
Chapter 9

Verification of Timed Systems

9.1. Introduction

This chapter is devoted to the presentation of verification techniques for systems
involving quantitative time constraints. Different ways of modeling such systems have
been presented in Chapter 4. In this chapter, we present different results ranging from
well established techniques (such as the region graph construction for timed automata)
to more advanced issues (such as the implementability of timed automata).

Main methods to tame timed systems

Timed systems are a particular type of infinite-state systems in which the state
space involves dense time variables. A general introduction on the verification tech-
niques used to infinite-state systems can be found in Chapter 8. The most standard
tool used to analyze timed systems is the symbolic representation of configurations,
i.e. the identification of a framework that enables the finite representation of infinitely
many configurations.

For some classes of timed systems, we can even use such a symbolic represen-
tation to transform the timed system into a finite-state system on which the property
can be decided. In this chapter, we present such symbolic representations for sev-
eral classes of timed systems. The first presentations of such constructions are the
state-class graph for time Petri nets [BER 83], and the region graph for timed au-
tomata [ALU 94].

Chapter written by Pierre-Alain REYNIER.

271

272 Models and Analysis for Distributed Systems

These reductions to finite-state systems are usually based on an equivalence rela-
tion between configurations that admits a finite number of equivalence classes. How-
ever, it can also be the case that this equivalence admits an infinite number of classes,
and still yields decidability results, for instance if there exists a well quasi-order on
the equivalence classes.

From decidability to efficient procedures

Although the previously mentioned techniques allow decidability results to be
proved, the algorithms resulting from them are not always the most efficient. For in-
stance, for the class of timed automata, while the region graph construction is comonly
used to prove decidability, it is never computed in practice. As an alternative, the
symbolic representation of zones is considered which, though not always theoretically
optimal, often yields much better algorithms in practice.

In this chapter we are mainly interested in decidability results, and thus we do not
present such algorithms. However, most of the positive results presented here have
been turned into efficient procedures.

Implementability of timed systems

Implementing mathematical models on physical machines is an important step for
applying theoretical results to practical examples. This step is well-understood for
many untimed models that have been studied (e.g. finite automata, pushdown au-
tomata). In the timed setting, while timed automata are widely-accepted as a frame-
work for modeling real-time aspects of systems, it is known that they cannot be faith-
fully implemented on finite-speed central processing units (CPUs) [CAS 02]. Study-
ing the “implementability” of timed automata is thus a challenging problemwhich has
obvious theoretical and practical interest.

Structure of the chapter

Section 9.2 is elaborated around the standard region graph construction for timed
automata. After describing it precisely, we will present other models with a finite-state
abstraction of their state space, and decidability results for temporal logics resulting
from these abstractions.

When considering extensions of Petri nets with time, we obtain models that are
infinite “in two directions”. We present in section 9.3 the setting of timed Petri nets,
for which an equivalence relation with an infinite number of equivalence classes can
be used to prove decidability results.

Finally, we discuss in section 9.4 implementability issues in timed automata, and
present a recent approach based on a parametric semantics for timed automata.

Verification of Timed Systems 273

9.2. Construction of the region graph

To decide reachability properties in timed systems, many positive results are based
on the construction of a finite-state automaton that abstracts the timed system. The
construction ensures that checking whether a configuration (or a set of configurations)
is reachable in the timed system is equivalent to checking whether a state (or a set
of states) is reachable in the finite automaton. More precisely, this construction often
yields a finite state automaton that precisely accepts all the untimed words that can be
obtained from the timed words accepted by the timed automaton by dropping out the
time components. The standard way to obtain such an abstraction is the construction
of an equivalence relation of finite index (i.e. with finitely many equivalence classes)
over the configurations. To be compatible with reachability checking, this equivalence
must ensure that from two equivalent configurations, the same behaviors will be pos-
sible. In timed systems, there are two types of transitions, time elapsing, and discrete
firing of a transition: if from a configuration, it is possible to delay (resp. to take
a transition), then this can occur from an equivalent configuration, and the two con-
figurations resulting from the two moves are then also equivalent. However, precise
delays need not to be respected, and thus the equivalence will only be a time-abstract
bisimulation (unlike timed bisimulations defined in Chapter 4).

9.2.1. Timed automata

We describe a notion of regions initially presented in [ALU 90, ALU 94] for the
decision of the reachability of a location in a timed automaton.

The equivalence relation
For timed automata, an equivalence relation (with finite index) verifying the above

properties always exists, and it can be defined as follows. Let A be a timed automa-
ton with set of clocks X and maximal constant M . Without loss of generality, we
assume that all constants of A are integers, this can be obtained by multiplying all
the constants by the same value. Two configurations (q, v) and (q′, v′) are equivalent
if q = q′ and v ≡M v′, where the relation v ≡M v′ holds whenever for each clock
x ∈ X ,

1) v(x) > M ⇐⇒ v′(x) > M ;
2) if v(x) ≤M , then 1 &v(x)' = &v′(x)', and 〈v(x)〉 = 0 ⇐⇒ 〈v′(x)〉 = 0,

and for each pair of clocks (x, y);
3) if v(x) ≤M and v(y) ≤M , then 〈v(x)〉 ≤ 〈v(y)〉 ⇐⇒ 〈v′(x)〉 ≤ 〈v′(y)〉.

AsM is defined as the maximal constant appearing in A, the two first conditions
imply that two equivalent valuations satisfy exactly the same clock constraints of the

1. !v(x)" (resp. 〈v(x)〉) denotes the integral part of v(x) (resp. its fractional part).

274 Models and Analysis for Distributed Systems

0

y

1

2

2

1 x

v ·
· v′

(a) Partition respecting 1) and 2)
0

y

1

2

2

1 x

v ·
· v′

(b) Partition respecting 1), 2) and 3)

Figure 9.1. Partitions of the upper-right quarter of the plane

timed automaton. The third condition ensures that from two equivalent configurations,
letting time elapse will lead to the same integral values for the clocks, in the very same
order. The equivalence≡M is called the region equivalence, and an equivalence class
is then called a region. We denote the set of regions obtained in this way as RM (X).
More formally, we have, given two clock valuations v, v′ ∈ RX

+ ,

v ≡M v′ ⇒
{

for any constraint g in A, v |= g ⇐⇒ v′ |= g
∀d ∈ R+, ∃d′ ∈ R+ s.t. v + d ≡M v′ + d′

(9.1)

We can verify that the number of regions is bounded by n! ·2n · (2M +2)n, where
n denotes the number of clocks. Indeed, a region is characterized by specifying:
(i) a mapping from clocks to the set of so-called one-dimensional regions

{[0, 0],]0, 1[, [1, 1], . . . ,]M − 1,M [, [M,M],]M,+∞[};
(ii) for each pair of clocks x and y such that, according to point (i), both clocks have
non-nul fractional parts and are bounded byM , whether 〈x〉 is less than, equal to, or
greater than 〈y〉.

Point (i) yields (2M+2)n choices as there are 2M+2 one-dimensional regions. Point
(ii) is characterized by a subset of representative clocks (thus at most 2n choices) and
an order on clocks (at most n! choices). Indeed, we can obtain the strict/non-strict
order on fractional values clocks from the order on clocks by collapsing it on the
representative clocks.

To illustrate this definition, we consider the case of two clocks x and y, with max-
imal constant 2. A valuation can then be understood as a point in the quarter of the
plan depicted in Figure 9.1(a). The partition depicted in Figure 9.1(a) respects all
constraints defined with integral constants smaller than or equal to 2, but the two val-
uations v and v′ are not equivalent due to time elapsing (item 3 above): indeed, if we

Verification of Timed Systems 275

1 < x < 2 ∧ 2 < y

x = 0 ∧ y = 2

0 < y − 1 < x < 1

0 < x− 1 = y < 1

Figure 9.2. The 44 regions in two dimensions with maximal constant 2.

let some time elapse from the valuation v, we will first satisfy the constraint y = 1 and
then x = 1, while it will be the converse from the valuation v′. Hence, the possible
behaviors from v and v′ are different. More precisely, property (9.1) is not satisfied:
there exists a delay d such that v + d satisfies the constraint x < 1 ∧ y = 1, while
there exists no such delay for valuation v′. To handle time elapsing constraints in-
duced by time-elapsing, condition 3) refines the partition of Figure 9.1(a) by adding
diagonal lines. The resulting partition is given on Figure 9.1(b) and is a time-abstract
bisimulation.

Following the above characterization of regions, they can be represented by the
linear equalities and inequalities satisfied by the valuations they represent. All the
regions of our example are represented on Figure 9.2. Note that there are different
types of regions: regions reduced to a single element (corners), regions composed
of a segment, regions composed of a half-line, regions composed of a triangle, etc.
Examples of constraints associated with regions are given on this figure.

Construction of the region automaton

We present now how regions allow a finite-state automaton to be built that ac-
cepts the untimed language of the timed automaton. States of this automaton are pairs
(q, R) composed of a control state of A and of a region of RM (X). There exists a
transition (q, R)

a−→ (q′, R′) if, and only if, there exists a transition q g,a,r−−−→ q′ in A,
a valuation v in the equivalence class R, and a non-negative duration t ∈ R+ such
that v + t |= g and v′ = (v + t)[r ← 0] belongs to the equivalence class R′. Note
that in this definition, a transition in the region automaton represents an action tran-
sition preceded by a delay transition. We could also define transitions in the region
automaton to explicitely represent delay transitions in the timed automaton in order
to express qualitative properties on time elpasing. We denote by R(A) the result-
ing finite-state automaton, which we call the region automaton. Recall that operator
Untime projects a timed language on its untimed component. We can easily prove
the following property:

276 Models and Analysis for Distributed Systems

PROPOSITION 9.1 Let A be a timed automaton. We have:

L(R(A)) = Untime(L(A))

As a consequence, we obtain:

THEOREM 9.2 ([ALU 94]) The two following problems are PSPACE-complete:
– Checking the emptiness of the language of a timed automaton;
– Checking the reachability of a location in a timed automaton.

These problems are already PSPACE-hard for a fixed number k of clocks, with k ≥ 3.

These two problems can be reduced to each other by considering accepting lo-
cations. PSPACE-membership can be deduced from the construction of the region
automaton of a timed automaton, considering the bound given above on the number
of regions. Indeed, the number of locations of the region automaton is exponential in
the size of the timed automaton, and can thus be stored in polynomial space. Then, an
NPSPACE procedure simply guesses the path allowing the location to be reached, and
checks that the path is correct with polynomial space. As there are exponentiallymany
locations in the region automaton, the length of this path is at most exponential, and
can thus also be stored in polynomial space. We conclude with Savitch’s theorem. To
prove the PSPACE-hardness, one can encode the behavior of a linearly space bounded
Turing machine on a given input. In this encoding, clock values are used to represent
the content of the tape during the execution of the Turing machine.

To conclude this section, we illustrate the construction of the region automaton
with an example. Consider the timed automaton depicted on Figure 9.3, which has
two clocks x and y. The region automaton resulting from the previous definitions is
depicted on Figure 9.3(b). In each of its location, the location of the timed automaton
and the constraint corresponding to the region are given. The language of this automa-
ton is a∗a2b. In particular, this shows that in order to reach the accepting location in
the timed automaton, one the loop should fired twice around location !1.

9.2.2. Other timed models with finite-state abstractions

Region construction is a very standard tool for proving decidability results in timed
systems. In the chapter, we sketch other region constructions for extensions of timed
automata or for other timed models.

Verification of Timed Systems 277

!1 !2
b

x = 0 ∧ y > 1

a, x≤1, x := 0

(a) A timed automaton

!1,
x = 0
y = 0

!1,
x = 0

0 < y < 1

!1,
x = 0
y = 1

!1,
x = 0
1 < y

!2,
x = 0
1 < y

a

a

a

a

a

b

a

a

(b) Its region automaton

Figure 9.3. A timed automaton and its region automaton

Extensions of timed automata

Timed automata constitute an extension of finite-state automata equipped with
clocks, in which transitions are labeled by conditions on clock values, and by op-
erations of updates on clock values. In the original model of Alur and Dill, conditions
are Boolean combinations of comparisons of a clock with a constant and updates are
simply resets to zero.

These two aspects can be extended in different ways, and several works have
studied such extensions. We briefly present here some of the results established
in [BOU 04].

In this work, conditions are extended with so-called diagonal constraints. Such
constraints are of the form x − y ∼ c, where x and y are clock variables and ∼∈ {≤
, <,=, >,≥}. They are called diagonal as they involve the difference between two
clocks.

Regarding updates, they consider several extensions of the standard zero reset:
– reset to a constant value different from zero: x := c;
– reset to the value of another clock: x := y;
– incrementation: x := x+ 1;
– decrementation: x := x− 1;

278 Models and Analysis for Distributed Systems

U0(X)∪ Diagonal free constraints General constraints
x := c, x := y PSPACE-complete PSPACE-complete
x := x+ 1 Undecidable
x := x− 1 Undecidable

Table 9.1. Decidability status of extensions of timed automata

1 < x < 2 ∧ 2 < y
∧1 < y − x < 2

0

y

1

2

2

1 x

Figure 9.4. Partition compatible with the presence of diagonal constraints

Denoting U0(X) as the standard set of updates allowed in timed automata, some
of the results of [BOU 04] are summarized in Table 9.1. Among them, it is interesting
to note that while adding decrementation to updates always leads to undecidability, it
is possible to allow incrementation if diagonal constraints are not allowed.

To obtain the decidability results presented in this table, the authors exhibit differ-
ent conditions of compatibility of a set of regions with a set of updates and/or a set
of clock conditions. In some cases, it is possible to explicitly build regions verifying
these compatibility conditions. We describe such a case below. However, in more
involved cases, the author expresses the existence of compatible regions as the solu-
tion of a system of diphantine equations, and prove that this sytem always admits a
solution. Note that to prove some of these results, we could also reduce the problem
to standard timed automata by using automata translations. For instance, this can be
done for diagonal constraints [BÉR 98].

Regions in presence of diagonal constraints. We describe here a construction of
regions for a system composed of two clocks x and y, containing diagonal constraints,
and whose maximal constant is 2. A possible partition of the set of clock valuations is
described on Figure 9.4. We can easily verify that this partition ensures property (9.1),
and that it is compatible with the reset operation (the result of a region by a reset is
still a region). In the general case of a set of clocks X and a maximal constantM , in
addition to the constaints defined in subsection 9.2.1, we have to consider constraints
of the form x− y ≤ c, for any pair of clocks x, y and any c ∈ {0, 1, . . . ,M}.

Verification of Timed Systems 279

q0, 1 q1, 2 q2, 2
x1 < 1, a, x2 := 0 x1 + 2x2 = 1, b

Figure 9.5. An interrupt timed automaton

Interrupt timed automata

The model of interrupt timed automata has recently been introduced in [BÉR 09]
to model multi-task systems with interruptions.

We recalled in Chapter 4 that the class of hybrid automata is undecidable. An
interesting subclass is the class of stopwatch automata, which extends timed automata
by allowing clock variables to be frozen. However, the reachability problem is also
undecidable for this class.

Interrupt timed automata form a subclass of stopwatch automata, where the real
valued variables (with rate 0 or 1) are organized along priority levels. As proved
in [BÉR 09], untiming languages accepted by these models yields regular languages
with the effective construction of a region automaton.

We will not precisely describe the model, but will indicate on how it operates and
comment on the proof of decidability. In an interrupt timed automaton, the set of lo-
cations is partitioned into interrupt levels, denoted by integers 1, . . . , n. In addition,
a unique clock is associated with each level, denoted by xi for level i, and in a loca-
tion of level i, only clock xi is active (i.e. evolves when time elapses). The clocks
from lower levels are suspended, as stopwatches, and those from higher levels are not
relevant. Regarding transitions, the guard of a transition leaving a location of level
k can be any linear constraint involving clocks x1, . . . , xk . Finally, concerning up-
dates, if the transition enters a location of level k′ with k < k′, then the new clocks
xk+1, . . . , xk′ are simply reset to zero. Other clocks can reset using linear constraints
involving clocks from strictly lower levels. If the transition does not strictly increase
the level, then only clocks x1, . . . , xk can be reset, using linear constraints involving
clocks from strictly lower levels.

As an example, an interrupt timed automaton considered in [BÉR 09] is depicted in
Figure 9.5. In this figure, the level of locations is indicated beside its name. Location
q0 is the initial location with level 1. Locations q1 and q2 are on level 2, and location
q2 is the final location. As there are two levels, there are thus two interrupt clocks x1

and x2. Consider an execution in this model. The constraint x1 < 1 on the transition
labeled by a implies that it is fired after a delay 1 − τ , with 0 < τ ≤ 1, reaching
a configuration (q1, v) where v is the clock valuation defined by v(x1) = 1 − τ and
v(x2) = 0. Then, the second transition is fired after a delay τ ′ which must satisfy
(1 − τ) + 2τ ′ = 1. This yields τ ′ = τ

2 and thus the timed language accepted by

280 Models and Analysis for Distributed Systems

this interrupt timed automaton is L = {(a, 1 − τ)(b, 1 − τ
2) | 0 < τ ≤ 1}. Note in

particular that this language cannot be accepted by a timed automaton.

The construction of the region automaton for interrupt timed automata extends the
construction of [ALU 94] as follows. For timed automata, we defined regions as par-
titions of the set of clock valuations that respect constraints appearing in the timed
automaton, and that are compatible with time elapsing and reset. In the setting of
interrupt timed automata, clock constraints are more general as they involve linear
constraints on interrupt clocks. Similarly, updates are also more general. Thus, we
define here the set Ek of linear constraints for each level k, which can be built in the
interrupt timed automaton on level k (this includes guards of level k, but also com-
binations with updates of higher levels). Then, regions associated with location q are
characterized by a total preorder on Ek, for each 1 ≤ k ≤ λ(q), where λ(q) denotes
the level of q. Intuitively, this is used to ensure that two clock valuations belonging to
the same region give the same order to all the linear constraints in which they could be
evaluated. This implies that the same time elapsing and the same discrete transitions
are possible. This can be used to prove the correctness of the construction of a re-
gion automaton for interrupt timed automata. As for timed automata, this automaton
is time-abstract bisimilar to the original model, and thus it recognizes the untiming
of the language of the interrupt timed automaton. The complete description of this
procedure, and its application on the example of Figure 9.5 can be found in [BÉR 09].

Time Petri nets
We conclude this subsection with the setting of time Petri nets, a model presented

in Chapter 4. Note that the set of states of a time Petri net may be infinite for two
reasons: on one hand because it can admit an unbounded number of (untimed) mark-
ings and, on the other hand, because its semantics is a timed transition system which
involves unbounded (and dense) clock valuations.

Most verification problems are undecidable for time Petri nets, and thus for ver-
ification issues of this model, one considers bounded time Petri nets, i.e. time Petri
nets that admit a finite number of (untimed) reachable markings. We will present in
the next section decidability results for timed Petri nets, which, however, also have an
infinite state space “for two reasons”.

Decidability results for bounded time Petri nets rely on the construction of the
so-called state class graph [BER 83, BER 91], which can be seen as the construction
of a region graph. This construction preserves the reachable markings and the LTL
properties. Other graph constructions have been proposed that decide the reachability
of a configuration of the time Petri net, or that decide whether a CTL property is
satisfied [BER 03].

LetN = (P, T,Σε, P re, Post,M0,λ, I) be a time Petri net. A state class is a pair
(M,D) composed of a marking M on places P , and a firing domain D. The firing

Verification of Timed Systems 281

domain should give, for each enabled transition t, the set of delays after which the
timing constraint of t is satisfied. Formally, it is given by a system of linear inequalities
involving one variable per enabled transition. Two state classes (M,D) and (M ′, D′)
are said equivalent, denoted (M,D) ∼= (M ′, D′), wheneverM = M ′ and D and D′

have equal solution sets.

Notations. Let t ∈ T be a transition. By definition I(t) gives the interval of firing
of t. We denote by eft(t), which stands for the earliest firing time, (resp. lf t(t),
which stands for the latest firing time) the left-bound (resp. the right-bound) of I(t).
In the sequel, we denote by xt a variable associated with transition t.

The construction of the state class graph proceeds as follows:
Initialization: the initial state class is (M0, D0) where D0 is defined by the following
set of inequations: {eft(t) ≤ xt ≤ lf t(t) | •t ≤M0};
New Successor: let (M,D) be a state class built by the procedure. Transition t is
firable from (M,D) if and only if the two following conditions are satisfied:
(i) •t ≤M (discrete enabledness), and
(ii) the system D ∧ {xt ≤ xt′ | t′ 4= t ∧ •t′ ≤M} admits a solution.

Let t be a transition satisfying these conditions, then we build a new state class, de-
noted (M ′, D′), which is the successor of (M,D) by the transition t. This state class
is defined byM ′ = M − •t+ t•, andD′ is obtained by:
(a) D := D ∧ {xt ≤ xt′ | t′ 4= t ∧ •t′ ≤M};
(b) for each transition u enabled atM ′, a new variable x′

u is introduced, obeying:
x′
u = xu − xt if the predicate 2 ↑enabled(u,M, t) evaluates to false,

eft(u) ≤ x′
u ≤ lf t(u) otherwise;

(c) variables xv for v ∈ T are eliminated by considering an existential quantifica-
tion for these variables (this is possible in linear arithmetic over real numbers).

In this construction, when a new state class is built, if an equivalent state class
(with respect to relation ∼= defined above) exists in the graph, then the two nodes of
the graph are merged. The equivalence∼= can be checked by transforming the systems
of linear inequalities into canonical forms. Indeed, these systems are conjunctions
of inequalities on differences of variables. Thus, a canonical form can be obtained
by the computation of the strongest constraints, what can be obtained by a “shortest
paths” algorithm, for instance the Floyd-Warshall algorithm. Note that while the time
complexity of the general Floyd-Warshall algorithm is O(n3) where n denotes the
number of variables, the computation of a canonical form after the above operations
can be performed in time O(n2) if the previous constraints were in canonical form.

2. See Chapter 4 for the definition of this predicate.

282 Models and Analysis for Distributed Systems

Then, we can state the following theorem:

THEOREM 9.3 ([BER 83]) Let N be a bounded time Petri net, then the state class
graph ofN is finite and recognizes the language Untime(L(N)).

To conclude this section, we illustrate this construction with an example. We con-
sider the time Petri nets depicted in Figure 4.12 of Chapter 4. The state class graph
obtained by the procedure described above applied on this time Petri net is depicted
in Figure 9.6. In this figure, we represent the marking and the constraints defining the
firing domain in each node state class. On each transition, we write both the name of
the transition from the original time Petri net and its label. Note that variable xi refers
to transition ti. When no transition is enabled in a marking, we denote by⊥ the firing
domain. Consider the transition labeled by a between markings p1 + p2 + p3 and
p2 + 2p3. This corresponds to the firing of transition t1 of the net. The firing of this
transition from this marking does not newly enable transition t3, but it newly enables
transition t2. As a consequence, the constraint associated with t3 has been modified,
since it is deduced from the fact that at least one time-unit has elapsed to allow the
firing of t1. On the contrary, the constraint associated with t2 is fresh, as t2 is newly
enabled. Note also that the discrete structure of the graph is different from that of the
reachability of the underlying Petri net. Indeed, marking p3 is represented twice with
different constraints.

9.2.3. Application to the decision of temporal logics

The region construction of timed automata also has consequences on the decid-
ability results of model checking. We present here two model-checking algorithms
for timed automata based on the region automaton construction.

Model checking LTL
The model checking of LTL properties for finite-state systems was presented in

subsection 7.4.2. It relies on the construction of a Büchi automaton for the LTL for-
mula, and of its synchronized product with the automaton of the model. Following
Proposition 9.1, which states that the untimed language is preserved by the region
automaton construction, the same process can be applied on the region automaton,
yielding the decidability of the LTL model checking for timed automata.

Model checking TCTL
The timed logic TCTL has been presented in Chapter 4. It constitutes a timed

extension of the branching logic CTL. We present here an adaptation of the region
automaton construction which allows to decide whether a timed automaton satisfies a
property expressed as a TCTL formula.

Verification of Timed Systems 283

2p1 + p2

1 ≤ x1 ∧ x2 = 1

p1 + p2 + p3

1 ≤ x1 ∧ x2 = 1 ∧ 1 ≤ x3

2p1

⊥

p2 + 2p3

x2 = 1 ∧ 0 ≤ x3

p1 + p2

0 ≤ x1 ∧ x2 = 0
p1 + p3

0 ≤ x3

p2 + p3

x2 = 1 ∧ 1 ≤ x3

p1

⊥
2p3

0 ≤ x3

p3

0 ≤ x3

p2

x2 = 0

∅
⊥

p3

1 ≤ x3

at1 t2, b

t1, a ct3 t2, b

ct3 t2, bt3, ct1, at2, b

ct3 t2, b t3, c

t3, c t2, bt3, c

Figure 9.6. A state class graph of a time Petri net

THEOREM 9.4 ([ALU 93]) Model checking TCTL over timed automata is decidable
and the problem is PSPACE-complete.

The model checking of TCTL formulas on timed automata can be reduced to the
model checking of a CTL formula on a modified region automaton. We describe here
how this procedure works. The central property of the equivalence used above to
define the regions of a timed automaton is its consistency with TCTL formula: let
A = (Σ, X,Q, q0,∆) be a timed automaton,≡M the associated equivalence relation,
q ∈ Q a state and v ≡M v′ two equivalent valuations. Then for each formula φ of
TCTL, (q, v) |= φ ⇐⇒ (q, v′) |= φ. The proof of this property relies on a notion of
equivalence between runs, extending the equivalence between valuations. Then, for
model checking, a construction similar to that for the region automaton is performed,
which additionally takes into account the formula φ that A must satisfy:
– a new clock zφ (not inX) is added to measure delays associated with subformu-

las of φ. We set X∗ = X ∪ {zφ};

284 Models and Analysis for Distributed Systems

– recall that M is the maximal constant associated with A. In order to take into
account the constants appearing in the time constraints of the subformulas, we denote
the largest of these constants asMφ and we setM ′ = max(M,Mφ).

Then a region automatonHA is built from A with X∗ as set of clocks andM ′ as
maximal constant. States are thus elements of the form (q, R), where q is a location of
A and R ∈ RM ′ (X∗) is a region involving one more component than regions on X ,
corresponding to the values of the special clock zφ. In this construction, the case of
boundary regions must also be handled by modifying some transitions (we omit these
technical details here). The last step before applying the CTL labeling algorithm is to
add atomic propositions p ∼ c to label the states of HA: a state (q, R) is labeled by
p ∼ c if the value of zφ in the regionR satisfies the constraint zφ ∼ c. For instance, to
handle a formula like φ : AF<3P , meaning that atomic proposition P will hold on all
runs before three time units, we transform the condition for a configuration (q, v) |= φ
into (q, [v, 0]) |= AF (P ∧ p < 3) inHA.

In other words, from a state where the value of zφ is equal to 0, a state can always
be reached where P holds and at the same time the value of zφ is less than 3. The
construction is illustrated on the timed automaton of Figure 9.3. This timed automaton
has two clocks x and y and 1 as maximal constant 1. We also choose 1 for Mφ, so
we can deal with formulas using 0 or 1 as constants. The region automaton HA is
thus built with M = 1. For the sake of simplicity, consider only formulas with one
level (no nested formulas). Then the clock z is never reset (as clock y in this example)
and thus the region automatonHA is obtained from the region automaton depicted in
Figure 9.3(b) by letting z be equal to y in all regions.

To conclude this section, note that this technique can be adapted to obtain a proce-
dure for the model checking of the timed logic Lν [LAR 95].

9.3. Handling infinite abstractions

The different settings presented in the previous section share the property of admit-
ting an equivalence relation of a finite index. This yields a finite number of regions and
thus allows decidability results to be deduced. We present here a setting in which the
number of regions is infinite, but still yields a decidability result, through additional
techniques of infinite state systems (here, well quasi orders). This setting concerns the
model of timed Petri nets, an extension of Petri nets which model timed systems. We
do not recall here the model as it was presented in Chapter 4.

A lazy semantics

As for the model of time Petri nets, the set of reachable states of a time Petri net
may be infinite for two reasons: on one hand because it can admit an unbounded

Verification of Timed Systems 285

number of (untimed) markings and, on the other hand, because its semantics involves
unbounded (dense) clock valuations. However, as we will see, several problems are
decidable for this model. This positive property partly follows from the fact that the
semantics of time Petri nets is urgent, while the semantics of timed Petri nets is lazy. In
time Petri nets, when a transition is enabled, it cannot get disabled by time elapsing.
On the opposite, in timed Petri nets, one can miss the firing of a transition by time
elapsing. This induces a monotony property for timed Petri nets, not satisfied by time
Petri nets, that is central in the decidability results we present in this section.

9.3.1. A symbolic representation for timed Petri nets

Let N = (P, T,Σε, P re, Post,M0,Λ) be a timed Petri net where the bounds of
intervals are in IN≥0 ∪ {∞}. There is no loss of generality in assuming that finite
bounds of the net are integers (otherwise we refine the granularity of the regions).

Definition of the Coverability problem. Let N be a finite set of markings with
integral ages (again, we could pick rational numbers and refine the granularity). By
N↑, we denote the upward closure of N , i.e., the set {ν | ∃ν′ ∈ N, ν′ ≤ ν} (where
the order is the standard order of Bag(P × R+)). The coverability problem for N
and set of configurationsN asks whether there exists a path in N from ν0, the initial
configuration ofN , to some ν ∈ N↑. We prove the following result.

THEOREM 9.5 (Coverability Problem [ABD 01]) The coverability problem is de-
cidable for timed Petri nets.

In order to prove this theorem, we introduce the notion of region for timed Petri
nets. Such a construction has been done for example in [MAH 05] for timed Petri nets,
and has been used recently in several other contexts [OUA 04, OUA 05, LAS 05], and
extended to timed Petri nets with read-arcs in [BOU 08a]. By max we denote the
maximal integer appearing in the bounds of intervals of the net and in the ages of the
tokens in the configurations of N .

DEFINITION 9.6 A region R for N is a sequence a0a1 . . . ana∞ where n ∈ IN≥0,
for all 0 ≤ i ≤ n, ai ∈ Bag(P × {0, 1, . . . ,max}) with size(ai) 4= 0 if i 4= 0, and
a∞ ∈ Bag(P × {∞}).

We first informally explain the semantics of a region. Given the bag of tokens
defining a configuration, we obtain its associated region as follows. We put in a∞
all the tokens whose ages are strictly greater than max and forget their ages. We

286 Models and Analysis for Distributed Systems

then put in a0 the tokens with integral ages and add the information about their ages.
Finally, we order the remaining tokens depending on the fractional part of their ages
in a1, . . . , an, forget their fractional part, and only store the integral part of their ages.
Hence n is the number of different positive fractional values for ages of the remaining
tokens. For instance, consider the bag of tokens (p, 1)+(p, 2.8)+(q, 0.8)+(q, 5.1)+
(r, 1.5). Then, if the maximal constant is 4, its region encoding will be a0a1a2a∞
where a0 = (p, 1) (because there is a single token with integral age), a∞ = (q,∞)
(because the age of token (q, 5.1) is 5.1, hence above the maximal constant), a1 =
(r, 1) (among all fractional parts, 0.5 is the smallest one), and a2 = (p, 2)+ (q, 0) (all
tokens with fractional part 0.8).

We now define more formally the semantics of the regions. Let φ be the mapping
fromR+ to {0, 1, . . . ,max,∞} defined by: if x > max then φ(x) =∞ else φ(x) =
&x'. We extend φ to P ×R+ by φ((p, x)) = (p,φ(x)) and to Bag(P × R+) by
linearity. Let us recall the order defined on finite multisets (also called bags). An
element m ∈ Bag(Z) is a mapping with finite domain from Z to N. Given m,m′ ∈
Bag(Z), m ≤ m′ holds if, and only if, for all z ∈ Z , we have m(z) ≤ m′(z). To
ease the reading, given z ∈ Z andm ∈ Bag(Z), we may also write z ≤ m whenever
m(z) ≥ 1.

Let R = a0a1 . . . ana∞ be a region. Then [R] is a set of configurations ν such
that there exist ν1, ν2, . . . , νn, ν∞ belonging to Bag(P ×R+) with:
– ν = a0 + ν1 + ν2 + . . .+ νn + ν∞;
– ∀1 ≤ i ≤ n, φ(νi) = ai, and φ(ν∞) = a∞;
– ∀1 ≤ i ≤ n, ∀(p, x) + (q, y) ≤ νi, 0 < x− &x' = y − &y';
– ∀1 ≤ i < j ≤ n, ∀(p, x) ≤ νi, (q, y) ≤ νj , x− &x' < y − &y'.

Note that every configuration ν belongs to a single region, that we write R(ν).
Conversely, according to the hypothesis, elements of N have integral ages, for any
ν ∈ N , we have [R(ν)] = {ν}. The original coverability problem thus reduces to
the coverability problem for finitely many regions, which itself reduces to solve the
coverability problem for a single regionR.

9.3.2. Coverability of timed Petri nets

We first notice that, given two regions R = a0a1 . . . ana∞ and R′ = a′0a
′
1 . . .

a′n′a′∞, we can check whether [R]↑ ⊆ [R′]↑: the necessary and sufficient conditions
are a0 ≥ a′0, a∞ ≥ a′∞ and the existence of a strictly increasing mapping ψ from
{1, . . . , n′} into {1, . . . , n} such that for every 1 ≤ i ≤ n′, aψ(i) ≥ a′i.

We define a partial order between regions byR ≤ R′ iff [R′]↑ ⊆ [R]↑. Then, using
Higman’s lemma [HIG 52], we can show that this is a well quasi-order, i.e., for every

Verification of Timed Systems 287

infinite sequence of regions {Ri}i∈N there exist i < j such that Ri ≤ Rj . Indeed,
each region R is a finite sequence of bags over a finite set, hence applying [ABD 01,
theorem 1], the above mentioned partial order is a well quasi-order.

The algorithm for solving the coverability problem for the upward closure of a sin-
gle regionR then consists of iteratively computing the predecessors (by time elapsing
and by discrete steps) of [R]↑. As we will see, each such predecessor is a finite union
of upward closures of regions. We stop exploring the predecessors of an upward clo-
sure of a region when it is larger (for partial order≤) than an already computed region.
Note that all configurations reachable from [R2]↑ are also reachable from [R1]↑ when-
ever R1 ≤ R2. The computation can then be seen as a finitely branching tree. To
prove that it terminates, it is sufficient to prove that this tree is finite. Suppose it is not.
By applying König lemma, this tree has an infinite branch. However, as ≤ is a well
quasi-order, we will eventually obtain a region that is larger than a previous one. This
leads to a contradiction. Hence, the computation tree is finite, and the computation
terminates. The set of configurations N is covered by the timed Petri net N if and
only if its initial configuration ν0 occurs in the upward closure of some region of the
tree.

Finally we explain how we compute the time and discrete predecessors of the
upward closure of a region R = a0a1 . . . ana∞.

Time predecessors
If a0 contains a token (p, 0), there is no strict time predecessor of [R]↑. Otherwise

if size(a0) 4= 0, then the time predecessor is [R′]↑ with R′ = a′0a1 . . . ana
′
n+1a∞

where a′0 is the empty bag and a′n+1 is obtained from a0 by decrementing by 1 the
(integral) age of each token. Informally, this operation represents a (reverse) small
time elapse such that no token of a1 reaches an integral value and no token of a∞
reaches backmax.

Otherwise (i.e., size(a0) = 0) we need to choose if tokens of a1 will first reach an
integral value or some tokens of a∞ will first reachmax. It could be the tokens of a1,
a bag of tokens b∞ ≤ a∞, or both. We only illustrate this last case (which assumes
n ≥ 1). The above mentioned time predecessor is [R′]↑ whereR′ = a′0a

′
1 . . . a

′
n−1a

′
∞

is obtained as follows.
– a′∞ = a∞ − b∞;
– a′0 = a1 + c∞ where c∞ is obtained from b∞ by setting the age of each token to

max;
– ∀1 ≤ i ≤ n− 1, a′i = ai+1.

Discrete predecessors
We pick a transition t. Recall that in the syntax of a timed Petri net, there exist

two mappings Pre and Post from T × P to the set I of closed intervals with a lower

288 Models and Analysis for Distributed Systems

bound in N and an upper bound in N∪{∞} (we assume that the constants are integers
instead of rational numbers, this can be achieved by multiplying all the constants of
the system). In addition, the fact that place p is not an input place of transition t corre-
sponds to the case where Pre(t, p) is the empty interval. We introduce an alternative
notation for pre- and postconditions. We define Pre(t) =

∑

p|Post(t,p) ,=∅

(p, Post(t, p)),

and similarly for Post(t). For instance, a transition t consuming a token in place p1
with interval [0, 1], no token in p2 and p3, and a token in place p4 with interval [2, 3]
verifies Pre(t) = (p1, [0, 1]) + (p4, [2, 3]).

Note that given an interval I of the net and a token (p, x) belonging to some ai
for i ∈ {0, 1, . . . , n,∞}, we can compute whether, given a configuration belonging
to that region, the corresponding token belongs to I . According to the property of
the regions, this is independent of the choice of the configuration. We then write
(i, x) ! I .

We consider the upward closure of the region a0a1 . . . ana∞, and want to compute
its preimage by transition t. Transition t produces a bag of tokens as defined by
Post(t). These tokens may appear in one of the ai’s, but this is not required, they may
only be in the upward closure. This constitutes an important difference with standard
reachability analysis, and comes from the fact that we are interested in a coverability
problem. Hence, we choose bags of tokens posti ∈ Bag(P × {0, 1, . . . ,max} × I)
for every i ∈ {0, 1, . . . , n} and post∞ ∈ Bag(P × {∞}× I) such that 3

– for all (p, x, I) ≤ posti, (i, x) ! I;
– for all i ∈ {0, 1, . . . , n,∞}, π1,2(posti) ≤ ai;
–
∑

i π1,3(posti) ≤ Post(t).

The bag posti represents the tokens produced by t which “belong” to ai. However,
there may be additional tokens produced that do not appear in one of the ai’s (this is
possible as we consider the upward closure of the region), which is why the two last
conditions are inequalities and not equalities. Figure 9.7 illustrates the decomposition.
The first condition states that the values of x, i and I in a bag (p, x, I) of posti are
coherent. The second condition states that posti constitutes a subset of ai. The third
condition states that posti constitutes a subset of Post(t) (in the second and third
conditions, projections are used as ai contains integral values while Post(t) contains
intervals).

Applying this first decomposition, we build an intermediate region R′ = a′0a
′
1 . . .

a′n′a′∞ by substracting π1,2(posti) from ai for every i and deleting the item in the
resulting sequence if its size is null (for 1 ≤ i ≤ n).

3. π1,2 (resp. π1,3) projects bags onto the two first components (resp. onto the first and the third).

Verification of Timed Systems 289

|=
∑

i π1,3posti
and

∈ψ−1(
∑

i π1,2(posti)) |=Post(t)

and ∈ψ−1(
∑

i π1,2(prei))

|=Pre(t)=
∑

i π1,3prei

∈[R′′]

∈[R′]

∈[R]

∈[R′′]↑ ∈[R′]↑ ∈[R]↑

Figure 9.7. Decomposition of the set of tokens for the discrete predecessor computation

Then, to really simulate the discrete transition t, we need to initially have all to-
kens that are consumed by the pre-arcs. We set bags of tokens prei ∈ Bag(P ×
{0, 1, . . . ,max} × I) for every i ∈ {0, 1, . . . , n′′} for some integer n′′, pre∞ ∈
Bag(P × {∞} × I) and a strictly increasing mapping ψ from {1, . . . , n′} into
{1, . . . , n′′} such that:
– for all (p, x, I) ≤ prei, (i, x) ! I;
– a′′0 = a′0 + π1,2(pre0);
– a′′∞ = a′∞ + π1,2(pre∞),
– for every i ∈ {1, . . . , n′′}, if there exists j such that ψ(j) = i then a′′i =

a′j + π1,2(prei), otherwise a′′i = π1,2(prei);
–
∑

i π1,3(prei) = Pre(t).

The bags prei are the tokens required by the pre-arcs of the transition. See Figure 9.7
for an illustration of the construction.

Under those conditions, the region R′′ = a′′0a
′′
1 . . . a

′′
n′′a′′∞ is a predecessor by

t of [R]↑. Note that the constructed region R′′ depends on the various choices we
have made (all bags posti, pre, and also the indices n′, n′′, the mapping ψ). For

290 Models and Analysis for Distributed Systems

each of these (finitely many) choices, it gives a region that is in the preimage of R
by t (indeed, take any configuration ν′′ ∈ [R′′]↑, then quite straightforwardly, any
configuration image of ν by t is in [R]↑), and all regions in the preimage by t can, of
course, be obtained in that way.

Hence, time predecessors and discrete predecessors of regions are finite unions of
regions, and can be effectively computed, which concludes the proof of the theorem.

9.3.3. Survey of decidable properties for timed Petri nets

We have presented in the previous sections how a region construction with in-
finitely many regions can be used to prove the decidability of the coverability problem
for timed Petri nets. It is worth noticing that this model, which combines dense-time
with an unbounded control structure (represented here by the tokens), is very diffi-
cult to analyze. In this section, we will present several decidability results, which, for
most of them, relies on the techniques presented previously. These results are taken
from [ABD 07, BOU 08a].

Token liveness

As the semantics of timed Petri nets is lazy, we can miss the firing of a transition.
As a consequence, it may happen that a token can no longer be used in the firing of a
transition, in which case we say that the token is not live anymore. More formally, a
marking is composed of a finite set of tokens, and each token is characterized by the
place p in which it lies and by its age, given as a non-negative real number x (a token
is thus represented by the pair (p, x)). LetM be a marking, and (p, x) a token inM .
The token (p, x) is called live from markingM in a timed Petri netN if there exists a
sequence of transitions inN , starting fromM , which eventually consumes the token.
Conversely, if a token is not live, then we say that it is a dead token. Formally, we say
that the token (p, x) can be consumed inM if there exists a transition t satisfying the
following properties:
– t is enabled inM ; and
– x ∈ Post(t, p).

Given a timed Petri net N , a marking M ; and a token (p, x) in M , the problem
of token liveness consists of deciding whether (p, x) is live or not. This problem is
called the semantic liveness of tokens. Without loss of generality, we assume that the
ages of tokens composing the markingM are all integers.

THEOREM 9.7 ([ABD 07]) The semantic liveness of tokens is decidable in timed
Petri nets.

Verification of Timed Systems 291

The proof of this result is proceeded by a direct reduction to (several instances of)
the coverability problem. As we have seen that this problem is decidable for timed
Petri nets, the result follows. We briefly describe how the reduction works.

We define the timed Petri net N ′ as follows. The set of places is obtained by
substituting of place p with a new place p′, not connected to any transition. The initial
marking is the marking Minit = M − (p, x) + (p′, x). Finally, the set of target
markingsN is defined as follows. Let t be a transition such that p is an input place of
t. Then we write Pre(t) =

∑n
i=1(pi, Ii) + (p, I). We define the set of markings Nt

as:

Nt =

{
n
∑

i=1

(pi, τi) + (p′, x′) | ∀i, τi ∈ Ii ∧ x′ ∈ I

}

This set can be represented as a finite union of regions. We then define the set N as
the union of setsNt over the transitions t having p as input place. In this construction,
we move the token from place p to a fictive place p′ where it cannot be used, it will
only get older as time elapses. Then, we look for markings, composed of tokens with
integral ages, that allow a transition involving place p to be fired. We can easily prove
that the token (p, x) is live if, and only if, the set of markingsN can be covered.

Boundedness
We say that an untimed Petri net is bounded if, and only if, there exists a bound

k ∈ N such that all its reachable markings have at most k tokens in each place. In
particular, a bounded Petri net has a finite reachability set. For timed Petri nets, we
will also be interested by bounding the number of tokens. However, this will not yield
a finite reachability set because of the ages of the tokens.

Two notions of boundedness are distinguished, whether dead tokens are counted
or not:
– syntactic boundedness: does a bound k ∈ N exist such that all reachable mark-

ings are composed of at most k tokens?
– semantic boundedness: does a bound k ∈ N exist such that all reachable mark-

ings are composed of at most k alive tokens?

The following theorem is stated in [ABD 07]:

THEOREM 9.8 ([ABD 07]) The syntactic boundedness is decidable for timed Petri
nets. The semantic boundedness is undecidable for timed Petri nets.

The undecidability result is proven by a reduction in the problem of space bound-
edness for lossy counter machines. Details can be found in [MAH 05]. For the decid-
ability result, we consider an algorithm similar to the Karp-Miller algorithm [KAR 69]

292 Models and Analysis for Distributed Systems

to solve the boundedness problem for Petri nets. This algorithm builds a tree labeled
by markings and, when a new marking is added, checks whether one of the ances-
tors is strictly dominated. If this is the case, then the number of reachable markings
is unbounded. We can consider a similar algorithm, in which nodes of the trees are
labeled by regions. The termination of the algorithm is guaranteed due to the fact that
the inclusion ordering on regions is a well-quasi-ordering (see subsection 9.3.2).

Zenoness

Zeno behaviors are executions that perform an infinite number of actions in a finite
amount of time. Such time-convergent behaviors are unrealistic in practice. For timed
automata, the existence of such behaviors can be decided using the region graph. One
can also consider this problem for timed Petri nets:
– zenoness: given a timed Petri netN and a markingM , does a Zeno execution in

N exist that starts inM?
– universal zenoness: given a timed Petri net N and a markingM , are all infinite

runs ofN issued fromM Zeno runs?

Note that the negation problem is the problem of the existence of an infinite non-Zeno
execution.

The following theorem is stated in [ABD 07]:

THEOREM 9.9 ([ABD 07]) The Zenoness is decidable for timed Petri nets. The uni-
versal Zenoness is undecidable for timed Petri nets.

We will not give the details of the proofs of these results as they rely on sophis-
ticated techniques of Petri nets. More precisely, the decidability result uses a charac-
terization of the set of markings admitting an infinite computation in an extension of
standard Petri nets, which is a subclass of transfer nets.

Extension to read arcs

We conclude with an extension of our first result on the coverability. The construc-
tion we have presented can be extended to the setting of timed Petri nets with read arcs.
Read arcs allow a transition to test the presence of some tockens in a place, without
consuming them (in particular their age is left unchanged). It can be shown that read
arcs allow the expressiveness of timed automata to subsumed (see [BOU 08a]).

THEOREM 9.10 ([BOU 08a]) The coverability problem is decidable for timed Petri
nets with read arcs.

Verification of Timed Systems 293

9.4. Robustness issues in timed systems

In this section, we present issues related to the implementation of timed systems,
and more specifically a recent approach proposed for the class of timed automata.

9.4.1. Motivations

The verification of real-time systems is now a well-established procedure, with
efficient algorithms and scalable tools. However, the timed models used suffer from
mathematical idealization, which makes their implementation problematic. For in-
stance, timed automata are governed by an idealized, theoretical semantics, and their
implementation on real hardware could fail to satisfy their mathematically proved
properties. More precisely, timed automata assume that clocks are continuous and
infinitely precise, while CPU have a finite frequency and are digital.

A well-known difficulty is the case of so-called Zeno behaviors, in which an in-
finite number of actions can occur in a finite amount of time, which naturally corre-
spond to unrealistic physical behaviors. The difficulties of implementation for timed
systems are, however, not limited to the non-Zenoness property. As an illustration,
we recall on Figure 9.8 a timed automaton presented in [CAS 02]. In this example,
location 4 is considered to be a bad location that should be avoided. Thus, the system
should be able to perform infinite executions around locations 1, 2, and 3. It can be
shown that infinite executions admitted by this timed automaton must go “faster and
faster”. More precisely, one cycle through these three locations must last exactly one
time unit because of the timing constraints on x between locations 1 and 2. In ad-
dition, before firing the last transition of the cycle (from 3 to 1), the execution must
let some time elapse (because of the constraint on z). We denote this value by di for
the i-th execution of the loop. Then, valuation vi obtained when entering location 1
after the i-th loop is defined by vi(x) =

∑

j≤i

dj , vi(y) = 0 and vi(z) = di. As a

consequence, in order to obtain an infinite execution, delay di must be choosen so as
to verify the inequality

∑

i≥1

di < 1. For instance, a possible execution is obtained by

letting di = 1
2i+1 . As a consequence, the delays between the last two transitions of

the cycle must converge towards 0. In particular, no discrete-time execution can verify
this property, no matter how fine the granularity. As a consequence, any implementa-
tion of such an automaton will eventually fail to satisfy that property, and will finally
reach location 4.

294 Models and Analysis for Distributed Systems

1

2

3

4

x > 1

x = 1,
x := 0

y = 1,
z := 0

z > 0,
y := 0

Figure 9.8. A timed automaton admitting no discrete-time implementation

SYSTEM Si

starti? endi?

CONTROLLER Ci

xi ≤ 1

Inactive Req

WaitingCS

id = 0
xi := 0

xi ≤ 1
xi := 0
id := i

id = 0
xi := 0

id = i ∧ xi > 1

starti!

endi!
id := 0

Figure 9.9. Timed automata models for the Fischer protocol

Consider the example of the Fischer protocol for ensuring mutual exclusion: two
systems S1 and S2 want to access a critical section; they are supervised by two con-
trollers in charge of ensuring that they will not simultaneously access the critical sec-
tion. Figure 9.9 represents a system and its controller. We can show, using a verifi-
cation tool such as Uppaal [BEH 04], HyTech [HEN 97], or Kronos [DAW 96], that
mutual exclusion is ensured by these controllers. Intuitively, the protocol works as fol-
lows. A shared integer variable id is used to store the identifier of the process allowed
to enter the critical section. More precisely, this variable initially has value 0. Then,
when process Si moves from location Req to location Waiting, it sets this variable to
value i, and checks that id = i when it enters location CS. In addition to this untimed
rule, timing constraints are used to ensure that a process cannot decide to enter the
critical section (by setting variable id to its identifier) when another process is already
in its critical section.

However, this property greatly depends on the infinite precision (i.e. exact) of
the model of timed automata. In particular, it relies on the fact that guard xi > 1

Verification of Timed Systems 295

is strict. Indeed, it ensures, combined with invariant xi ≤ 1 of location Req, that
when a process Si can reach its critical section, then no other process Sj can lie in
location Req. Thus, relaxing constraing xi > 1 in constraint xi ≥ 1 results in an
incorrect system, thus proving its brittleness. For instance, if clocks are digital, or
if clocks are not perfectly synchronized, or if there are some communication delays
between systems, or again if delays of write/read actions slow down the system, then
transitions may be performed at time stamps that are not allowed in the mathematical
model. Of course, such imprecisions are unavoidable in physical devices, and thus the
mutual exclusion can be violated.

9.4.2. A parametric semantics to handle imprecisions of clock valuations

Following the example of the Fischer protocol, some properties related to the ide-
alization of timed models cannot be satisfied by physical devices. We list some of
them:

1) perfect synchronization of the different components of the system, inputs re-
ception without delay, output production without delay;

2) infinite precision of clocks:
3) instantaneous execution of actions (infinite speed of the system while evaluating

guards, and choosing which action to fire).

A real system, when it simulates the behavior of a timed automaton, cannot fire
transitions in zero time. Similarly, the variables it manipulates have a finite precision,
and synchronizations between processes are not instantaneous. The standard hypoth-
esis allowing these issues to be ignored consists of assuming that the delays related to
computation times or message exchanges are negligible with respect to constants used
in the guards and invariants of the timed automaton. However, this approach does not
rely on any mathematical justification.

In order to handle the different imperfections of a real system, a new seman-
tics, called the AASAP (“almost as soon as possible”) semantics, was introduced
in [DEW 05] for timed automata. This semantics relaxes the hypotheses that were
too strong in the classical semantics. The AASAP semantics can be seen as a re-
laxation of the standard ASAP (“as Soon As Possible”) semantics. Formally, these
two semantics are defined as timed transition systems. We do not present them here,
but rather describe their main characteristics. We refer the reader to [DEW 05] for a
complete presentation.

The notion of timed simulation, introduced in Chapter 4 for timed transition sys-
tems, is the key tool to compare semantics. Indeed, such relations preserve safety
properties, but more generally, they preserve properties expressing a universal quan-
tification over executions, such as LTL [PNU 77] or ACTL [BRO 88].

296 Models and Analysis for Distributed Systems

The ASAP semantics requires a transition to be fired or to react to an input as
soon as possible. In the AASAP semantics, a parameter ∆ is given, and intuitively
the system should react within∆ time units. Themain characteristics of this semantics
can be summarized as follows:
– an enabled transition does not need to be fired instantaneously, but must be fired

within∆ time units;
– the durations of emission and reception of messages are taken into account: a

distinction is made between the emission of a signal by a component and its reception
by another component. The delay between these two actions is bounded by∆;
– the precision of clocks is relaxed: guards of transitions are enlarged by∆.

The AASAP semantics of A for parameter ∆ is denoted !A"AASAP· , and verifies
the following property:

PROPOSITION 9.11 (“Faster is better” [DEW 05, theorem 3]) LetA be a timed au-
tomaton, and ∆1,∆2 ∈ Q>0 such that ∆2 ≤ ∆1, then the timed transition system
!A"AASAP∆2

is simulated by !A"AASAP∆1
, denoted by !A"AASAP∆2

9 !A"AASAP∆1
.

Intuitively, this means that increasing the precision of the system reduces the set
of admissible behaviors. Thus, with respect to the verification of universal path prop-
erties, if the model !A"AASAP∆1

verifies the property, then so does !A"AASAP∆2
.

In order to build a link with the implementation of a timed automaton, a program
semantics is introduced, representing the behavior of a real execution platform. We
describe the model considered for this platform. The procedure simulating the timed
automaton repeatedly executes the following cycle of instructions:

1) the current time is read in the clock register of the processor and stored in a
variable T ;

2) the list of input signals is updated: sensors are checked to detect whether signals
have been emitted by other components;

3) timing constraints of the output transitions of the current location of the timed
automaton are evaluated with the value of T . If one of these conditions is satisfied,
then one of the firable transitions is taken.

The program semantics of A depends on two parameters∆P , ∆L and is denoted
by !A"Prog∆L,∆P

. These two parameters represent the performance of the platform. More
precisely, they are defined as follows:

1) the clock register is incremented every∆P time units;
2) the time necessary to process one cycle of instructions is less or equal than∆L.

Verification of Timed Systems 297

The fundamental result that links the two previously introduced semantics is:

THEOREM 9.12 (Simulation [DEW 05, theorem 4]) Let A be a timed automaton
and ∆,∆P ,∆L ∈ Q>0 three rational parameters. Then if the inequality 3∆L +
4∆P ≤ ∆ is satisfied, the associated transition systems verify:

!A"Prog∆L,∆P
9 !A"AASAP∆

As for any positive ∆, it is always possible to find parameters values of ∆L and
∆P verifying the above inequality, this result establishes that if the AASAP semantics
is correct for some value of∆, then there exists a correct implementation of A.

Finally, we present a last result, stating that the AASAP semantics can be simu-
lated by a syntactic transformation of timed automata, involving a parameter.

THEOREM 9.13 ([DEW 05, theorem 8]) LetA be a timed automaton and∆ ∈ Q>0.
It is possible to build a timed automaton F(A,∆) such that:

!A"AASAP∆ 9 !F(A,∆)" and !F(A,∆)" 9 !A"AASAP∆

The main operation involved in the definition of F(A,∆) is the enlargment of
guards and invariants by ∆. Intuitively, this consists in replacing a constraint of the
form x ∈ [a, b] by the constraint x ∈ [a − ∆, b + ∆]. As the other transformations
involved in F(A,∆) are less important, we consider in the chapter a parametric se-
mantics of timed automata:

DEFINITION 9.14 (Enlarged semantics) LetA be a timed automaton. We define the
enlarged semantics ofA as a parametric semantics depending on a rational parameter
∆. It is defined by the timed transition system associated with the timed automaton
obtained from A by enlarging all guards and invariants of∆, and denoted by !A"∆.

The problem of interest is, to decide whether a positive value of∆ exists for which
the enlarged semantics meets a specification given by a universal property on execu-
tions.

298 Models and Analysis for Distributed Systems

9.4.3. Related work

Recently, several works have proposed approaches to ensure implementability of
timed models. In this section, we present one of them, which relies on a parametric
enlargment of timed automata. We present a short survey of related works:
– this approach using theAASAP semantics contrasts with a modeling-based solu-

tion proposed in [ALT 05], where the behavior of the platform is modelled as a timed
automaton. While this approach offers a very rich framework to model the platform, it
suffers from two drawbacks. First, it does not verify the “faster is better property” (if a
model is implementable on an implementation, then it should also be the case on any
“faster” implemention). Second, verification problems are difficult and the approach
of [ALT 05] does not offer decidability results;
– other works has introduced other notions of “robustness” in order to relax the

mathematical idealization of the semantics of timed automata [GUP 97, OUA 03,
BAI 07b, BAI 07a]. Those approaches are different from ours, since they roughly
consist of dropping “isolated” or “unlikely” executions;
– these results should also be compared with tools related to code generation from

timed automata. The TIMES tool [AMN 03] automatically generates executable code
from timed automata. However, it does not take into account the imprecisions, as it
relies on the perfect synchrony paradigm. Henzinger et al. proposed in [HEN 03] a
model for embedded systems, called GIOTTO, which can be seen as an intermediary
step beween timed automata and real platforms.

9.4.4. Decidability result for safety properties

We consider here a safety property, which is given by a set of locations of the
timed automaton that should be avoided and is denoted Bad. Thus, in the enlarged
semantics, the problem we want to solve is the following: does there exist a positive
value of∆ such that Reach(!A"∆) does not intersect Bad?

This problem has been solved in [PUR 00, DEW 08], under some assumptions
on timed automata that we recall here. In this subsection, we assume that the timed
automata we consider satisfy the following requirements:
– all guards and invariants involve non-strict inequalities;
– all the clocks are always bounded;
– all the cycles of the region graph are progress cycles, i.e. do reset all clocks to

zero.

The first hypothesis does not change the expressive power of the model under the en-
larged semantics. The second hypothesis is not really restrictive since every timed
automaton can be transformed into such a bounded timed automaton (see for exam-
ple [BEH 01]). Note that it entails that any time-divergent path contains an infinite

Verification of Timed Systems 299

number of action transitions. As mentioned in [DEW 08], the third requirement is less
restrictive than classical strong-non-Zenoness assumptions.

The proof of the decidability result relies on the following proposition:

PROPOSITION 9.15 Let A be a timed automaton, and Bad be a set of locations. We
have:

∃∆ > 0 | Reach(!A"∆) ∩ Bad = ∅ ⇐⇒
(

⋂

∆>0

Reach(!A"∆)

)

∩ Bad = ∅

Intuitively, this property follows from the fact that two subsets of Rn
≥0, defined by

zones 4 with integral constraints, and whose intersection is empty, are at distance at
least 1

n . In addition, as all guards are non-strict, we can prove that all sets involved in
the proposition verify these conditions.

As a consequence, the problem is reduced to the computation of the setReach∗(!A")
defined as

⋂

∆>0Reach(!A"∆). This set exactly contains configurations that are
reachable for any positive value of the parameter.

!1 !2!0 Bad
x=1

y:=0

x≤2

x:=0

y:=0

y≥2

x=0 ∧ y≥2

Error

Figure 9.10. A timed automaton A

This set can differ from the setReach(!A"). As an illustration, consider the timed
automaton depicted in Figure 9.10, and where ρ is the simple cycle around locations !1
and !2. The two corresponding sets are depicted on Figure 9.11, together with the sets
of reachable configurations after one and two executions of cycle ρ. In this example,
the guard enlargment allows the first transition of the cycle (from !1 to !2) to be fired
a bit after the constraint x = 2 is satisfied and the second transition to be fired a bit
before the constraint y = 2 is satisfied. As a consequence, this allows location !1 to
be reached, after one loop, with a clock valuation of v(x) = 1 − 3∆ and v(y) = 0
(see Figure 9.10). This slight perturbation can be accumulated by iterating the cycle,
after a second loop, a clock valuation of v(x) = 1 − 5∆ and v(y) = 0 is obtained
(see Figure 9.10). As a consequence, whatever how small ∆ is, any valuation of the
set Reach∗(!A") can be reached after a sufficient number of iterations of the cycle.

4. A zone is defined by a conjunction of lower and upper bounds on clocks and clock differences.

300 Models and Analysis for Distributed Systems

Reach(!A")

0
x

y

1

1

2

2

!2

!1

Reach∗(!A")

0
x

y

1

1

2

2

!2

!1

after one iteration of ρ:

0
x

y

1

1

2

2

1−3∆

1+2∆

!2

!1

after two iterations:

0
x

y

1

1

2

2

1−5∆

1+4∆

!2

!1

Figure 9.11. Differences between Reach(!A") and Reach∗(!A"), and intermediate
computations of the reachable configurations in !A"∆.

Algorithm 5 can be used to compute the set Reach∗(!A"), which was proposed
in [PUR 00]. This algorithm relies on the region graph construction presented in sec-
tion 9.2. In its presentation, notation Reach(R(A), J∗) denotes the set of reachable
states from J∗ in R(A). In addition, given a region R of a timed automaton, its
topological closure is denoted R, and this notation is extended to sets of regions.

The proof of correction of the algorithm is long and technical, and thus we only
briefly describe it. The proof proceeds by double inclusion. To prove the soundness of
the algorithm, i.e. the inclusion J∗ ⊆ Reach∗(!A"), the authors show a key lemma
stating that two configurations belonging to the topological closure of a same strongly
connected component can reach each other, for any postive value of ∆. For the com-
pleteness, the authors prove a bound between the distance of a run in the enlarged

Verification of Timed Systems 301

input : a timed automatonA
output: the enlarged reachability set Reach∗(!A")

Compute the region graphR(A) = (Γ, γ0,→)1
Compute the set S of strongly connected components ofR(A)2
J∗ := {γ0}3
J∗ := Reach(R(A), J∗)4

while ∃S ∈ S such that S 4⊆ J∗ and J∗ ∩ S 4= ∅ do5

J∗ := J∗ ∪ S6
J∗ := Reach(R(A), J∗)7

Return J∗;8

Algorithm 5: Computation of the set Reach∗(A)

semantics and a run in the standard semantics, depending on the parameter∆. Using
the fact that long paths will necessarily go through strongly connected components,
they prove that this bound vanishes when ∆ → 0. Finally, we obtain the following
theorem.

THEOREM 9.16 Let A be a timed automaton and Bad be a subset of locations of
A. One can decide whether there exists a positive value of parameter ∆ such that
Reach(!A"∆) ∩ Bad = ∅. In addition, this problem is PSPACE-complete.

Recall that the emptiness problem for timed automata is already PSPACE-complete
(theorem 9.2).

9.4.5. Other results and current challenges

This semantical approach to the robustness and implementability of timed au-
tomata has been extended in several works in the recent years. We describe here
some of these results.

Symbolic computations
First, as we mentionned in the introduction, the decidability results based on the

region graph construction do not yield efficient algorithms. In [DAW 06], a symbolic
algorithm is proposed for the computation of Reach∗(A). This algorithm uses zones
as a symbolic representation of clock valuations. The computation of the strongly
connected components of the region graph is replaced by a notion of stable zone of a
cycle, which corresponds intuitively to the set of valuations that are connected through
this cycle, regardless how small the perturbation is. The authors prove that the stable
zone can be computed as a greatest fixpoint. However, their approach only handles
flat timed automata, as the computation of the stable zone must be done for each cycle
of the system. Flat means here that the system does not contain nested cycles.

302 Models and Analysis for Distributed Systems

Another perturbation

In the seminal paper by Puri [PUR 00], the notion of guard enlargment is intro-
duced, and also a notion of drift of clocks. This is formalized, given a positive rational
number ε > 0, by modifying the semantics of the timed automaton by allowing clocks
to have a rate in the interval [1 − ε, 1 + ε]. As a consequence, clocks may not evolve
at the same speed.

This notion of perturbation is very attractive, as it intuitively corresponds to actual
flaws of real systems. It turns out to be equivalent to guard enlargment. More formally,
it was proved in [PUR 00, DEW 08] that a similar definition of the set Reach∗(A) for
clock drift yields the same set. The two perturbations can be combined and this still
yields the same set of configurations (see [DEW 08] for a detailed proof).

Robust verification

The results presented so far concern safety properties. In [BOU 06, BOU 08b], the
robust verification is considered for other properties such as temporal properties. First,
it is proven that the robust model-checking of LTL properties is PSPACE-complete, as
for standard model-checking. Second, an expressive fragment of the timed logicMTL
is proposed, for which the robust model-checking is also decidable. This fragment
encompasses the logic LTL, the bounded fragment ofMTL, and can express interesting
properties such as bounded response-time. Again, the complexity obtained is the same
as for standard model-checking.

Quantitative robustness

Using the previous results, we can decide whether there a positive perturbation
exists for which the property is satisfied. In [JAU 11], a more difficult problem is
tackled, which consists of computing the largest value of the parameter for the system
to meet the specification. The authors propose a parametric extension of the symbolic
algorithm introduced in [DAW 06], which allows the set of reachable states in the
timed automaton to be computed, for all values of the parameter, which corresponds
to the parametric reachability set. However, as for [DAW 06], the algorithm only
applies to flat timed automata.

Current challenges

This semantical approach of robustness opens promising perspectives for research.
Among them, we can mention the problem of robust control. This problem consists
of synthesizing a controller, for instance from a timed game specification, which is
robust, i.e. such that a positive enlargment exists for which the enlarged controller still
ensures that the system under control is correct. This problem has been investigated
in [CHA 08], but only for a fixed value of the enlargment.

Verification of Timed Systems 303

9.5. Conclusion

Real-time aspects are central to the design of many applications, such as embed-
ded systems. We have presented in this chapter how verification techniques can be
extended to timed systems. Therefore, we have focused on the notion of region, which
consists of gathering configurations of the system in equivalence classes, yielding a
quotient system on which the property can be checked.

In addition to region constructions, existing tools for the verification of timed sys-
tems may also use other symbolic techniques such as zones (see Uppaal [BEH 04],
Romeo [GAR 05]). Recently, several case studies have proven that these tools have
reached a level of maturity that allows them to tackle relevant industrial problems.

Current works are investigating extensions to these techniques to more complex
models. We have presented recent works related to the implementability of timed sys-
tems. Among other directions, let us mention two-player games, which are useful for
controller synthesis problems; the extensions to weighted systems which allow vari-
ables with more complex dynamics than clock variables to modeled; and probabilistic
systems, used for instance to model communication protocols.

9.6. Bibliography

[ABD 01] ABDULLA P. A., NYLÉN A., “Timed Petri nets and BQOs”, in Proc. 22nd Inter-
national Conference on Application and Theory of Petri Nets (ICATPN’01), vol. 2075 of
LNCS, Springer, p. 53–70, 2001.

[ABD 07] ABDULLA P. A., MAHATA P., MAYR R., “Dense-timed Petri nets: checking
Zenoness, token liveness and boundedness”, Logical Methods in Computer Science, vol. 3,
num. 1, p. 1–61, 2007.

[ALT 05] ALTISEN K., TRIPAKIS S., “Implementation of timed automata: an issue of seman-
tics or modeling?”, in Proc. 3rd International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS’05), vol. 3829 of LNCS, Springer, p. 273-288, 2005.

[ALU 90] ALUR R., DILL D., “Automata for modeling real-time systems”, in Proc. 17th In-
ternational Colloquium on Automata, Languages and Programming (ICALP’90), vol. 443
of LNCScience, Springer, p. 322–335, 1990.

[ALU 93] ALUR R., COURCOUBETIS C., DILL D., “Model-checking in dense real-time”,
Information and Computation, vol. 104, num. 1, p. 2–34, 1993.

[ALU 94] ALUR R., DILL D., “A Theory of timed automata”, Theoretical Computer Science,
vol. 126, num. 2, p. 183–235, 1994.

[AMN 03] AMNELL T., FERSMAN E., MOKRUSHIN L., PETTERSSON P., YI W., “TIMES: A
tool for schedulability analysis and code generation of real-time systems”, in Proc. 1st In-
ternational Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS’03),
vol. 2791 of LNCS, Springer, p. 60–72, 2003.

304 Models and Analysis for Distributed Systems

[BAI 07a] BAIER C., BERTRAND N., BOUYER P., BRIHAYE TH., GRÖSSER M., Almost-sure
model checking of infinite paths in one-clock timed automata, Research Report num. LSV-
07-29, ENS Cachan, France, 2007.

[BAI 07b] BAIER C., BERTRAND N., BOUYER P., BRIHAYE TH., GRÖSSER M., “Probabilis-
tic and topological semantics for timed automata”, in Proc. 27th Conf. Found. Softw. Tech.
& Theor. Comp. Sci. (FSTTCS’07), vol. 4855 of LNCS, Springer, p. 179–191, 2007.

[BEH 01] BEHRMANN G., FEHNKER A., HUNE TH., LARSEN K. G., PETTERSSON P.,
ROMIJN J., VAANDRAGER F., “Minimum-cost reachability for priced timed automata”,
in Proc. 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC’01), vol. 2034 of LNCS, Springer, p. 147–161, 2001.

[BEH 04] BEHRMANN G., DAVID A., LARSEN K. G., “A tutorial on UPPAAL”, in Proc.
4th International School on Formal Methods for the Design of Computer, Communication
and Software Systems: Real Time (SFM-04:RT), vol. 3185 of LNCS, Springer, p. 200–236,
2004.

[BER 83] BERTHOMIEU B., MENASCHE M., “An enumerative approach for analyzing time
Petri nets”, in Proc. 9th IFIP Congress, Elsevier Science Publishers, p. 41–46, 1983.

[BER 91] BERTHOMIEU B., DIAZ M., “Modeling and verification of time dependent systems
using time Petri nets”, IEEE Transactions in Software Engineering, vol. 17, num. 3, p. 259–
273, 1991.

[BÉR 98] BÉRARD B., DIEKERT V., GASTIN P., PETIT A., “Characterization of the expres-
sive power of silent transitions in timed automata”, Fundamenta Informaticae, vol. 36,
num. 2–3, p. 145–182, 1998.

[BER 03] BERTHOMIEU B., VERNADAT F., “State Class Constructions for Branching Analy-
sis of Time Petri Nets”, Proc. 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03), vol. 2619 of Lecture Notes in Computer
Science, Springer, p. 442–457, 2003.

[BÉR 09] BÉRARD B., HADDAD S., “Interrupt timed automata”, in Proc. 12th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS’09),
vol. 5504 of LNCS, Springer, p. 197-211, 2009.

[BOU 04] BOUYER P., DUFOURD C., FLEURY E., PETIT A., “Updatable timed automata”,
Theoretical Computer Science, vol. 321, num. 2–3, p. 291–345, 2004.

[BOU 06] BOUYER P., MARKEY N., REYNIER P.-A., “Robust model-checking of linear-
time properties in timed automata”, in Proc. 7th Latin American Symposium on Theoretical
Informatics (LATIN’06), vol. 3887 of LNCS, Valdivia, Chile, Springer, p. 238-249, 2006.

[BOU 08a] BOUYER P., HADDAD S., REYNIER P.-A., “Timed Petri nets and timed automata:
On the discriminating power of zeno sequences”, Inf. Comput., vol. 206, num. 1, p. 73-107,
2008.

[BOU 08b] BOUYER P., MARKEY N., REYNIER P.-A., “Robust analysis of timed automata
via channel machines”, in Proc. 11th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS’08), vol. 4962 of LNCS, Springer, p. 157-
171, 2008.

Verification of Timed Systems 305

[BRO 88] BROWNE M. C., CLARKE E. M., GRUMBERG O., “Characterizing finite Kripke
structures in propositional temporal logic.”, Theoretical Computer Science, vol. 59, p. 115-
131, 1988.

[CAS 02] CASSEZ F., HENZINGER TH. A., RASKIN J.-F., “A comparison of control prob-
lems for timed and hybrid systems”, in Proc. 5th International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC’02), vol. 2289 of LNCS, Springer, p. 134–148,
2002.

[CHA 08] CHATTERJEE K., HENZINGER T. A., PRABHU V. S., “Timed parity games: com-
plexity and robustness”, in Proc. 6th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS 2008), vol. 5215 of LNCS, Springer, p. 124-140,
2008.

[DAW 96] DAWS C., OLIVERO A., TRIPAKIS S., YOVINE S., “The tool Kronos”, in Proc.
Hybrid Systems III: Verification and Control (1995), vol. 1066 of LNCS, Springer, p. 208–
219, 1996.

[DAW 06] DAWS C., KORDY P., “Symbolic robustness analysis of timed automata.”, in Proc.
4th International Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS’06), vol. 4202 of LNCS, Springer, p. 143-155, 2006.

[DEW 05] DE WULF M., DOYEN L., RASKIN J.-F., “Almost ASAP semantics: from timed
models to timed implementations”, Formal Aspects of Computing, vol. 17, num. 3, p. 319-
341, 2005.

[DEW 08] DE WULF M., DOYEN L., MARKEY N., RASKIN J.-F., “Robust safety of timed
automata”, Formal Methods in System Design, vol. 33, num. 1-3, p. 45-84, Kluwer Aca-
demic Publishers, 2008.

[GAR 05] GARDEY G., LIME D., MAGNIN M., ROUX O. H., “Romeo: A tool for analyzing
time Petri nets”, in Proc. 17th International Conference on Computer Aided Verification
(CAV’05), vol. 3576 of LNCS, Springer, p. 418–423, 2005.

[GUP 97] GUPTA V., HENZINGER TH. A., JAGADEESAN R., “Robust timed automata”, in
Proc. International Workshop on Hybrid and Real-Time Systems (HART’97), vol. 1201 of
LNCS, Springer, p. 331–345, 1997.

[HEN 97] HENZINGER TH. A., HO P.-H., WONG-TOI H., “HyTech: a model-checker for
hybrid systems”, Journal on Software Tools for Technology Transfer, vol. 1, num. 1–2,
p. 110–122, 1997.

[HEN 03] HENZINGER TH. A., HOROWITZ B., KIRSCH C. M., “GIOTTO: A time-triggered
language for embedded programming”, in Proc. of the IEEE, vol. 91, num. 1, p. 84–99,
2003.

[HIG 52] HIGMAN G., “Ordering by divisibility in abstract algebras”, in Proc. London Math-
ematical Society, vol. 2, p. 326–336, 1952.

[JAU 11] JAUBERT R., REYNIER P.-A., “Quantitative robustness analysis of flat timed au-
tomata”, in Proc. 14th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’11), LNCS, Springer, 2011, To appear.

[KAR 69] KARP R. M., MILLER R. E., “Parallel program schemata.”, Journal of Computer
and System Sciences, vol. 3, num. 2, p. 147-195, 1969.

306 Models and Analysis for Distributed Systems

[LAR 95] LAROUSSINIE F., LARSEN K. G., WEISE C., “From timed automata to logic – and
back”, in Proc. 20th International Symposium on Mathematical Foundations of Computer
Science (MFCS’95), vol. 969 of LNCS, Springer, p. 529–539, 1995.

[LAS 05] LASOTA S., WALUKIEWICZ I., “Alternating timed automata”, in Proc. 8th Interna-
tional Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS’05), vol. 3441 of LNCS, Springer, p. 250–265, 2005.

[MAH 05] MAHATA P., Model checking parameterized timed systems, PhD thesis, Depart-
ment of Information Technology, Uppsala University, Uppsala, Sweden, 2005.

[OUA 03] OUAKNINE J., WORRELL J. B., “Revisiting digitization, robustness and decidabil-
ity for timed automata”, in Proc. 18th Annual Symposium on Logic in Computer Science
(LICS’03), IEEE Computer Society Press, 2003.

[OUA 04] OUAKNINE J., WORRELL J. B., “On the language inclusion problem for timed au-
tomata: closing a decidability gap”, in Proc. 19th Annual Symposium on Logic in Computer
Science (LICS’04), IEEE Computer Society Press, p. 54–63, 2004.

[OUA 05] OUAKNINE J., WORRELL J. B., “On the decidability of metric temporal logic”, in
Proc. 19th Annual Symposium on Logic in Computer Science (LICS’05), IEEE Computer
Society Press, p. 188–197, 2005.

[PNU 77] PNUELI A., “The temporal logic of programs”, in Proc. 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), IEEE Computer Society Press, p. 46–57,
1977.

[PUR 00] PURI A., “Dynamical properties of timed automata”, Discrete Event Dynamic Sys-
tems, vol. 10, num. 1-2, p. 87–113, 2000.

