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Chordal graphs and simplicial vertices: Dirac’s result

e A graph G is chordal if every induced cycle in G is a triangle.
o A vertex v € V(G) is simplicial if its neighborhood is a clique.

Theorem (Dirac, 1961)

Every chordal graph has a simplicial vertex.
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y V4
A chordal graph and a simplicial vertex v.
Vertex u is not simplicial.
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Generalization: avoidable vertices

o A vertex v € V(G) is avoidable if every induced path on three
vertices with middle vertex v is contained in an induced cycle in G.

Theorem (Ohtsuki, Cheung, and Fujisawa, 1976)

Every graph has an avoidable vertex.

X u

y V4
A (non-chordal) graph and an avoidable vertex v.
Vertex u is not avoidable (xuw is not in an induced cycle).
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Generalization: avoidable vertices

o A vertex v € V(G) is avoidable if every induced path on three
vertices with middle vertex v is contained in an induced cycle in G.

Theorem (Ohtsuki, Cheung, and Fujisawa, 1976)

Every graph has an avoidable vertex.

X u
simplicial = avoidable
v il in chordal graphs:
simplicial <= avoidable
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A (non-chordal) graph and an avoidable vertex v.
Vertex u is not avoidable (xuw is not in an induced cycle).

Oscar Defrain 2 /13



Generalization: avoidable paths

e An extension of an induced path P in G is an induced path xPy
in G for some vertices x,y € V(G).

e A path is failing if it is not contained in an induced cycle of G.

e A path is avoidable if it is induced and has no failing extension.

P
u v v
X o y
P
u v z
X y
avoidable not avoidable
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Generalization: avoidable paths

e An extension of an induced path P in G is an induced path xPy
in G for some vertices x,y € V(G).

e A path is failing if it is not contained in an induced cycle of G.

e A path is avoidable if it is induced and has no failing extension.

Conjecture A (Beisegel et al., 2019)
For every positive integer k, every graph either is Py-free or
contains an avoidable P;..
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Generalization: avoidable paths

e An extension of an induced path P in G is an induced path xPy
in G for some vertices x,y € V(G).

e A path is failing if it is not contained in an induced cycle of G.

e A path is avoidable if it is induced and has no failing extension.

Conjecture A (Beisegel et al., 2019)

For every positive integer k, every graph either is Py-free or
contains an avoidable P;..

Theorem (Chvatal et al., 2002)

For every positive integer k, every Cs . 3-free graph either is
Py-free or contains an avoidable Pj.
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Avoidable paths in subgraphs

e An extension of an induced path P in G is an induced path xPy
in G for some vertices x,y € V(G).

e A path is failing if it is not contained in an induced cycle of G.

e A path is avoidable if it is induced and has no failing extension.

— Given a subgraph G’ of G, we say that P is an avoidable path
of G in G if it is avoidable in G and V(P) C V(G').

G G=GC—-w
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A stronger induction hypothesis

Basic property Hpg
Given a positive integer k and a graph G, the property Hg(G, k)
holds if either G is Pj-free or there is an avoidable Pj in G.

Refined property Hg
Given a positive integer k, a graph G and a vertex u € V(G), the

property Hr(G, k, u) holds if either G — N[u] is Py-free or there
is an avoidable Py of G in G — N[u].

Given a positive integer k and a graph G, the property Hg(G, k)
holds if Hr(G, k, u) holds for every u € V(G).

e The conjecture reads as: Hg(G, k) holds for every G and k.
/\ Property Hg(G, k) does not directly imply property Hg(G, k).
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.

uq u;
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.
Let G’ be the graph obtained from G by merging the two vertices
uy and up into one vertex u.

u u, u

G G = G|u1uz~/~>u
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.
Let G’ be the graph obtained from G by merging the two vertices
uy and uy into one vertex u. If G' — N[u] contains a Py,

then Hr(G', k, u) implies Hr(G, k, u1).

u u, u
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U

G G = G|u1uzv~>u
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.
Let G’ be the graph obtained from G by merging the two vertices
uy and uy into one vertex u. If G' — N[u] contains a Py,

then Hr(G', k, u) implies Hr(G, k, u1).

u u, u
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avoidable

G G = G|u1uzv~>u
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.
Let G’ be the graph obtained from G by merging the two vertices
uy and uy into one vertex u. If G' — N[u] contains a Py,

then Hr(G', k, u) implies Hr(G, k, u1).
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not avoidable avoidable

G G = G|u1uzv~>u
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.
Let G’ be the graph obtained from G by merging the two vertices
uy and uy into one vertex u. If G' — N[u] contains a Py,

then Hr(G', k, u) implies Hr(G, k, u1).

D, N
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not avoidable avoidable
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G = G|u1uzv~>u
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Some kind of heredity in Hg

Lemma B

Let k be a positive integer, G a graph and uiuy an edge of G.
Let G’ be the graph obtained from G by merging the two vertices
uy and uy into one vertex u. If G' — N[u] contains a Py,

then Hr(G', k, u) implies Hr(G, k, u1).
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Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)
For every positive integer k and every graph G, both
properties Hg(G, k) and Hr(G, k) hold.
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Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)

For every positive integer k and every graph G, both
properties Hg(G, k) and Hr(G, k) hold.

Corollary

For every positive integer k, every graph either is Py-free or
contains an avoidable Pj.
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Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)

For every positive integer k and every graph G, both
properties Hg(G, k) and Hr(G, k) hold.

Corollary
For every positive integer k, every graph either is Py-free or

contains an avoidable Pj.

o Consider a counterexample G minimum with respect to |V(G)].
— We show that Hg(G, k) and Hg(G, k) hold for every k to obtain
a contradiction.
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Proof of Conjecture A: Hgr property

Lemma
The property Hr(G, k) holds for every k.

e By contradiction: suppose there exists v and a Py in G — N[u],
and every Py in G — N[u] has a failing extension in G.
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Proof of Conjecture A: Hgr property

Lemma
The property Hr(G, k) holds for every k.
e By contradiction: suppose there exists v and a Py in G — N[u],

and every Py in G — N[u] has a failing extension in G.
— Every Py in G — N[u] dominates N(u).

!
G G = G| uv~u’
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Proof of Conjecture A: Hgr property

Lemma
The property Hr(G, k) holds for every k.

e By contradiction: suppose there exists v and a Py in G — N[u],
and every Py in G — N[u] has a failing extension in G.
— Every Py in G — N[u] dominates N(u).
e Consider an induced path P and a failing extension xPy in G:

u
y € N(u)
50 z z
not avoidable
G G’ = G — N[u]
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Proof of Conjecture A: Hgr property

Lemma
The property Hr(G, k) holds for every k.
e By contradiction: suppose there exists v and a Py in G — N[u],
and every Py in G — N[u] has a failing extension in G.
— Every Py in G — N[u] dominates N(u).
e Consider an induced path P and a failing extension xPy in G:

— xP — z does not dominate y!
u

el

X z z
w WJ
P
not avoidable
G G' = G — N[u]
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Proof of Conjecture A: Hg property

Lemma
The property Hg(G, k) holds for every k.

e By contradiction: suppose G contains a Py but no avoidable Py.
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Proof of Conjecture A: Hg property

Lemma
The property Hg(G, k) holds for every k.

e By contradiction: suppose G contains a Py but no avoidable Py.
— By previous Lemma, Hg(G, k) holds: for every u € V, either
G — N[u] is Pi-free or there is an avoidable Py of G in G — NJu].
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Proof of Conjecture A: Hg property

Lemma
The property Hg(G, k) holds for every k.

e By contradiction: suppose G contains a Py but no avoidable Py.
— By previous Lemma, Hg(G, k) holds: for every u € V, either

G — N[u] is Py-free or there-is-an-avoidable Prof Gin-G—N{u}.
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Proof of Conjecture A: Hg property

Lemma
The property Hg(G, k) holds for every k.

e By contradiction: suppose G contains a Py but no avoidable Py.
— By previous Lemma, Hg(G, k) holds: for every u € V, either

G — N[u] is Py-free or there-is-an-avoidable Prof Gin-G—N{u}.

— Every Py in G dominates V/(G).
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Proof of Conjecture A: Hg property

Lemma
The property Hg(G, k) holds for every k.

e By contradiction: suppose G contains a Py but no avoidable Py.
— By previous Lemma, Hg(G, k) holds: for every u € V, either

G — N[u] is Py-free or there-is-an-avoidable Prof Gin-G—N{u}.
— Every Py in G dominates V/(G).
e Consider an induced path P and a failing extension xPy in G:

y
) m
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G
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Proof of Conjecture A: Hg property

Lemma
The property Hg(G, k) holds for every k.

e By contradiction: suppose G contains a Py but no avoidable Py.
— By previous Lemma, Hg(G, k) holds: for every u € V, either
G — N[u] is Py-free or there-is-an-aveidablePi—of-G-inG—Nu}.
— Every Py in G dominates V/(G).
e Consider an induced path P and a failing extension xPy in G:

— xP — z does not dominate y!
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An algorithmic proof

Theorem (Bonamy, D., Hatzel, Thiebaut, 2019)

For every positive integer k, every graph either is Py-free or
contains an avoidable Pj.

Algorithm 1 finds an avoidable path of given length in a given graph, if any.

1
2 for all v € N(u) do

3 if INDUCEDPATH(G — N[{u,v}], k) # null then

4 G' < G with v and v merged into o’

5: return FINDAVOIDABLEPATHREFINED(G', k, u)
6 return FINDAVOIDABLEPATH(G — N|ul, k)

7

8

9

for all u € V(G) do
if INDUCEDPATH(G — N|ul, k) # null then
10: return FINDAVOIDABLEPATHREFINED(G, k, u)
11:  return INDUCEDPATH(G, k)
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Further (1)

Corollary 1

For every positive integer k, graph G and subset X C V(G) such
that G[X] is connected, either G — N[X] is Px-free or there is an
avoidable Py of G in G — N[X].
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Further (1)

Corollary 1
For every positive integer k, graph G and subset X C V(G) such

that G[X] is connected, either G — N[X] is Px-free or there is an
avoidable Py of G in G — N[X].

Corollary 2

For every positive integer k and graph G, either G does not
contain two non-adjacent Py, or it contains two non-adjacent
avoidable Py.
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Further (2)

Question
For every positive integer k, does every graph G either not
contain two disjoint Py, or contain two disjoint avoidable Py ?

e Yes for k = 1,2 [Beisegel et al. 2019].
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Further (2)

Question

For every positive integer k, does every graph G either not
contain two disjoint Py, or contain two disjoint avoidable Py ?

e Yes for k = 1,2 [Beisegel et al. 2019].

e No for k > 3.
O-
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Further (2)

Question

For every positive integer k, does every graph G either not
contain two disjoint Py, or contain two disjoint avoidable Py ?

e Yes for k = 1,2 [Beisegel et al. 2019].
e No for k > 3.

Thank youl
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