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Abstract

Timed Automata (TA) and Time Petri Nets (TPN) are two
well-established formal models for real-time systems. Re-
cently, a linear transformation of TA to TPNs preserving
reachability properties and timed languages has been pro-
posed, which does however not extend to larger classes of
TA which would allow diagonal constraints or more general
resets of clocks. Though these features do not add expres-
siveness, they yield exponentially more concise models.
In this work, we propose two translations: one from ex-

tended TA to TPNs whose size is either linear or quadratic
in the size of the original TA, depending on the features
which are allowed; another one from a parallel composi-
tion of TA to TPNs, which is also linear. As a consequence,
we get that TPNs are exponentially more concise than TA.
Keywords: Time Petri Nets, Timed Automata, Conciseness,
Reachability Analysis.

1 Introduction

Extended timed automata. Timed automata have been de-
fined in the nineties as a powerful model for representing
real-time systems [1, 2]. One of the most important prop-
erties of this model is that checking reachability properties
(or equivalently language emptiness) is decidable. In the
original model, a transition is guarded by a clock constraint
x !" h (where x is a variable called clock, h is an integer
and !" is a comparison operator), and resets to 0 a subset of
the clocks.
Several extensions of this original model have been since

considered: more general constraints like diagonal con-

straints [2, 7] or additive constraints [8] have been studied,
and while additive constraints lead to undecidability, diago-
nal constraints preserve the decidability of the model. Also,
more general operations on clocks (called updates) have
been considered, and models using operations like resetting
a clock to some integral value have been studied [13]: de-
cidability of these extensions heavily depends on the nature
of the updates and of the clock constraints which are used.
All mentioned decidable extensions, do not add expressive
power to the original model, they can thus be seen as syntac-
tic sugar, but even though no expressiveness is added, these
extensions yield exponentially more concise and “easy-to-
design” models [12]. For example, scheduling problems are
modeled more easily using these both extensions, see [16].
Time Petri nets. Adding explicit time to Petri nets was
first done in the seventies [22, 23]. Since then, timed
models based on Petri nets have been extensively studied
and various tools have been developed for their analysis
(like Tina [10] or Romeo [17]). In this paper, we focus on
the model of Time Petri Nets (TPNs) from [22] where a time
interval associated with every transition restricts the date at
which it can be fired. Furthermore, time cannot elapse if it
temporally disables a transition.
From TA to TPNs. In [18], the authors compare diagonal-
free TAs without strict constraints and Safe-TPNs (i.e.
TPNs where the number of tokens in a place is at most 1),
and give a translation from TAs to Safe-TPNs which pre-
serves timed languages. The complexity of the translation
is quadratic. In [6], another translation is designed, which
transforms diagonal-free TAs to equivalent Safe-TPNs, and
whose complexity is linear. However the transformation
which is done in [6] does not extend to more general TA
(using diagonal constraints and resets to integral values).
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Our contribution. In this work, we present a translation
from extended TA (which use diagonal constraints and up-
dates to integral values) into Safe-TPNs and prove it pre-
serves timed languages. We study the complexity of this
translation showing that the size of the constructed TPN is
linear w.r.t. the size of the TA, except when the TA includes
both diagonal constraints and arbitrary resets to integral val-
ues. In the latter case, the complexity of the translation be-
comes quadratic. As a side result (applying conciseness re-
sults of [12]), we get that Safe-TPNs are exponentially more
concise than classical TA. We also provide a direct con-
struction which witnesses this conciseness result. Finally,
we present a second translation from a parallel composition
of TA to TPNs. As future work, we discuss another conse-
quence of these translations: they might provide a unified
method to check for reachability properties in parallel com-
position of extended TA.

Organisation of the paper. In section 2, we present basic
definitions. Our results are developed in section 3. We first
present the construction of TPNs equivalent to extended TA,
and we then prove the correctness of this translation. Fi-
nally, we compute the complexity of our translation, and
present our conciseness results. In section 4, we present
our construction for parallel compositions of TA. At last, in
section 5, we discuss the perspectives of this work.

2 Timed Automata and Time Petri Nets

Let Σ be a finite alphabet, Σ∗ is the set of finite words of
Σ. We also use Σε = Σ ∪ {ε} with ε (the empty word)
not in Σ. The sets N, Q≥0 and R≥0 are respectively the
sets of natural, non-negative rational and non-negative real
numbers.
A timed word over Σ is a finite sequence w =

(a0, t0)(a1, t1) . . . (an, tn) s.t. for every 0 ≤ i ≤ n,
ai ∈ Σ, ti ∈ R≥0 and ti+1 ≥ ti. In the following, we
will equivalently write w = (a, t) with a = (ai)0≤i≤n and
t = (ti)0≤i≤n.
An interval I of R≥0 is a Q≥0-interval iff its left end-

point belongs to Q≥0 and its right endpoint belongs to
Q≥0 ∪ {∞}. We set I↓ = {x | x ≤ y for some y ∈ I},
the downward closure of I . We denote by I(Q≥0) the set
of Q≥0-intervals of R≥0.
A valuation v over a finite set X is a mapping in RX

≥0.
We note 0 the valuation which assigns to every clock x ∈ X
the value 0.

2.1 Timed Transition Systems

Timed transition systems describe systems which com-
bine discrete and continuous evolutions. They are used to
define and compare the semantics of TPNs and TA.

Definition 1 (Timed Transition System (TTS)). A timed
transition system is a transition system S = (Q, q0,→),
where Q is the set of states, q0 ∈ Q is the initial state, and
the transition relation → consists of delay moves q

d−→ q′

(with d ∈ R≥0), and discrete moves q
a−→ q′ (with a ∈ Σε).

Moreover, we require standard properties for the transition
relation→:
Time-determinism: if q d−→ q′ and q

d−→ q′′ with d ∈ R≥0,
then q′ = q′′;

0-delay: q
0−→ q;

Additivity: if q d−→ q′ and q′
d′−→ q′′ with d, d′ ∈ R≥0, then

q
d+d′−−−→ q′′;

Continuity: if q
d−→ q′, then for every d′ and d′′ in R≥0

such that d = d′ + d′′, there exists q′′ such that q d′−→
q′′

d′′−→ q′.

With these properties, a run of S can be defined as a fi-
nite sequence of moves ρ = q0

d0−→ q′0
a0−→ q1

d1−→ q′1
a1−→

q2 . . .
an−−→ qn+1 where discrete actions and delays alternate.

To such a run corresponds a timed word w = (ai, ti)0≤i≤n

over Σε where ti =
∑i

j=0 dj is the date at which ai hap-
pens. Finally, by projection of w over Σ, we get the timed
word Timed(ρ) which is the timed word accepted by run ρ.
Given a set F ⊆ Q of final states, we say that a run ρ of

S is accepting if it ends up in a state of F . The timed word
Timed(ρ) is then said accepted by S.

2.2 Timed Automata

Syntax. First defined in [2], the model of timed automata
associates a set of non-negative real-valued variables called
clocks with a finite automaton. Let X be a finite set of
clocks. We write C(X) for the set of constraints over X ,
which consist of conjunctions of atomic formulae of the
form x !" c and x − y !" c for x, y ∈ X , c ∈ Z
and !"∈ {<,≤,≥, >}. We also define the proper subset
Cdf (X) of diagonal-free constraints over X where the con-
straints of the form x− y !" h (called diagonal constraints)
are not allowed. Finally, the set R(X) of arbitrary resets
to integral values over the clocks X is defined as the set
(N ∪ {⊥})X of mappings from X to N ∪ {⊥}. The frame-
work of classical resets to zero is obtained by considering
the proper subset R0(X) = {0,⊥}X . For example, the re-
set x := 2 is encoded as a function mapping clock x to the
value 2 and other clocks to ⊥. In the following, we write a
general reset as a conjunction (x1 := c1 ∧ . . .∧ xk := ck).

Definition 2 (Timed Automaton (TA)). A timed automaton
A overΣε is a tuple (L, %0, X,Σε, E) where L is a finite set
of locations, %0 ∈ L is the initial location, X is a finite set
of clocks and E ⊆ L× C(X)×Σε ×R(X)×L is a finite
set of edges. An edge e = (%, γ, a, R, %′) ∈ E represents



a transition from location % to location %′ labeled by a with
constraint γ and reset R ∈ (N ∪ {⊥})X . We say that the
timed automatonA is diagonal-free (resp. 0-reset) if the set
C(X) (resp. R(X)) is replaced by its subset Cdf (X) (resp.
R0(X)).

Semantics. For R ∈ (N ∪ {⊥})X , the valuation R(v) is
the valuation v′ such that v′(x) = v(x) when R(x) = ⊥
and v′(x) = R(x) otherwise. For any value d ∈ R≥0, the
valuation v+d is defined by (v+d)(x) = v(x)+d, ∀x ∈ X .
Finally, constraints of C(X) are interpreted over valuations:
we write v |= γ when the constraint γ is satisfied by v.

Definition 3 (Semantics of TA). The semantics of a TAA =
(L, %0,X,Σε, E) is the TTS SA = (Q, q0,→) where Q =
L× (R≥0)X , q0 = (%0,0) and→ is defined by:
- delay moves: (%, v) d−→ (%, v + d) if d ∈ R≥0;
- discrete moves: (%, v) a−→ (%′, v′) if there exists some

e = (%, γ, a, R, %′) ∈ E s.t. v |= γ and v′ = R(v).

If F is a set of final locations for A, the timed language
accepted by A, denoted L(A) is the set of timed words ac-
cepted by SA for the final set of states F × R≥0.

Parallel composition of TA. Let (Ai)1≤i≤n be a family of
n TA. We assume that Ai = (Li, %i,0,Xi,Σε, Ei) for ev-
ery 1 ≤ i ≤ n and that Xi’s are disjoint sets of clocks.
Let f : (Σ ∪ {⊥})n → Σε be an n-ary partial synchro-
nization function. The parallel composition of (Ai)1≤i≤n

w.r.t. f is the TA A = (L, %0,X,Σε, E) such that L =
L1 × . . .× Ln, %0 = (%1,0, . . . , %n,0),X = X1 ∪ . . . ∪Xn,
(%1, . . . , %n) g,a,R−−−→ (%′1, . . . , %′n) whenever (i) either a = ε,
there exists 1 ≤ i ≤ n such that %i

g,ε,R−−−→ %′i in Ei, and
%j = %′j if i -= j; (ii) or there exists I ⊆ {1, . . . , n}, there
exist %i

gi,ai,Ri−−−−−→ %′i in Ei (for i ∈ I) such that:
- g =

∧
i∈I gi,

- R(x) =
{

Ri(x) if x ∈ Xi and i ∈ I
⊥ otherwise

- %′i = %i if i -∈ I .
- either f(a1, . . . , an) = a where ai = ⊥ if i -∈ I .

2.3 Time Petri Nets

Syntax. Introduced in [22], Time Petri nets (TPNs) asso-
ciate a time interval to each transition of a Petri net.

Definition 4 (Labeled TPN). A labeled time Petri net N
over Σε is a tuple (P, T,Σε, •(.), (.)

•,M0,Λ, I) where:
- P is a finite set of places,
- T is a finite set of transitions with P ∩ T = ∅,
- •(.) ∈ (NP )T is the backward incidence mapping,
- (.)• ∈ (NP )T is the forward incidence mapping,
- M0 ∈ NP is the initial marking,
- Λ : T → Σε is the labeling function

- I : T 0→ I(N) associates with each transition a firing
interval.

As commonly in use in the literature, we write •t (resp.
t•) to denote the set of places •t = {p ∈ P | •t(p) > 0}
(resp. t• = {p ∈ P | t•(p) > 0}).

Semantics. A configuration of a TPN is a pair (M, ν),
where M is a marking in the usual sense, i.e. a mapping
in NP , withM(p) the number of tokens in place p. A tran-
sition t is enabled in a marking M if M ≥ •t. We denote
by En(M) the set of enabled transitions in M . The second
component of the pair (M, ν) is a valuation over En(M)
which associates to each enabled transition its age, i.e. the
amount of time that has elapsed since this transition is en-
abled. An enabled transition t can be fired if ν(t) belongs
to the interval I(t). The result of this firing is as usual the
new marking M ′ = M − •t + t•. Moreover, some valua-
tions are reset and we say that the corresponding transitions
are newly enabled. Different semantics are possible for this
operation. In this paper, we choose the classical seman-
tics [9, 3] (see [5] for alternative semantics). The predicate
specifying when t′ is newly enabled by the firing of t from
markingM is defined by:

↑enabled(t′,M, t) = t′ ∈ En(M − •t + t•)
∧((t′ -∈ En(M − •t)) ∨ t = t′)

Thus, firing a transition is not considered as an atomic
step and the transition currently fired is always reset.
The set ADM(N ) of (admissible) configurations consists

of the pairs (M, ν) such that ν(t) ∈ I(t)↓ for every transi-
tion t ∈ En(M). Thus time can progress in a marking only
when it does not leave the firing interval of any enabled tran-
sition.

Definition 5 (Semantics of a TPN). The semantics of a
TPN N = (P, T,Σε, •(.), (.)

•,M0,Λ, I) is a TTS SN =
(Q, q0,→) where Q = ADM(N ), q0 = (M0,0) and→ is
defined by:
- delay moves: (M, ν) τ−→ (M, ν + τ) iff ∀t ∈ En(M),

ν(t) + τ ∈ I(t)↓,

- discrete moves: (M, ν)
Λ(t)−−−→ (M − •t + t•, ν′) iff

t ∈ En(()M) is s.t. ν(t) ∈ I(t), and ∀t′ ∈ En(M −
•t + t•),

- ν′(t′) = 0 if ↑enabled(t′,M, t)

- and ν′(t′) = ν(t) otherwise.

If F is a set of final places ofN , we noteL(N ) the timed
language accepted by N , i.e. the set of timed words ac-
cepted by SN for the final set of states (M, ν) s.t. M(f) -=
0 for some f ∈ F
A Safe-TPN is a TPNN where all configurations reach-

able in SN contain at most one token in every place.



3 From Extended TA to TPNs

In this section, we describe the construction of a TPN
“equivalent” to a TA (w.r.t. their timed languages), that
is accepting the same timed languages. The correctness is
proved in the next section.
We assume we are given a timed automaton A. We will

construct an equivalent TPN in a modular way. Note that
this TPN will be safe by construction. Places with the same
name are shared by several subnets. Omitted labels for tran-
sitions stand for ε. A firing interval [0, 0] is depicted by a
blackened transition and is called an immediate transition,
and intervals [0,∞[ are omitted. A double arrow between
a place p and a transition t indicates that p is both an input
and an output place for t.

3.1 The construction

The clock evolution subnet. For each clock x of the TA,
we construct a subnet which records and tracks the value
of x. More precisely, this subnet records both the value
of the clock (though in an implicit way) and the truth of
all the constraints x !" c appearing in the automaton. The
truth value of such a constraint is recorded explicitly, using
a place Tx#$c. For all clock resets y := h and diagonal
constraints x−y !" c appearing in the automaton, the subnet
has also to take into account the constraint x !" c+h and its
negation (except if it is trivially equivalent to true or false).
It must also take into account the constraints x ≤ c and
x ≥ c when x := c is a reset used in the automaton.
The subnet represented in Fig. 1 illustrates our trans-

lation in the case x is compared with three constants
{c1, c2, c3} with c1 < c2 < c3. To ease the reading, we as-
sume that 0 does not belong to the set of constants, though
this case can be handled similarly.
Let us explain how this subnet simulates time elapsing,

how it records the value of the clock, and how it records
the truth value of the constraints. First notice that all places
along the vertical axis (places Beforex

c1
, Atxc1

, . . . , Afterxc3
)

are mutually exclusive. The unique token labelling one of
these places together with the age1 of the next transition
encodes the value of the clock. For instance, if a token is
in the place Beforex

c2
, and if the age of Reachx

c2
is τ then

the value of x is c1 + τ . The value of x will be c2 in the
following cases:
- either the token is in the place Beforex

c2
, and the age of

Reachx
c2
is c2 − c1,

- either the token is in the place Atxc2
,

- or the token is in the place Beforex
c3
and the age of

Reachx
c3
is 0.

1Recall that the age of a transition is the amount of time which has
elapsed since the transition has been enabled.

•

•

•

•

•

•

•

Beforexc1

Reachxc1
[c1,c1]

Atxc1

Leavexc1

Beforexc2

Reachxc2
[c2−c1,c2−c1]

Atxc2

Leavexc2

Beforexc3

Reachxc3
[c3−c2,c3−c2]

Atxc3

Leavexc3

Afterxc3

Tx≥c1

Tx≥c2

Tx≥c3

Tx≤c1

Tx≤c2

Tx≤c3

Ix>c1

Ix>c2

Ix>c3

Tx>c1

Tx>c2

Tx>c3

Satx>c1

]0,∞[

Satx>c2

]0,∞[

Satx>c3

]0,∞[

Tx<c1

Tx<c2

Tx<c3

Fx<c1

Fx<c2

Fx<c3

Unsatx<c1
[0,c1[

Unsatx<c2
[0,c2−c1[

Unsatx<c3
[0,c3−c2[

Ix<c2

Ix<c3

Figure 1. The clock evolution subnet (clock x)



...

xbegin

xempty

xcont1

xcont2,1 xcont2,2

xcont3,1 xcont3,2

xcont4

Fx<c1 Tx<c1

Tx<c2

Fx<c2 Ix<c2

Tx≥c1

Tx≤c1Ix>c1Tx>c1

Beforexc1

Atxc1

Beforexc2
Tx≥c2

Figure 2. Emptying the clock evol. subnet

Finally, the subnet does not keep track of the exact value
of the clock beyond c3. The truth values of the constraints
are updated consistently, while preserving the two following
properties, which are fundamental for the correctness of our
construction: 1) When the place Tx#$c is marked, then the
corresponding value of x (say vx) is such that vx !" c (but
the converse is not necessarily true); 2) For each possible
value vx of x, there is an execution of the subnet of time
length vx such that for every constraint x !" c satisfied by v,
the place Tx#$c is marked. Finally, note that this subnet does
not take care of diagonal constraints because they cannot be
handled similarly (their truth values are unchanged when
time elapses).
It is worth to notice that the size of this subnet is linear

in the number of clock constraints involving x which need
to be encoded (see the beginning of this paragraph).

Emptying the clock subnet. Let us assume that a transi-
tion of the TA resets the clock x. The marking of the clock
evolution subnet must be updated accordingly, whatever its

current configuration is.
In order to encode a transition of the TA and to con-

trol the global size of the resulting TPN, we proceed in two
steps: 1) The first step is depicted in Fig. 2 and consists in
consuming all the tokens which are in the clock evolution
subnet; 2) The second step is discussed in the next para-
graphs, and consists in marking the appropriate places of
the clock evolution subnet.
In order to unmark all places of the subnet de-

picted in Fig 1, we will empty the places in a top-
down way. The control places of the subnet of Fig. 2
(namely {xbegin, xcont1 , xcont2,1 , xcont2,2 , . . . , xempty}) sched-
ule the unmarking process and memorize some information
in order to avoid a quadratric increase of the number of tran-
sitions.
Let us partly describe the subnet of Fig. 2. First, it re-

moves the token which is either in place Fx<c1 or in place
Tx<c1 (these two places are mutually exclusive, see transi-
tion Unsatx<c1). Then, it removes the token which is either
in place Beforex

c1
, or in place Tx≥c1 (these two places are

also mutually exclusive, see transition Reachx
c1
). Thanks

to the control places of the net in Fig. 2 (place xcont2,1

vs place xcont2,2 ), we remember whether the token was in
place Beforex

c1
or in place Tx≥c1 . If the token was in place

Beforex
c1
, there will be no token in places Tx>c1 and Ix>c1 .

On the contrary, if the token was in place Tx≥c1 , then there
will be no token in places Atxc1

and Tx≤c1 . These remarks al-
low to bound the width of the “emptying net”, and it allows
to control the size of the net (on one level, there are at most
4 “concurrent” transitions). Finally note that the subnet is
triggered by a token in place xbegin and that the clock evolu-
tion subnet is empty when a token arrives in place xempty.
It is worth to notice that the size of the TPN emptying

the clock evolution subnet is linear in the size of this last
subnet.

Updating the marking of the constraints in the clock
evolution subnet. We want to update the marking of the
places coding the truth values of the constraints in the clock
evolution subnet when a clock is reset to some integral value
c. However, we want to control the size of the resulting
TPN, we thus want to build only one subnet per clock which
will update correctly the marking of the evolution subnet,
though the new marking will depend on the value of c. The
idea of our construction is the following: when the clock
x is reset to c, then the constraint x ≤ c holds, and conse-
quently, all other larger over-approximations of x (x ≺ c′,
for ≺∈ {<,≤} and c′ > c) also hold. Thus, we will build
a propagation chain for the over-approximations which will
respect the above implications. Of course, we can reason
similarly for the under-approximations.
The two propagation subnets are represented in Fig. 3,

and take advantage of the above observations. The two
causal chains are represented by two different connected



Underx:=c3

Underx:=c2

Underx:=c1

Underx:=0

Overx:=0

Overx:=c1

Overx:=c2

Overx:=c3

Overxend

Tx≥c1

Tx≥c2

Tx≥c3

Tx≤c1

Tx≤c2

Tx≤c3

Tx>c1

Tx>c2 Tx<c1

Tx<c2

Tx<c3

Fx<c1

Fx<c2

Fx<c3

Figure 3. Marking the constraints places in
the clock evolution subnet

components. In order to trigger this net when resetting x :=
ci, one puts a token in place Underx:=ci and Overx:=ci . For
the subnet on the left (resp. on the right), the update of the
marking terminates when a token arrives in placeUnderx:=0

(resp. in place Overxend ).
Note that we have not marked yet the vertical axis of the

clock evolution subnet, which implicitly encodes the value
of the clock. This will be done by the subnet simulating the
transition of the TA (see the last paragraph of this section).
It is worth to notice that the size of the TPN marking the

constraints places of the clock evolution subnet is linear in
the size of the clock evolution subnet.

Diagonal clock constraints. The truth value of a diagonal
constraint x−y !" h (which is invariant by time elapsing) is
represented by two mutually exclusive places Tx−y#$h and
Fx−y#$h. We build a subnet for every atomic constraint x−
y !" h and every reset of the clocks x or y.
Fig. 4 represents the subnet corresponding to the diago-

nal constraint x − y ≤ h and to the reset y := h′. When
resetting y to h′, the truth value of x − y ≤ h has to be
updated according to the truth value of the (non-diagonal)

constraint x ≤ h + h′. The places {Diagy:=h′

i }i=1..d(y)+1

schedule the update of the subnets associated with the diag-
onal constraints involving clock y (and d(y) is the number
of such constraints). In Fig. 4, i is the index of the constraint
x− y ≤ h (1 ≤ i ≤ d(y)).

Tx≤h+h′ Tx−y≤h

Tx>h+h′ Fx−y≤h

Diagy:=h′
i

Diagy:=h′
i+1

Figure 4. The subnet for x− y ≤ h and y := h′

By the way, notice that for each diagonal constraint
x− y ≤ h and for each reset y := h′, the size of the corre-
sponding TPN is constant (see Fig. 4). The number of such
subnets is proportional to the number of combinations of
a diagonal constraint with a reset, that is in the worst case
quadratic. If we consider only diagonal constraints and re-
sets to 0, this number will be linear.

Encoding transitions of the TA. With each location % of
the automaton, we associate an eponymous place % in the
TPN. The place % is initially marked when the location %
is the initial one. To simulate an edge e = (%, γ, a, R, %′),
we must check that the atomic constraints (γi)1≤i≤m(e) are
satisfied (if γ = γ1 ∧ . . . ∧ γm(e)). To that aim, we use
the places Tγi of the corresponding clock evolution subnets.
Then, we successively update the subnets according to the
resets R (where R = (x1 := c1 ∧ . . . ∧ xn(e) := cn(e))).
This is done by the subnet in Fig. 5 for a transition e =

(%, x > c3 ∧ y ≤ c2, a, x := c1, %′). Note that we label the
transition firee by the letter a (notation “firee, a”). Note also
that the place corresponding to the clock position (Atxc1

) is
marked at the end of the computation of this subnet.
This subnet has size linear in the size of the original TA.

Our construction is different from the one proposed
in [6]. The way time elapsing and clock evolutions are han-
dled is for example different: instead of having one small
subnet per clock constraints appearing in the TA, we have
only one subnet per clock which encodes its value. This
method requires a more involved construction for updating
the truth value of the constraints without having a blowup
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︸ ︷︷ ︸
Fig. 2

︸ ︷︷ ︸
Fig. 3

︸ ︷︷ ︸
Fig. 3

︸ ︷︷ ︸
Fig. 4

Emptying the net Updating the truth of constraints after the resets Updating the thruth of diagonal constraints

!

Tx>c3

Ty≤c2

firee,a donee !′

xempty Underx:=0 Overxend
xbegin Underx:=c1 Overx:=c1 Atxc1Diagx:=c1

1 Diagx:=c1
d(x)+1

Figure 5. Simulating the transition e = (%, x > c3 ∧ y ≤ c2, a, x := c1, %′)

in the size of the TPN, but allows to deal with diagonal con-
straints and with more resets of clocks to integral values.

3.2 The correctness proof

The correctness proof relies on the existence of two sim-
ulations, one implying the inclusion of the language ac-
cepted by the TA into the language accepted by the TPN,
and the other one implying the converse inclusion. Let A
be an extended TA and N be the net obtained applying the
construction described in the previous part.

Proof of L(A) ⊆ L(N ). We define a relation R be-
tween configurations of the TA and the TPN as follows:
(%, v)R(M, ν) iff the following conditions are fulfilled. Let
x be a clock and CN (x) = {c1, . . . , cn} the set of constants
related to x, occurring in the net (these values are supposed
to be sorted). Let c(x) = inf{cj | cj ≥ v(x)} with the
convention that c(x) = ∞ if the set is empty. Then:
- If c(x) = v(x) thenM(Atxc(x)) = 1;
- Otherwise, if v(x) < c(x) < ∞, then

M(Beforex
c(x)) = M(Ix<c(x)) = 1, and

ν(Reachx
c(x)) = ν(Unsatx<c(x)) = v(x)− c(x);

- Otherwise,M(Afterxcn
) = 1 (c(x) = ∞).

For every place Tx#$c such that v(x) !" c,M(Tx#$c) = 1.
For every place Fx<c such that ¬(v(x) < c), M(Fx<c) =
1. For every place Tx−y#$c such that v(x) − v(y) !" c,
M(Tx−y#$c) = 1. For every place Fx−y#$c such that
¬(v(x)− v(y) !" c),M(Fx−y#$c) = 1. Finally,M(%) = 1.
The marking of remaining places is null, and the age of the
remaining enabled transitions may be any admissible value.
We first observe that (%0,0)R(M0, ν0), and assume that

(%, v)R(M, ν).

First case, simulation of a delay move (%, v) d−→ (%, v + d).
Let X ′ be the subset of clocks x such that v(x) ∈ CN (x).
Let X ′′ be the subset of clocks x /∈ X ′ such that inf{c −

v(x) | c ∈ CN (x) ∧ c > v(x)} is minimal. We note τ this
value (note that τ = ∞ if X ′′ = ∅) and c(x) the constant
associated with x ∈ X ′′.
We decompose the delay move such that we only need to

successively examine the following cases.
- X ′ = ∅ and d < τ . Then (M, ν) d−→ (M, ν + d) and

(%, v + d)R(M, ν + d)
- X ′ = ∅ and d = τ . First, for every x ∈ X ′′, we
fire the transition Unsatx<c(x). Then we let a dura-
tion d elapse and finally for every x ∈ X ′′, we fire
Reachx

c(x). The reached configuration (M ′, ν′) fulfills
(%, v + d)R(M ′, ν′).

- X ′ -= ∅ and d < τ . First, for every x ∈ X ′, we fire the
transition Leavex

v(x). Then we let a duration d elapse
and finally for every x ∈ X ′, we fire Satx>v(x). The
configuration (M ′, ν′) which is reached is such that
(%, v + d)R(M ′, ν′).

Second case, simulation of a discrete move (%, v) a−→
(%′, v′). We “execute” the simulation net associated with
the corresponding transition e: we fire transition firee and
for each reset of clock x (following the order defined by the
net), we unmark the clock subnet of x and mark it appro-
priately. Then we update the places related to the diago-
nal constraints where x occurs. Finally we mark place %′

and, for every reset of clock x, the places Beforex
c1(x) where

c1(x) is the first constant related to x. This configuration
(M ′, ν′) is such that (%′, v′)R(M ′, ν′).

Proof of L(N ) ⊆ L(A). Let (M, ν) be a reachable config-
uration of the net. Note that Σ&∈LM(%) ≤ 1. A configura-
tion with Σ&∈LM(%) = 1 will be called tangible and oth-
erwise vanishing. Given a vanishing configuration (M, ν),
(M ′, ν′) is called a tangible successor of (M, ν) iff it is the
first tangible configuration encountered in some firing se-
quence starting from (M, ν). Note that the differences be-
tween two tangible successors (M ′, ν′) and (M ′′, ν′′) may



only be of the following kinds: a transition Reachx
c , Leavex

c ,
Satx>c or Unsatx<c is fireable in one marking and just fired
in the other.
We define a relationR between configurations of the au-

tomaton and the net as follows. (%, v)R(M, ν) iff
- either (M, ν) is tangible and the following conditions
are fulfilled. First, M(%) = 1. If M(Atxc ) = 1 then
v(x) = c. If M(Beforex

c ) = 1 then v(x) = c′ +
ν(Reachx

c ) where c′ is the constant preceding c or 0 if
c is the first one. If M(Afterxc ) = 1 ∧ M(Ix>c) =
1 then v(x) = c + ν(Satx>c). If M(Afterxc ) = 1 ∧
M(Tx>c) = 1 then v(x) > c.

- or (M, ν) is vanishing and (%, v)R(M ′, ν′) for some
(M ′, ν′) tangible successor of (M, ν).

The critical observation (obtained by induction) is that
when (M, ν) is tangible, (%, v)R(M, ν) andM(Tcond) = 1
then v ! cond.
First observe that (%0,0)R(M0, ν0), and assume that

(%, v)R(M, ν).

First case, simulation of a delay move (M, ν) d−→ (M, ν +
d). Then (%, v) d−→ (%, v + d) and (%, v + d)R(M, ν + d)
since (M, ν) is necessarily a tangible configuration.

Second case, simulation of a discrete move (M, ν) t−→
(M ′, ν′). If t is not a transition firee, then (%, v)R(M ′, ν′).
If t = firee for some e = (%, γ, a, R, %′), then the place
% is marked and for every Tcond, input place of t, one has
v ! cond. Thus (%, v) e−→ (%′, v′) and (%′, v′)R(M ′, ν′)
since (%′, v′)R(M ′′, ν′′) where the latter configuration of
the net is obtained by simulating the transition e in the net
as already described.

3.3 Complexity results

Proposition 1 (From extended TA to TPN). Let A be an
extended TA, then there is a Safe-TPN N equivalent to A
w.r.t. their timed language. The size of this TPN, and the
time complexity of this translation, depends on the class to
which A belongs. This complexity is quadratic in general,
and linear if A is either diagonal-free or 0-reset.

Proof. We consider an extended TAA. The size of the TPN
built previously is the sum of the sizes of all the subnets
we have described. First, we use exactly one place to en-
code each location of A. Secondly, the subnets encoding
the transitions ofA have a size linear in the size of the tran-
sition they encode (see Fig. 5). Finally, the sum of the sizes
of all the subnets (clock evolution subnet, emptying sub-
net, marking subnet, diagonal constraint subnets) related to
a clock x is linear in the numberNatomic(x) of non-diagonal
constraints involving x we have to encode to simulate A.
Indeed, the clock evolution (Fig. 1), emptying (Fig. 2) and
marking subnets (Fig. 3) have all a size linear inNatomic(x),

and the diagonal constraint subnet is of constant size, but
may appear in number linear inNatomic(x). The total size of
our construction is thus linear in the numberNatomic of non-
diagonal constraints we have to encode. As argued in the
presentation of the construction, this number is either lin-
ear or quadratic in the size of A, depending on whether A
simultaneously uses both diagonal constraints and arbitrary
resets to integral values. This concludes the proof.

In [12], it is proved that timed automata using diagonal con-
straints (and also timed automata using resets to integral
values) are exponentially more concise than classical TA.
Applying this conciseness result and using the linear-time
transformation described above, we get the following con-
ciseness result for Safe-TPNs:

Corollary 1 (Conciseness of TPNs: a lower bound). There
is a family of Safe-TPNs {Nk}k∈N such that the size of Nk

isO(k2 log(k)) and such that any diagonal-free and 0-reset
TAAk equivalent toNk (w.r.t. their timed languages) has a
size at least 2k.

Example. The TPN in Fig. 6 recognizes the timed language
{(a, ti)1≤i≤2k | ti < ti+1}. Using a slight adaptation
of [12], we can prove that this language needs an expo-
nential number of locations in a timed automaton to be ac-
cepted. However it is accepted by the TPN Nk depicted on
Fig. 6 whose size is inO(k2 log(k)). This TPN implements
somehow the increment of a binary counter (each line of
the TPN corresponds to one bit: if the token is in the place
on the left, the corresponding bit is 0, whereas it is 1 if the
token is in the place on the right).
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Figure 6. The TPN Nk

Finally, this conciseness result is optimal as there is also
an exponential lower bound on the size of TA equivalent to
Safe-TPNs, as proved in [21]:



Proposition 2 (Conciseness of TPNs: an upper bound). Let
N be a Safe-TPN then there is a diagonal-free and 0-reset
A equivalent toN (w.r.t. their timed languages) whose size
is exponential in the size of N . Furthermore the time com-
plexity of the translation is exponential in the size of A.

4 From Parallel Composition of TA to TPNs

TPN(Ai)

...

··· ···

··· ···

firee (ai)

In(ai)In(a1) In(an)

Fire,a

Out(ai)Out(a1) Out(an)

donee

Figure 7. Simulating the parallel composition

In this section, we describe the construction of a Safe-
TPN “equivalent” to a parallel composition of TA w.r.t.
timed languages. The formal proof of correctness is omit-
ted, due to lack of space.
We assume we are given a family (Ai)1≤i≤n of n TA,

and an n-ary synchronization function f . We assume we
have built for every TA Ai a corresponding TPN TPN(Ai),
according to the construction presented in the previous sec-
tion. For each rule of the synchronization function, we add
a subnet in order to ”synchronize” the corresponding transi-
tions of the TPNs TPN(Ai). We explain here the construc-
tion depicted in Fig. 7. First, for every 1 ≤ i ≤ n, and
for every letter ai appearing in automaton Ai, we add two
places In(ai), and Out(ai), which we connect to the cor-
responding transitions firee (originally labeled by ai in Ai)
and donee of TPN(Ai), for every transition e of Ai labeled
by ai. Then, for every rule f(a1, . . . , ai, . . . , an) = a, we
build a new immediate transition “Fire” labeled by a which
checks every input places corresponding to the labels that
have to synchronize, and returns the tokens to the corre-
sponding output places.
It is easy to check that this construction is linear in the

size of the synchronization function f , and linear in the size
of the TPNs TPN(Ai).
Finally note that this construction may induce new dead-

locks in the TPN (as a label ai may be able to synchronize
with other labels in different ways), but this has no effect on
the timed language which is accepted.

5 Conclusion and Future Work

In this paper, we have studied the relative expressiveness
and conciseness of time Petri nets and different extensions
of timed automata w.r.t. timed language equivalence. More
precisely, we have designed a polynomial translation from
a TA with diagonal constraints and resets to integral values
to a TPN. This translation becomes linear whenever TA are
either diagonal-free or 0-reset. As a consequence of this
translation, we get that TPNs are exponentially more con-
cise than classical TA (thus diagonal-free and 0-reset), and
we have provided a concrete family of TPNs which wit-
nesses this conciseness property.
We are currently investigating extensions of this work.

For example, we believe that an appropriate adaptation of
the translation would also handle several other extensions
of TA [13].
An obvious perspective for these constructions is to use

algorithms developed for analyzing TPNs as an alternative
for the analysis of parallel composition of extended TA. We
explain below the main differences between two fundamen-
tal approaches used to verify TA and TPNs, and we explain
what we may expect from the translation we have proposed
in this paper.

Analysis in TA: the forward algorithm. In practice, the
verification of reachability properties in timed automata
is done using symbolic on-the-fly algorithms manipulat-
ing zones2 [19, 15, 11]. In particular, the forward anal-
ysis computation (which consists in computing iteratively
the successors of the initial configurations) is very impor-
tant and is for example implemented in the much used tool
Uppaal [20]. This algorithm may be presented as the con-
struction of the “zone graph”. Each vertex of this graph is
a pair composed by a location % and a zone Z in which we
store the possible values of the clocks. In order to build
the successors of a vertex, we proceed as follows for every
transition t = %

g,a,R−−−→ %′.
- We compute the successor of the zone Z , by letting
time elapse, taking the intersection with the constraints
of the guard, and finally updating the values of clocks
that are reset. If the resulting zone is consistent, we
canonize it, and update the value of the location by
this of the target location %′ of the transition.

- Since the values of clocks are in general not bounded,
and in order to ensure termination of the algorithm, we
have to replace the zone Z by an abstraction Z ′ of it.

- Then the resulting vertex (%′,Z ′) is the successor (in
the computation) by the firing of t.

Unfortunately, the abstraction operator used in step 2
must be carefully chosen [11]. For classical timed automata,

2A zone is a set of valuations defined by a clock constraints.



the choice of a good operator is rather simple, but for ex-
tended timed automata (i.e. timed automata using diagonal
constraints and more general resets of clocks), it is quite
intricate to find a correct abstraction operator and even to
propose a correct forward analysis algorithm [11, 4, 14].

Analysis of TPNs: the class graph. The class graph is
an abstraction of the transition system corresponding to an-
other semantics of TPNs. In this semantics, the timed values
we store refer to the future of the execution: each vertex of
this graph is a pair composed by a marking M and a zone
Z where a variable xt represents the firing delay associated
with an enabled transition t and an extra variable x0 whose
value is always 0. In order to build the successors of a ver-
tex, we proceed as follows for every enabled transition t.
- We add to Z the constraints xt ≤ xt′ for all t′ -= t ∈
En(m), and we check whether the resulting set of con-
straints is consistent. We canonize the new set of con-
straints and we compute the new markingM ′.

- We remove the variables corresponding to a transition
which has been disabled, we modify the constraints
corresponding to transitions t′ which remain enabled,
to express that xt′ is now the remaining delay after
firing t. At that point, some constraints are not con-
straints of a zone: we remove variable xt applyingh a
Fourier-Motzkin elimination and obtain a new zone.

- We introduce the variables xt′′ corresponding to the
newly enabled transitions t′′ with the constraints ex-
pressing that xt′′ ∈ I(t′′).

- We finally canonize this zone and we get a new zone
Z ′ s.t. (M ′,Z ′) is the successor zone when firing t.

The key point for termination of this algorithm (when
the net is bounded) is that constants appearing in the zones
are bounded by the maximal finite bound of the firing inter-
vals. Thus contrary to the zone graph of a TA, no abstraction
mechanism is required in order to ensure termination.

Discussion. The constructions we have proposed in this pa-
per suggests a unified simple method for verifying paral-
lel compositions of extended TA: first transform the system
into a TPN, and then apply the class graph algorithm (using
for example the tool Tina already mentioned). The advan-
tages of this method are the following: 1) it avoids ad-hoc
techniques for enforcing termination of forward analysis;
2) it may help tackling the state explosion problem due to
parallel composition as techniques well-suited for analyzing
TPNs might be efficient to handle this parallel composition.

Let us point out a main difference between these two
methods: whereas the zone graph somehow computes con-
straints on the dates of past events, the class graph computes
constraints on the dates at which will happen events in the
future by storing constraints on the firing dates of transi-
tions. We thus think it is relevant to compare these two

points of view, and we currently implementing the construc-
tions we have proposed in this paper to compare the two
methods. If the results of our experiments are encouraging,
we plan to propose an algorithm which would compute a
sort of class graph directly on TA (without first transform-
ing it to an equivalent TPN).
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