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Introduction . Optimisation problems

https://www.maps.google.fr

Typical question:

Given input I , find the best solution
from all feasible solutions of I .

Examples:

• shortest path to Montpellier
• cheapest flight to Warsaw
• best answer to a query
• . . .
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Introduction . Classical complexity

*based on Daniel Ko’s chart
https://medium.com/@dankomong/big-o-notation-using-ruby-a357d85bb9b1

2266 > 1080

2662 = 70756
"

Let n be input size, e.g., number of roads in the network
Efficient algorithm : runs in poly(n)-time
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Introduction . Enumeration problems

https://www.maps.google.fr

Typical question:

Given input I , list all solutions in I .

Examples:

• bike itineraries to a destination
• flights to Warsaw
• answers to a query
• . . .
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Introduction . Number of solutions

2m/2 different paths
with m the number of “edges”

https://www.maps.google.fr

Typical question:

Given input I , list all solutions in I .

Examples:

• bike itineraries to a destination
• flights to Warsaw
• answers to a query
• . . .

Oscar Defrain Dualization in graphs, hypergraphs, and lattices 4 / 33



Introduction . Enumeration complexity

Let n be input size, e.g., number of roads in the network
Let d be output size, ≈number of solutions

solution output

︷ ︸︸ ︷execution time

output-polynomial
algo. stops in poly(n + d)-time

incremental-polynomial
outputs i th solution in poly(n + i)-time

polynomial-delay
poly(n)-time between two cons. outputs
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Introduction . A simple algorithm

https://www.maps.google.fr

Typical question:

Given input I , list all solutions in I .

Examples:

• bike itineraries to a destination
• flights to Warsaw
• answers to a query
• . . .
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Preliminaries . Hypergraph Dualization
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Definitions:

• hypergraph: family of subsets H ⊆ 2X on ground set X
• transversal of H: T ⊆ X s.t. T ∩ E 6= ∅ for any E ∈ H
• Tr(H): set of (inclusion-wise) minimal transervals of H

it is a hypergraph!
→ two hypergraphs H and G are called dual if G = Tr(H)

and Tr(Tr(H)) = H!
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Preliminaries . Hypergraph Dualization, an open problem

Hypergraph Dualization
input: two hypergraphs H and G on same ground set.
question: are H and G dual?

Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph H.
output: the set G = Tr(H) of minimal transversals of H.

Theorem (Fredman and Khachiyan, 1996)

There is a No(logN) quasi-polynomial time algorithm solving
Hypergraph Dualization where N = |H|+ |G|.

→ generation version is incremental
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Preliminaries . Hypergraph Dualization, a ubiquitous problem

Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph H.
output: the set G = Tr(H) of minimal transversals of H.

Equivalent to:
• translating from a positive CNF to a positive DNF
• enumerating the minimal dominating sets of a graph
• enumerating the minimal set coverings of a hypergraph
• enumerating database repairs

Are harder than Trans-Enum:
• lattice dualization problems
• meet-irreducibles/implicational bases translations
• characteristic models/Horn clauses translations

7
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Minimal dominating sets . Graphs

Definitions:

• graph G : a set of vertices V (G ), together with
a set of edges E (G ) ⊆ {{x , y} | x , y ∈ V (G ), x 6= y}

• stable set: set of pairwise non-adjacent vertices
• clique: set of pairwise adjacent vertices
• triangle-free: does not contain a triangle

( )
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Minimal dominating sets . Dominating sets

• N(v): neighborhood of vertex v

• dominating set (DS): D ⊆ V (G ) s.t. V (G ) = D ∪ N(D)

“D can see everybody else”
• minimal dominating set: inclusion-wise minimal DS
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Minimal dominating sets . Private neighbors & Irredundant sets

• N(v): neighborhood of vertex v

• dominating set (DS): D ⊆ V (G ) s.t. V (G ) = D ∪ N(D)

“D can see everybody else”
• minimal dominating set: inclusion-wise minimal DS
• private neighbor of v ∈ D:

vertex that is
{

dominated by v , and
not dominated by D \ {v}

(possibly v)

• irredundant set: S ⊆ V (G ) s.t. every x ∈ S has a priv. neighbor

Observation
A DS is minimal if and only if it is irredundant.

if all its vertices have a private neighbor.
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Minimal dominating sets . Enumeration & Equivalence
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Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

A particular case of Trans-Enum
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Minimal dominating sets . Enumeration & Equivalence

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Equivalent to Trans-Enum [Kanté et al., 2014]
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Minimal dominating sets . State of the art

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G .
output: the set D(G ) of minimal DS of G .

Dream goal: an output-poly. poly(N) algorithm, N = n + |D(G )|

General case: open, best is quasi-polynomial No(logN)

Known cases:

• output poly.: log(n)-degenerate graphs
• incr. poly.: chordal bipartite graphs, bounded conformality graphs
• poly. delay: degenerate, line, and chordal graphs
• linear delay: permutation and interval graphs, graphs with

bounded clique-width, split and P6-free chordal graphs
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Minimal dominating sets . Split graphs (Kanté et al., 2014)

clique stable set (maximal)

C S

Proposition (Kanté, Limouzy, Mary, and Nourine, 2014)

A set D ⊆ V (G ) is a minimal DS of G iff D dominates S and
every v ∈ D has a private neighbor in S .

Then: D ∩ S = {all vertices not dominated by D ∩ C}

Enumeration: complete every irredundant set X ⊆ C in S

→ the family of such X ’s is an independence set system
→ can be enumerated with linear delay
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Minimal dominating sets . Split graphs (Kanté et al., 2014)

clique stable set (maximal)

C S

Theorem (Kanté, Limouzy, Mary, and Nourine, 2014)
There is a linear-delay (and poly. space) algorithm enumerating
minimal dominating sets in split graphs.

Then: D ∩ S = {all vertices not dominated by D ∩ C}

Enumeration: complete every irredundant set X ⊆ C in S

→ the family of such X ’s is an independence set system
→ can be enumerated with linear delay
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Minimal dominating sets . Peeling graphs

Goal: enumerating minimal DS one neighborhood at a time

. . .

. . .

u1

ui

up

Vp

Peeling: sequence (V0, . . . ,Vp) s.t.
1. Vp = V (G )

2. for i ∈ {1, . . . , p}:
Vi−1 = Vi \ {ui} \ N(ui )

3. V0 = ∅
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Minimal dominating sets . Extending partial solutions

Goal: enumerating minimal DS one neighborhood at a time

. . .

. . .

u1

ui

up

Vi

Dominating set (DS) of Vi:
• D ⊆ V (G ) s.t. Vi ⊆ D ∪ N(D)

“D can see everybody else in Vi ”

Plan:
1. given minimal DS of Vi

allowing vertices of G − Vi

2. enumerate those of Vi+1

allowing vertices of G − Vi+1
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Minimal dominating sets . The algorithm

V0
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Vp

∅

Important wanted properties:

• no cycle (no repetition, using a parent relation: lex. order)
• no leaf before level p (no exponential blowup)
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Minimal dominating sets . Minimal DS of Vi+1 from those of Vi

Goal: extend each minimal DS D of Vi to a minimal DS of Vi+1

ui+1

Vi

Observation:
• possibly D minimally dominates Vi+1

• if not then D ∪ {ui+1} does
extension is always possible, hence
|minimal DS of Vi | ≤ |minimal DS of Vi+1|

≤ |minimal DS of G |

candidate extension of D: minimal set X s.t. D ∪X dominates Vi+1

Lemma

|candidate extensions of D| ≤ |minimal DS of G |
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Minimal dominating sets . Candidate extensions, triangle-free case

ui+1

Vi︸ ︷︷ ︸
N(ui+1) ∩ Vi+1

dominated by D
already

C = N(S) \ {ui+1}

Vi+1

C

S

a stable set
in triangle-free graphs

• if ui+1 dom. by D: they only have to dominate S

→ exactly the minimal DS of Split(C , S)

• if ui+1 not dom. by D: they should also dom. ui+1

irredundant {t} ∪ Q s.t.
{

t ∈ N(ui+1)

Q minimal DS of Split(C , S)
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Minimal dominating sets . Complexity, triangle-free case
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For each minimal DS of Vi :

• compute all candidate extensions; in time O(poly(n) · |D(G )|)
• only keep the X ∪ D’s that are minimal and children of D
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Minimal dominating sets . Complexity, triangle-free case
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Theorem (Bonamy, D., Heinrich, and Raymond, 2019)

The set D(G ) of minimal DS of any triangle-free graph G can be
enumerated in time O(poly(n) · |D(G )|2) and polynomial space.
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Minimal dominating sets . Perspectives

Theorem (Bonamy, D., Heinrich, Pilipczuk, and Raymond)

The set D(G ) of minimal DS of any graph G can be enumerated
in time O(n2t+1 · |D(G )|2t ) and poly. space where t = ω(G ) + 1.

Future work:

• complexity improvements? delay is still open for bipartite graphs

Theorem (Bonamy, D., Heinrich, and Raymond, 2019)
Deciding if a vertex set S can be extended into a minimal DS is
NP-complete in bipartite graphs.

• extensions to other classes?
Kt + K2-free, paw-free, diamond-free 3

C4-free? 7

(in)comparability and unit disk? 7
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Minimal dominating sets . Perspectives

• extensions to other classes?
Kt + K2-free, paw-free, diamond-free 3

C4-free? 7 chordal graphs 3 split graphs 3

(in)comparability graphs? 7

Theorem (D. and Nourine, 2019)

The set D(G ) of minimal DS of any P7-free chordal graph G can
be enumerated with linear delay and poly. space.

Theorem (Bonamy, D., Micek, and Nourine, 2020)

The set D(G ) of minimal DS can be enumerated with incremental
and polynomial delay (and poly. space) in the comparability and
incomparability graphs of posets of bounded dimension.

unit disk graphs? 7
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Preliminaries . Hypergraph Dualization, an open & ubiquitous problem

Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph H.
output: the set G = Tr(H) of minimal transversals of H.

Equivalent to:
• translating from a positive CNF to a positive DNF
• enumerating the minimal dominating sets of a graph
• enumerating the minimal set coverings of a hypergraph
• enumerating database repairs

Are harder than Trans-Enum:
• lattice dualization problems
• meet-irreducibles/implicational bases translations
• characteristic models/Horn clauses translations

7

7

7
≡?
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Dualization in lattices . Lattices as ordered families of sets
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Definitions:

• lattice L = (X ,⊆): order obtained by inclusions
of a family X ⊆ 2X over a ground set X that is

- containing X : X ∈ X
- closed by intersection: A,B ∈ X =⇒ A ∩ B ∈ X
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Dualization in lattices . Meet & Implicational bases
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Σ = {13→ 2, 4→ 3} Σ = ∅

Definitions:

• lattice L = (X ,⊆): order obtained by inclusions
of a family X ⊆ 2X over a ground set X that is

- containing X : X ∈ X
- closed by intersection: A,B ∈ X =⇒ A ∩ B ∈ X
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Dualization in lattices . Dualization

12

1 2

∅

234

34

1234

3

23

123

1 2 3 4

12 13 14 23

123 124 134 234

24 34

∅

1234

Σ = {13→ 2, 4→ 3} Σ = ∅

Definitions:

• lattice L = (X ,⊆): order obtained by inclusions
of a family X ⊆ 2X over a ground set X that is

- containing X : X ∈ X
- closed by intersection: A,B ∈ X =⇒ A ∩ B ∈ X

Oscar Defrain Dualization in graphs, hypergraphs, and lattices 30 / 33



Dualization in lattices . Main contributions

Theorem (D. and Nourine, 2019)
The dualization in lattices given by implicational bases of
dimension two cannot be solved in output-polynomial time
unless P=NP.

→ output quasi-polynomial time algorithms in subclasses of
distributive lattices (lately improved by Khaled Elbassioni)
with Lhouari Nourine, and Takeaki Uno

Theorem (D., Nourine, and Vilmin, 2019)
Translating between meet-irreducible elements and implicational
bases can be done in output quasi-polynomial time algorithm for
ranked convex geometries.
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Dualization in lattices . Perspectives

Minimal Transversals Enumeration (Trans-Enum)
input: a hypergraph H.
output: the set G = Tr(H) of minimal transversals of H.

Are harder than Trans-Enum:
• lattice dualization problems

Dim. 2 IB lattices 7 imp. in poly. time unless P=NP
Acyclic IB lattices? 7 Distributive lattices 3

• meet-irreducibles/implicational bases translations
Acyclic IB lattices? 7 Distributive lattices 3

Ranked IB lattices 3

Is meet enumeration possible in output quasi-polynomial time?
Are lattice dualization & meet enumeration equivalent?
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Conclusion . Hypergraph Dualization, an open & ubiquitous problem

Big question: can Hypergraph Dualization be solved in poly. time?

Equivalent to:
• translating from a positive CNF to a positive DNF
• enumerating the minimal dominating sets of a graph

C4-free? 7

(in)comparability and unit disk? 7

Are harder than Trans-Enum:
• lattice dualization problems

Acyclic IB lattices? 7

• meet-irreducibles/implicational basestranslations
Acyclic IB lattices? 7

• characteristic models/Horn clauses translations

≡?

Thank you!
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