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Optimisation problems

Typical question:

Given input |, find the best solution
from all feasible solutions of I.

Examples. Q Saint-Flour
e shortest path to Montpellier Fpe
arc Nature|
. Parc naturel Régional
e cheapest flight to Warsaw tégional e des Monts
I'Aubrac d'Ardeche
e best answer to a query
Parc national
[} des Cévennes
Nimes
@ 20:10 - 08:35"'  12h25min 1escale 99€
CSA - Smartwings CDG-WAW 9h 10 min PRG

(® Montpellier

Séte
E)

https://www.maps.google.fr
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Classical complexity

Let n be input size, e.g., number of roads in the network
Efficient algorithm : runs in poly(n)-time

0(2") 0(n2) A 2266 - 1080
2662 = 70756
g o(n)
E
0(1)
- Input size ”

*based on Daniel Ko's chart
https://medium.com/@dankomong/big-o-notation-using-ruby-a357d85bb9b1
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Enumeration problems

Typical question:
Given input 1, list all solutions in I.

Examples:

b 2min
350m

e bike itineraries to a destination

Rue du Dr Bousquet

=

)

e flights to Warsaw

RUETdApollo

e answers to a query

e m—

[ ]
Q‘g 20:10 - 08:35"  12h25min 1escale 99€
CSA Smartwings  CDG-WAW 9 h 10 min PRG
545 14:30 - 22:30 8hOmin 1escale 122€
SAS CDG-WAW 4 h 55 min CPH

AEZ 13:00 - 15:20 2h20min  Sansescale 203€
Air France CDG-WAW

v 114 autres vols

https://www.maps.google.fr
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Number of solutions

Typical question:

Given input 1, list all solutions in I.

Examples:

b 2min
350m

e bike itineraries to a destination

Rue du Dr Bousquet

e flights to Warsaw

RueTdApollion T .

e answers to a query

&% 1 min
300m

—

—uojiodVpIEnY;

2m/2 different paths
with m the number of “edges”

https://www.maps.google.fr
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Enumeration complexity

Let n be input size, e.g., number of roads in the network
Let d be output size, ~number of solutions

execution time

output-polynomial
algo. stops in poly(n + d)-time

incremental-polynomial
b ' | outputs it solution in poly(n + i)-time

1 polynomial-delay
poly(n)-time between two cons. outputs

solution output
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A simple algorithm

Typical question:

Given input 1, list all solutions in I.

Examples:

b 2min
350m

Rue du Dr Bousquet

e bike itineraries to a destination

e flights to Warsaw

Rueld Apollon .

e answers to a query

e m—

T
&% 1 min
300m

S,

(@uoliodV:pianY;

https://www.maps.google.fr
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Hypergraph Dualization

Definitions:
e hypergraph: family of subsets H C 2X on ground set X
e transversal of H: T C X st. TNE # () forany E € H
o Tr(H): set of (inclusion-wise) minimal transervals of H
it is a hypergraph!
— two hypergraphs H and G are called dual if G = Tr(H)
and Tr(Tr(H)) = H!

7/33
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Hypergraph Dualization, an open problem

Hypergraph Dualization
input: two hypergraphs # and G on same ground set.
question: are H and G dual?

Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph #.
output: the set G = Tr(H) of minimal transversals of H.

Theorem (Fredman and Khachiyan, 1996)

There is a N°U°eN) quasi-polynomial time algorithm solving
Hypergraph Dualization where N = |H| + |G]|.

— generation version is incremental
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Hypergraph Dualization, a ubiquitous problem

Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph #.
output: the set G = Tr(H) of minimal transversals of H.

Equivalent to:
e translating from a positive CNF to a positive DNF

X e enumerating the minimal dominating sets of a graph
e enumerating the minimal set coverings of a hypergraph
e enumerating database repairs

Are harder than Trans-Enum:
e l|attice dualization problems
e meet-irreducibles/implicational bases translations
e characteristic models/Horn clauses translations

Dualization in graphs, hypergraphs, and lattices 9/33



Definitions:

e graph G: a set of vertices V/(G), together with
a set of edges E(G) C {{x,y} | x,y € V(G), x # y}
e stable set: set of pairwise non-adjacent vertices
e clique: set of pairwise adjacent vertices
e triangle-free: does not contain a triangle (A)
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Dominating sets

e N(v): neighborhood of vertex v

e dominating set (DS): D C V(G) s.t. V(G) = DUN(D)
“D can see everybody else”

e minimal dominating set: inclusion-wise minimal DS
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Private neighbors & Irredundant sets

e N(v): neighborhood of vertex v

e dominating set (DS): D C V(G) s.t. V(G) = DU N(D)
“D can see everybody else”

e minimal dominating set: inclusion-wise minimal DS

e private neighbor of v € D:

dominated by v, and

not dominated by D \ {v}

e irredundant set: S C V/(G) s.t. every x € S has a priv. neighbor

vertex that is { (possibly v)

Observation
A DS is minimal if and only if it is irredundant.
if all its vertices have a private neighbor.
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Enumeration & Equivalence

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G.
output: the set D(G) of minimal DS of G.

A particular case of Trans-Enum

123 ;2 3
/‘\W Q 4

G H
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Enumeration & Equivalence

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G.
output: the set D(G) of minimal DS of G.

Equivalent to Trans-Enum [Kanté et al., 2014]

174
1 2 3 4 | A 1 2 3 4
L) (0
A C
H g
A B C
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State of the art

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G.
output: the set D(G) of minimal DS of G.

Dream goal: an output-poly. poly(N) algorithm, N = n+ |D(G)|

General case: open, best is quasi-polynomial Ne(logN)

Known cases:

e output poly.: log(n)-degenerate graphs

e incr. poly.: chordal bipartite graphs, bounded conformality graphs

e poly. delay: degenerate, line, and chordal graphs

e linear delay: permutation and interval graphs, graphs with
bounded clique-width, split and Pgs-free chordal graphs
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Split graphs (Kanté et al., 2014)

-
cC ®S
clique ° stable set
\:
U

Proposition (Kanté, Limouzy, Mary, and Nourine, 2014)
A set D C V(G) is a minimal DS of G iff D dominates S and
every v € D has a private neighbor in S.

Then: DN S = {all vertices not dominated by DN C}

Enumeration: complete every irredundant set X C C in S
— the family of such X's is an independence set system

> can be enumerated with linear delay
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Split graphs (Kanté et al., 2014)

p
c A L)

clique stable set
iqu °
\

u

Theorem (Kanté, Limouzy, Mary, and Nourine, 2014)
There is a linear-delay (and poly. space) algorithm enumerating
minimal dominating sets in split graphs.

Then: DN S = {all vertices not dominated by DN C}

Enumeration: complete every irredundant set X C Cin S
— the family of such X's is an independence set system

— can be enumerated with linear delay
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Peeling graphs

Goal: enumerating minimal DS one neighborhood at a time

. Peeling: sequence (Vp,..., V,) s.t.
1. V, = V(G)
2. forie{l1,...,p}:
Vi = Vi\ {ui} \ N(u)
3. =10
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Extending partial solutions

Goal: enumerating minimal DS one neighborhood at a time

2 ~,  Dominating set (DS) of V;:
e DC V(G)st. V;CDUN(D)
“D can see everybody else in V"

Plan:
1. given minimal DS of V;
N / allowing vertices of G — V;

2. enumerate those of Vj;

up ~<> allowing vertices of G — V1
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The algorithm

Vo---H- - BB -E- -

Important wanted properties:

e no cycle (no repetition, using a parent relation: lex. order)
e no leaf before level p (no exponential blowup)
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Minimal DS of Vi ; from those of V;

Goal: extend each minimal DS D of V; to a minimal DS of Vi1

z ~  QObservation:
e possibly D minimally dominates Vj 4
e if not then D U {ujy1} does

extension is always possible, hence
Uiyt .<> |[minimal DS of V;| < |minimal DS of V1]
< |minimal DS of G|

candidate extension of D: minimal set X s.t. DU X dominates V;

Lemma

|candidate extensions of D| < |minimal DS of G|
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Candidate extensions, triangle-free case

C=N(S)\ {uis}

already
dominated by D

a stable set
N(ui+1) N Vit1 in triangle-free graphs

e if uir 1 dom. by D: they only have to dominate S
— exactly the minimal DS of Split(C, S)
e if uj11 not dom. by D: they should also dom. ujq

N(u;
irredundant {t} U Q s.t. { ‘e _ (-u +1) _
Q@ minimal DS of Split(C, S)
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Complexity, triangle-free case

Vo---H- - BB -E- -

For each minimal DS of V;:

e compute all candidate extensions; in time O(poly(n) - |D(G)|)
e only keep the X U D's that are minimal and children of D

Dualization in graphs, hypergraphs, and lattices 23 /33



Complexity, triangle-free case

V---H- S-S0

Theorem (Bonamy, D., Heinrich, and Raymond, 2019)
The set D(G) of minimal DS of any triangle-free graph G can be
enumerated in time O(poly(n) - |D(G)|?) and polynomial space.
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Theorem (Bonamy, D., Heinrich, Pilipczuk, and Raymond)
The set D(G) of minimal DS of any graph G can be enumerated
in time O(n*™" - |D(G)|¥") and poly. space where t = w(G) + 1.

Future work:

e complexity improvements? delay is still open for bipartite graphs

Theorem (Bonamy, D., Heinrich, and Raymond, 2019)

Deciding if a vertex set S can be extended into a minimal DS is
NP-complete in bipartite graphs.

e extensions to other classes?

K: + K>-free, paw-free, diamond-free v/
Cy-free? X

(in)comparability and unit disk? X
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e extensions to other classes?
K: + K>-free, paw-free, diamond-free v/
Cy-free? X chordal graphs v split graphs v/
(in)comparability graphs? X

Theorem (D. and Nourine, 2019)

The set D(G) of minimal DS of any P;-free chordal graph G can
be enumerated with linear delay and poly. space.

Theorem (Bonamy, D., Micek, and Nourine, 2020)
The set D(G) of minimal DS can be enumerated with incremental
and polynomial delay (and poly. space) in the comparability and
incomparability graphs of posets of bounded dimension.
unit disk graphs? X
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Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph #.
output: the set G = Tr(H) of minimal transversals of H.

Equivalent to:
e translating from a positive CNF to a positive DNF

X e enumerating the minimal dominating sets of a graph
e enumerating the minimal set coverings of a hypergraph
e enumerating database repairs

Are harder than Trans-Enum:

X e lattice dualization problems

" X e meet-irreducibles/implicational bases translations
e characteristic models/Horn clauses translations
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Lattices as ordered families of sets

Definitions:

e lattice £ = (X, C): order obtained by inclusions
of a family X C 2% over a ground set X that is
- containing X: X € X
- closed by intersection: A, Be X — ANBeX

1234

123 234
12 34
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Meet & Implicational bases

Definitions:

e lattice £ = (X, C): order obtained by inclusions
of a family X C 2% over a ground set X that is
- containing X: X € X
- closed by intersection: A, Be X — ANBeX

1234

123 234
12 34

Y ={13—-2, 43}
Dualization in graphs, hypergraphs, and lattices 29 /33




Dualization

Definitions:

e lattice £ = (X, C): order obtained by inclusions
of a family X C 2% over a ground set X that is
- containing X: X € X
- closed by intersection: A, Be X — ANBeX

1234
1234
123 234
12 34
1 3
0
Y={13—-2, 43} 0 Yy =10
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Main contributions

Theorem (D. and Nourine, 2019)
The dualization in lattices given by implicational bases of

dimension two cannot be solved in output-polynomial time
unless P=NP.

— output quasi-polynomial time algorithms in subclasses of
distributive lattices (lately improved by Khaled Elbassioni)

with Lhouari Nourine, and Takeaki Uno

Theorem (D., Nourine, and Vilmin, 2019)

Translating between meet-irreducible elements and implicational
bases can be done in output quasi-polynomial time algorithm for
ranked convex geometries.

Dualization in graphs, hypergraphs, and lattices 31/33



Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph #.
output: the set G = Tr(H) of minimal transversals of H.

Are harder than Trans-Enum:
o lattice dualization problems
Dim. 2 IB lattices X imp. in poly. time unless P=NP
Acyclic IB lattices? X Distributive lattices v/
e meet-irreducibles/implicational bases translations
Acyclic IB lattices? X Distributive lattices v/
Ranked IB lattices v/

Is meet enumeration possible in output quasi-polynomial time?
Are lattice dualization & meet enumeration equivalent?
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Hypergraph Dualization, an open & ubiquitous problem

Big question: can Hypergraph Dualization be solved in poly. time?

Equivalent to:
e translating from a positive CNF to a positive DNF
e enumerating the minimal dominating sets of a graph
Cy-free? X
(in)comparability and unit disk? X

Are harder than Trans-Enum:
e lattice dualization problems Thank yOU!
=7 Acyclic IB lattices? X
e meet-irreducibles/implicational basestranslations
Acyclic IB lattices? X
e characteristic models/Horn clauses translations
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