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Chordal graphs and simplicial vertices: Dirac’s result

• A graph G is chordal if every induced cycle in G is a triangle.
• A vertex v ∈ V (G ) is simplicial if its neighborhood is a clique.

Theorem (Dirac, 1961)
Every chordal graph has a simplicial vertex.
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A chordal graph and a simplicial vertex v .
Vertex u is not simplicial.
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Generalization: avoidable vertices

• A vertex v ∈ V (G ) is avoidable if every induced path on three
vertices with middle vertex v is contained in an induced cycle in G .

Theorem (Ohtsuki, Cheung, and Fujisawa, 1976)
Every graph has an avoidable vertex.
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A (non-chordal) graph and an avoidable vertex v .
Vertex u is not avoidable (xuw is not in an induced cycle).
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Generalization: avoidable paths

• An extension of an induced path P in G is an induced path xPy

in G for some vertices x , y ∈ V (G ).
• A path is failing if it is not contained in an induced cycle of G .
• A path is avoidable if it is induced and has no failing extension.
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Generalization: avoidable paths

• An extension of an induced path P in G is an induced path xPy

in G for some vertices x , y ∈ V (G ).
• A path is failing if it is not contained in an induced cycle of G .
• A path is avoidable if it is induced and has no failing extension.

Conjecture A (Beisegel et al., 2019)
For every positive integer k , every graph either is Pk -free or
contains an avoidable Pk .

Theorem (Chvátal et al., 2002)
For every positive integer k , every C≥k+3-free graph either is
Pk -free or contains an avoidable Pk .
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Avoidable paths in subgraphs

• An extension of an induced path P in G is an induced path xPy

in G for some vertices x , y ∈ V (G ).
• A path is failing if it is not contained in an induced cycle of G .
• A path is avoidable if it is induced and has no failing extension.

→ Given a subgraph G ′ of G , we say that P is an avoidable path
of G in G ′ if it is avoidable in G and V (P) ⊆ V (G ′).
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A stronger induction hypothesis

Basic property HB

Given a positive integer k and a graph G , the property HB(G , k)

holds if either G is Pk -free or there is an avoidable Pk in G .

Refined property HR

Given a positive integer k , a graph G and a vertex u ∈ V (G ), the
property HR(G , k , u) holds if either G − N[u] is Pk -free or there
is an avoidable Pk of G in G − N[u].

Given a positive integer k and a graph G , the property HR(G , k)

holds if HR(G , k, u) holds for every u ∈ V (G ).

• The conjecture reads as: HB(G , k) holds for every G and k .
Property HR(G , k) does not directly imply property HB(G , k).B
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Some kind of heredity in HR

Lemma B
Let k be a positive integer, G a graph and u1u2 an edge of G .
Let G ′ be the graph obtained from G by merging the two vertices
u1 and u2 into one vertex u. If G ′ − N[u] contains a Pk ,
then HR(G

′, k , u) implies HR(G , k , u1).

u2u1

G
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Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)
For every positive integer k and every graph G , both
properties HB(G , k) and HR(G , k) hold.

Corollary
For every positive integer k , every graph either is Pk -free or
contains an avoidable Pk .

• Consider a counterexample G minimum with respect to |V (G )|.
→ We show that HR(G , k) and HB(G , k) hold for every k to obtain

a contradiction.
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Proof of Conjecture A: HR property

Lemma

The property HR(G , k) holds for every k.

• By contradiction: suppose there exists u and a Pk in G − N[u],
and every Pk in G − N[u] has a failing extension in G .

→ Every Pk in G − N[u] dominates N(u).
• Consider an induced path P and a failing extension xPy in G :
→ xP − z does not dominate y !
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Proof of Conjecture A: HB property

Lemma

The property HB(G , k) holds for every k.

• By contradiction: suppose G contains a Pk but no avoidable Pk .

→ By previous Lemma, HR(G , k) holds: for every u ∈ V , either
G − N[u] is Pk -free or .

→ Every Pk in G dominates V (G ).
• Consider an induced path P and a failing extension xPy in G :
→ xP − z does not dominate y !
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An algorithmic proof

Theorem (Bonamy, D., Hatzel, Thiebaut, 2019)
For every positive integer k , every graph either is Pk -free or
contains an avoidable Pk .
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Further (1)

Corollary 1

For every positive integer k , graph G and subset X ⊆ V (G ) such
that G [X ] is connected, either G − N[X ] is Pk -free or there is an
avoidable Pk of G in G − N[X ].

Corollary 2
For every positive integer k and graph G , either G does not
contain two non-adjacent Pk , or it contains two non-adjacent
avoidable Pk .
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Further (2)

Question
For every positive integer k , does every graph G either not
contain two disjoint Pk , or contain two disjoint avoidable Pk?

• Yes for k = 1, 2 [Beisegel et al. 2019].

• No for k ≥ 3.
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Further (2)

Question
For every positive integer k , does every graph G either not
contain two disjoint Pk , or contain two disjoint avoidable Pk?

• Yes for k = 1, 2 [Beisegel et al. 2019].
• No for k ≥ 3.

Thank you!
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