Probabilistic Robust Timed Games *

Youssouf Oualhadj', Pierre-Alain Reynier?, and Ocan Sankur®

! Université de Mons (UMONS), Belgium
2 LIF, Université d’Aix-Marseille & CNRS, France
8 Université Libre de Bruxelles, Belgium

Abstract. Solving games played on timed automata is a well-known
problem and has led to tools and industrial case studies. In these games,
the first player (Controller) chooses delays and actions and the second
player (Perturbator) resolves the non-determinism of actions. However,
the model of timed automata suffers from mathematical idealizations
such as infinite precision of clocks and instantaneous synchronization
of actions. To address this issue, we extend the theory of timed games
in two directions. First, we study the synthesis of robust strategies for
Controller which should be tolerant to adversarially chosen clock impre-
cisions. Second, we address the case of a stochastic perturbation model
where both clock imprecisions and the non-determinism are resolved
randomly. These notions of robustness guarantee the implementability
of synthesized controllers. We provide characterizations of the resulting
games for Biichi conditions, and prove the EXPTIME-completeness of
the corresponding decision problems.

1 Introduction

For real-time systems, timed games are a standard mathematical formalism
which can model control synthesis problems under timing constraints. These
consist in two-players games played on arenas, defined by timed automata, whose
state space consists in discrete locations and continuous clock values. The two
players represent the control law and the environment. Since the first theoretical
works [2], symbolic algorithms have been studied [10], tools have been developed
and successfully applied to several case studies.

Robustness Because model-based techniques rely on abstract mathematical
models, an important question is whether systems synthesized in a formalism
are implementable in practice. In timed automata, the abstract mathematical
semantics offers arbitrarily precise clocks and time delays, while real-world digital
systems have response times that may not be negligible, and control software
cannot ensure timing constraints exactly, but only up to some error, caused by
clock imprecisions, measurement errors, and communication delays. A major
challenge is thus to ensure that the synthesized control software is robust, i.e.
ensures the specification even in presence of imprecisions [15].

Following these observations there has been a growing interest in lifting
the theory of verification and synthesis to take robustness into account. Model-
checking problems were re-visited by considering an unknown perturbation

* This work was partly supported by ANR projects ECSPER (ANR-2009-JCJC-0069)
and ImpRo (ANR-2010-BLAN-0317), European project Cassting (FP7-ICT-601148),
and the ERC starting grant inVEST (FP7-279499).

parameter to be synthesized for several kinds of properties [19,12, 7], see also [9].
Robustness is also a critical issue in controller synthesis problems. In fact, due to
the infinite precision of the semantics, synthesized strategies may not be realizable
in a finite-precision environment; the controlled systems synthesized using timed
games technology may not satisfy the proven properties at all. In particular, due
to perturbations in timings, some infinite behaviors may disappear completely.
A first goal of our work is to develop algorithms for robust controller synthesis:
we consider this problem by studying robust strategies in timed games, namely,
those guaranteeing winning despite imprecisions bounded by a parameter.

Adversarial or Stochastic Environments We consider controller synthe-
sis problems under two types of environments. In order to synthesize correct
controllers for critical systems, one often considers an adversarial (or worst-case)
environment, so as to ensure that all behaviors of the system are correct. However,
in some cases, one is rather interested considering a stochastic environment which
determines the resolution of non-determinism, and the choice of clock perturba-
tions following probability distributions. We are then interested in satisfying a
property almost-surely, that is, with probability 1, or limit-surely, that is, for
every € > 0, there should exist a strategy for Controller under which the property
is satisfied with probability at least 1 — €.

Contributions We formalize the robust controller synthesis problem against
an adversarial environment as a (non-stochastic) game played on timed au-
tomata with an unknown imprecision parameter ¢, between players Controller
and Perturbator. The game proceeds by Controller suggesting an action and a
delay, and Perturbator perturbing each delay by at most § and resolving the non-
determinism by choosing an edge with the given action. Thus, the environment’s
behaviors model both uncontrollable moves and the limited precision Controller
has. We prove the EXPTIME-completeness of deciding whether there exists
a positive § for which Controller has a winning strategy for a Biichi objective,
matching the complexity of timed games in the classical sense. Our algorithm
also allows one to compute § > 0 and a witness strategy on positive instances.

For stochastic environments, we study two probabilistic variants of the se-
mantics: we first consider the case of adversarially resolved non-determinism and
independently and randomly chosen perturbations, and then the case where both
the non-determinism and perturbations are randomly resolved and chosen. In
each case, we are interested in the existence of § > 0 such that Controller wins
almost-surely (resp. limit-surely). We give decidable characterizations based on
finite abstractions, and EXPTIME algorithms. All problems are formulated in a
parametric setting: the parameter ¢ is unknown and is to be computed by our
algorithms. This is one of the technical challenges in this paper.

Our results on stochastic perturbations can also be seen as a new interpre-
tation of robustness phenomena in timed automata. In fact, in the literature
on robustness in timed automata, non-robust behaviors are due to the accu-
mulation of the imprecisions ¢ along long runs, and in the proofs, one exhibits
non-robustness by artificially constructing such runs (e.g. [12,22]). In contrast,
in the present setting, we show that non-robust behaviors either occur almost
surely, or can be avoided surely (Theorem 13).

Related Work While several works have studied robustness issues for model-
checking, there are very few works on robust controller synthesis in timed systems:

— The (non-stochastic) semantics we consider was studied for fized ¢ in [11]
encoding by timed games; but the parameterized version of the problem was not
considered.

— The restriction of the parameterized problem to (non-stochastic) deterministic
timed automata was considered in [22]. Here, the power of Perturbator is restricted
as it only modifies the delays suggested by Controller, but has no non-determinism
to resolve. Therefore, the results consist in a robust Biichi acceptance condition
for timed automata, but they do not generalize to timed games. Technically, the
algorithm consists in finding an aperiodic cycle, which are cycles that are “stable”
against perturbations. This notion was defined in [3] to study entropy in timed
languages. We will also use aperiodic cycles in the present paper.

— A variant of the semantics we consider was studied in [8] for (deterministic)
timed automata and shown to be EXPTIME-complete already for reachability
due to an implicit presence of alternation. Timed games, Biichi conditions, or
stochastic environments were not considered.

— Probabilistic timed automata where the non-determinism is resolved following
probability distributions have been studied [16,4,17]. Our results consist in
deciding almost-sure and limit-sure Biichi objectives in PTAs subject to random
perturbations in the delays. Note that PTAs are equipped with a possibly
different probability distribution for each action. Although we only consider
uniform distributions, the two settings are equivalent for almost-sure and limit-
sure objectives. Games played on PTA were considered in [14] for minimizing
expected time to reachability with NEXPTIME N co-NEXPTIME algorithms.

To the best of our knowledge, this work is the first to study a stochastic
model of perturbations for synthesis in timed automata.

Organization Definitions are given in Section 2. Preliminaries concerning
the notions of regions graphs, orbit graphs and shrunk difference bound matrices
are presented in Section 3. The finite-state game abstraction used to characterize
the positive instances of the (non-stochastic) problem is presented in Section 4
and the proof of correction is given in Section 5. In Section 6, we consider the
two stochastic models for the environment. Due to space limitations, the proofs
are omitted, but they are available in [18]

2 Robust Timed Games

Timed automata. Given a finite set of clocks C, we call valuations the elements
of RE,,. For a subset R C C and a valuation v, v[R + 0] is the valuation defined
by v[R + 0](z) =0 if # € R and v[R <« 0](x) = v(z) otherwise. Given d € R>g
and a valuation v, the valuation v + d is defined by (v + d)(z) = v(z) + d for all
x € C. We extend these operations to sets of valuations in the obvious way. We
write O for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k <z <X’ lork < z—y <’
where z,y € C, k,l € ZU{—00,00} and <, %’ € {<,<}. A guard is a conjunction
of atomic clock constraints. A valuation v satisfies a guard g, denoted v = g, if
all constraints are satisfied when each = € C is replaced with v(z). We write @¢
for the set of guards built on C. A zone is a subset of Rgo defined by a guard.

A timed automaton A over a finite alphabet of actions Act is a tuple (£,C,
Lo, Act, E), where L is a finite set of locations, C is a finite set of clocks, E C

L x Dc x Act x 2€ x L is a set of edges, and £y € L is the initial location. An edge
e=(¢,g,a,R,¢) is also written as ¢ 99R pr A stateis a pair ¢ = (£,v) € LxRY,,.
An edge e = (£, g,a, R, {') is enabled in a state (£,v) if v satisfies the guard g.

The set of possible behaviors of a timed automaton can be described by the set
of its runs, as follows. A run of A is a sequence gieigoes ... where g; € L X RC>07
and writing ¢; = ({,v), either ¢; € R>g, in which case ¢;41 = ({,v + ¢;), or
e; =l g,a,R,¢') € E, in which case v = g and ¢;+1 = (¢, v[R « 0]). The set of
runs of A starting in ¢ is denoted Runs(A, q).

Parameterized timed game. In order to define perturbations, and to capture
the reactivity of a controller to these, we define the following parameterized timed
game semantics. Intuitively, the parameterized timed game semantics of a timed
automaton is a two-player game parameterized by § > 0, where Player 1, also
called Controller chooses a delay d > § and an action a € Act such that every
a-labeled enabled edge is such that its guard is satisfied after any delay in the
set d+[—9, 0] (and there exists at least one such edge). Then, Player 2, also called
Perturbator chooses an actual delay d’ € d 4 [—6, 0] after which the edge is taken,
and chooses one of the enabled a-labeled edges. Hence, Controller is required to
always suggest delays that satisfy the guards whatever the perturbations are.

Formally, given a timed automaton A = (£,C, ¢y, Act, E') and 6 > 0, we define
the parameterized timed game of A w.r.t. § as a two-player turn-based game
Gs(A) between players Controller and Perturbator. The state space of Gs(A)
is partitioned into Vo U Ve where Vo = £ x RS, belong to Controller, and
Vp = L xRS, x R>g x Act belong to Perturbator. The initial state is (¢o, 0) € V.
The transitions are defined as follows: from any state (£,v) € V¢, there is a
transition to (¢,v,d,a) € Vp whenever d > 4, for every edge e = (¢,g,a, R, ')
such that v +d |= g, we have v+ d + ¢ |= ¢ for all € € [0, d], and there exists
at least one such edge e. Then, from any such state (¢,v,d,a) € Vp, there is a
transition to (¢, ') € Vi iff there exists an edge e = (¢, g, a, R, ¢’) as before, and
e € [—4,0] such that v/ = (v +d+¢)[R + 0]). A play of Gs(.A) is a finite or
infinite sequence qie1goes . .. of states and transitions of Gs(A), with ¢; = (4o, 0),
where e; is a transition from ¢; to g;11. It is said to be mazimal if it is infinite or
cannot be extended. A strategy for Controller is a function that assigns to every
non-maximal play ending in some (¢,v) € Vi, a pair (d,a) where d > § and a
is an action such that there is a transition from (¢,v) to (¢,v,d,a). A strategy
for Perturbator is a function that assigns, to every play ending in (¢,v,d,a), a
state (¢/,1') such that there is a transition from the former to the latter state.
A play p is compatible with a strategy f for Controller if for every prefix p’ of p
ending in V¢, the next transition along p after p’ is given by f. We define similarly
compatibility for Perturbator’s strategies. A play naturally gives rise to a unique
run, where the states are in Vi, and the delays and the edges are those chosen
by Perturbator.

Robust timed game problem. Given § > 0, and a pair of strategies f,g,
respectively for Controller and Perturbator, we denote p the unique maximal run
that is compatible with both f and g. A Biichi objective is a subset of the
locations of A. A Controller’s strategy f is winning for a Biichi objective B if for
any Perturbator’s strategy g the run p that is compatible with f and g is infinite
and visits infinitely often a location of B. The robust timed game problem asks,

1<zx<2,a,y:=0

y>2,a,y:=0 r<2,a,x:=0

(a)

Fig. 1. On the left, a timed automaton from [19] that is not robustly controllable for the
Biichi objective {¢2}. In fact, Perturbator can enforce that the value of z be increased by ¢
at each arrival at 1, thus blocking the run eventually (see [22]). On the right, a timed
automaton that is robustly controllable for the Biichi objective {1, ¢2,¢3}. We assume
that all transitions have the same label. The cycle around ¢; cannot be taken forever, as
value of x increases due to perturbations. The cycle around ¢z can be taken forever, but
Controller cannot reach ¢2 due to the equality x = 1. Controller’s strategy is thus to loop
forever around ¢3. This is possible as for both choices of Perturbator in location 44, clock x
will be reset, and thus perturbations do not accumulate. If one of the two resets were ab-
sent, Perturbator could force the run to always take that branch, and would win the game.

for a timed automaton A and a Biichi objective B, if there exists 6 > 0 such
that Controller has a winning strategy in Gs(A) for the objective B. When this
holds, we say that Controller wins the robust timed game for A, and otherwise
that Perturbator does. Note that these games are determined since for each § > 0,
the semantics is a timed game.

Figure 1 shows examples of timed automata where either Controller or
Perturbator wins the robust timed game according to our definitions. The main
result of this paper for this non-stochastic setting is the following.

Theorem 1. The robust timed game problem is EXPTIME-complete.

We focus on presenting the EXPTIME membership in Sections 4 and 5. The
algorithm relies on a characterization of winning strategies in a refinement of the
region automaton construction.

In order to formally introduce the appropriate notions for this characterization,
we need definitions given in the following section.

3 Regions, Orbit Graphs and Shrunk DBMs

Regions and Region Automata. Following [12, 19, 3], we assume that the
clocks are bounded above by a known constant 4 in all timed automata we consider.
Fix a timed automaton A = (L£,C, ¢y, Act, E). We define regions as in [1], as
subsets of Rgo. Any region r is defined by fixing the integer parts of the clocks,
and giving a partition Xy, X1, ..., X,, of the clocks, ordered according to their
fractional values: for any v € r, 0 = frac(v(z)) < frac(v(z1)) < ... < frac(v(z))
for any zg € Xo,...,om € X, and frac(v(z)) = frac(v(y)) for any z,y € X;.

4 Any timed automaton can be transformed to satisfy this property.

Here, X; # 0 for all 1 < i < m but X, might be empty. For any valuation v,
let [v] denote the region to which v belongs. Reg(.A) denotes the set of regions
of A. A region r is said to be non-punctual if it contains some v € r such that
v+ [—¢,e] Cr for some € > 0. It is said punctual otherwise. By extension, we
say that (¢,r) is non-punctual if r is.

We define the region automaton as a finite automaton R(A) whose states
are pairs (¢,7) where ¢ € £ and r is a region. Given (r',a) € Reg(A) x Act,

there is a transition (¢,) M) (¢, s) if ' is non-punctual °, there exist v € r,
V' €1’ and d > 0 such that v/ = v + d, and there is an edge e = (£, g, R, ') such
that 7' |= g and r'[R < 0] = s. We write the paths of the region automaton as
T = q1e1q2€2 . . . ¢, Where each g; is a state, and e; € Reg(A) x Act, such that
¢ = gigq for all 1 < i < n— 1. The length of the path is n, and is denoted
by |x|. If a Biichi condition B is given, a cycle of the region automaton is winning
if it contains an occurrence of a state (¢,r) with ¢ € B.

Vertices and Orbit Graphs. A vertezr of a region r is any point of 7 N N¢,
where 7 denotes the topological closure of . Let V(r) denote the set of vertices
of r. We also extend this definition to V((¢,r)) = V(r).

With any path 7 of the region automaton, we associate a labeled bipartite
graph I'(m) called the folded orbit graph of m [19] (FOG for short). Intuitively,
the FOG of a path gives the reachability relation between the vertices of the
first and the last regions, assuming the guards are closed. For any path 7 from
state ¢ to ¢/, the node set of the graph I'(7) is defined as the disjoint union of
V(q) and V(¢'). There is an edge from v € V(q) to v’ € V(¢'), if, and only if v’ is
reachable from v along the path 7 when all guards are replaced by their closed
counterparts. It was shown that any run along 7 can be written as a convex
combination of runs along vertices; using this observation orbit graphs can be
used to characterize runs along given paths [19]. An important property that we
will use is that there is a monoid morphism from paths to orbit graphs. In fact,
the orbit graph of a path can be obtained by combining the orbit graphs of a
factorization of the path.

When the path 7 is a cycle around ¢, then I'(7) is defined on the node set V(q),
by merging the nodes of the bipartite graph corresponding to the same vertex.
A cycle 7 is aperiodic if for all k > 1, I'(7*) is strongly connected. Aperiodic
cycles are closely related to cycles whose FOG is a complete graph since a long
enough iteration of the former gives a complete FOG and conversely, any cycle
that has some power with a complete FOG is aperiodic. In the timed automaton
of Fig. 1(b), the cycles around locations ¢5 and ¢35 are aperiodic while that of ¢;
is not. Complete FOG are of particular interest to us as they exactly correspond
to paths whose reachability relation (between valuations of the initial and last
region) is complete [3]. This means that there is no convergence phenomena along
the path.

DBMs and shrunk DBMs. We assume the reader is familiar with the data
structure of difference-bound matriz (DBM) which are square matrices over
(R x {<,<})U{(c0,<)} used to represent zones. DBMs were introduced in [6, 13]
for analyzing timed automata; see also [5]. Standard operations used to explore
the state space of timed automata have been defined on DBMs: intersection is

® Note this slight modification in the definition of the region automaton.

written M NN, Pre (M) is the set of time predecessors of M, Unresetg(M) is the
set of valuations that end in M when the clocks in R are reset. We also consider
Pre~s(M), time predecessors with a delay of more than §.

To analyze the parametric game
Gs(A), we need to express shrinkings
of zones, e.g. sets of states satisfying

1 v
constraints of the form g =1+ 6§ < / /
T <2—0A20 <y, where ¢ is a param- = Pre
eter. Formally, a shrunk DBM is a pair / B
(M, P), where M is a DBM, and P is > T > @
a nonnegative integer matrix called a
Fig. 2. Time-predecessors operation

shrinking matriz (SM). This pair rep-
resents the set of valuations defined by
the DBM M — §P, for any § > 0. For
instance, M is the guard g obtained
by setting 6 = 0, and P is made of the
integer multipliers of d.

We adopt the following notation: when we write a statement involving a
shrunk DBM (M, P), we mean that for some &g > 0, the statement holds for
(M — 6P) for all 6 € [0,d¢]. For instance, (M, P) = Press(N, Q) means that
M — 6P = Press(N — 6Q) for all small enough § > 0. Additional operations are
defined for shrunk DBMs: for any (M, P), we define shrink[_s 5;(M, P) as the set
of valuations v with v 4+ [—4,0] C M — §P, for small enough § > 0. Figure 2
shows an example of a shrunk DBM and an operation applied on it. Standard
operations on zones can also be performed on shrunk DBMs in poly-time [21, 8].

(M, P) = Pre(N,Q) applied on a shrunk
DBM. Here, the shaded area on the left
represents the set M — § P, while the zone
with the thick contour represents M.

4 Playing in the Region Automaton

In this section, we will define an appropriate abstraction based on region automata
in order to characterize winning in the robust timed game. We note that the
usual region automaton does not carry enough information for our purpose; for
instance, the blocking behavior in Fig.1(a) cannot be detected in the region
automaton (which does contain infinite runs). We therefore define, on top of
the usual region construction, a complex winning condition W characterizing
accepting runs along aperiodic cycles. In order to be able to transfer the condition
W to the continuous semantics, we study the properties of VW on the abstract
region game, and derive two necessary and sufficient conditions (Cc and Cp) for
winning which will be used in the next section to derive the algorithm.

Abstract Arena and Strategies We fix a timed automaton A = (£, C, £y, Act, E)
and a Biichi condition ¢. We define a two-player turn-based game played on the
region automaton R(A). In this game, Controller’s strategy consists in choosing
actions, while Perturbator’s strategy consists in resolving non-determinism.

We consider standard notions of (finite-memory, memoryless) strategies in
this game and, given a finite-memory strategy o, we denote by R(A)[o] the
automaton obtained under strategy o.

Winning Condition on R(A) We define set W of winning plays in the game
R(A): an infinite play is winning iff the following two conditions are satisfied: 1)

an accepting state in ¢ is visited infinitely often 2) disjoint finite factors with
complete folded orbit graphs are visited infinitely often.

Proposition 2. The game (R(A),W) is determined, admitls finite-memory
strategies for both players, and wining strategies can be computed in EXPTIME.

The above proposition is proved by showing that condition 2) of W can be
rewritten as a Biichi condition: the set of folded orbit graphs constitute a finite
monoid (of exponential size) which can be used to build a Biichi automaton
encoding condition 2). Using a product construction for Biichi automata, one
can define a Blichi game of exponential size where winning for any player is
equivalent to winning in (R(A), W).

From the abstract game to the robust timed game We introduce two
conditions for Perturbator and Controller which are used in Section 5 to build
concrete strategies in the robust timed game.

Cp : there exists a finite memory strategy 7 for Perturbator such that no cycle in
R(A)[r] reachable from the initial state is winning aperiodic.

Cc : there exists a finite-memory strategy o for Controller such that every cycle
in R(A)[o] reachable from the initial state is winning aperiodic.

Intuitively, determinacy allows us to write that either all cycles are aperiodic, or
none is, respectively under each player’s winning strategies. We prove that these
properties are sufficient and necessary for respective players to win (R(A), W):

Lemma 3. The winning condition W is equivalent to Cp and Cc: 1. Perturbator
wins the game (R(A), W) iff property Cp holds. 2. Controller wins the game
(R(A), W) iff property Cc holds. In both cases, a winning strategy for W is also
a witness for Co (resp. Cp).

The proof is obtained by the following facts: finite-memory strategies are
sufficient to win the game (R(A), W), thanks to the previous proposition; given
a folded orbit graph ~, there exists n such that 4™ is complete iff v is aperiodic;
last, the concatenation of a complete FOG with an arbitrary FOG is complete.

5 Solving the Robust Timed Game

In this section, we show that condition Cp (resp. C¢) is sufficient to witness the
existence of a winning strategy in the robust timed game for Perturbator (resp.
Controller). By Lemma 3, the robust timed game problem is then reduced to
(R(A),W) and we obtain:

Theorem 4. Let A be a timed automaton with a Biichi condition. Then, Controller
wins the robust timed game for A iff he wins the game (R(A),W).

By Proposition 2, the robust timed game can be solved in EXPTIME. In
addition, when Controller wins the robust timed game, one can also compute § > 0
and an actual strategy in Gs(A): Lemma 3 gives an effective strategy o satis-
fying Cc and the proof of Lemma 6 will effectively derive a strategy (given as
shrunk DBMs).

5.1 Sufficient condition for Perturbator

We first prove that under condition Cp, Perturbator wins the robust timed game.
We use the following observations. Once one fixes a strategy for Perturbator
satisfying Cp, intuitively, one obtains a timed automaton (where there is no more
non-determinism in actions), such that all accepting cycles are non-aperiodic. As
Perturbator has no more non-determinism to resolve, results of [22] apply and the
next lemma follows.

Lemma 5. If Cp holds, then Perturbator wins the robust timed game.

5.2 Sufficient condition for Controller

Proving that C¢ is a sufficient condition for Controller is the main difficulty in
the paper; the proof for the next lemma is given in this section.

Lemma 6. If Cc holds, then Controller wins the robust timed game.

Proof outline. We consider the non-deterministic automaton B = R(A)[o]
which represents the behavior of game R(A) when Controller plays according
to o, given by condition Co. Without loss of generality, we assume that o is
a memoryless strategy played on the game R(A)[o] (states of R(A) can be
augmented with memory) and that B is trim. Given an edge e = ¢ — ¢’ of B, we
denote by edge(e) the underlying transition in A.

Given a state p of B, we denote by Unfold(B,p) the infinite labeled tree
obtained as the unfolding of B, rooted in state p. Formally, nodes are labeled by
states of B and given a node x labeled by ¢, o(q) is defined and there exists ¢’

such that ¢ ﬂ ¢’ in B. Then z has one child node for each such ¢’. We may
abusively use nodes to refer to labels to simplify notations.

We first choose states qi, ..., g, such that every cycle of B contains one of
the g;’s. Let us denote by qg the initial state of B, for i = 0..n, one can choose
a finite prefix ¢; of Unfold(B, ¢;) such that every leaf of ¢; is labeled by some g;,
j = l..n. Indeed, as B is trim and o is a winning strategy for Controller in the
game (R(A), W), every branch of Unfold(B, ¢;) is infinite.

Strategies for standard timed

games can be described by means of (r, Qﬂ
regions. In our robustness setting, we e
use shrinkings of regions. Let (¢;,r;) . o)

/

(s, Qz):l

\
! ~

be the label of state g;. To build a ,
strategy for Controller, we will identify .) 4)f N
0 > 0 and zones s;, i = 1..n, obtained o Q% J O’ A

as shrinking of regions r;. These zones °

satisty that the controllable predeces- Fig. 3. Proof idea of Lemma 6. Dashed ar-
sors through the tree ¢; computed with rows represent cycles.

zones (s;); at leafs contains the zone

s;: this means that from any configuration in (¢;, s;), Controller has a strategy to
ensure reaching a configuration in one of the (¢;, s;)’s, when following the tree ;.
These strategies can thus be repeated, yielding infinite outcomes. This idea is
illustrated in Fig. 3 where the computations along some prefix ¢ are depicted:
the shrunk zone at a node represents the controllable predecessors of the shrunk

zones of its children. Here, from the shrunk set of the root node, one can ensure
reaching a shrinking of each leaf which is included in the shrinking of the starting
state of its cycle, yielding a kind of fixpoint. We have in fact (r, Q;) C (r,@1) for
i = 33 4, and (Sa QS) - (Sa QQ)

To identify these zones s;, we will successively prove the three following facts:
1) Prefixes t;’s can be chosen such that every branch has a complete FOG
2) Controllable predecessors through t;’s of non-empty shrunk zones are non-
empty shrunk zones
3) Controllable predecessors through ¢;’s can be faithfully over-approximated by
the intersection of controllable predecessors through branches of ¢;

Ensuring branches with complete FOGs. To prove property 1) of the Proof
outline, we use condition C¢ and the fact that long enough repetitions of aperiodic
cycles yield complete FOGs. We obtain:

Lemma 7. Under condition Cc, there exists an integer N such that every path
p in B of length at least N has a complete folded orbit graph.

Controllable Predecessors and Merge. In order to compute winning states
in G5(A) through unfoldings, we define two operators. CPre is the standard set
of controllable predecessors along a single edge:

Definition 8 (Operator CPre). Let e = ¢ — g1 be an edge in some unfolding
of B. Let us write ¢ = ({,r), 1 = ({1,71), 0(q) = (1’,a) and edge(q¢ — q1) =
(¢,g1,a,Ry1,01). Let My be a DBM such that My C 1y and 6 > 0. We define the
set of §-controllable predecessors of My through edge e as

CPred(M;) = r N Press (Shrink;_s 5 (1’ N Unresetp, (M))) -

The above definition is extended to paths. Intuitively, CPre(M;) are the
valuations in region r from which M; can be surely reached through a delay in r’
and the edge e despite perturbations up to 4.

We now consider the case of branching paths, where Perturbator resolves
non-determinism. In this case, in order for Controller to ensure reaching given
subsets in all branches, one needs a stronger operator, which we call CMerge.
Intuitively, CMergeih62 (My, My) is the set of valuations in the region starting r
from which Controller can ensure reaching either M; or My by a single strategy,
whatever Perturbator’s strategy is. The operator is illustrated in Fig. 4.

Definition 9 (Operator CMerge). Let e; = ¢ — q1 and e = q¢ — g2 be
edges in some unfolding of B, and write ¢ = (¢,r), o(q) = (r',a) and for
ie{1,2}, ¢ = (4i,7;), edge(q = @) = (¢, 94,0, Ri, ¥;). Let M; be a DBM such
that M; C r; for i € {1,2}. For any § > 0, define the set of d-controllable
predecessors of My, Ma through edges ei,es as CI\/Ierge5 (M, M) = rn

€1,€2
Press <Shrink[,5,5] (r’ N (N;eq1,2) Unresetp, (Mz))) :

We extend CMerge by induction to finite prefixes of unfoldings of B. Consider
a tree t and shrunk DBMs (M;, P;); for its leaves, CMergef((Mi,Pi)i) is the
set of states for which there is a strategy ensuring reaching one of (M;, F;).

Because Cl\/lerge5

. .. 5 5
e, e, 18 more restrictive than CPre; N CPre.,, we always have

CMerge? C Ngs CPreg, where § ranges over all branches of ¢ (See Fig. 4).

10

The following lemma states property 2) of the proof outline. Existence of
the SM @ follows from standard results on shrunk DBMs. Non-emptiness of
(M, Q) follows from the fact that every delay edge leads to a non-punctual region.
Define a full-dimensional subset of a set r C R™ is a subset " C r such that
there is v € r" and ¢ > 0 satisfying Bally__(v,e) Nr C ¢/, where Bally_ (v, ¢) is the
standard ball of radius ¢ for the infinity norm on R™.

Lemma 10. Let t be a finite prefiz of Unfold(B, q), r the region labeling the root,
and r1,...,7 those of the leafs. M, Ny, ..., Ny be non-empty DBMs that are full
dimensional subsets of r,71,...,r), satisfying M = CMerge} ((N;);). We consider
shrinking matrices P;, 1 < j < k, of DBM Nj such that (N;, P;) # 0. Then,
there exists a SM Q such that (M,Q) = CMergef((Nj,Pj)j), and (M, Q) # 0.

Over-Approximation of CMerge. Given a prefix ¢ y
where each branch §; ends in a leaf labeled with (r;, P;),
we see ﬁ@iCPre%i((ri,Pi)) as an over-approximation ri,Pi| 7| 7 A

of CMerge! (74, P;);). We will show that both sets have
the same “shape”, i.e. any facet that is not shrunk
in one set, is not shrunk in the other one. This is
illustrated in Fig. 4.

We introduce the notion of 0-dominance as follows: r T2, P2
for a pair of SMs P,Q, Q 0-dominates P, written
P =y Q, if Qli,j) < Pli,j), and Qi,j] = 0 implies Fig.4. ‘We have s =
Pli,j] = 0 for all i, j. Informally, a set shrunk by P is .CMerg.e ((”’_Pi)i)7 Whi(fh
smaller than that shrunk by Q, but yields the same ° Stmgtly included in
shape. The 0-dominance is the notion we use for a NiCPre’(ri, Fi) but has

. . . the same shape.

“precise” over-approximation of CMerge:

Lemma 11. Let t be a finite prefix of Unfold(B,q), with ¢ = (¢,7), and let
(4i,r;), 1 <i <k denote the (labels of) leafs of t. We denote by 8;, 1 <i < k,
the branches of t. Consider SMs P;, 1 < i < k, for regions r;. Let us denote
(r, P) = CMerge? ((r, Pi<i<k) and (r,Q) = ﬂle CPregi (riy P;), then P <o Q.

Putting everything together. In order to complete the proof of Lemma 6, we
first recall the following simple lemma:

Lemma 12 ([22]). For any DBM M, there is a SM Py s.t. (M, Py) # 0, and is
fully dimensional, and for any SM P and e>0 with (M, P) # 0 and M —ePy # (),
we have M —ePy C (M, P).

Remember we have identified states ¢; and trees ¢;, ¢ = 0..n. Denote (¢;,r;) the
label of g;. For each ¢+ = 1..n, we denote by P; the SM obtained by Lemma 12
for r;. Consider now some tree t;, ¢ = 0..n, with ((r;, P;);) at leafs. Let 5, be
a branch of ¢; and denote by (r;, P;) its leaf. By Lemma 7, the FOG of §; is
complete, and thus from any valuation in r;, one can reach every valuation
in the target region r; along 3; (see [3]), and thus r; = CPre%j (rj, P;). This
holds for every branch and we obtain r; = [, CPre%j (rj, Pj). By Lemma 11,
this entails r; = CMerge?i((rj, P;);). We can choose ¢ > 0 small enough such
that the zone s; = r; — eP; is non-empty for every i = 1..n and we obtain
r; = CI\/Ierge?i((sj)j). We can then apply Lemma 10, yielding some SM @Q; of r;
such that 0 # (r;, Q;) = CI\/Iergefi((sj)j). There are two cases:

11

— ¢ = 0: as rg is the singleton {0}, we have (r9,Qo) = ro, and thus rg =
CMerge?0 ((s5);)- In other terms, for small enough ¢’s, Controller has a strategy
in Gs5(A) along to to reach one of the (¢;,s,)’s starting from the initial
configuration ({y, 0).

— ¢ > 1: Lemma 12 entails s; C Cl\/Iergefi((sj)j)7 which precisely states that
for small enough §’s, Controller has a strategy in Gs(A) along t;, starting in
(¢;, i), to reach one of the (¢;,s;)’s.

These strategies can thus be combined and repeated, yielding the result.

6 Probabilistic Semantics

In some systems, considering the environment as a completely adversarial oppo-
nent is too strong an assumption. We thus consider stochastic environments by
defining two semantics as probabilistic variants of the robust timed games. The
first one is the stochastic game semantics where Perturbator only resolves the
non-determinism in actions, but the perturbations are chosen independently and
uniformly at random in the interval [—4, §]. The second semantics is the Markov
decision process (MDP) semantics, where the non-determinism is also resolved
by a uniform distribution on the edges, and there is no player Perturbator.

6.1 Stochastic Game Semantics

Formally, given § > 0, the state space is partitioned into Vo UVp as previously. At
each step, Controller picks a delay d > ¢, and an action a such that for every edge
e=(¢,g,a,R,{") such that v+ d |= g, we have v +d + ¢ |= g for all € € [0, 4],
and there exists at least one such edge e. Perturbator then chooses an edge e with
label a, and a perturbation e € [—4, d] is chosen independently and uniformly at
random. The next state is determined by delaying d + ¢ and taking the edge e.
To ensure that probability measures exist, we restrict to measurable strategies.
In this semantics, we are interested in deciding whether Controller can ensure
a given Biichi objective almost surely, for some § > 0. It turns out that the same
characterization as in Theorem 4 holds in the probabilistic case.

Theorem 13. It is EXPTIME-complete to decide whether for some 6 > 0,
Controller has a strategy achieving a given Biichi objective almost surely in the
stochastic game semantics. Moreover, if Co holds then Controller wins almost-
surely; if Cp holds then Perturbator wins almost-surely.

This is a powerful result showing a strong distinction between robust and non-
robust timed games: in the first case, a controller that ensures the specification
almost surely can be computed, while in non-robust timed games, any controller
will fail almost surely. Thus, while in previous works on robustness in timed
automata (e.g. [19]) the emphasis was on additional behaviors that might appear
in the worst-case due to the accumulation of perturbations, we show that in our
setting, this is inevitable. Note that this also shows that limit-sure winning (see
next section) is equivalent to almost-sure winning.

12

6.2 Markov decision process semantics

The Markov decision process semantics consists in choosing both the pertur-
bations, and the edges uniformly at random (and independently). Formally, it
consists in restricting Perturbator to choose all possible edges uniformly at random
in the stochastic game semantics. We denote by GMPP(A) the resulting game,

and PgMDP(A) . the probability measure on Runs(A, s) under strategy o.
s)
For a given timed Biichi automaton, denote ¢ the set of accepting runs. We
are interested in the two following problems: (we let sg = (¢, 0))

Almost-sure winning: does there exist § > 0 and a strategy o for Controller such
that ngDP(A),SO(¢) =17
Limit-sure winning: does there exist, for every 0 < e < 1, a perturbation upper
bound 4, and a strategy o for Controller such that PEMDP(.A) So(qﬁ) >1—e?
5)

Observe that if almost-sure winning cannot be en-

sured, then limit-sure winning still has a concrete in- —> z<l,a
terpretation in terms of controller synthesis: given a +<1,a,2:=0
quantitative constraint on the quality of the controller, 2 <loa. gD

what should be the precision on clocks measurements

to be able to synthesize a correct controller? Consider Fig. 5. This automaton is
the timed automaton depicted on the right. It is easy losing in the MDP seman-
to see that Controller loses the (non-stochastic) robust tics for the almost-sure
game, the stochastic game and in the MDP semantics winning but winning un-
with almost-sure condition, but he wins in the MDP der the same semantics

semantics with limit-sure condition. for the limit-sure winning.
In fact, a blocking state

Theorem 14. It is EXPTIME-complete to decide (fo,r) with z > 1 — &
whether Controller wins almost-surely (resp. limit- is reachable with positive
surely) in the MDP semantics of a timed Biichi au- probability for any 4.
tomaton.

To prove this theorem, we will define decidable characterizations on R(.A)
which we will see as a finite Markov decision process. In this MDP, the non-
determinism of actions is resolved according to a uniform distribution. Given
a strategy & for Controller and a state v, we denote by IP%(A),U the resulting
measure on Runs(R(A), v). The initial state of R(A) is vg. We will use well-known
notions about finite MDPs; we refer to [20].

Almost-sure winning We introduce the winning condition W': Controller’s
strategy ¢ in R(A) is winning in state v iff]P’%(A)’U(@ = 1 and all runs in
Runs(R(A)[6],v) contain infinitely many disjoint factors whose FOGs are com-
plete. Observe that this combines an almost-sure requirement with a sure require-

ment. This winning condition is our characterization for almost-sure winning;:

Proposition 15. Controller wins almost-surely in the MDP semantics of a timed
Biichi automaton A iff Controller wins the game (R(A), W) in vg.

Intuitively, the first condition is required to ensure winning almost-surely, and
the second condition allows to forbid blocking behaviors. Notice the resemblance
with condition W; the difference is that ¢ only needs to be ensured almost-surely
rather than surely. We prove the decidability of this condition.

13

Lemma 16. The game (R(A), W') admits finite-memory strategies, and winning
strategies can be computed in EXPTIME.

The proof of Prop. 15 uses the following ideas. We first assume that Controller
wins the abstract game using some strategy 6. We derive from & a strategy o in
the MDP semantics by concretizing the delays chosen by . To do so, we consider
the automaton R(A)[6] and proceed as in Section 5, which results in a strategy
defined by means of shrinking matrices. Using the results of Section 5, we can
prove that the outcomes of o are never blocked, and thus the probabilities of paths
in R(A) under ¢ are preserved by o. As a consequence, o wins almost-surely.

Conversely, by contradiction, we assume that Controller does not satisfy W’
in R(A) while there exists an almost-sure strategy o for the MDP semantics. We
build from o a strategy & in R(A), and prove that it satisfies ¢ almost-surely.
This entails the existence of a run p in R(A)[6] such that p eventually does
not contain factors with a complete FOG. We finally show that, with positive
probability, perturbations ensure that the run gets blocked along a finite prefix
of this path, which ensures that ¢ is not almost-surely winning.

Limit-sure winning As illustrated in Fig. 5, it is possible, for any ¢ > 0,
to choose the parameter § > 0 small enough to ensure a winning probability of
at least 1 — . The idea is that in such cases one can ensure reaching the set of
almost-sure winning states with arbitrarily high probability, although the run
can still be blocked with small probability before reaching this set.

To characterize limit-sure winning, we define condition W as follows. If WIN’
denotes the set of winning states for Controller in the game (R(A), W’), then
W' is defined as the set of states from which one can almost surely reach WIN'.

Proposition 17. Controller wins limit-surely in the MDP semantics of a timed
Biichi automaton A from sq iff Controller wins the game (R(A), W") in vg.

The proof of this proposition relies on the following lemma, and uses techniques
similar as those introduced to prove Proposition 15.

Lemma 18. The game (R(A), W) admits finite-memory strategies, and win-
ning strategies can be computed in EXPTIME.

7 Conclusion

In this paper, we defined robust timed games with Biichi conditions and unknown
imprecision parameters. Our formalism allows one to solve robust controller
synthesis problems both against an adversarial (or worst-case) environment, and
two variants of probabilistic environments. The procedures we have developed
allow, when they exist, to effectively build a bound § > 0 on the perturbation
and a winning strategy for Controller. Some questions remain open including the
generalization of these results to concurrent timed games with parity conditions
considered in [11]. We believe it is possible to derive symbolic algorithms but
this will require extending the theory to detect aperiodic cycles in zone graphs
rather than in the region graph.

14

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis
for timed automata. In SSC’98, p. 469—474. Elsevier Science, 1998.

Nicolas Basset and Eugene Asarin. Thin and thick timed regular languages. In
FORMATS’11, LNCS 6919, p. 113-128. Springer, 2011.

Daniele Beauquier. On probabilistic timed automata. Theor. Comput. Sci.,
292(1):65-84, January 2003.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets, LNCS 2098, p. 87-124. Springer, 2004.
Bernard Berthomieu and Miguel Menasche. An enumerative approach for analyzing
time Petri nets. In WCC’83, p. 41-46. North-Holland /IFIP, September 1983.
Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust analysis of
timed automata via channel machines. In FoSSaCS’08, LNCS 4962, p. 157-171.
Springer, 2008.

Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust reachability in timed
automata: A game-based approach. In ICALP’12, LNCS 7392, p. 128-140. Springer,
2012.

Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in timed automata.
In RP’13, LNCS 8169, p. 1-18. Springer, 2013.

Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR
2005, p. 66-80. Springer, 2005.

Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Timed
parity games: Complexity and robustness. Logical Methods in Computer Science,
7(4), 2011.

Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-Frangois Raskin. Robust
safety of timed automata. Formal Methods in System Design, 33(1-3):45-84, 2008.
David L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In AVMFSS’89, LNCS 407, p. 197-212. Springer, 1990.

Vojtech Forejt, Marta Kwiatkowska, Gethin Norman, and Ashutosh Trivedi. Ex-
pected reachability-time games. In Formal Modeling and Analysis of Timed Systems,
LNCS 6246, p. 122-136. Springer Berlin Heidelberg, 2010.

Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge.
In FM’06, LNCS 4085, p. 1-15, Hamilton, Canada, 2006. Springer.

Henrik E Jensen. Model checking probabilistic real time systems. In Proc. 7th
Nordic Workshop on Programming Theory, p. 247-261. Citeseer, 1996.

Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Au-
tomatic verification of real-time systems with discrete probability distributions.
Theor. Comput. Sci., 282(1):101-150, June 2002.

Youssouf Oualhadj, Pierre-Alain Reynier, and Ocan Sankur. Probabilistic robust
timed games. 2014.

Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems, 10(1-2):87-113, 2000.

Martin L. Putterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, New York, NY, 1994.

Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking timed automata. In
FSTTCS’11, LIPIcs 13, p. 375-386. Leibniz-Zentrum fiir Informatik, 2011.

Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust
controller synthesis in timed automata. In CONCUR’13, LNCS 8052, p. 546—560.
Springer, 2013.

15

