Soutenance de thèse

Cubes partiels : complétion, compression, plongement

Manon Philibert Sous la direction de Victor Chepoi et Kolja Knauer

3 décembre 2021

Hypercubes et cubes partiels

Hypercube Q_m de dimension m :

- $V(Q_m) := 2^U$ où $U := \{1, ..., m\}$
- $AB \in E(Q_m)$ ssi $|A\Delta B| = 1$

Hypercubes et cubes partiels

Hypercube Q_m de dimension m :

- $V(Q_m) := 2^U$ où $U := \{1, ..., m\}$
- $AB \in E(Q_m)$ ssi $|A\Delta B| = 1$

Cubes partiels : sous-graphes **isométriques** d'hypercubes

$$\checkmark \forall u, v \in G, d_G(u, v) = d_{Q_m}(u, v)$$

Caractérisation de Djoković

<u>Théorème</u> [Djoković, 1973] : G = (V, E) cube partiel ssi :

- *G* biparti;
- $\forall uv \in E, W(u,v) := \{x \in V : d(x,u) < d(x,v)\}$ et W(v,u) convexes.

 $H \subseteq G \text{ convexe si } \forall u, v \in V(H), \underline{\mathbf{I}_G(u, v)} \subseteq V(H).$ $\{w \in V(G) : d_G(u, v) = d_G(u, w) + d_G(w, v)\}$

Caractérisation de Djoković

<u>Théorème</u> [Djoković, 1973] : G = (V, E) cube partiel ssi :

- G biparti;
- $\forall uv \in E, W(u,v) := \{x \in V : d(x,u) < d(x,v)\}$ et W(v,u) convexes.

 $H \subseteq G \text{ convexe si } \forall u, v \in V(H), \underbrace{\mathbf{I}_G(u, v)}_{\bigstar} \subseteq V(H).$ $\{w \in V(G) : \mathbf{d}_G(u, v) = \mathbf{d}_G(u, w) + \mathbf{d}_G(w, v)\}$

 $\mathcal{F}(\mathcal{X})$: cubes partiels n'ayant aucun élément de \mathcal{X} comme pc-mineurs

Classes avec peu de pc-mineurs exclus

VC-dimension

La VC-dimension d'un sous-graphe d'hypercube est la taille du plus grand hypercube obtenu par pc-mineurs, i.e., $G \in \mathcal{F}(Q_{d+1}) \iff \text{VC-dim}(G) \leq d$

- $\overline{\mathbf{X}}(G)$: ensembles pulvérisés
- $\underline{\mathbf{X}}(G)$: ensembles strictement pulvérisés

<u>Lemme du Sandwich</u> [Bollobás et Radcliffe, 1995 et Dress, 1997] : $\forall G \subseteq Q_m, |\underline{\mathbf{X}}(G)| \leq |V(G)| \leq |\overline{\mathbf{X}}(G)|.$

G ample ssi G cube partiel t.q. $\underline{\mathbf{X}}(G) = \overline{\mathbf{X}}(G)$

Géométrie :

Famille lopsided [Lawrence, 1983]

Combinatoire :

Lemme du Sandwich

Complémentaire ample

Théorie métrique des graphes :

Géométrie :

Famille lopsided [Lawrence, 1983]

Combinatoire :

Lemme du Sandwich

Complémentaire ample

Théorie métrique des graphes :

Géométrie :

Famille lopsided [Lawrence, 1983]

Combinatoire :

Lemme du Sandwich

Complémentaire ample

Théorie métrique des graphes :

Géométrie :

Famille lopsided [Lawrence, 1983]

Combinatoire :

Lemme du Sandwich

Complémentaire ample

Théorie métrique des graphes :

Conjecture de Floyd et Warmuth

<u>Conjecture</u> [Floyd et Warmuth, 1995] :

Toute famille d'ensembles, i.e., tout sous-graphe d'hypercube, de VC-dimension d admet un schéma de compression de taille O(d).

<u>Théorème</u> [Moran et Warmuth, 2016] : Tout cube partiel ample de VC-dimension d admet un schéma de compression étiqueté propre de taille d.

Résultats

- Caractérisations des cubes partiels de VC-dimension ≤ 2
- Complétions amples des OMs et des CUOMs
- Compression de taille d pour les COMs
- Caractérisations des grilles et cylindres partiels

<u>Théorème 1</u> [Chepoi, Knauer, et P., E-JC 2020]:

Pour un cube partiel G, les conditions suivantes sont équivalentes :

- $G \in \mathcal{F}(Q_3)$;
- Les hyperplans de G sont de VC-dimension ≤ 1 ;
- G peut être obtenu à partir de K₁ via une suite d'expansions isométriques {(G_i¹, G_i⁰, G_i²) : i = 1,...,m}, où VC-dim(G_i⁰) ≤ 1;
- *G* peut être obtenu par 2*d*-amalgamation à partir de cycles pairs et de subdivisions entières de graphes complets;
- G peut être complété en cube partiel ample de VC-dimension ≤ 2 .

Hyperplan H_i :

- $V(H_i) :=$ milieux des arêtes E_i
- $uv \in E(H_i)$ ssi les arêtes appartiennent à un même carré dans G

<u>Théorème 1</u> [Chepoi, Knauer, et P., E-JC 2020]:

- $G \in \mathcal{F}(Q_3)$;
- Les hyperplans de G sont de VC-dimension ≤ 1 ;
- G peut être obtenu à partir de K₁ via une suite d'expansions isométriques {(G_i¹, G_i⁰, G_i²) : i = 1, ..., m}, où VC-dim(G_i⁰) ≤ 1;
- *G* peut être obtenu par 2*d*-amalgamation à partir de cycles pairs et de subdivisions entières de graphes complets;
- G peut être complété en cube partiel ample de VC-dimension ≤ 2 .

<u>Théorème 1</u> [Chepoi, Knauer, et P., E-JC 2020]:

- $G \in \mathcal{F}(Q_3)$;
- Les hyperplans de G sont de VC-dimension ≤ 1 ;
- G peut être obtenu à partir de K₁ via une suite d'expansions isométriques {(G_i¹, G_i⁰, G_i²) : i = 1, ..., m}, où VC-dim(G_i⁰) ≤ 1;
- *G* peut être obtenu par 2*d*-amalgamation à partir de cycles pairs et de subdivisions entières de graphes complets;
- G peut être complété en cube partiel ample de VC-dimension ≤ 2 .

<u>Théorème 1</u> [Chepoi, Knauer, et P., E-JC 2020]:

- $G \in \mathcal{F}(Q_3)$;
- Les hyperplans de G sont de VC-dimension ≤ 1 ;
- G peut être obtenu à partir de K₁ via une suite d'expansions isométriques {(G_i¹, G_i⁰, G_i²) : i = 1,...,m}, où VC-dim(G_i⁰) ≤ 1;
- G peut être obtenu par 2d-amalgamation à partir de cycles pairs et de subdivisions entières de graphes complets;
- G peut être complété en cube partiel ample de VC-dimension ≤ 2 .

<u>Théorème 1</u> [Chepoi, Knauer, et P., E-JC 2020]:

- $G \in \mathcal{F}(Q_3)$;
- Les hyperplans de G sont de VC-dimension ≤ 1 ;
- G peut être obtenu à partir de K₁ via une suite d'expansions isométriques {(G_i¹, G_i⁰, G_i²) : i = 1, ..., m}, où VC-dim(G_i⁰) ≤ 1;
- G peut être obtenu par 2d-amalgamation à partir de cycles pairs et de subdivisions entières de graphes complets;
- G peut être complété en cube partiel ample de VC-dimension ≤ 2 .

Résultats

Caractérisations des cubes partiels de VC-dimension ≤ 2

Complétions amples des OMs et des CUOMs

Compression de taille d pour les COMs

Caractérisations des grilles et cylindres partiels

 $U = \{1, \dots, m\}$ et $\mathcal{L} = \{-1, 0, +1\}^m$

 $(U, \mathcal{L}) \text{ COM [Bandelt, Chepoi et Knauer, 2018] ssi} \quad (X \circ Y)_i = \begin{cases} X_i & \text{si } X_i \neq 0; \\ Y_i & \text{sinon.} \end{cases}$ $(C) \forall X, Y \in \mathcal{L}, X \circ Y \in \mathcal{L};$ $(SE) \forall X, Y \in \mathcal{L}, \forall i \in U \text{ avec } X_i Y_i = -1, \exists Z \in \mathcal{L} \text{ tel que } Z_i = 0 \text{ et } Z_j = (X \circ Y)_j \\ \forall j \in U \text{ avec } X_j Y_j \neq -1; \end{cases}$ $(FS) \forall X, Y \in \mathcal{L}, X \circ -Y \in \mathcal{L}.$

 $U = \{1, \dots, m\}$ et $\mathcal{L} = \{-1, 0, +1\}^m$

 $(U, \mathcal{L}) \text{ COM [Bandelt, Chepoi et Knauer, 2018] ssi} (X \circ Y)_i = \begin{cases} X_i & \text{si } X_i \neq 0; \\ Y_i & \text{sinon.} \end{cases}$ $(C) \forall X, Y \in \mathcal{L}, X \circ Y \in \mathcal{L};$ $(SE) \forall X, Y \in \mathcal{L}, \forall i \in U \text{ avec } X_i Y_i = -1, \exists Z \in \mathcal{L} \text{ tel que } Z_i = 0 \text{ et } Z_j = (X \circ Y)_j \\ \forall j \in U \text{ avec } X_j Y_j \neq -1; \end{cases}$ $(FS) \forall X, Y \in \mathcal{L}, X \circ -Y \in \mathcal{L}.$

 $U = \{1, \dots, m\}$ et $\mathcal{L} = \{-1, 0, +1\}^m$

 $(U, \mathcal{L}) \text{ COM [Bandelt, Chepoi et Knauer, 2018] ssi} (X \circ Y)_i = \begin{cases} X_i & \text{si } X_i \neq 0; \\ Y_i & \text{sinon.} \end{cases}$ $(C) \forall X, Y \in \mathcal{L}, X \circ Y \in \mathcal{L}; \\ (SE) \forall X, Y \in \mathcal{L}, \forall i \in U \text{ avec } X_i Y_i = -1, \exists Z \in \mathcal{L} \text{ tel que } Z_i = 0 \text{ et } Z_j = (X \circ Y)_j \\ \forall j \in U \text{ avec } X_j Y_j \neq -1; \\ (FS) \forall X, Y \in \mathcal{L}, X \circ -Y \in \mathcal{L}. \end{cases}$

 $U = \{1, \dots, m\}$ et $\mathcal{L} = \{-1, 0, +1\}^m$

 $(U, \mathcal{L}) \text{ COM [Bandelt, Chepoi et Knauer, 2018] ssi} (X \circ Y)_i = \begin{cases} X_i & \text{si } X_i \neq 0; \\ Y_i & \text{sinon.} \end{cases}$ $(C) \forall X, Y \in \mathcal{L}, X \circ Y \in \mathcal{L};$ $(SE) \forall X, Y \in \mathcal{L}, \forall i \in U \text{ avec } X_i Y_i = -1, \exists Z \in \mathcal{L} \text{ tel que } Z_i = 0 \text{ et } Z_j = (X \circ Y)_j \\ \forall j \in U \text{ avec } X_j Y_j \neq -1; \end{cases}$ $(FS) \forall X, Y \in \mathcal{L}, X \circ -Y \in \mathcal{L}.$

 $U = \{1, \dots, m\}$ et $\mathcal{L} = \{-1, 0, +1\}^m$

 $(U, \mathcal{L}) \text{ COM [Bandelt, Chepoi et Knauer, 2018] ssi} (X \circ Y)_i = \begin{cases} X_i & \text{si } X_i \neq 0; \\ Y_i & \text{sinon.} \end{cases}$ $(C) \forall X, Y \in \mathcal{L}, X \circ Y \in \mathcal{L};$ $(SE) \forall X, Y \in \mathcal{L}, \forall i \in U \text{ avec } X_i Y_i = -1, \exists Z \in \mathcal{L} \text{ tel que } Z_i = 0 \text{ et } Z_j = (X \circ Y)_j \\ \forall j \in U \text{ avec } X_j Y_j \neq -1; \end{cases}$ $(FS) \forall X, Y \in \mathcal{L}, X \circ -Y \in \mathcal{L}.$

 (U, \mathcal{L}) OM [Björner et al., 1999] ssi (C), (SE), et (Sym) $\mathcal{L} = -\mathcal{L}$.

Faces et graphes de topes

Faces et graphes de topes

face $F(X) := \{Y \in \mathscr{L} : X \le Y\}$

 $\frac{\text{Proposition}}{\forall X \in \mathscr{L}, \mathsf{F}(X) \text{ est un OM}}$

Faces et graphes de topes

face $F(X) := \{Y \in \mathscr{L} : X \le Y\}$

Proposition [BCK18]: $\forall X \in \mathscr{L}, F(X)$ est un OM

Topes \mathcal{T} : covecteurs sans zéro **Graphe de topes** : sous-graphe induit par \mathcal{T} dans l'hypercube $\{+, -\}^m$

Sous-graphes portés et antipodaux

 $H \subseteq G$ porté si $\forall u \in V(G), \exists u' \in V(H)$ tels que $\forall v \in V(H)$, $u' \in I(u, v)$.

porte de u

Sous-graphes portés et antipodaux $M \subseteq G$ porté si $\forall u \in V(G), \exists u' \in V(H)$ tels que $\forall v \in V(H), u' \in I(u, v).$

G antipodal si $\forall x \in V(G), \exists \overline{x} \in V(G)$ tels que $G = I_G(x, \overline{x})$.

 $\mathscr{G}_{\text{CUOM}} : \mathscr{G}_{\text{COM}} \text{ t.q.}$ antipodal propre $\in \mathscr{G}_{\text{UOM}}$ $\mathscr{G}_{\text{UOM}}:\mathscr{G}_{\text{OM}}$ t.q. antipodal propre \Rightarrow hypercube

Complétions amples

G complétion ample de H ssi

- H sous-graphe isométrique de G;
- G ample.

<u>Théorème 2</u> [Chepoi, Knauer, et P., SIDMA (à paraître)]: Le graphe de topes d'un OM de VC-dimension d peut être complété en cube partiel ample de VC-dimension d.

<u>Théorème 3</u> [Chepoi, Knauer, et P., SIDMA (à paraître)]: Le graphe de topes d'un CUOM de VC-dimension *d* peut être complété en cube partiel ample de VC-dimension *d*.

Preuve du Théorème 3 (1/2)

Le graphe de topes d'un CUOM peut être complété en cube partiel ample de même VC-dimension.

Idée de la preuve :

- 1) Compléter de manière indépendante les facettes en cube partiel ample
- 2) Prendre l'union de ces complétions

Preuve du Théorème 3 (1/2)

Le graphe de topes d'un CUOM peut être complété en cube partiel ample de même VC-dimension.

Idée de la preuve :

- 1) Compléter de manière indépendante les facettes en cube partiel ample
- 2) Prendre l'union de ces complétions

<u>Lemme 1</u> :

G cube partiel, $H \subseteq G$ porté et H' cube partiel tel que $H \subseteq H' \subseteq C(H)$

Preuve du Théorème 3 (1/2)

Le graphe de topes d'un CUOM peut être complété en cube partiel ample de même VC-dimension.

Idée de la preuve :

- 1) Compléter de manière indépendante les facettes en cube partiel ample
- 2) Prendre l'union de ces complétions

<u>Lemme 1</u> :

G cube partiel, $H\subseteq G$ porté et H' cube partiel tel que $H\subseteq H'\subseteq C(H)$

- (i) G' cube partiel;
- (ii) $H' \subseteq G'$ porté;

(iii) VC-dim $(G') = \max{VC-dim(G), VC-dim(H')}.$

Preuve du Théorème 3 (2/2)

Le graphe de topes d'un CUOM peut être complété en cube partiel ample de même VC-dimension.

projection mutuelle $pr_B(A) := \{a \in A : d(a, B) = d(A, B)\}.$

 $\begin{array}{l} \underline{\mathsf{Lemme 2}} : \\ A, B \text{ facettes du graphe de topes } G \text{ d'un CUOM} \Rightarrow \\ \mathrm{pr}_B(A) = \mathrm{pr}_{C(B)}(C(A)) \text{ et } \mathrm{pr}_A(B) = \mathrm{pr}_{C(A)}(C(B)). \end{array}$

Résultats

Caractérisations des cubes partiels de VC-dimension ≤ 2

Complétions amples des OMs et des CUOMs

Compression de taille d pour les COMs

Caractérisations des grilles et cylindres partiels

Rectangles axes-parallèles

Schéma de compression

univers Uclasse de concepts $\mathscr{C} \subseteq \{-,+\}^U$ échantillons réalisables $\downarrow \mathscr{C} := \bigcup_{C \in \mathscr{C}} \{S \in \{-,0,+\}^U : S \leq C\}$

Un schéma de compression étiqueté de taille k :

- compresseur $\alpha : \downarrow \mathscr{C} \to \{-, 0, +\}^U$
- reconstructeur $\beta : \{-,0,+\}^U \to \{-,+\}^U$

t.q. $\forall S \in \downarrow \mathscr{C}, \alpha(S) \leq S \leq \beta(\alpha(S))$ et $|\underline{\alpha}(S)| \leq k$

Un schéma est dit **propre** si $\forall S \in \mathscr{C}, \beta(\alpha(S)) \in \mathscr{C}$

Compression pour les amples

<u>Théorème</u> [Moran et Warmuth, 2016] :

Tout cube partiel ample de VC-dimension d admet un schéma de compression étiqueté propre de taille d.

$$\mathcal{C} \subseteq \{-,+\}^U \text{ et } S \in {\downarrow}\mathcal{C}$$

- clos par contractions;
- les faces maximales de \mathcal{C}' contenant S' sont des hypercubes;
- VC-dim $(B') \leq$ VC-dim $(\mathcal{C}') \leq$ VC-dim (\mathcal{C}) ;
- $\forall v \in V(B'), \deg_{B'}(v) = \text{VC-dim}(B').$

$$\alpha(S) := S_{|\dim(B')}$$

 $\begin{array}{l} \beta(\alpha(S)):= \text{n'importe quel concept }H\\ \text{appartenant à un hypercube }B \text{ de }\mathcal{C} \text{ et}\\ \text{consistent avec }\alpha(S) \end{array}$

Compression pour les COMs

$\mathcal{C} \subseteq \{-,+\}^U$ et $S \in {\downarrow}\mathcal{C}$

- clos par contractions;
- les faces maximales de \mathcal{C}' contenant S' sont des OMs;
- VC-dim $(B') \leq$ VC-dim $(\mathcal{C}') \leq$ VC-dim (\mathcal{C}) ;
- $\forall v \in V(B'), \deg_{B'}(v) \ge \text{VC-dim}(B').$

Lemme de distinction

Lemme de distinction

Lemme de distinction : $\forall \text{ OM } \mathscr{M} \text{ de VC-dimension } d, \exists f_{\mathscr{M}} : \mathcal{T} \to {\binom{U}{d}} \text{ t.q. } \forall T, T' \in \mathcal{T} :$ (i) $T_{|f_{\mathscr{M}}(T)} = T'_{|f_{\mathscr{M}}(T')} \Rightarrow T = T';$ (ii) $f_{\mathscr{M}}(T)$ est pulvérisé par \mathscr{M} ; (iii) e non incident à $T \Rightarrow f_{\mathscr{M}}(T) = f_{\mathscr{M} \setminus e}(T \setminus e);$ (iv) $e \in f_{\mathscr{M}}(T) \Rightarrow e$ incident à T.

22/27

Lemme de localisation

 $\mathcal{H}_{S,X'} := \{ X \in \mathscr{L} : X \setminus S^0 = X',$ et VC-dim(X) =VC-dim $(X') \}$

 $\alpha(S) \text{ et } D := \underline{\alpha}(S)$ $\mathcal{H}_D := \{ X \in \mathscr{L} : \mathscr{M} \setminus \underline{X} \text{ max-pulvérise } D \}$

<u>Lemme de localisation</u> : $\emptyset \neq \mathcal{H}_{S,X'} = \mathcal{H}_D$.

Compression propre pour les COMs

Compresseur :

$$\alpha(S)_e := \begin{cases} S_e & \text{ si } e \in f_{\mathscr{M}' \setminus \underline{X}'}(S'); \\ 0 & \text{ sinon.} \end{cases}$$

Reconstructeur :

$$\begin{split} &\alpha(S) \text{ et } D := \underline{\alpha}(S) \\ &\text{Il existe } X \in \mathscr{L} \text{ t.q. } \mathscr{M} \setminus \underline{X} \text{ max-pulvérise } D \\ &\text{Soit } \widetilde{S} \in \mathcal{L} \text{ un échantillon vérifiant :} \\ &(1) \ \widetilde{S} \geq X; \\ &(2) \ \operatorname{Sep}(\widetilde{S}, \alpha(S)) = \varnothing; \\ &(3) \ \widetilde{S} \text{ est plein dans } \mathscr{M} \setminus \underline{X}; \\ &(4) \ f_{\mathscr{M} \setminus \underline{X}}(\widetilde{S}) = D. \\ &\beta(\alpha(S)) := \text{n'importe quel tope } T \text{ de } \mathscr{M} \text{ avec } T \geq \widetilde{S} \end{split}$$

<u>Théorème 4</u> [Chepoi, Knauer, et P.]: L'ensemble des topes d'un COM de VC-dimension d admet un schéma de compression étiqueté propre de taille d. 24/27

Résultats

Caractérisations des cubes partiels de VC-dimension ≤ 2

Complétions amples des OMs et des CUOMs

Compression de taille d pour les COMs

Caractérisations des grilles et cylindres partiels

Grilles et cylindres partiels

 $\mathcal{F}^*(\mathcal{X})$: cubes partiels ne contenant aucun élément de \mathcal{X} dans ses pc-mineurs comme sous-graphe isométrique

<u>Théorème 5</u> [Chepoi, Knauer, et P.]: *G* plongeable isométriquement dans \mathbb{Z}^2 ssi $G \in \mathcal{F}^*(\bigcirc, \checkmark, \boxdot)$.

Grilles et cylindres partiels

 $\mathcal{F}^*(\mathcal{X})$: cubes partiels ne contenant aucun élément de \mathcal{X} dans ses pc-mineurs comme sous-graphe isométrique

<u>Théorème 5</u> [Chepoi, Knauer, et P.]: G plongeable isométriquement dans \mathbb{Z}^2 ssi $G \in \mathcal{F}^*(\mathcal{O}, \mathcal{H}, \mathcal{H})$.

<u>Théorème 6</u> [Chepoi, Knauer, et P.]: G cube partiel avec cycle convexe C de longueur ≥ 6 . G plongeable isométriquement dans $C \Box P_n$ ssi $G \in \mathcal{F}^*(\mathcal{J})$.

Perspectives

Complétions :

Compression :

Schémas de compression non étiquetés de taille d pour les COMs ? \rightarrow ouvert pour les amples [Chalopin, Chepoi, Moran, et Warmuth, 2018]

Plongement :

Un graphe médian est plongeable isométriquement dans \mathbb{Z}^d avec $d \ge 3$ ssi chacun de ses pc-mineurs a $\le 2d$ demi-espaces minimaux ?

