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Enumeration algorithms

Typical question:
Given input |, list all objects of type X in I.
Examples:

e cycles, cliques, stable sets, dominating sets of a graph
e transversals of a hypergraph

e antichains of a partial order

e variable assignments satisfying a formula

e trains to Paris leaving tomorrow before 10:00

Remark: possibly many objects!
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Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Fomin, Grandoni, Pyatkin, and Stepanov, 2008)
There is an O (1.7159")-time algorithm enumerating all minimal
dominating sets in n-vertex graphs.

— basically upper-bounds the number of objects

Output-sensitive: in terms of input+output size
Theorem (Fredman and Khachiyan, 1996)

There is an N°(°8N)_time algorithm enumerating all the minimal
dominating sets of a n-vertex graph G, where N = n+ |D(G)|.

— many techniques (reverse search, backtrack search, etc.)
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“Fast” output-sensitive algorithms

Let n be input size, e.g., number of vertices of a graph G
Let d be output size, e.g., number of dominating sets in G

execution time

output-polynomial
algo. stops in poly(n + d)-time

incremental-polynomial
I 1 outputs it solution in poly(n + i)-time

polynomial-delay
[T 1 poly(n)-time between any two outputs

solution output
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Minimal dominating sets

e N[v]: closed neighborhood of vertex v
e dominating set (DS): D C V(G) s.t. V(G) = N[D]
“D can see everybody else”
e minimal dominating set: inclusion-wise minimal DS
e private neighbor of v € D: vertex u s.t. N[julN D = {v}

Observation
A DS is minimal iff all its vertices have a private neighbor.
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Minimal dominating sets enumeration

Minimal DS Enumeration (Dom-Enum)
input: a n-vertex graph G
output: the set D(G) of minimal DS of G

Dream goal: an output-poly. poly(N) algorithm, N = n+ |D(G)|
General case: open, best is quasi-polynomial Ne(log V)
Known cases:

e output-poly.: log(n)-degenerate graphs, Ki-free graphs for fixed t

e incr. poly.: chordal bipartite graphs, bounded conformality graphs

e poly. delay: degenerate, line, and chordal graphs

e linear delay: permutation and interval graphs, graphs with
bounded clique-width, split and Pg-free chordal graphs
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Dom-Enum in split graphs (Kanté et al., 2014)

C S
clique —» <«+—— stable set

Proposition (Kanté, Limouzy, Mary, and Nourine, 2014)
A set D C V(G) is a minimal DS of G iff D dominates S and
every v € D has a private neighbor in S.

Then: DN S = {all vertices not dominated by D N C}

Enumeration: complete every set X C C with priv. neighbors in S
into a minimal DS of G
— the family of such X's is an independence set system

— can be enumerated with linear delay
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Dom-Enum in split graphs (Kanté et al., 2014)

C S
clique —» <«+—— stable set

Theorem (Kanté, Limouzy, Mary, and Nourine, 2014)
There is a linear-delay algorithm enumerating minimal dominating

sets in split graphs.
Then: DN S = {all vertices not dominated by D N C}

Enumeration: complete every set X C C with priv. neighbors in S
into a minimal DS of G
— the family of such X's is an independence set system

— can be enumerated with linear delay
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Redundant and irredundant vertices

C S
RN(G) —» % <+— IR(G)

e vertex v is redundant if there exists u s.t. N[u] C N[v]
e vertex v is irredundant otherwise
is minimal w.r.t. neighborhood inclusion
e RN(G): the set of redundant vertices
e /IR(G): the set of irredundant vertices

Proposition
A set D C V(G) is a minimal DS of G iff D dominates IR(G)
and every v € D has a priv. neighbor in IR(G).
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Neighborhood inclusions for Dom-Enum
C S
RN(G) —» % <«— IR(G)

For D C V(G):

e let Dry = DN RN(G) and Dig = DN IR(G)

o let Dpy(G) = {Dgn | D € D(G)} — an independence set
system whenever G is P7-free chordal, and an accessible set

system whenever G is Pg-free chordal.

Enumeration: check for every set A C RN(G)

— whether A € Dry(G) (irredundant extension problem)
— if so, enumerate every extension X C IR(G) s.t. AU X € D(G)
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Case A: Ps-free chordal graphs

C S
RN(G) —» % <+— IR(G)

Proposition (Kanté, Limouzy, Mary, and Nourine, 2014)
Let G be a Ps-free chordal graph. Then completing RN(G) into
a clique yields a split graph with the same minimal DS.

— linear-delay algorithm for Dom-Enum in Pg-free chordal graphs
— does not hold for P7-free chordal graphs (not even chordal)

CREERE
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Case B: P;-free and Pg-free chordal graphs

C S
RN(G) —» % <+— IR(G)

Proposition
Let G be a Py-free chordal graph, k € N. Then the graph
G[IR(G)] induced by IR(G) is Px_4-free chordal.

— linear-delay algorithm for Dom-Enum in P;-free chordal graphs
— poly.-delay algorithm for Dom-Enum in Pg-free chordal graphs
— checking A € Dry(G) is linear
> enumerating X s.t. AU X € D(G) is polynomial delay

using backtrack search technique
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Case B: P;-free and Pg-free chordal graphs

C S
RN(G) —» % <+— IR(G)

Theorem (D. and Nourine, 2019)
There are linear and polynomial-delay algorithms enumerating
minimal dominating sets in P;-free and Pg-free chordal graphs.

— linear-delay algorithm for Dom-Enum in P7-free chordal graphs
— poly.-delay algorithm for Dom-Enum in Pg-free chordal graphs
— checking A € Dgn(G) is linear
— enumerating X s.t. AU X € D(G) is polynomial delay
using backtrack search technique
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Case C: Py-free chordal graphs

Theorem (D. and Nourine, 2019)
Deciding whether A € Dgn(G) is
NP-complete even when restricted
to Pg-free chordal graphs.

— by reduction from SAT
— setting A = RN(G)

e v; needs a private u; or —wu;

e only c1,...,cyp are to be dominated
RN(G
Thank youl
IR(G)
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