is trimmed,
by Lemma 1.b, this gives arbitrarily many accepting paths over a same word. ⊓⊔

The proof of the converse (an infinite multiplicity implies the presence of one of the
criteria) relies on the two technical lemmas 4 and 5 which we present intuitively. To state
these Lemmas, we define the constantN = (n2L)2|Γ | and the functionψ : N → N

asψ(z) = n(Nz)2
n

. Consider a well-nested wordu, and a well-nested subwordux,y
of it. Viewing u as a tree,ux,y is an hedge ofu. Pattern(S1) allows to increase the
multiplicity along a well-nested word thus, in the tree representation of the nested word,
along an hedge. Lemma 4 states that ifT does not comply with(S1), then an hedgeux,y
whose multiplicity is greater thanψ(l) must contain a well-nested subwordux′,y′ (with
x < x′ ≤ y′ < y) whose multiplicity is greater thanl, and whose height is larger.
Intuitively, the reason for which the multiplicity of the hedgeux,y is large must be one
of its subtrees, and not an accumulation alongux,y, otherwiseT contains(S1).

Let u ∈ Σ∗
wn

andk = |u|. Given two positionsi, j such that0 ≤ i ≤ j ≤ k and
ui,j ∈ Σ∗

wn
, we define a matrix, denotedinducedui,j , representing intuitively how the

multiplicities of runs are modified by the subwordui,j . Formally,inducedui,j is an ele-
ment ofNQ×Q, and forp, q ∈ Q, we letinducedui,j(p, q) be the sum of the multiplicities

of the pathsη : p
ui,j

−−→ q of T for which there existη1 path onu0,i, η2 path onuj,k such
thatη1ηη2 is an accepting path onu.

Finally, we also definesui,j ∈ N assui,j =
∑

p,q∈Q induced
u
i,j(p, q). We have:

Lemma 3. Letu ∈ Σ∗
wn

and three positionsi, j, k such that0 ≤ i ≤ j ≤ k ≤ |u| and
ui,j , uj,k, ui,k ∈ Σ∗

wn
. Then we haveinducedui,k = induced

u
i,j × induced

u
j,k, sui,j ≤ sui,k,

andsui,k ≤ sui,j .s
u
j,k.

Lemma 4. We suppose thatT is infinite butT does not comply with(S1). Let u ∈
L(T), l ∈ N>0 andx, y be two positions such that0 ≤ x ≤ y ≤ |u|, ux,y ∈ Σ∗

wn
and

sux,y ≥ ψ(l). Then there exist two positionsx < x′ ≤ y′ < y such thatux′,y′ ∈ Σ∗
wn

,
hu(x

′) = hu(x) + 1 andsux′,y′ ≥ l.

7

Proof (Sketch).The proof is based on a pumping on positions that correspond to trees
of the hedge associated withux,y, i.e. positions in the setP = {i ∈ N>0 | x ≤ i ≤
y∧ux,i ∈ Σ∗

wn
}. This approach is similar to that used in [6] for automata on words. For

eachi ∈ P , we defineri = sux,i andXi = {q ∈ Q | inducedux,i(p, q) > 0 for somep}.
Intuitively, ri corresponds to the multiplicity associated with the well-nested subword
ux,i andXi is the set of states that can be reached after this subword (along an accepting
path overu). For anyi < j, i, j ∈ P , we have thanks to Lemma 3,ri ≤ rj and
rj ≤ ri × sui,j .

Suppose, for the sake of contradiction, that for any twoconsecutiveindicesi < j
in P , we havesui,j < Nl. Using the hypothesisry = sux,y ≥ ψ(l) and the definition
of ψ, we can prove that this entails that there exist two positions i < j in the setP
such thatri < rj andXi = Xj . Let v = ui,j andX = Xi. We define a multigraph
X = (X,E) whereE ⊆ X × X × N is defined as follows:∀p, q ∈ X,m ∈ N, for

each pathη : p
v|m
−−→ q such thatη′ηη′′ is an accepting path onu for some pathsη′

on wordu0,i andη′′ on worduj,|u|, we construct an edgep
m
−→ q ∈ E. Thanks to

propertyri < rj , we show that either there is a vertex with two outgoing edges, orX is
composed of disjoint loops and contains an edge with labelm > 1. In the former case,
we prove thatT contains pattern(S1)with propertyη1 6= η2 while in the latter case, we
prove it contains(S1)with propertym1 > 1. This contradicts our hypothesis onT .

Hence, we have proven that there exist two indicesi < j in P such thatsui,j ≥ Nl.
Then, we can extract fromi andj the two expected indicesx′ andy′. ⊓⊔

Lemma 5. Let T be anN-VPA. If T is infinite, thenT complies with one of the two
criteria (S1) and(S2).

Proof (Sketch).Suppose thatT is infinite but does not comply with(S1), and prove it
complies with(S2). Let a wordu ∈ L(T) such that〈u〉 ≥ ψH(1) whereH = 2n

2

.
By applying Lemma 4 iteratively, we can define a sequence of length greater thanH
of couples of positionsχi = (xi, yi) of u. These couples represent nested hedges ofu,
and their multiplicitiessuχi

are strictly decreasing. One can then proceed with a pumping
similar to that done in the proof of Lemma 4, and exhibit pattern (S2). ⊓⊔

4.2 Decidability of finiteness

We show in this part how to decide in PTIME the presence of one of the patterns.
The algorithm (Figure 2) uses four bunches of inference rules applied as a saturation

procedure: the first bunch builds a setS0 of pairs(p, q) such that there exists a path over
a well-nested word fromp to q. The second bunch builds a setS1 of tuples composed
of 6 states and a boolean, which allows to decide the presenceof pattern(S1). The 6
states represent the source and the target of 3 paths over thesame well-nested word
and the boolean retains an information about a multiplicitygreater than1 or the fact
that different paths are considered. The third bunch buildsa setS2 of tuples composed
of 12 states and a boolean which allows to decide the presenceof pattern(S2). This
construction is based onS1: the states aim to identify two sets of 3 paths over two words
u1 andu2, such that the second set pops the stack pushed by the first set, ensuring that
u1u2 ∈ Σ∗

wn
. The information stored in the boolean depends of one of the sets. Finally,

8

the last bunch builds a setS3 which ensures that some tuple built inS1 forms the
pattern(S1)in rule 4.1, or that some tuple built inS2 represents the pattern(S2), which
in addition are connected through a well-nested word (condition overS0) in rule 4.2.

Proposition 1. For anyN-VPA T , (⊤) ∈ S3 iff T is infinite.

Theorem 2. Finiteness forN-VPA is in PTIME.

p ∈ Q
(1.1)

(p, p) ∈ S0

(p, a, q) ∈ δι
(1.2)

(p, q) ∈ S0

(p, q) ∈ S0, (q, q
′) ∈ S0

(1.3)
(p, q′) ∈ S0

(p, q) ∈ S0, (p
′, c, γ, p) ∈ δc, (q, r, γ, q

′) ∈ δr
(1.4)

(p′, q′) ∈ S0

pi ∈ Q for all i ∈ {1, 2, 3}
(2.1)

(p1, p1, p2, p2, p3, p3,⊥) ∈ S1

ti = (pi, a, p
′
i) ∈ δι for all i ∈ {1, 2, 3}

(2.2)
(p1, p

′
1, p2, p

′
2, p3, p

′
3, (t1 6= t2 ∨ ϕ1)) ∈ S1

(p1, q1, p2, q2, p3, q3, B) ∈ S1, (q1, q
′
1, q2, q

′
2, q3, q

′
3, B

′) ∈ S1

(2.3)
(p1, q

′
1, p2, q

′
2, p3, q

′
3, B ∨B′) ∈ S1

(p1, q1, p2, q2, p3, q3, B) ∈ S1,

ti = (p′i, c, γi, pi) ∈ δc, t
′
i = (qi, r, γi, q

′
i) ∈ δr for all i ∈ {1, 2, 3}

(2.4)
(p′1, q

′
1, p

′
2, q

′
2, p

′
3, q

′
3, B ∨ (t1 6= t2 ∨ t

′
1 6= t′2 ∨ ϕ

′
1 ∨ ϕ1)) ∈ S1

(p1, q1, p2, q2, p3, q3, B) ∈ S1, (q
′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, B

′) ∈ S1

(3.1)
(p1, q1, p2, q2, p3, q3, q

′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, B ∨B′) ∈ S2

ti = (p′i, c, γi, pi) ∈ δc, t
′
i = (qi, r, γi, q

′
i) ∈ δr, for all i ∈ {1, 2, 3}

(3.2)
(p′1, p1, p

′
2, p2, p

′
3, p3, q3, q

′
3, q2, q

′
2, q1, q

′
1, t1 6= t2 ∨ t

′
1 6= t′2 ∨ ϕ1 ∨ ϕ

′
1) ∈ S2

(p1, p
′
1, p2, p

′
2, p3, p

′
3, q

′
3, q3, q

′
2, q2, q

′
1, q1, B) ∈ S2,

(p′′1 , p1, p
′′
2 , p2, p

′′
3 , p3, q3, q

′′
3 , q2, q

′′
2 , q1, q

′′
1 , B

′) ∈ S2

(3.3)
(p′′1 , p

′
1, p

′′
2 , p

′
2, p

′′
3 , p

′
3, q

′
3, q

′′
3 , q

′
2, q

′′
2 , q

′
1, q

′′
1 , B ∨B′) ∈ S2

(p, p, p, q, q, q,⊤) ∈ S1

(4.1)
(⊤) ∈ S3

(q, q′) ∈ S0,

(p, p, p, q, q, q, q′, q′, q′, p′, p′, p′,⊤) ∈ S2

(4.2)
(⊤) ∈ S3

with ϕ1 = λ(t1) > 1 andϕ′
1 = λ(t′1) > 1

Fig. 2. Inference rules for deciding finiteness

5 Finite bounds forN-VPA

5.1 DecidingK-bounded multiplicity

We consider a trimmedN-VPA T = (A, λ), withA = (Q,Γ, δ,Qin, Qf) and an integer
K ∈ N>0 represented in binary and describe an algorithm to decide whether〈T 〉 < K.

The procedure we describe builds a setM of n× n integer matrices by saturation,
where rows and columns of matrices are indexed by states ofA. The semantics of a

9

matrixM ∈ M can be understood as follows: there exists a wordu ∈ Σ∗
wn

such that,
for anyp, q ∈ Q, the entryM(p, q) is equal to the sum of the multiplicities of paths
p

u
−→ q. We have then〈u〉 =

∑

qi∈Qin,qf∈Qf
M(qi, qf). For ann × n integer matrix

M , we denote by〈M〉 the value
∑

qi∈Qin,qf∈Qf
M(qi, qf).

The algorithm proceeds by building such matrices for well-nested words of increas-
ing lengths. It starts with internal words of length1, and then extend words either by
concatenation, or by adding a matching pair of call/return symbols.

We introduce the following notations: letMǫ be the identity matrix. Leta ∈ Σι,
thenMa is the matrix defined byMa(p, q) = λ(t) if there existst = (p, a, q) ∈ δι, and
Ma(p, q) = 0 otherwise. Letγ ∈ Γ and letc ∈ Σc (resp.r ∈ Σr), thenMc,γ (resp.
Mr,γ) is the matrix defined byMc,γ(p, q) = λ(t) if there existst = (p, c, γ, q) ∈ δc,
andMc,γ(p, q) = 0 otherwise (and similarly for matrixMr,γ).

Finally, we introduce an extrapolation operatorExtraK : N → N defined byExtraK(z) =
z if z ≤ K, andExtraK(z) = K otherwise. This operator is naturally extended to inte-
ger matrices. Our algorithm is presented as Algorithm 1.

Algorithm 1 Decision of theK-boundedness of anN-VPA
Require: An N-VPA T andK ∈ N>0

1: M = {ExtraK(Ma) | a ∈ Σι} ∪ {Mǫ}
2: M′ = ∅
3: repeat
4: M = M∪M′

5: if ∃M ∈ M such that〈M〉 ≥ K then
6: return false
7: end if

8:
M′ = {ExtraK(M1.M2) |M1,M2 ∈ M} ∪

{ExtraK(
∑

γ∈Γ
Mc,γ .M.Mr,γ) |M ∈ M, c ∈ Σc, r ∈ Σr}

9: until M′ ∪M = M
10: return true

Theorem 3. Given anN-VPA T andK ∈ N>0, the problem of determining whether
〈T 〉 < K is EXPTIME-complete.

This complexity should be compared with that of determiningwhether the ambigu-
ity of a finite state automaton is less thanK which is known to be PSPACE-complete [5].

Proof (Sketch).The EXPTIME membership follows from the fact that all the matrices
built aren × n matrices whose entries are bounded byK. For the hardness, we can
proceed to a reduction from the emptiness of the intersection ofK deterministic bottom-
up tree automata. One can first consider the tree automaton obtained as the disjoint
union of theseK automata. Then one can turn this tree automaton into aVPA accepting
the encodings of the trees as well-nested words, and with an isomorphic set of accepting
runs. Considering thisVPA as anN-VPA T (each multiplicity is set to1), one can show
that the intersection of theK deterministic tree automata is empty iff〈T 〉 < K. ⊓⊔

Computing the multiplicity of a finiteN-VPA Consider now, given a finiteN-VPA, the
problem consisting in computing its multiplicity. We derive from the previous algorithm
a procedure solving this problem. The procedure simply explores as before the set of

10

matrices, without using the operatorExtraK , until saturation of the set of matrices. The
termination of the algorithm relies on the fact thatT is finite and trimmed. Indeed, this
entails that coefficients computed are all bounded by〈T 〉. In particular, this proves that
the number of matrices built is bounded by〈T 〉n

2

, and:

Theorem 4. For all finiteN-VPA T , the value of〈T 〉 can be computed in time〈T 〉O(n2).

5.2 DecidingK-bounded multiplicity (for a fixed K)

As a final result in this section, we investigate theK-bounded multiplicity problem for
which the input is only anN-VPA T and we ask whether〈T 〉 < K. The algorithm from
Section 5.1 shows that this problem for a fixedK can be solved in exponential time;
however, by adapting the approach used in [13] for ambiguityof tree automata,

Theorem 5. For a fixedK ∈ N>0, given anN-VPA T , deciding whether〈T 〉 < K is
in PTIME.

Proof. We consider the family ofVPA’s (Ai)1≤i≤K such thatAi accepts words from
L(T) having a multiplicity greater thanK. More precisely,Ai is aVPA that accepts
wordsu such that there arei different accepting runsρ1, . . . , ρi of T overu verifying
∑

1≤j≤i〈ρj〉 ≥ K. Therefore,Ai simulates in paralleli runs ofT over the same word,
and for each of them keeps track of the current multiplicity in its states by comput-
ing up toK. More precisely, forT = (A, λ), with A = (Q,Γ, δ,Qin, Qf), we define
Ai as (Qi, Γi, δi, Q

i
in, Q

i
f) whereQi = (Q × [1..K])i × B

i×i, Γi = (Γ)i, Qi
in =

(Qin × {1})i × {0Bi×i}, Qi
f = {((q1,m1), . . . , (qi,mi)) × {IdBi×i} | (q1, . . . , qi) ∈

(Qf)
i, (

∑

1≤j≤imj) ≥ K}. Bi×i is the set of thei × i square matrices of Booleans,

0Bi×i (resp.IdBi×i) the matrix containing only false values (resp. only true values ex-
cept on the main diagonal which is set to false). Letδi = δci ⊎ δ

ι
i ⊎ δ

r
i where

δci =

(((q1,m1), . . . , (qi,mi),M),
c, (γ1, . . . , γi),

((q′1,m
′
1), . . . , (q

′
i,m

′
i),M

′))

c ∈ Σc, for all 1 ≤ j, l ≤ i,
tj = (qj , c, γj, q

′
j), tl = (ql, c, γl, q

′
l) ∈ δc

m′
j = ExtraK(λ((qj , c, γj , q

′
j)) ∗mj) and

M ′[j, l] =M [j, l] ∨ (tj 6= tl)

διi andδri are defined similarly. It is obvious that eachAi can be built in polynomial time
in |T |. Finally, we test in polynomial time for emptiness each of theK VPA Ai. ⊓⊔

6 Back to Trees

Considering the polynomial encoding of (weighted) tree automata intoVPA (with mul-
tiplicities), we can deduce the two following results:

1. Determining whether the ambiguity of a tree automatonA is less thanK, whenA
and the binary encoding ofK are part of the input, is EXPTIME-complete.

2. We exhibit a simple pattern characterizing infinite weighted tree automata overN,
which can be decided in PTIME. Moreover, it turns out to be the disjunction of a
pattern for infinite ambiguity, and one for infinite cost (in the sense of [14]).

11

Point 1 should be compared with the PTIME complexity of this problem whenK is
fixed (see [13]). Regarding point 2, we claim: (see Figure 3)

A weighted tree automatonT overN is infinite iff there exists a one-hole context

C and computationsϕi for i ∈ {1, 2, 3} of T overC such thatϕ1 : p
C
−→ p,

ϕ2 : p
C
−→ q, ϕ3 : q

C
−→ q for somep, q ∈ Q verifying 〈ϕ1〉 > 1 orϕ1 6= ϕ2.

p

p

C

ϕ1 : p

q

C

ϕ2 : q

q

C

ϕ3 :

Fig. 3.Patterns for infinite weighted tree automata

We can then derive a PTIME algorithm for weighted tree automata rather similar to
the one we proposed forN-VPA (see Appendix C.3).

References

1. R. Alur and P. Madhusudan. Visibly pushdown languages. InProc. STOC ’04, pp 202–211,
2004.

2. B. Borchardt, Z. Fülöp, Z. Gazdag, and A. Maletti. Bounds for tree automata with polynomial
costs.Journal of Automata, Languages and Combinatorics, 10(2/3):107–157, 2005.

3. M. Caralp. Automates à pile visible : ambiguité et valuation. Master’s thesis, Aix-Marseille
Université, 2011.

4. M. Caralp, P.-A. Reynier, and J.-M. Talbot. A polynomial procedure for trimming visibly
pushdown automata. Technical Report hal-00606778, HAL, CNRS, France, 2011.

5. T.-H. Chan and O. H. Ibarra. On the finite-valuedness problem for sequential machines.
Theoretical Computer Science 23, pp 95–101, 1983.

6. R. De Souza.Étude structurelle des transducteurs de norme bornée. PhD thesis, ENST,
France, 2008.

7. E. Filiot, J.-F. Raskin, P.-A. R. Reynier, F. Servais, andJ.-M. Talbot. Properties of visibly
pushdown transducers. InProc. MFCS’10, vol. 6281 ofLNCS, pp 355–367. Springer, 2010.

8. Z. Fülöp and H. Vogler.Handbook of Weighted Automata, chapter Weighted Tree Automata
and Tree Transducers. Springer, 2009.

9. A. Mandel and I. Simon. On finite semigroups of matrices.Theor. Comput. Sci., 5(2):101–
111, 1977.

10. J. Sakarovitch.Elements of Automata Theory. Cambridge University Press, 2009.
11. J. Sakarovitch and R. de Souza. On the decidability of bounded valuedness for transducers.

In Proc. MFCS’11, vol. 5162 ofLNCS, pp 588–600. Springer, 2008.
12. H. Seidl. On the finite degree of ambiguity of finite tree automata.Acta Inf., 26(6):527–542,

1989.
13. H. Seidl. Deciding equivalence of finite tree automata.SIAM J. Comput., 19(3):424–437,

1990.
14. H. Seidl. Finite tree automata with cost functions.Theor. Comput. Sci., 126(1):113–142,

1994.
15. A. Weber and H. Seidl. On the degree of ambiguity of finite automata.Theor. Comput. Sci.,

88(2):325–349, 1991.

12

A Proofs of Section 4

A.1 Equivalent patterns

We present in an equivalent way the two patterns(S1) and (S2). It is not difficult to
verify that(S1)(resp.(S2)) is equivalent to(S1.a)or (S1.b)(resp.(S2.a)or (S2.b)).

p

η : u | m

(a) Heavy cycle:m > 1.

p q
η2 : u | m2

η1 : u | m1 η3 : u | m3

(b) Dumbbell:η1η2η3 is a path andη1 6= η2.

Fig. 4. (S1)Well-nested case:u ∈ Σ∗
wn

.

p p′
η : w|m

η1 : u1|m1 η2 : u2|m2

(a) Heavy cycle:η1ηη2 is a
path and (m1 > 1 or m2 >

1).

p q q′ p′
η2 : u1 η : w η′2 : u2

η1 : u1 η3 : u1 η′3 : u2 η′1 : u2

(b) Dumbbell:η1η2η3ηη′3η
′
2η

′
1 is a path and

(η1 6= η2 or η′1 6= η′2). Multiplicities have
been omitted for readability.

Fig. 5. (S2)Matched loops case:w ∈ Σ∗
wn

, u1u2 ∈ Σ∗
wn

, andu1 6∈ Σ∗
wn

.

A.2 Proof of Lemma 1

Proof. a. Letui ∈ Σ∗ \ {ǫ} andηi = pi
ui−→ qi be a path ofT for i ∈ {1, 2, 3} such

thatu1u3, u2 ∈ Σ∗
wn

andη1η2η3 is a path ofT . By definition of paths and since
u1u3, u2 ∈ Σ∗

wn
, there exist three runsρ1 = (p1,⊥)

u1−→ (q1, σ), ρ2 = (p2,⊥)
u2−→

(q2,⊥) andρ3 = (p3, σ
′)

u3−→ (q3,⊥) in T for σ, σ′ ∈ Γ ∗. Sinceη1η2η3 is a path,
there exists someσ′′ ∈ Γ ∗ such that(p1, σ′′)

u1−→ (q1, σ
′′σ)

u2−→ (q2, σ
′′σ′)

u3−→
(q3, σ

′′) is a run ofT . Observe thatu2 ∈ Σ∗
wn

, thus we haveσ′′σ = σ′′σ′ and thus

σ = σ′. It follows that for any pathη′2 = p2
u′

2−→ q2 with u′2 ∈ Σ∗
wn

, there exists

a runρ′2 = (p2,⊥)
u′

2−→ (q2,⊥) in T overη′2. Thus, there is the run(p1, σ′′)
u1−→

(q1, σ
′′σ)

u′

2−→ (q2, σ
′′σ)

u3−→ (q3, σ
′′) in T overη1η′2η3 which is then a path ofT .

We consider now thatp1 = q1 andp3 = q3. Observe that sinceρ1 = (p1,⊥)
u1−→

(p1, σ) andρ3 = (p3, σ)
u3−→ (p3,⊥) are runs ofT with u1u3 ∈ Σ∗

wn
, ρ21 andρ23 are

runs ofT . Sinceu2 ∈ Σ∗
wn

, there is a runρ2 = (p2,⊥)
u2−→ (q2,⊥) in T , and thus

ρ′2 = (p2, σσ)
u2−→ (q2, σσ) is also a run inT . Thenη21η2η

2
3 is a path ofT .

13

b. Let(ηi)i∈I be a family of paths going fromp to q on some well-nested wordu 6= ǫ.
SinceT is trimmed, there existsσ ∈ Σ∗ such that(p, σ) is reachable. Leti ∈ I,
and a run(p,⊥)

u
−→ (q,⊥) over the well-nested wordu. Then, configuration(q, σ)

is reachable and thus, asT is trimmed, also co-reachable. Letρ be a run which
leads from a configuration(qin,⊥) (with qin ∈ Qin) to the configuration(p, σ) and
ρ′ a run which leads from the configuration(q, σ) to a configuration(qf ,⊥) (with
qf ∈ Qf). Let η (resp.η′) be the path underlying runρ (resp.ρ′). Then, for any
i ∈ I, the concatenationηηiη′ is an accepting path ofT . ⊓⊔

A.3 Proof of Lemma 2

Proof. Case 1T complies with(S1.a)
Let u ∈ Σ∗

wn
andη be a path selected according to pattern(S1.a). As η is a path

going fromp to p andu ∈ Σ∗
wn

, η2 is also a path fromp top. By applying iteratively
Lemma 1.a, we can consider pathηi whose multiplicity〈ηi〉 = mi grows to infinity
wheni tends to+∞. As T is trimmed, by Lemma 1.b, this gives accepting paths
with multiplicity growing to infinity.

Case 2T complies with(S1.b)
Let u ∈ Σ∗

wn
andη1, η2, η3 be paths selected according to pattern(S1.b). Let k ∈

N>0, andi, j ∈ N such thati + j = k − 1. As η1η2η3 is a path andu ∈ Σ∗
wn

, by
Lemma 1.a, the pathηi1η2η

j
3 is a path over the worduk. Moreover, asη1 6= η2, all

these paths are different wheni, j range over the set of integers such thati + j =
k− 1. Whenk tends to infinity, we obtain an arbitrarily large number of paths over
uk going fromp to q. As T is trimmed, by Lemma 1.b, this gives arbitrarily many
accepting paths over a same word.

Case 3T complies with(S2.a)
Letu1u2, w ∈ Σ∗

wn
andη1, η, η2 be paths selected according to the criterion(S2.a).

By applying iteratively Lemma 1.a, we can consider pathηi1ηη
i
2 whose multiplicity

mi
1mm

i
2 grows to infinity wheni tends to+∞. As T is trimmed, by Lemma 1.b,

this gives accepting paths with multiplicity growing to infinity.

Case 4T complies with(S2.b)
Let u1u2, w ∈ Σ∗

wn
andη1, η2, η3, η, η′3, η

′
2, η

′
1 be paths selected according to the

criterion (S2.b). By applying iteratively Lemma 1.a, we can consider pathηj3ηη
′j
3

for any j ∈ N>0. As pathηj3ηη
′j
3 goes fromq to q′, Lemma 1.a entails that

η2η
j
3ηη

′j
3 η

′
2 is a path. Then, the second point of Lemma 1.a entails thatηi1η2η

j
3ηη

′j
3

η′2η
′i
1 is a path for anyi ∈ N>0. Letk ∈ N>0, one can observe that for anyi, j such

thati+ j = k− 1, the pathηi1η2η
j
3ηη

′j
3 η

′
2η

′i
1 is over worduk1wu

k
2 , and goes fromp

to p′. As T is trimmed, by Lemma 1.b, this gives arbitrarily many accepting paths
over a same word. ⊓⊔

A.4 Proof of Lemma 4

Proof. We first define the following set of positions inu: P = {i ∈ N>0 | x ≤
i ≤ y ∧ ux,i ∈ Σ∗

wn
}. Then for eachi ∈ P , we defineri = sux,i andXi = {q ∈

14

Q | induced
u
x,i(p, q) > 0 for somep}. Intuitively, ri corresponds to the multiplicity

associated with the well-nested subwordux,i andXi is the set of states that can be
reached after this subword (along an accepting path overu). Note that we havex ∈ P ,
as we haveux,x = ǫ ∈ Σ∗

wn
, andXx is the set of states that accepting paths ofT onu

can go through at positionx. In particular, this entailsrx = sux,x ≤ n. For all i, j ∈ P ,
such thati < j, we have:

1. ∀p ∈ Xi, ∃q ∈ Xj such that there is a pathp
ui+1,j

−−−−→ q in T

2. ∀q ∈ Xj , ∃p ∈ Xi such that there is a pathp
uj,i+1

−−−−→ q in T
3. ri ≤ rj
4. rj ≤ ri × sui,j

Properties(3) and(4) follow Lemma 3. Let the setC be defined asC = {i ∈ P | ∀j ∈
P, j < i ⇒ rj < ri}. We note the elements ofC in ascending order asi1, i2, · · · , ic,
with c = |C|. Then we haverij < rij′ for any1 ≤ j < j′ ≤ c.

We will now prove that there exists1 ≤ j < c such thatsuij ,ij+1
≥ Nl. By contra-

diction, we suppose that this property does not hold,i.e.:

∀1 ≤ j < c, suij ,ij+1
< Nl (†)

ψ(l)

Nl

r r r r r r

Xx Xy
length

height

Fig. 6. suij ,ij+1
< Nl

Property (†) combined with property (4) impliesrij+1
< rij × Nl for any1 ≤ j < c.

We thus obtainric < ri1 × (Nl)c−1. By definition, we haveri1 = rx ≤ n, and
ric = sux,y ≥ ψ(l) = n(Nl)2

n

. We thus obtainc − 1 > 2n, which entails that there
exist two indicesj 6= j′ such thatXij = Xij′

. We noteX = Xij . Let v = uij ,ij′ .
By constructionv ∈ Σ∗

wn
. Now we construct the multigraphXv = (X,Ev) with Ev ⊆

X×X×N defined as follows:∀p, q ∈ Q,m ∈ N, for each pathη = p
v|m
−−→ q such that

η′ηη′′ is an accepting path onu for some pathη′ on wordu0,i, andη′′ on worduj,|u|,

we construct an edgep
m
−→ q ∈ Ev. Note in particular that if there are two different

paths on wordv with the same multiplicitym going from statep to stateq, then the
edgep

m
−→ q occurs twice in the multisetEv.

Because of (1) and (2) and the fact thatXij =Xij′
, each vertex fromX has both an

in-degree and an out-degree greater or equal than1. Suppose for the sake of contradic-
tion that the two following properties hold simultaneously:

(a) each arc ofEv has a multiplicity equal to1,
(b) each node ofXv has an in-degree and an out-degree equal to1.

15

In this case, one can observe thatXv is a simple graph (not a multigraph), and then
that induceduij ,ij′ is exactly the incidence matrix of this graph. Moreover, thegraph
is functional, and thus this matrix is a permutation matrixM . As a consequence of
Lemma 3, we obtaininducedux,ij = induced

u
x,ij′

×M and thenrij = rij′ , which is a
contradiction.

We now distinguish two cases whether assertion (a) or assertion (b) does not hold.
We first suppose that (b) holds and (a) does not hold. Considerthe arc ofEv that has
a multiplicitym > 1. Thanks to property (b), this arc belongs to a cycle in graphXv.
This cycle then corresponds to a “heavy cycle” inT , in the sense of pattern(S1.a).

Consider now that the assertion (b) is false. W.l.o.g., thisentails that there exists a
vertexp ∈ X whose out-degree is at least two. By definition, there are twodifferent
pathsη, η′ in T of the form:

η : p
v
−→ q andη′ : p

v
−→ q′

Note that the paths are distinct butq andq′ could be equal. Since each vertex ofX
has at least one successor,q andq′ allow to reach a cycle along the wordvl for some
l ∈ N>0. Moreover, since each vertex ofX has at least one predecessor,p is accessible
from a cycle. The overall situation is depicted on Figure 7, whereϕi denote the state
around which are the cycles.

ϕ1 p

q

q′

ϕ2

ϕ3

vl2
η : v

η′ : v
vl4

vl3

vl1

vl5

vl6

Fig. 7. Finding the dumbbell using graphXv.

If ϕ1 6= ϕ2, then the pattern(S1.b)can be exhibited inT using statesϕ1 to ϕ2 and
a well-chosen iteration of the two cycles (in such a way that the powers of wordv are
matching). The situation is similar ifϕ1 6= ϕ3. If ϕ1 = ϕ2 = ϕ3, then pattern(S1.b)
is present inT using the two different pathsη andη′. There are two different cycles
around statep, one usingη going through locationsq, ϕ2 = ϕ1 andp, and another one
usingη′ going through locationsq′, ϕ3 = ϕ1 andp. These two cycles are different (as
η 6= η′), and can be iterated so that they are on the same wordvl for somel > 0. This
yields the expected dumbbell.

Finally, we have proven that if Property (†) holds, thenT contains pattern(S1),
which contradicts our hypothesis. Thus there exists1 ≤ j < c such thatsuij ,ij+1

≥ Nl.
Let two positionsx′′ andy′′ defined byy′′ = ij+1 andx′′ = max{i ∈ P | i < y′′}.
By definition ofC, we haverij = rx′′ . This means thatsux,ij = sux,x′′ , i.e. the sums
of multiplicities of accepting paths overu between positionsx andij on one side, and
betweenx andx′′ on the other side, are equal. This entails that when considering the
same sums between positions larger thanij , the equality will also hold. In other terms,
we can deducesuij ,ij+1

= sux′′,ij+1
. Moreover, by our choice ofx′′ andy′′, there is no

positionz ∈ P such thatx′′ < z < y′′. Two cases are possible, eitherux′′,y′′ ∈ Σι,
or ux′′,y′′ = cwr, with c ∈ Σc, r ∈ Σr andw ∈ Σ∗

wn
. The propertysux′′,y′′ ≥ Nl

16

excludes the first case. We can thus consider positionsx′ = x′′ + 1 andy′ = y′′ − 1
which fulfill the conditionsx ≤ x′ ≤ y′ ≤ y, ux′,y′ ∈ Σ∗

wn
andhu(x′) = hu(x) + 1.

Finally, sux′′,y′′ ≥ Nl = (n2L)2|Γ |l implies thatsux′,y′ ≥ l as expected. ⊓⊔

r r

r r

r
x′ y′

Xij Xij+1

length

height

Fig. 8. sux′′,y′′ ≥ Ll

A.5 Proof of Lemma 5

Proof. To prove this result, we assume thatT is infinite but does not comply with(S1),
and prove it complies with(S2).

Let a wordu ∈ L(T) such that〈u〉 ≥ ψH(1) whereH = 2n
2

, and letk = |u|.
First, we define a partial functionΦu : N×N → N×N. The domain ofΦu is the set of
couple of positions(x, y) such that0 ≤ x ≤ y ≤ k, ux,y ∈ Σ∗

wn
andsux,y ≥ ψ(1).Let

(x, y) be a couple of positions inDom(Φu) and lmax be the largestl ∈ N>0 such
that sux,y ≥ ψ(lmax), Then by Lemma 4 there exist two positionsx′ andy′ such that
x < x′ ≤ y′ < y,ux′,y′ ∈ Σ∗

wn
,hu(x′) = hu(x)+1 andsux′,y′ ≥ lmax. We pick(x′, y′)

minimal in lexicographical order, and then defineΦu(x, y) = (x′, y′). We consider the
(finite) sequence(χi)i ∈ (N×N)N defined byχ0 = (0, k) and, fori ≥ 1, χi is defined
iff χi−1 ∈ Dom(Φu), and then defined asχi = Φu(χi−1).

r

r r

rr r

x x′ y′ y
length

height

Fig. 9. sux,y ≥ ψ(lmax)

By definition of mappingΦu, we have for anyi ≥ 1, hu(χi) = hu(χi−1)+1. Since
hu is finite this entails that sequence(χi)i is finite, and we represent it as(χi)0≤i≤L.
Note that the sequence stops iff the last term does not belongtoDom(Φu), which means
thatsuχL

< ψ(1) (the other conditions are fulfilled). For each index0 ≤ i ≤ Lwe define
a valueri ∈ N>0 and a set of pairs of statesXi ⊆ Q×Q as follows: (we letχi = (x, y))

– ri = suχi

– Xi = {(p1, p2) ∈ Q ×Q | there exist a pathη = p1
ux,y

−−−→ p2, a pathη′ on word
u0,x and a pathη′′ on worduy,k such thatη′ηη′′ is an accepting path ofT }

17

Note that by definition ofsuχi
, we haveri−1 ≥ ri for any1 ≤ i ≤ L. Let the setC

defined asC = {i ∈ [0, L] ∩ N | ∀j ∈ N, j < i ⇒ rj > ri}. We note the elements
of C in ascending order asi0, i1, . . . , ic with c = |C| − 1. Note thatrij > rij′ , for
0 ≤ j < j′ ≤ c. We haveri0 = r0 = suχ0

= 〈u〉 ≥ ψH(1). By Lemma 4 this implies
rih ≥ ψH−h(1) for 0 ≤ h ≤ min{H, c}. As we haveric = rL = suχL

< ψ(1), this
entailsc ≥ H . As there arec+1 elements inC, this implies that there exist two distinct
indicesj andj′ such thatXij = Xij′

.
The rest of the proof follows the same lines as proof of Lemma 4, but to identify

pattern(S2), we consider a graph where vertices are pairs of states. We let X = Xij ,
(x, y) = χij , (x′, y′) = χij′

, u1 = ux,x′ be the "call loop" word,u2 = uy′,y be
the "return loop" word, andw = ux′,y′ be the well-nested word between the "call
loop" and the "return loop" (see pattern(S2)). Now we construct the multigraphX =
(X,E) whereE ⊆ X ×X × N>0 × N>0 is defined as follows: for each pair of paths

η1 : p1
v1|m1

−−−−→ q1, q2
v2|m2

−−−−→ p2 such thatη′η1ηη2η′′ is an accepting path onu, for
some pathsη′, η andη′′ on wordsu0,x1

, w andux2,k respectively, we add the edge

(p1, q1)
(m1,m2)
−−−−−→ (p2, q2) in E. Note thatX is a multigraph, thus the same edge can

occur more than once inE.
Note that a path inX corresponds to a path inT in the following sense: let(p0, q0)

(m0
1,m

0
2)−−−−−→ (p1, q1) · · · (pµ−1, qµ−1)

(mµ
1
,m

µ
2
)

−−−−−−→ (pµ, qµ) be a path ofX , thenp0
u1|m

0
1−−−−→

p1 · · · pµ−1
u1|m

µ
1−−−−→ pµ

w|m
−−−→ qµ

u2|m
µ
2−−−−→ qµ−1 · · · q1

u2|m
0
1−−−−→ q0 is a path ofT that can

be extended to an accepting path, for somem ∈ N>0.
Note that becauseXij = Xij′

, each vertex fromX has both an in-degree and an
out-degree greater or equal than1. Suppose for the sake of contradiction that the two
following properties hold simultaneously:

(a) each arc ofE has a multiplicity equal to(1, 1),
(b) each node ofX has an in-degree and an out-degree equal to1.

In this case, one can observe thatX is a simple graph (not a multigraph), and then
thatrij = rij′ , which is a contradiction.

We now distinguish two cases whether assertion (a) or assertion (b) does not hold.
We first suppose that (b) holds and (a) does not hold. Considerthe arc ofEv that has a
multiplicity m > 1. Thanks to property (b), this arc belongs to a cycle in graphX . One
can verify that this cycle corresponds to a “heavy cycle” inT , in the sense of pattern
(S2.a).

Now we consider that assertion (b) does not hold. W.l.o.g., this entails that there
exists(p, q) ∈ X with at least two successors: there are two distinct edges

(p, q)
(m1

1,m
1
2)−−−−−→ (p1, q1) and(p, q)

(m2
1,m

2
2)−−−−−→ (p2, q2)

We let ϕ1 = (p1, q1), ϕ2 = (p2, q2) and consider the four paths ofT : η1 =

p
u1|m

1
1−−−−→ p1, η2 = p

u1|m
2
1−−−−→ p2, η′1 = q

u2|u
1
2−−−→ q1 andη′2 = q

u2|u
2
2−−−→ q2. By con-

structionϕ1 andϕ2 can be equal but we have(η1, η′1) 6= (η2, η
′
2).

18

Since each vertex ofX has at least one successor,ϕ1 andϕ2 allow to reach cycles
in X . Moreover, since each vertex ofX has at least one predecessor,(p, q) is reachable
from a cycle inX . The overall situation is depicted on Figure 10.

ϕ3 p, q

ϕ1

ϕ2

ϕ4

ϕ5

(u1, u2)
l2

(u1, u2)

(u1, u2) (u1, u2)
l4

(u1, u2)
l3

(u1, u2)
l1

(u1, u2)
l5

(u1, u2)
l6

Fig. 10.Finding the dumbbell using graphX .

We letϕ3 = (p3, q3), ϕ4 = (p4, q4) andϕ5 = (p5, q5) and distinguish three cases.
If ϕ3 6= ϕ4, then we can identify patter(S2.b)using the path inX going fromϕ3 to
ϕ4 (the construction is similar to that done onXv in the proof of Lemma 4). The same
reasoning holds ifϕ3 6= ϕ5. If ϕ3 = ϕ4 = ϕ5, then pattern(S2.b)can be exhibited
using the two different edges outgoing from(p, q). The constructions are similar to that
done onXv in the proof of Lemma 4. This concludes the proof. ⊓⊔

p3 p4 q4 q3
u
l2+1+l3
1 w u

l2+1+l3
2

u
l1
1 u

l5
1 u

l5
2 u

l1
2

Fig. 11.ϕ3 6= ϕ4

p1 p2 q2 q1
u
l3+l2+1

1 w u
l3+l2+1

2

u
l3+l2+1

1 u
l4+l2+1

1 u
l4+l2+1

2 u
l3+l2+1

2

Fig. 12.ϕ3 = ϕ4 = ϕ5

A.6 Proof of Proposition 1

Proof. We proceed successively withS0, S1, S2 andS3.
We prove that for all couplec = (p, q), c ∈ S0 if and only if the following property

holds:

∃u ∈ Σ∗
wn

and a pathη : p
u
−→ q of T (1)

First the forward direction. We proceed by induction. We show that any couple inS0

satisfies (1). A couple can be added toS0 in four different ways:

rule 1.1 Let (p, p) be a couple added toS0 by rule 1.1. Sop ∈ Q. Observe thatηǫ is a
path ofT . Then(p, p) satisfies (1).

19

rule 1.2 Let (p, q) be a couple added toS0 by rule 1.2. So there existst = (p, a, q) ∈ δι.
Observe thata ∈ Σ∗

wn
andp

a
−→ q is a path ofT because oft. Then(p, q) satisfies

(1).
rule 1.3 Let (p, q′) be a couple added toS0 by rule 1.3. So there exist(p, q), (q, q′) ∈

S0. By induction there exist two wordsu, u′ ∈ Σ∗
wn

such thatp
u
−→ q andq

u′

−→ q′

are paths ofT . Observe thatuu′ ∈ Σ∗
wn

andp
uu′

−−→ q′ is a path ofT . Then(p, q′)
satisfies (1).

rule 1.4 Let (p′, q′) be a couple added toS0 by rule 1.4. So there exist(p, q) ∈ S0,
(p′, c, γ, p) ∈ δc and(q, r, γ, q′) ∈ δr. By induction there exists a wordu ∈ Σ∗

wn

such thatp
u
−→ q is a path ofT . Observe thatcur ∈ Σ∗

wn
, p′

cur
−−→ q′ is a path ofT .

Then(p, q) satisfies (1).

Then the backward direction. By contradiction suppose thatthere existu ∈ Σ∗
wn

and
two statesp, q ∈ Q such thatp

u
−→ q is a path ofT but (p, q) /∈ S0. We chooseu such

that |u| is minimal. If |u| ≤ 1, then by rule 1.1 and 1.2,(p, q) ∈ S0, contradiction.
Otherwise we can decomposeu in two ways: eitheru = u1u2 such thatu1, u2 ∈
Σ∗

wn
\ {ǫ}, or u = cu′r such thatc ∈ Σc, r ∈ Σr andu′ ∈ Σ∗

wn
. We consider the first

case.u1 6= ǫ andu2 6= ǫ, so we can decomposep
u
−→ q asp

u1−→ p′
u2−→ q. Sinceu is

minimal we have|u| > |u1| and|u| > |u2|, this entails(p, p′) ∈ S0 and(p′, q) ∈ S0.
Then by rule 1.3,(p, q) ∈ S0, contradiction. Now we consider the second case. We

can decomposep
u
−→ q asp

c
−→ p′

u′

−→ q′
r
−→ q. Sinceu is minimal and|u| > |u′|,

(p′, q′) ∈ S0. Then by rule 1.4,(p, q) ∈ S0, contradiction.

We prove that for all tuplec = (p1, q1, p2, q2, p2, q3, B), c ∈ S1 if and only if the
following property holds:

∃u ∈ Σ∗
wn

and three pathsηi : pi
u
−→ qi of T for i ∈ {1, 2, 3}

such thatB = (η1 6= η2 6= ηǫ ∨ 〈η1〉 > 1)
(2)

First the forward direction. We show that every rule preserves (2). We proceed by in-
duction. We show that any tuple inS1 satisfies (2). A tuple can be added toS1 in four
different ways:

rule 2.1 Let (p1, p1, p2, p2, p3, p3, B) be a tuple added toS1 by rule 2.1. So there exist
pi ∈ Q for i ∈ {1, 2, 3}. Observe thatηǫ is a path ofT . Then(p1, p1, p2, p2, p3, p3,
B) satisfies (2) withB = ⊥.

rule 2.2 Let (p1, p′1, p2, p
′
2, p3, p

′
3, B) be a tuple added toS1 by rule 2.2. So there exist

ti = (pi, a, qi) ∈ δι for i ∈ {1, 2, 3} such thatB = λ(t1) > 1 ∨ (t1 6= t2).
Observe thata ∈ Σ∗

wn
andηi = pi

a
−→ qi is a path ofT because ofti. Then we have

〈η1〉 = λ(t1) andη1 6= η2 iff t1 6= t2. Then(p1, q1, p2, q2, p3, q3, B) satisfies (2).
rule 2.3 Let (p1, q′1, p2, q

′
2, p3, q

′
3, B

′′) be a tuple added toS1 by rule 2.3. So there exist
(p1, q1, p2, q2, p3, q3, B), (q1, q

′
1, q2, q

′
2, q3, q

′
3, B

′) ∈ S1 such thatB′′ = B ∨ B′.
By induction there exist two wordsu, u′ ∈ Σ∗

wn
such thatηi = pi

u
−→ qi and

η′i = qi
u′

−→ q′i are paths ofT for i ∈ {1, 2, 3}, with B = 〈η1〉 > 1 ∨ ηǫ 6= η1 6= η2

andB′ = 〈η′1〉 > 1 ∨ ηǫ 6= η′1 6= η′2. Observe thatuu′ ∈ Σ∗
wn

andη′′i = pi
uu′

−−→ qi

20

is a path ofT . Moreover〈η′′1 〉 = 〈η1〉〈η
′
1〉 and thus〈η′′1 〉 > 1 iff 〈η1〉 > 1 or

〈η′1〉 > 1. In addition, one also hasη′′1 6= η′′2 6= ηǫ iff ηǫ 6= η1 6= η2 or ηǫ 6= η′1 6=
η′2. Finally, 〈η′′1 〉 > 1 ∨ η′′1 6= η′′2 6= ηǫ is logically equivalent toB ∨ B′. Then
(p1, q

′
1, p2, q

′
2, p3, q

′
3, B

′′) satisfies (2).
rule 2.4 Let (p′1, q

′
1, p

′
2, q

′
2, p

′
3, q

′
3, B

′) be a tuple added toS1 by rule 2.3. So there exist
(p1, q1, p2, q2, p3, q3, B) ∈ S1, ti = (p′i, c, γ, pi) ∈ δc andt′i = (qi, r, γ, q

′
i) ∈ δr

for i ∈ {1, 2, 3} such thatB′ = B ∨ (λ(t1) > 1 ∨ λ(t′1) > 1 ∨ t1 6= t2 ∨ t
′
1 6= t′2).

By induction there exists a wordu ∈ Σ∗
wn

such thatηi = pi
u
−→ qi is a path ofT

with B = 〈η1〉 > 1 ∨ ηǫ 6= η1 6= η2. Observe thatcur ∈ Σ∗
wn

, η′i = p′i
cur
−−→ q′i is

a path ofT and〈η′1〉 > 1 ∨ η′1 6= η′2 6= ηǫ is logically equivalent to(B ∨ λ(t1) >
1 ∨ λ(t′1) > 1 ∨ t1 6= t2 ∨ t

′
1 6= t′2). Then(p1, q1, p2, q2, p3, q3, B′) satisfies (2).

Then the backward direction. By contradiction suppose thatthere existu ∈ Σ∗
wn

and
statespi, qi ∈ Q such thatηi = pi

u
−→ qi is a path ofT for i ∈ {1, 2, 3}, but

(p1, q1, p2, q2, p3, q3, B) /∈ S1 with B = 〈η1〉 > 1 ∨ η1 6= η2 6= ηǫ. We chooseu such
that |u| is minimal. If |u| ≤ 1, then by rule 2.1 and 2.2,(p1, q1, p2, q2, p3, q3, B) ∈ S1,
contradiction. Otherwise we can decomposeu in two ways: eitheru = u1u2 such that
u1, u2 ∈ Σ∗

wn
\ {ǫ}, oru = cu′r such thatc ∈ Σc, r ∈ Σr andu′ ∈ Σ∗

wn
. We consider

the first case.u1 6= ǫ andu2 6= ǫ, so we can decomposeηi asη′i = pi
u1−→ p′i and

η′′i = p′i
u2−→ qi for i ∈ {1, 2, 3}. Sinceu is minimal, we have|u| > |u1| and|u| > |u2|,

this entails(p1, p′1, p2, p
′
2, p3, p

′
3, B

′) ∈ S1 with B′ = 〈η′1〉 > 1 ∨ η′1 6= η′2 6= ηǫ and
(p′1, q1, p

′
2, q2, p

′
3, q3, B

′′) ∈ S1 with B′′ = 〈η′′1 〉 > 1 ∨ η′′1 6= η′′2 6= ηǫ. By rule 1.3,
(p1, q1, p2, q2, p3, q3, B

′ ∨ B′′) ∈ S1. Observe that〈η1〉 > 1 ∨ η1 6= η2 6= ηǫ is logi-
cally equivalent toB′ ∨ B′′. Contradiction. Now we consider the second case. We can

decomposeηi asηi = η′iη
′′
i η

′′′
i whereη′i = pi

c
−→ p′i, η

′′
i = p′i

u′

−→ q′i andη′′′i = q′i
r
−→ qi

for i ∈ {1, 2, 3}. Sinceu is minimal and|u| > |u′|, (p′1, q
′
1, p

′
2, q

′
2, p

′
3, q

′
3, B

′) ∈ S1

withB′ = 〈η′′1 〉 > 1∨η′′1 6= η′′2 6= ηǫ. Then by rule 1.4,(p1, q1, p2, q2, p3, q3, B′′) ∈ S1

with B′′ = (B′ ∨ 〈η′1〉 > 1 ∨ 〈η′′′1 〉 > 1 ∨ η′1 6= η′2 ∨ η′′′1 6= η′′′2), Observe that
〈η1〉 > 1 ∨ η1 6= η2 is logically equivalent toB′′, contradiction.

For the end of the proof we define the following notation: letu, u′ be two words

such thatuu′ ∈ Σ∗
wn

andη1 : p
u
−→ q, η2 : q′

u′

−→ p′ be two paths ofT . As uu′ ∈ Σ∗
wn

,

there exist(p,⊥)
u
−→ (q, σ) and(q′, σ′)

u′

−→ (p′,⊥) two runs ofT for someσ, σ′ ∈ Γ ∗.
Then we write thatη1 andη2 arematching pathsiff σ = σ′.

We prove that for all tuplec = (p1, q1, p2, q2, p3, q3, q
′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, B), c ∈

S2 if and only if the following property holds:

∃uu′ ∈ Σ∗
wn

and pathsηi : pi
u
−→ qi andη′i : q

′
i

u′

−→ p′i of T for i ∈ {1, 2, 3}

such thatηi andη′i are matching paths ofT for i ∈ {1, 2, 3}

andB = (η1 6= η2 6= ηǫ ∨ η
′
1 6= η′2 6= ηǫ ∨ 〈η1〉 > 1 ∨ 〈η′1〉 > 1)

(3)

First the forward direction. We show that every rule preserves (3). We proceed by in-
duction. We show that any tuple inS2 satisfies (3). A tuple can be added toS2 in three
different ways:

21

rule 3.1 Let (p1, q1, p2, q2, p3, q3, q′3, p
′
3, q

′
2, p

′
2, q

′
1, p

′
1, B

′′) be a tuple added toS2 by
rule 3.1. So there exist(p1, q1, p2, q2, p3, q3, B), (q′1, p

′
1, q

′
2, p

′
2, q

′
3, p

′
3, B

′) ∈ S1

such thatB′′ = B ∨ B′. Then by (2) there existu, u′ ∈ Σ∗
wn

and pathsηi =

pi
u
−→ qi andη′i = q′i

p
−→

′

i of T for i ∈ {1, 2, 3} with B = 〈η1〉 > 1 ∨ η1 6=
η2 andB′ = 〈η′1〉 > 1 ∨ η′1 6= η′2. Observe thatuu′ ∈ Σ∗

wn
andηi andη′i for

any i ∈ {1, 2, 3} are trivially matching paths asu andu′ are well-nested. Then
(p1, q1, p2, q2, p3, q3, q

′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, B

′′) satisfies (3).
rule 3.2 Let (p′1, p1, p

′
2, p2, p

′
3, p3, q3, q

′
3, q2, q

′
2, q1, q

′
1, B) be a tuple added toS2 by

rule 3.2. So there existti = (p′i, c, γ, pi) ∈ δc and t′i = (qi, r, γ, q
′
i) ∈ δr for

i ∈ {1, 2, 3} such thatB = (λ(t1) > 1 ∨ λ(t′1) > 1 ∨ t1 6= t2 ∨ t
′
1 6= t′2). We can

consider pathsηi = p′i
c
−→ pi andη′i = qi

c
−→ q′i for i ∈ {1, 2, 3}. Observe thatcr ∈

Σ∗
wn

, ηi andη′i are matching paths ofT and(η1 6= η2∨η
′
1 6= η′2∨〈η1〉 > 1∨〈η′1〉 >

1) is logically equivalent toB. Then(p′1, p1, p
′
2, p2, p

′
3, p3, q3, q

′
3, q2, q

′
2, q1, q

′
1, B)

satisfies (3).
rule 3.3 Let (p′′1 , p

′
1, p

′′
2 , p

′
2, p

′′
3 , p

′
3, q

′
3, q

′′
3 , q

′
2, q

′′
2 , q

′
1, q

′′
1 , B

′′) be a tuple added toS2 by
rule 3.2. So there exist(p′′1 , p1, p

′′
2 , p2, p

′′
3 , p3, q3, q

′′
3 , q2, q

′′
2 , q1, q

′′
1 , B), (p1, p′1, p2,

p′2, p3, p
′
3, q

′
3, q3, q

′
2, q2, q

′
1, q1, B

′) ∈ S2 such thatB′′ = B ∨ B′. By induction
there exist four wordsu, u′, ũ′ andũ such thatuũ ∈ Σ∗

wn
, u′ũ′ ∈ Σ∗

wn
, matching

pathsηi = p′′i
u
−→ pi and η̃i = qi

ũ
−→ q′′i and matching pathsη′i = pi

u′

−→ p′i

and η̃′i = q′i
ũ′

−→ qi for i ∈ {1, 2, 3}, with B = η1 6= η2 ∨ η̃1 6= η̃2 ∨ 〈η1〉 >
1 ∨ 〈η̃1〉 > 1 andB′ = η′1 6= η′2 ∨ η̃′1 6= η̃′2 ∨ 〈η′1〉 > 1 ∨ 〈η̃′1〉 > 1. Observe

thatuu′ũ′ũ ∈ Σ∗
wn

, η′′i = p′′i
uu′

−−→ p′i and η̃′′i = q′i
ũ′ũ
−−→ q′′i are matching paths

of T and(η′′1 6= η′′2 ∨ η̃′′1 6= η̃′′2 ∨ 〈η′′1 〉 > 1 ∨ 〈η̃′′1 〉 > 1) is logically equivalent to
B ∨B′ = B′′. Then(p′′1 , p

′
1, p

′′
2 , p

′
2, p

′′
3 , p

′
3, q

′
3, q

′′
3 , q

′
2, q

′′
2 , q

′
1, q

′′
1 , B

′′) satisfies (3).

Then the backward direction. By contradiction suppose thatthere exist two wordsu,

u′ andpi, qi, q′i, p
′
i ∈ Q such thatuu′ ∈ Σ∗

wn
, ηi = pi

u
−→ qi and η̃i = q′i

u′

−→ p′i
are matching paths ofT for i ∈ {1, 2, 3}, but(p1, q1, p2, q2, p3, q3, q′3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1,

B) /∈ S2 with B = 〈η1〉 > 1 ∨ 〈η̃i〉 > 1 ∨ η1 6= η2 ∨ η̃i 6= η̃i. We chooseu
andu′ such thathu(|u|) (the number of pending calls ofu) is minimal. There ex-
ists a unique decomposition ofu (resp.u′) asu = w1cw2 (resp. asu′ = w′

2rw
′
1)

with w1, w
′
1, w2w

′
2 ∈ Σ∗

wn
, c ∈ Σc andr ∈ Σr. We can thus decompose pathηi as

ηi = η′iη
′′
i η

′′′
i whereη′i = pi

w1−−→ p̃i, η′′i = p̃i
c
−→ q̃i, η′′′i = q̃i

w2−−→ qi and similarly

for path η̃i with pathsη̃′′′i = q′i
w′

2−−→ q̃′i, η̃
′′
i = q̃′i

r
−→ p̃′i, η̃

′
i = p̃′i

w′

1−−→ p′i. Since
w1, w

′
1 ∈ Σ∗

wn
we have(p1, p̃1, p2, p̃2, p3, p̃3, B′), (p̃′3, p

′
3, p̃

′
2, p

′
2, p̃

′
1, p

′
1, B̃

′) ∈ S1

with B′ = 〈η′1〉 > 1 ∨ η′1 6= η′2 and B̃′ = 〈η̃′1〉 > 1 ∨ η̃′1 6= η̃′2. Then by rule
3.1, we have(p1, p̃1, p2, p̃2, p3, p̃3, p̃′3, p

′
3, p̃

′
2, p

′
2, p̃

′
1, p

′
1, B

′ ∨ B̃′) ∈ S2. Following the
decompositionu = w1cw2, we havehu(|u|) > hw2

|w2|. Sincehu(|u|) is minimal,
this entails(q̃1, q1, q̃2, q2, q̃3, q3, q′3, q̃

′
3, q

′
2, q̃

′
2, q

′
1, q̃

′
1, B

′′) ∈ S2 with B′′ = (〈η′′′1 〉 >
1 ∨ 〈η̃′′′1 〉 > 1 ∨ η′′′1 6= η′′′2 ∨ η̃′′′1 6= η̃′′′2). By rule 3.2 applied on matching pathsη′′i
and η̃′′i , we have(p̃1, q̃1, p̃2, q̃2, p̃3, q̃3, q̃′3, p̃

′
3, q̃

′
2, p̃

′
2, q̃

′
1, p̃

′
1, B

′′′) with B′′′ = 〈η′′1 〉 >
1 ∨ 〈η̃′′1 〉 > 1 ∨ η′′1 6= η′′2 6= η̃′′1 6= η̃′′2 . By applying twice the rule 3.3, we obtain
(p1, q1, p2, q2, p3, q3, q

′
3, p

′
3, q

′
2, p

′
2, q

′
1, p

′
1, Bc) ∈ S2 with Bc = B′ ∨ B̃′ ∨ B′′ ∨ B′′′.

We can verify thatB is logically equivalent withBc, contradiction.

22

We now prove that⊤ ∈ S3 iff T is infinite. First the forward direction. There are
two possibility of the presence of⊤ in S3:

rule 4.1 There exists(p, p, p, q, q, q,⊤) ∈ S1 by rule 4.1. By property (2) ofS1, there
existu ∈ Σ∗

wn
and pathsη1 = p

u
−→ p, η2 = p

u
−→ q andη3 = q

u
−→ q of T with

〈η1〉 > 1 or η1 6= η2. This corresponds to the definition of patternS1, thenT is
infinite.

rule 4.2 There exist(q, q′) ∈ S0 and(p, p, p, q, q, q, q′, q′, q′, p′, p′, p′,⊤) ∈ S2 by rule
4.2. By property (1) ofS0 and property (3) ofS2, there exist three wordsu, u′, w,

such thatuu′, w ∈ Σ∗
wn

, and pathsη = q
w
−→ q′, η1 = p

u
−→ p, η′1 = p′

u′

−→ p′,

η2 = p
u
−→ q, η′2 = q′

u′

−→ p′, η3 = q
u
−→ q andη′3 = q′

u′

−→ q′ such thatηi and
η′i are matching paths ofT and〈η1〉 > 1 or 〈η′1〉 > 1 or η1 6= η2 or η′1 6= η′2. This
corresponds to the definition of patternS2, thenT is infinite.

Then the backward direction. SinceT is infinite, we are able to find patternS1or pattern
S2 in T . If patternS1 is present inT , then there existu ∈ Σ∗

wn
and pathsη1 = p

u
−→ p,

η2 = p
u
−→ q andη3 = q

u
−→ q of T with 〈η1〉 > 1 or η1 6= η2. By property (2) of

S1, (p, p, p, q, q, q,⊤) ∈ S1. Then by rule 4.1,⊤ ∈ S3. If patternS2 is present inT ,
then there exist three wordsu, u′, w, such thatuu′, w ∈ Σ∗

wn
, and pathsη = q

w
−→ q′,

η1 = p
u
−→ p, η′1 = p′

u′

−→ p′, η2 = p
u
−→ q, η′2 = q′

u′

−→ p′, η3 = q
u
−→ q and

η′3 = q′
u′

−→ q′ such thatηi andη′i are matching paths ofT and with 〈η1〉 > 1 or
〈η′1〉 > 1 or η1 6= η2 or η′1 6= η′2. By property (1) ofS0 and property (3) ofS2,
(q, q′) ∈ S0 and(p, p, p, q, q, q, q′, q′, q′, p′, p′, p′,⊤) ∈ S2. Then by rule 4.2,⊤ ∈ S3.

⊓⊔

B Complements to Section 5

Algorithm 2 Computation of the multiplicity of a finiteN-VPA
Require: A finite N-VPA T
1: M = {Ma | a ∈ Σι} ∪ {Mǫ}
2: M′ = ∅
3: repeat
4: M = M∪M′

5:
M′ = {M1.M2 |M1,M2 ∈ M} ∪

{
∑

γ∈Γ
Mc,γ .M.Mr,γ |M ∈ M, c ∈ Σc, r ∈ Σr, γ ∈ Γ}

6: until M′ ∪M = M
7: return max{〈M〉 |M ∈ M}

C From Tree Automata to VPA

C.1 Tree automata with multiplicities

Let Σ = Σ0 ∪ . . . ∪ ΣL be a ranked alphabet. Fora ∈ Σ, the rank ofa, denoted
rk(a), equalsm iff a ∈ Σm. TΣ denotes the freeΣ-algebra of finite orderedΣ-labeled

23

trees,i.e. TΣ is the smallest setT satisfying(i) Σ0 ⊆ T , and(ii), if a ∈ Σm and
t0, . . . , tm−1 ∈ T , thena(t0, . . . , tm−1) ∈ T . Note that(i) can be viewed as a subcase
of (ii) if we allowm to equal0.

Let t = a(t0, . . . , tm−1) ∈ TΣ for somea ∈ Σm with m ≥ 0. The set of nodes of
t, S(t) is the subset ofN∗ defined byS(t) = {ǫ} ∪

⋃m−1
j=0 j · S(tj). t defines a map

αt : S(t) → Σ mapping the nodes oft to their labels. We have:

αt(r) =

{

a if r = ǫ
αtj (r

′) if r = j · r′

Tree automataA finite tree automaton overΣ is a tripleA = (Q, I, δ) where:

– Q is a finite set of states
– I ⊆ Q is the set of initial states
– δ ⊆

⋃L

m=0Q×Σm ×Qm is the set of transitions. Given a transitionτ = (q, a, q0
. . . qm−1) ∈ δ, we denote byrk(τ) the valuerk(a).

Let t = a(t0, . . . , tm−1) ∈ TΣ andq ∈ Q. A q-computation ofA for t consists
of a transition(q, a, q0 . . . qm−1) ∈ δ for the root andqj-computations ofA for the
subtreestj , j ∈ {0 . . .m − 1}. Formally, a computationϕ of A for t can be viewed
as a mapϕ : S(t) → δ satisfying for anyr ∈ S(t), if αt(r) = a ∈ Σm, then
ϕ(r) = (q, a, q0 . . . qm−1) and for any0 ≤ j ≤ m−1,ϕ(r ·j) = (qj , aj , q

j
0 . . . q

j
mj−1)

whereaj = αt(r · j) andmj = rk(aj). ϕ is aq-computation ofA for t wheneverϕ(ǫ)
is of the form(q, a, q0 . . . qm−1). A q-computation is accepting iffq ∈ I. A tree t is
accepted byA iff there is an accepting computation ofA for t. The language ofA is the
set of trees accepted byA and is denoted byL(A).

Weighted tree automataA weighted tree automaton over the alphabetΣ and the semir-
ing (N,+, ·) is a pairT = (A, λ) whereA = (Q, I, δ) is a tree automaton and
λ : δ → N>0 is a mapping assigning a multiplicity to each transition ofA. No-
tions of computations, accepted computations and languages are lifted from tree au-
tomata to weighted tree automata. Lett ∈ L(A). The multiplicity of a computa-
tion ϕ of A for t, denoted〈ϕ〉, is the product of the multiplicities composing it,i.e.
〈ϕ〉 = Πr∈S(t)λ(ϕ(r)). The multiplicity of t ∈ L(A), denoted〈t〉, is defined as
〈t〉 =

∑

{〈ϕ〉 | ϕ accepting computation fort}.

C.2 From tree automata (with multiplicities) to VPA (with multiplicities)

From trees to well-nested wordsLet Σ = Σ0 ∪ . . . ∪ ΣL be a ranked alphabet. We
defined the structured alphabetΣ̂ = Σc ∪Σr as follows:

Σc = {〈a | a ∈ Σ}
Σr = {a〉 | a ∈ Σ}

The encoding of a treet ∈ TΣ is a well-nested word over̂Σ, denotedenc(t),
and defined inductively as follows: ift = a(t0, . . . , tm−1) ∈ TΣ , then enc(t) =
〈a enc(t0) . . . enc(tm−1) a〉. One can easily verify that for anyt ∈ TΣ , we have
enc(t) ∈ Σ̂∗

wn
.

24

Automata translationLet T = (A, λ) whereA = (Q, I, δ) be a tree automaton with
multiplicities overΣ. We define anN-VPA T ′ = (A′, λ′) such that:1

L(T ′) = {enc(t) | t ∈ L(T)} and∀t ∈ L(T), 〈t〉T = 〈enc(t)〉T ′ (4)

We first define theVPA A′ = (Q′, Γ ′, δ′, Q′
in, Q

′
f) over the alphabet̂Σ as follows:

– Q′ = {(q, i) | q ∈ I, 0 ≤ i ≤ 1} ∪ {(τ, i) | τ ∈ δ, 0 ≤ i ≤ rk(τ)}
– Q′

in = {(q, 0) | q ∈ I}
– Q′

f = {(q, 1) | q ∈ I}
– Γ ′ = Q′ ×Σ

We now defineδ′ by its restrictionsδ′c andδ′r on call and return symbols respec-
tively:

s
〈a,(s,a)
−−−−−→ s′ ∈ δ′c iff one of the following cases holds:

1. s = (q, 0) ands′ = (τ ′, 0) whereq ∈ I andτ ′ = (q, a, q′0 . . . q
′
m′−1) ∈ δ

2. s = (τ, i) ands′ = (τ ′, 0) whereτ = (q, b, q0 . . . qm−1) ∈ δ, i < rk(τ), and
τ ′ = (qi, a, q

′
0 . . . q

′
m′−1) ∈ δ

Intuitively, the states gives the rule that is applied, and at which position in the rule
we are. In the first case, this is an initialization rule, for some stateq. We require that
the new ruleτ ′ starts from a root in stateq. In the second case, we were applying ruleτ ,
at positioni. Thus the current state wasqi. We thus require that the new rule we apply
(τ ′) starts from a root in stateqi.

s
a〉,(s′′,a)
−−−−−−→ s′ ∈ δ′r iff one of the following cases holds:

1. s′′ = (q, 0), s′ = (q, 1) ands = (τ ′, rk(τ ′)) whereq ∈ I andτ ′ = (q, a, q′0 . . .
q′m′−1) ∈ δ

2. s′′ = (τ, i), s′ = (τ, i + 1) ands = (τ ′, rk(τ ′)) whereτ = (q, b, q0 . . . qm−1) ∈ δ,
i < rk(τ), andτ ′ = (qi, a, q

′
0 . . . q

′
m′−1) ∈ δ

To read a return symbol, we should have finished the rule we were applying. This
is what is required with conditions = (τ ′, rk(τ ′)) in both cases. Then, we recover
from the stack symbols′′ what is the rule we were applying on the root, and we move
one position forward in this rule. For instance, in the second case, we go from(τ, i) to
(τ, i+1). We also check that the rule that is finished was on the good state, i.e.q in the
first case, andqi in the second case.

Last, we define the multiplicity mappingλ′ as follows: for any transitiond ∈ δ′r,

we letλ′(d) = 1, and for any transitiond = s
〈a,(s,a)
−−−−−→ s′ ∈ δ′c wheres′ = (τ ′, 0), we

let λ′(d) = λ(τ ′). Intuitively, a transition in the tree automaton is appliedtwice in the
VPA, once when the call symbol is read, and once when the return symbol is read. We
thus report its multiplicity only in the case of the call symbol.

We claim:

Proposition 2. Let T = (A, λ) be a tree automaton with multiplicities, andT ′ =
(A′, λ′) be theN-VPA defined before. The set of accepting computations ofT is in
bijection with the set of accepting paths ofT ′, andT ′ verifies property(4).

1 We use indexes to explicit whether the multiplicity is computed withinT or within T ′.

25

C.3 A New Algorithm for Finiteness of Weighted Tree Automata

We consider a trimmed weighted tree automatonB = (Ξ,Q, I,∆, λ) whereΞ is a
ranked alphabet (with symbols of arity at mostm, Ξi being symbols of arityi), Q is
a finite set of states,I ⊆ Q the set of initial states,∆ is a transition relation (∆ ⊆
⋃m

i=0Q
i × Ξi ×Q) andλ associates with each transition rule a positive integer.

We construct by saturation three setsS0, S1 andS2 of tuples built from states and
a Boolean respectively of the form(q1, q′1, q

′′
1 , b), (q1, q

′
1, q2, q

′
2, q3, q

′
3, b), (b) where

qi, q
′
i ∈ Q andb ∈ B using the following inference rules from Figure 13.

τ = a→ q, τ ′ = a→ q′, τ ′′ = a→ q′′ ∈ ∆
(1.1)

(q, q′, q′′, τ 6= τ ′ ∨ λ(τ) > 1) ∈ S0

the arity off is k, for all 1 ≤ j ≤ k, (qj , q
′
j , q

′′
j , bj) ∈ S0

τ = f(q1, . . . , qk) → q, τ ′ = f(q′1, . . . , q
′
k) → q′, τ ′′ = f(q′′1 , . . . , q

′′
k) → q′′ ∈ ∆

(1.2)
(q, q′, q′′,

∨
j
bj ∨ τ 6= τ ′ ∨ λ(τ) > 1) ∈ S0

pi ∈ Q for all i ∈ {1, 2, 3}
(2.1)

(p1, p1, p2, p2, p3, p3,⊥) ∈ S1

the arity off is k, (pj , qj , p′j , q
′
j , p

′′
j , q

′′
j , bj) ∈ S1 for some1 ≤ j ≤ k

for all 1 ≤ ℓ ≤ k, ℓ 6= j, (qℓ, q
′
ℓ, q

′′
ℓ , bℓ) ∈ S0

τ = f(q1, . . . , qk) → q, τ ′ = f(q′1, . . . , q
′
k) → q′, τ ′′ = f(q′′1 , . . . , q

′′
k) → q′′ ∈ ∆

(2.2)
(pj , q, p

′
j , q

′, p′′j , q
′′,

∨
j|j 6=ℓ

bj ∨ τ 6= τ ′ ∨ λ(τ) > 1) ∈ S1

(p, p, p, q, q, q,⊤) ∈ S1
(3.1)

(⊤) ∈ S2

Fig. 13. Inference rules for deciding finiteness.

Intuitively, a triple(q, q′, q′′, b) belongs toS0 if there exists a tree having three runs
which label the root respectively byq, q′ andq′′ andb is true if the first one has used a
transition whose multiplicity is strictly greater than 1 orthe first two runs differ at some
position in the transition rules they use. A tuple(q1, q2, q

′
1, q

′
2, , q

′′
1 , q

′′
2 , b) belongs toS1

if there exists a context having three runs which label the hole of the context byq1, q′1
andq′′1 respectively and the root byq2, q′2 andq′′2 respectively andb is true if the first
one has used a transition whose multiplicity is strictly greater than 1 or the first two
runs differ at some position in the transition rules they use. Finally, the last rule is used
to identify the presence of the required pattern.

Obviously, this algorithm is in PTIME.

26

