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2Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB),
Barcelona, Spain

Abstract We show that the topes of a complex of oriented matroids (abbreviated COM) of VC-dimension d admit

a proper labeled sample compression scheme of size d. This considerably extends results of Moran and Warmuth

and the authors and is a step towards the sample compression conjecture – one of the oldest open in computational

learning theory. On the one hand, our approach exploits the rich combinatorial cell structure of COMs via oriented

matroid theory. On the other hand viewing tope graphs of COMs as partial cubes creates a fruitful link to metric

graph theory.

1. Introduction

Littlestone and Warmuth [41] introduced sample compression schemes as an abstraction of the
underlying structure of learning algorithms. The idea is that a sample compression scheme of
size k allows to compress any list of labeled examples to a list of size k, while still being able to
reconstruct any element of the list. Usually, the set of possible lists of examples is coded as a set
system C, called concept class. There are two types of sample compression schemes: labeled [41, 30]
and unlabeled [29, 6, 39]. A labeled compression scheme of size k compresses every sample of C to
a labeled subsample of size ≤ k and an unlabeled compression scheme of size k compresses every
sample of C to a subset of size ≤ k of the domain of the sample (see the end of the introduction
for precise definitions). The Vapnik-Chervonenkis dimension (VC-dimension) of a set system, was
introduced by Vapnik and Chervonenkis [51] as a complexity measure of set systems. VC-dimension
is central in PAC-learning and plays an important role in combinatorics, algorithmics, discrete
geometry, and combinatorial optimization. In particular, it coincides with the rank in the theory
of (complexes of) oriented matroids. Furthermore, within machine learning and closely tied to the
topic of this paper, the importance of the VC-dimension is illustrated by the fact that a sample
compression scheme of a concept class of VC-dimension d needs to be of size at least d. Conversely,
the sample compression conjecture of [30, 41] states that any set family of VC-dimension d has a
sample compression scheme of size O(d). This question remains one of the oldest open problems
in computational learning theory. The best-known general bound is due to Moran and Yehudayoff
[45] and shows that labeled compression schemes of size O(2d) exist. From below, Pálvölgyi and
Tardos [49] recently exhibited a concept class of VC-dimension 2 with no unlabeled compression
scheme of size 2.

For more structured concept classes better upper bounds are known. Ben-David and Litman
[6] proved a compactness lemma, which reduces the existence of labeled or unlabeled compres-
sion schemes for arbitrary concept classes to finite concept classes. They also obtained unlabeled
compression schemes for regions in arrangements of affine hyperplanes (which correspond to re-
alizable affine oriented matroids in our language). Finally, they obtained sample compression
schemes for concept classes by embedding them into concept classes for which such schemes were
known. Helmbold, Sloan, and Warmuth [34] constructed unlabeled compression schemes of size d
for intersection-closed concept classes of VC-dimension d. They compress each sample to a mini-
mal generating set and show that the size of this set is upper bounded by the VC-dimension. An
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important class for which positive results are available is given by ample set systems [23] (originally
introduced as lopsided sets [40]). They capture an important variety of combinatorial objects, e.g.,
(conditional) antimatroids [25], diagrams of (upper locally) distributive lattices, median graphs or
CAT(0) cube complexes [3] and were rediscovered in various disguises, e.g. as extremal for (reverse)
Sauer [8] and shattering-extremal [46]. Moran and Warmuth [44] provide labeled sample compres-
sion schemes of size d for ample set systems of VC-dimension d. For maximum concept classes (a
subclass of ample set systems) unlabeled sample compression schemes of size d have been designed
by Chalopin et al. [9]. They also combinatorially characterized unlabeled compression schemes for
ample classes via the existence of unique sink orientations of their graphs. However, the existence
of such orientations is open.

A structure somewhat opposed to ample classes are Oriented Matroids (OMs) [7]. These objects
provide a framework for the analysis of combinatorial properties of geometric configurations occur-
ring in discrete geometry and in machine learning. Point and vector configurations, order types,
hyperplane and pseudo-line arrangements, convex polytopes, directed graphs, and linear program-
ming find a common generalization in this language. The Topological Representation Theorem [31]
connects the theory of OMs on a deep level to arrangements of pseudo-spheres and distinguishes it
from the theory of ordinary matroids.

Complexes of Oriented Matroids (COMs) were introduced not long ago in [4] as a natural common
generalization of ample classes and OMs. Indeed, ample classes can be seen as COMs with cubical
cells, while OMs are COMs with a single cell. In general COMs the cells are OMs and the resulting
cell complex is contractible. In the realizable setting, a COM corresponds to the intersection pattern
of a hyperplane arrangement with an open convex, see Figure 1. Recently, realizable COMs have
received attention in the theory of neural codes [36]. Other examples of COMs not contained in
the class of OMs and ample classes include linear extensions of a poset or acyclic orientations of
mixed graphs [4], CAT(0) Coxeter complexes [4, 33], hypercellular and Pasch graphs [15], and Affine
Oriented Matroids [5, 20]. Apart from the above, COMs have spiked research and appear as the
next natural class to attack in different areas such as combinatorial semigroup theory [43], algebraic
combinatorics in relation to the Varchenko determinant [35], with respect to neural codes [36], poset
cones [22], as well as sweeping sequences [48]. In particular, relations to COMs have already been
established within sample compression, see [9, 16, 17].
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Figure 1. A realizable COM M̃ and its tope graph G̃ = G(M̃).

A central feature of COMs, is that they can be studied via their tope graphs. Indeed, the recent
characterization of their tope graphs [37] establishes an embedding of the theory of COMs into
metric graph theory, with theoretical and algorithmic implications. On one hand, tope graphs of
COMs form a subclass of the ubiquitous metric graph class of partial cubes, i.e., isometric subgraphs
of hypercubes, with applications ranging from interconnection networks [32] and media theory [28]
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to chemical graph theory [27]. On the other hand, tope graphs of COMs can be recognized in
polynomial time [26, 37]. The graph theoretic view has been used in several recent publications,
see [38, 42, 14].

As we explain later, COMs can be defined as sets of sign vectors, which is another unifying
feature for OMs and ample set systems. This turns out to be beneficial for the present paper, since
the language of sign vectors is perfectly suited for defining sample compression schemes formally.
The following formulation is due to [10], for classical formulations, see [41, 44, 45]. Let U be a
finite set, called the universe and C be a family of subsets of U , called a concept class. We view
C as a set of {−1,+1}-vectors, i.e., C ⊆ {−1,+1}U . We also consider sets of {−1, 0,+1}-vectors,
i.e., subsets of {−1, 0,+1}U endowed with the product order ≤ between sign vectors relative to
the ordering 0 ≤ −1,+1. The sign vectors of the set ↓ C =

⋃
C∈C{S ∈ {−1, 0,+1}U : S ≤ C}

are realizable samples for C. A labeled sample compression scheme of size k for a concept class
C ⊆ {−1,+1}U is a pair (α, β) of mappings, where α :↓ C → {−1, 0,+1}U is called compression
function and β : {−1, 0,+1}U → {−1,+1}U the reconstruction function such that for any realizable
sample S ∈↓C, it holds :

α(S) ≤ S ≤ β(α(S)) and |α(S)| ≤ k,

where α(S) is the support of the sign vector α(S). The condition S ≤ β(α(S)) means that the
restriction of β(α(S)) on the support of S coincides with the input sample S. In particular, if S
is a concept of C, then β(α(S)) = S, i.e., the reconstructor must reconstruct the input concept. A
labeled sample compression scheme is proper if β(α(S)) ∈ C for all S ∈↓C. Notice that the labeling
compression schemes of size O(2d) of [45] are not proper and they use additional information.
The compression schemes developed in [10] for balls in graphs are proper but also use additional
information. The unlabeled sample compression schemes [39] (which are not the subject of this
paper) are defined analogously, with the difference that in the unlabeled case α(S) is a subset of
size at most k of the support of S.

The definition of labeled compression scheme implies that if C is an extension of a concept class C′
and (α, β) is a labeled sample compression scheme for C, then (α, β) is a labeled sample compression
scheme for C′. However, (α, β) is no longer proper for C′. Still, this yields an approach (suggested
in [50] and implicit in [30])to obtain improper schemes. For instance, using the result of Moran and
Warmuth [44] that ample set systems of VC-dimension d admit labeled sample compression schemes
of size d, one can try to extend a given set system to an ample set system without increasing the
VC-dimension too much and then apply their result. Two recent works of the authors go into this
direction: In [16] it is shown that partial cubes of VC-dimension 2 can be extended to ample set
systems of VC-dimension 2. Furthermore, in [17] it is shown that OMs and complexes of uniform
oriented matroids can be extended to ample set systems without increasing the VC-dimension.
Thus, in these classes there exist improper labeled sample compression schemes whose size is the
VC-dimension.

On the other hand, there exist partial cubes of VC-dimension 3 that cannot be extended to ample
set systems of VC-dimension 3, see [17], as well as set systems of VC-dimension 2, that cannot be
extended to partial cubes of VC-dimension 2, see [16]. In [17] it is conjectured that every COM
of VC-dimension d can be extended to an ample set system of VC-dimension d. This would yield
improper labeled sample compression schemes for COMs of size d.

Here, we follow a different strategy to give (stronger) proper labeled sample compression schemes
for general COMs. Our work extends the result of [44] substantially from ample set systems to the
class of COMs. More precisely, we show that the set system defined by the topes of a COM satisfies
the strong form of the sample compression conjecture, i.e., COMs of VC-dimension d admit proper
labeled sample compression schemes of size d.
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2. Preliminaries

2.1. OMs and COMs. We recall the basic theory OMs and COMs from [7] and [4], respectively.
Let U be a set of size m and let L be a system of sign vectors, i.e., maps from U to {−1, 0,+1}.
The elements of L are referred to as covectors and denoted by capital letters X,Y, Z. For X ∈ L,
the subset X = {e ∈ U : Xe 6= 0} is the support of X and its complement X0 = U \X = {e ∈ U :
Xe = 0} is the zero set of X. For X,Y ∈ L, Sep(X,Y ) = {e ∈ U : XeYe = −1} is the separator of
X and Y . The composition of X and Y is the sign vector X ◦ Y , where (X ◦ Y )e = Xe if Xe 6= 0
and (X ◦ Y )e = Ye if Xe = 0.

Definition 1. An oriented matroid (OM) is a system of sign vectors M = (U,L) satisfying

(C) (Composition) X ◦ Y ∈ L for all X,Y ∈ L.
(SE) (Strong elimination) for each pair X,Y ∈ L and for each e ∈ Sep(X,Y ), there exists Z ∈ L

such that Ze = 0 and Zf = (X ◦ Y )f for all f ∈ U \ Sep(X,Y ).
(Sym) (Symmetry) −L = {−X : X ∈ L} = L, that is, L is closed under sign reversal.

We only consider simple systems of sign-vectors L, i.e., if for each e ∈ U , {Xe : X ∈ L} =
{−1, 0,+1} and for all e 6= f there exist X,Y ∈ L with {XeXf , YeYf} = {+1,−1}.

Let ≤ be the product ordering on {−1, 0,+1}U relative to the ordering 0 ≤ −1,+1. The poset
(L,≤) of an OMM with an artificial global maximum 1̂ forms the (graded) big face lattice Fbig(M).
The length of maximal chains of Fbig(M) minus 1 is the rank of L and denoted rank(M). The
rank of the underlying matroid M equals rank(M) [7, Thm 4.1.14].

The topes T of M are the co-atoms of Fbig(M). By simplicity the topes are {−1,+1}-vectors
and T can be seen as a family of subsets of U . For each T ∈ T , e ∈ U belongs to the set if and only
if Te = +1. The tope graph G(M) of an OMM is the subgraph of the hypercube Q(U) induced by
the vertices corresponding to T , see Figure 1. It is well-known that tope graphs of OMs are partial
cubes and that M can be recovered up to isomorphism from its tope graph G(M), see e.g. [7].
Thus, OMs can be treated as tope graphs.

Another important axiomatization of OMs is in terms of cocircuits of L. These are the atoms
of Fbig(L). Their collection is denoted by C∗ and axiomatized as follows: a system of sign vectors
(U, C∗) is an oriented matroid (OM) if C∗ satisfies (Sym) and the two axioms:

(Inc) (Incomparability) X ⊆ Y implies X = ±Y for all X,Y ∈ C∗.
(E) (Elimination) for each pair X,Y ∈ C∗ with X 6= −Y and for each e ∈ Sep(X,Y ), there exists

Z ∈ C∗ such that Ze = 0 and Zf ∈ {0, Xf , Yf} for all f ∈ U .

The set L of covectors can be derived from C∗ by taking the closure of C∗ under composition.

COMs are defined by replacing the global axiom (Sym) with a weaker local axiom:

Definition 2. A complex of oriented matroids (COMs) is a system of sign vectors M = (U,L)
satisfying (SE) and the following axiom:

(FS) (Face symmetry) X ◦ −Y ∈ L for all X,Y ∈ L.

One can see that OMs are exactly the COMs containing the zero vector 0, see [4]. The twist
between (Sym) and (FS) allows to keep on using the same concepts, such as topes, tope graphs, the
sign-order and the big face (semi)lattice in a completely analogous way. On the other hand, it leads
to a combinatorial and geometric structure that is build from OMs as cells but is much richer than
OMs. LetM = (U,L) be a COM and X ∈ L a covector. The face of X is ↑X := {Y ∈ L : X ≤ Y },
sometimes denoted F(X), see [4, 7]. A facet is an inclusion maximal proper face. By [4, Lemma
4], each face ↑X of a COM M is an OM, which we denote M(X). Ample classes (called also
lopsided [3, 40] or extremal [8, 44]) are exactly the COMs, in which all faces are cubes. Since OMs
are COMs, each face of an OM is an OM and the facets correspond to cocircuits. The topes T and
the tope graph GM of a COM are defined as for OMs. Again, the topes are T ⊆ {−1,+1}U , G(M)
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is a partial cube, and the COMM can be recovered from G(M), see [4, 37]. For X ∈ L, the topes
in ↑X induce a subgraph [X] of G(M), which is isomorphic to the tope graph of M(X).

2.2. Deletion and duality. We continue with restrictions and deletions in OMs and COMs. Let
M = (U,L) be a COM and A ⊆ U . Given a sign vector X ∈ {±1, 0}U by X \A (or by X|U\A) we

refer to the restriction of X to U \A, that is X\A ∈ {±1, 0}U\A with (X\A)e = Xe for all e ∈ U \A.
The deletion of A is defined asM\A = (U \A,L \A), where L \A := {X \A : X ∈ L}. We often
consider the following type of deletion. For a covectorX ∈ L, we denote byM(X) = (U\X, ↑X\X)
the OM defined by the face ↑X, i.e., M(X) =M\X. The classes of COMs and OMs are closed
under deletion, see [4, Lemma 1]. The cocircuits and the covectors of deletions of OMs are described
in the following way:

Lemma 1. [7] Let M = (U,L) be an OM with the set of cocircuits C∗ and A ⊆ U . Then the
cocircuits of M\A are C∗ \A and the covectors of M\A are L \A.

We briefly recall the duality of OMs, see [7, Section 3.4]. Two sign-vectors X,Y ∈ {±1, 0}U are
orthogonal, denoted X⊥Y , if either X ∩Y = ∅ or there are e, f ∈ X ∩Y such that XeYe = −XfYf .
Oriented matroids can be defined in terms of their circuits C, which can be derived from the
cocircuits C∗ using the following result:

Theorem 1. [7, Theorem 3.4.3] Let C∗ be the set of cocircuits of an OM M. The set C of circuits
of M consists of all minimal Y ∈ {±1, 0}U \ {0} such that Y⊥X for any X ∈ C∗.

2.3. Partial cubes and pc-minors. Tope graphs of OMs and COMs are partial cubes, which we
introduce now. LetG = (V,E) be a finite, connected, simple graph. The distance d(u, v) := dG(u, v)
between vertices u and v is the length of a shortest (u, v)-path, and the interval I(u, v) := {x ∈ V :
d(u, x) + d(x, v) = d(u, v)} consists of all vertices on shortest (u, v)-paths. A subgraph H is convex
if I(u, v) ⊆ H for any u, v ∈ H and gated [24] if for every vertex x /∈ H there exists a vertex x′

(the gate of x) in H such that x′ ∈ I(x, y) for each vertex y of H. It is easy to see that gates are
unique and that gated sets are convex. An induced subgraph H of G is isometric if the distance
between vertices in H is the same as that in G. A graph G = (V,E) is isometrically embeddable
into a graph H = (W,F ) if there exists ϕ : V → W such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all
u, v ∈ V . A graph G is a partial cube if it admits an isometric embedding into a hypercube Qm.
For an edge uv of G, let W (u, v) = {x ∈ V : d(x, u) < d(x, v)}. For an edge uv, the sets W (u, v)
and W (v, u) are called complementary halfspaces of G.

Theorem 2. [21] A graph G is a partial cube if and only if G is bipartite and for any edge uv the
sets W (u, v) and W (v, u) are convex.

Djoković [21] introduced the following binary relation Θ on the edges of G: for two edges e = uv
and e′ = u′v′, we set eΘe′ if u′ ∈ W (u, v) and v′ ∈ W (v, u). If G is a partial cube, then Θ is an
equivalence relation and let Ee be a Θ-class. Let {G−e , G+

e } be the complementary halfspaces of G
defined by setting G−e := G(W (u, v)) and G+

e := G(W (v, u)) for an arbitrary edge uv ∈ Ee. An
elementary restriction consists of taking one of the halfspaces G−e and G+

e . A restriction is a convex
subgraph of G induced by the intersection of a set of halfspaces of G. Since any convex subgraph
of a partial cube G is the intersection of halfspaces [1, 2, 11], the restrictions of G coincide with
the convex subgraphs of G. Denote by πe(G) an elementary contraction, i.e., the graph obtained
from G by contracting the edges in Ee. For a vertex v of G, let πe(v) be the image of v under
the contraction. We apply πe to subsets S ⊆ V , by setting πe(S) := {πe(v) : v ∈ S}. By [12,
Theorem 3], the class of partial cubes is closed under contractions. Since contractions commute,
for a set A of Θ-classes, we denote by πA(G) the isometric subgraph of Qm−|A| obtained from G by
contracting the equivalence classes of edges from A. Contractions and restrictions also commute in
partial cubes. A pc-minor of G is a partial cube obtained from G by restrictions and contractions.
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Since tope graphs of COMs and OMs are partial cubes, we can describe deletions and contractions
on sign-vectors in terms of partial cubes.

Lemma 2. Let M = (U,L) be a COM and A ⊆ U . Then πA(G(M)) is the tope graph of M\ A.
In particular, if X ∈ L, then the tope graph of M(X) =M\X is isomorphic to [X].

The following lemma is implicit in [4] and explicit in [37]:

Lemma 3. For each covector X of a COM M, the subgraph [X] of G(M) is gated.

2.4. VC-dimension. Let S be a family of subsets of an m-element set U . A subset X of U
is shattered by S if for all Y ⊆ X there exists S ∈ S such that S ∩ X = Y . The Vapnik-
Chervonenkis dimension (VC-dimension) [51] VC-dim(S) of S is the cardinality of the largest
subset of U shattered by S. Any set family S ⊆ 2U can be viewed as a subset of vertices of the m-
dimensional hypercube Qm = Q(U). Denote by G(S) the 1-inclusion graph of S, i.e., the subgraph
of Qm induced by the vertices of Qm corresponding to S. A subgraph G of Qm has VC-dimension d
if G is the 1-inclusion graph of a set family of VC-dimension d. For partial cubes, the VC-dimension
can be formulated in terms of pc-minors: a partial cube G has VC-dimension ≤ d if and only if G
does not have Qd+1 as a pc-minor. This is well-defined, since the embeddings of partial cubes are
unique up to isomorphism, see e.g. [47, Chapter 5].

The VC-dimension VC-dim(M) of a COM M = (U,L) is the VC-dimension of its tope graph
G(M). The VC-dimension VC-dim(X) of a covector X ∈ L ofM is the VC-dimension of the OM
M(X), i.e., it is the VC-dimension of the graph [X]. The VC-dimension of OMs, COMs, and their
covectors can be expressed in the following way:

Lemma 4. [17, Lemma 13] For a COM M, VC-dim(M) = max{VC-dim(M(X)) : X ∈ L}. If M
is an OM and X a cocircuit of M, then VC-dim(X) + 1 = VC-dim(M) = rank(M).

That VC-dim(X) = VC-dim(M) − 1 for cocircuits X of an OM M follows from the fact that
the cocircuits are atoms of the big face lattice Fbig(M) and this lattice is graded.

3. Auxiliary results

We establish and recall several auxiliary results about OMs and COMs. We also develop a
correspondence between realizable samples and convex subgraphs of partial cubes.

3.1. More about shattering in OMs and COMs. We continue with new results about shat-
tering in OMs and COMs. Let G be a partial cube, H a convex subgraph and Ee a Θ-class of G.
We say that Ee crosses H if H contains an edge of Ee. If Ee does not cross H and there exists an
edge uv of Ee with u ∈ H and v /∈ H, then Ee and H osculate. Otherwise, Ee is disjoint from H.
Denote by osc(H) the set of all e such that Ee osculates with H and by cross(H) the set of all e
such that Ee crosses H.

Lemma 5. Let G be a partial cube, H a convex subgraph, and e /∈ osc(H). Then πe(H) is a convex
in πe(G) and osc(πe(H)) = osc(H), where osc(H) and osc(πe(H)) are considered in G and πe(G),
respectively.

Proof. Let H ′ = πe(H). First, since e /∈ osc(H), the fact that H ′ is a convex subgraph of πe(G)
comes from [15, Lemma 5]. Then, the inclusion osc(H) ⊆ osc(H ′) is obvious. If there exists
e′ ∈ osc(H ′) \ osc(H), then there exists an edge πe(u)πe(v) in πe(Ee′) with πe(u) ∈ V (H ′) and
πe(v) /∈ V (H ′). Then πe(u)πe(v) comes from an edge uv of G belonging to Ee′ . Since e′ /∈ osc(H),
the vertices u and v do not belong to H. This implies that there exists an edge uw of Ee with
w ∈ V (H). Then Ee and H osculate, a contradiction. �

Lemma 6. Let G be a partial cube and H a gated subgraph of G. If D ⊆ cross(H) is shattered by
G, then D is shattered by H.
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Proof. Pick any Θ-class Ee with e ∈ D and let v be any vertex of G. If v belongs to the halfspace
G−e of G, then the gate v′ of v in H also belongs to G−e . Indeed, since Ee crosses H, there exists
a vertex w ∈ G−e ∩H. Then v′ ∈ I(v, w) ⊂ G−e by convexity of G−e and since v′ is the gate of v in
H. Analogously, if v ∈ G+

e , then v′ ∈ G+
e .

Since G shatters D, for any sign vector X ∈ {−1,+1}D, there exists a vertex vX of G, whose
restriction to D coincides with X. This means that for any e ∈ D, the vertex vX belongs to the
halfspace GXe

e . Since the gate v′X of vX in H also belongs to GXe
e , the restriction of v′X to D also

coincides with X. This implies that H also shatters D. �

The next lemma shows that the independent sets of the underlying matroid M are exactly the
sets shattered by an OM M, i.e., the sets not containing supports of circuits of M.

Lemma 7. Let M = (U,L) be an OM and D be a subset of U . Then D is shattered by M if and
only if D is independent in the underlying matroid M.

Proof. First suppose that D is not shattered by M. We assert that there is a circuit Y of M
with support included in D. Let |D| = d + 1. We proceed by induction on |U | + |D|. Let
M′ :=M\ (U \D). Since G(M) does not shatter D and G(M′) is a pc-minor of G(M), G(M′)
also does not shatter D. Therefore, if D is a proper subset of U , then by induction hypothesis,
there exists a circuit Y ′ of M′ with Y ′ ⊆ D. Consider the sign vector Y ∈ {±1, 0}U defined by
setting Ye = Y ′e if e ∈ D and Ye = 0 if e ∈ U \ D. By Lemma 1, for any cocircuit X of M,
X ′ = X \ (U \D) is a cocircuit of M′. Since X ′⊥Y ′, we conclude that X⊥Y . By Theorem 1, Y is
a circuit of M and we are done. Thus we can suppose that U = D.

If D contains a proper subset D′, which is not shattered byM, then we can apply the induction
hypothesis and find a circuit Y with Y ⊆ D′ ⊂ D, and we are done. Thus we can suppose that all
proper subsets of D are shattered byM. Since U = D, this implies that VC-dim(M) = |D|−1 = d.
By Lemma 4, VC-dim(X) = d− 1 for any cocircuit X of M.

IfM contains a cocircuit X such thatM(X) does not shatter the set X0∩D, then by induction
assumption applied toM(X) we can find a circuit Y ′ ofM(X) with Y ′ ⊆ X0∩D. Then extending
Y ′ to Y as in the previous case, we obtain a circuit Y of M whose support is included in D and
we are done. Therefore, we can suppose that for any cocircuit X of M, M(X) shatters the set
X0 ∩ D. Since VC-dim(X) = d − 1 and U = D, this implies that |X0 ∩ D| = d − 1. Hence, the
support X of each cocircuit X consists of two elements.

Since D is not shattered byM, there exists a sign-vector Y ′ ∈ {−1,+1}D such that for any tope
T of M, the restriction of T to D is different from Y ′. By symmetry, −Y ′ also is not shattered
by M. Consider the sign vector Y ∈ {±1, 0}U defined by setting Ye = Y ′e if e ∈ D and Ye = 0 if
e ∈ U \D. Then Y,−Y /∈ L. We assert that Y is a circuit of M. By Theorem 1, we have to show
that Y⊥X for any cocircuit X ofM. We assert that XfYf = −Xf ′Yf ′ , where X = {f, f ′}. Indeed,
since Y and −Y do not belong to ↑X, Sep(Y,−Y ) = D, and X0 = D \ {f, f ′}, we must have
Xf 6= Yf , Xf ′ 6= −Yf ′ or Xf ′ 6= Yf ′ , Xf 6= −Yf . In the first case we have XfYf = −1, Xf ′Yf ′ = +1
and in the second case we have XfYf = +1, Xf ′Yf ′ = −1. This proves that if D is an independent
set of M, then D is shattered by M.

Conversely, let D be a set of size d shattered by M and suppose by way of contradiction that
D contains a circuit of M. Since any subset of D is also shattered by M, we can suppose without
loss of generality that for any e ∈ D, D \ {e} is an independent set of M, i.e. that D is a circuit
of M. By passing from M to M′ = M \ (U \ D), we can also suppose that U = D, i.e., that
VC-dim(M) = d. Since M shatters the set D = U , any sign vector from {±1}D is a tope of M.
Consider the two circuit signatures Y and −Y of the circuit D. They are obviously topes of M.
Consider also a cocircuit X of M such that −Y ∈↑X and Y /∈↑X (such a X exists because M
is a simple OM). By Lemma 4 VC-dim(X) = d − 1, thus D contains an element f such that X
shatters D \ {f}. This implies that D \ {f} ⊆ X0. Hence, Y and X are not orthogonal, contrary
to Theorem 1. This shows that each set D shattered by M is an independent set of M. �
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An antipode of a vertex v in a partial cube G is a (necessarily unique) vertex −v such that
G = I(v,−v). A partial cube G is antipodal if all its vertices have antipodes. By (Sym), a tope
graph of a COM is the tope graph of an OMs if and only if it is antipodal, see [37].

The next lemma can be seen as dual analogue of Lemma 7. It shows that the VC-dimension of
OMs is defined locally at each tope T , by shattering subsets of osc(T ).

Lemma 8. Let M = (U,L) be an OM of rank d with tope graph G(M). For any tope T of M,
osc(T ) contains a subset D of size d shattered by M.

Proof. We proceed by induction on the size of U . If osc(T ) = U , then we are obviously done. Thus
suppose that there exists e /∈ osc(T ). Consider the tope graph G′ = πe(G) of the oriented matroid
M′ =M\ e. Let T ′ = πe(T ). Then osc(T ′) = osc(T ) by Lemma 5. If rank(M′) = d, by induction
hypothesis the set osc(T ′) contains a subset D of size d shattered by G′. Since G′ is a pc-minor of
G, D ⊂ osc(T ) is also shattered by G and we are done.

Thus, let rank(M′) < rank(M). If the Θ-class Ee of G crosses the faces ↑X of all cocircuits
X ∈ L, then L is not simple. Therefore, there exists a cocircuit X ∈ L whose face ↑X is not
crossed by Ee. However, since when we contract Ee the rank decreases by 1, the resulting OM
M′ coincides with ↑X. Indeed, after contraction the rank of ↑X remains the same. Hence, if X
would remain a cocircuit, then the global rank would not decrease. Hence, G′ is the tope graph of
M(X). Since G is an antipodal partial cube and G+

e =↑X, we have G−e
∼= G+

e . This shows that
G ∼= G+

e �K2
∼= G′�K2. This implies that Ee osculate with {T} in G, contrary to the assumption

e /∈ osc(T ). �

Next we give a shattering property of COMs. It is in its proof where the axiom (SE) of COMs is
crucial. The distance d(A,B) between sets A,B of vertices of G is min{d(a, b) : a ∈ A, b ∈ B}. The
set prB(A) = {a ∈ A : d(a,B) = d(A,B)} is the metric projection of B on A. For two covectors
X,Y ∈ L of a COMM, we denote by pr[X]([Y ]) the metric projection of [X] on [Y ] in G(M). Since

[X] and [Y ] are gated by Lemma 3, pr[X]([Y ]) consists of the gates of vertices of [X] in [Y ]. Two

faces ↑X and ↑Y ofM are parallel if pr[X]([Y ]) = [Y ] and pr[Y ]([X]) = [X]. A gallery between two

parallel faces ↑X and ↑Y of M is a sequence of faces (↑X =↑X0, ↑X1, . . . , ↑Xk−1, ↑Xk =↑Y )
such that any two faces of this sequence are parallel and any two consecutive faces ↑Xi−1, ↑Xi

are facets of a common face of L. A geodesic gallery between ↑X and ↑ Y is a gallery of length
|Sep(X,Y )|. Two parallel faces ↑X, ↑ Y are adjacent if |Sep(X,Y )| = 1, i.e., ↑X and ↑ Y are
opposite facets of a face of L. See Figure 2 and recall the following result:

↑X ′k−1↑X ′1

↑Y↑X

↑X ′2 ↑Y ′
=↑(Y ◦X)
=↑X ′k

↑X ′
=↑(X ◦ Y )
=↑X ′0

Figure 2. Illustration of Lemmas 9 and 10.

Lemma 9. [17, Proposition 8] Let M = (U,L) be a COM and X,Y ∈ L. Then:

(i) d([X], [Y ]) = |S(X,Y )| and the gates of [Y ] in [X] are the vertices of [X ◦ Y ] ⊆ [X];
(ii) ↑X and ↑Y are parallel if and only if X = Y . If ↑X and ↑Y are parallel, then they are

connected by a geodesic gallery;
(iii) pr[Y ]([X]) = [X ◦ Y ], pr[X]([Y ]) = [Y ◦X], and ↑(X ◦ Y ) and ↑(Y ◦X) are parallel.



9

A covector X ∈ L of a COM M = (U,L) maximally shatters a set D ⊆ U if [X] shatters D but
[X] does not shatter any superset of D. We also say that X ∈ L minimally shatters a set D if [X]
shatters D but D is not shattered by [X ′] for any covector X ′ > X.

Lemma 10. Let M = (U,L) be a COM and X,Y ∈ L. Then:

(i) if [X] and [Y ] shatter D, then the projections [X ◦ Y ] and [Y ◦X] also shatter D;
(ii) if [X] maximally shatters D and [Y ] shatters D, then [X ◦ Y ] = [X] and ↑X is not a facet

of M;
(iii) if both [X] and [Y ] shatter D, then there exist covectors X ′ ≥ X,Y ′ ≥ Y such that [X ′] and

[Y ′] both maximally shatter D, and ↑X ′ and ↑Y ′ are parallel.

Proof. Property (i): Since [X] and [Y ] shatter D, for any sign vector Z ∈ {±1}D we can find
two topes T ′ ∈ [X] and T ′′ ∈ [Y ], such that T ′|D = Z = T ′′|D. Since X < T ′ and Y < T ′′, from

T ′|D = Z = T ′′|D we conclude that (X ◦ Y )|D < Z and in [X ◦ Y ] we can find a tope T whose

restriction to D coincides with Z. This proves that [X ◦ Y ] shatters D, establishing (i).
Property (ii): If [X] maximally shatters D, then VC-dim(X) = |D| =: d. By property (i),

[X ◦ Y ] also shatters D. If ↑ (X ◦ Y ) is a proper face of ↑X, then we obtain a contradiction with
Lemma 4. Thus ↑ (X ◦ Y ) =↑X, showing that X = X ◦ Y . This establishes the first assertion.
By Lemma 9, the faces ↑X and ↑ (Y ◦X) are parallel and therefore are connected by a geodesic
gallery (↑X =↑X0, ↑X1, . . . , ↑Xk =↑(Y ◦X)). Then ↑X and ↑X1 are facets of a common face of
L, thus ↑X is not a facet of M. This proves (ii).

Property (iii): Let d = |D|. We can suppose that both X and Y minimally shatter the set D.
Indeed, if D is shattered by a proper face ↑X ′ of ↑X, then we can replace the pair X,Y by the
pair X ′, Y so that [X ′] and [Y ] still shatter D. Thus D is not shattered by any proper faces of ↑X
and ↑Y . Since by (i), D is shattered by [X ◦ Y ] and [Y ◦ X], we conclude that X = X ◦ Y and
Y = Y ◦X and thus the faces ↑X and ↑Y are parallel.

It remains to show that [X] and [Y ] maximally shatter D. Suppose by way of contradiction that
[X] shatters a larger set D′ := D ∪ {e}. Consider the OM M′ =↑X \ (U \D′). Since [X] shatters
D′, M′ also shatters D′. Moreover, M′ maximally shatters D′, i.e., VC-dim(M′) = d + 1. Since
M′ is a simple OM,M′ contains two adjacent topes T ′1, T

′
2 with Sep(T ′1, T

′
2) = {e} and we can find

a cocircuit X ′′ ofM′ such that T ′1 ∈ [X ′′] and T ′2 /∈ [X ′′]. By Lemma 4 applied toM′, we conclude
that X ′′ has VC-dimension d. Hence, X ′′ must shatter the set D. By Lemma 1, there is a cocircuit
X ′ of ↑X such that X ′′ = X ′ \ (U \D′). Since X ′′ shatters D, X ′ also shatters D. Since X < X ′,
this contradicts our assumption that X minimally shatters D. This establishes (iii). �

3.2. Realizable and full samples as convex subgraphs. We establish a correspondence be-
tween realizable samples and convex subgraphs of partial cubes. Let L ⊂ {−1, 0,+1}U be a
system of sign vectors whose topes T induce an isometric subgraph G of Q(U). Recall that
↓ L =

⋃
X∈L{S ∈ {−1, 0,+1}U : S ≤ X} is the set of realizable samples for L. This construc-

tion is called polar complex in neural codes [36]. Since for any X ∈ L there exists T ∈ T such that
X ≤ T , we have ↓L =↓T , see Figure 3.

For a realizable sample S ∈↓L, let ↑S = {X ∈ L : S ≤ X} and let [S] be the subgraph of G
induced by all topes T ∈ L from ↑S. For OMs, the set ↑S is called supertope in [35]. For COMs,
↑ S is called the fiber of S and it is known that they are COMs [4]. Since for any S ∈↓ L there
exists TT such that S ≤ T , [S] 6= ∅. Moreover, [S] is the intersection of halfspaces of G of the form
G+

e if Se = +1 and G−e if Se = −1. Hence, [S] is a nonempty convex subgraph of G for all S ∈↓L.
If M = (U,L) is a COM and S ∈ L, then ↑S is the face of S and [S] is gated by Lemma 3.

Any convex subgraph H of a partial cube G is the intersection of all halfspaces of G containing
H [1, 2, 11]. However, H can be represented in different ways as the intersection of halfspaces.
Indeed, any representation of H as an intersection of halfspaces of G yields a realizable sample S,
where Se = ±1 if G±e participates in the representation and Se = 0 otherwise. Notice that the
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(++−) (+−−) (+−+) (−+−) (−−−) (−−+)

(++ 0) (+0−) (0 +−) (+− 0) (0−−) (+0+) (−+ 0) (0−+) (−0−) (−− 0) (−0+)

(+00) (0 + 0) (00−) (0− 0) (00+) (−00)

(000)

1

3

2

(+ − −)

(+ − +)(− − −)

(− − +)

H (+ + −)

(− + −)

Figure 3. Left: the tope graph G̃′ of the restriction M̃′ of M̃ to {1, 2, 3} and a

convex subgraph H of G̃′. Right: the realizable samples of M̃′ and the interval
I(H) (in orange).

Θ-classes osculating with H have to be part of every representation of H and the Θ-classes crossing
H take part in no representation of H. This leads to two canonical representations of H, one using
only the halfspaces whose Θ-class osculates with H and one using all halfspaces containing H. We
define the corresponding realizable samples:

(S⊥)e =


−1 if e ∈ osc(H) and H ⊆ G−e ,
+1 if e ∈ osc(H) and H ⊆ G+

e ,

0 otherwise.

and (S>)e =


−1 if H ⊆ G−e ,
+1 if H ⊆ G+

e ,

0 otherwise.

Note that (S>)0 = cross(H) and (S⊥)0 = U \ osc(H), i.e., (S⊥)0 consists of all e such that
Ee crosses or is disjoint from H. If S is a sample arising from the representation of H as the
intersection of halfspaces, then S⊥ ≤ S ≤ S>. Moreover, any sample S from the order interval
I(H) := [S⊥, S

>] arises from a representation of H, i.e., [S] = [S⊥] = [S>] = H. Thus, for any
convex subgraph H of G the set of all S ∈↓L such that [S] = H is an interval I(H) = [S⊥, S

>] of
(↓L,≤). Note that the intervals I(H) partition ↓L. Moreover:

Lemma 11. If S, S′ ∈↓L and S ≤ S′, then [S′] ⊆ [S].

Lemma 12. If X ∈ L, S ∈↓L such that Sep(X,S) = ∅ and Ŝ = X ◦ S, then [Ŝ] = [X] ∩ [S].

Proof. Since Ŝ = X ◦ S, we have X ≤ Ŝ and by Lemma 11 we have [Ŝ] ⊆ [X]. Now we prove that

[Ŝ] ⊆ [S]. Indeed, otherwise there exists a tope T of L such that T ∈ [Ŝ] \ [S]. This implies that

Ŝ < T and there exists an element e ∈ U such that Te 6= Se 6= 0. Since Ŝ = X ◦ S, this implies

that Xe = Te, which is impossible because Sep(X,S) = ∅. This proves that [Ŝ] ⊆ [X] ∩ [S].

To prove the converse inclusion [X]∩ [S] ⊆ [Ŝ] pick any tope T of L belonging to [X]∩ [S]. Then

X < T and S < T . Suppose by way of contradiction that T /∈ [Ŝ], i.e., Ŝ ≮ T . Then there exists

e ∈ U such that Ŝe 6= 0 and Ŝe 6= Te, say Ŝe = −1 and Te = +1. Since Ŝ = X ◦ S, the equality

Ŝe = −1 implies that either Xe = −1 or that Xe = 0 and Se = −1. Since Te = +1, in the first
case we get a contradiction with X < T and in the second case we get a contradiction with S < T .

Hence, [X] ∩ [S] ⊆ [Ŝ] and we are done. �

We say that a sample S ∈↓ L is full if the pc-minor G′ = πS0(G) has VC-dimension d =
VC-dim(G). Let ↓ Lf denote the set of all full samples of L. Note that all topes of L are full
samples since their zero set is empty. A convex subgraph H of G is full if S⊥(H) is full. The image
of H in G′ is a single vertex vH and its degree is |osc(H)|. If D ⊂ osc(vH) = osc(H) of size d is
shattered by G′, since G′ is a pc-minor of G, D is also shattered by G. Hence, a convex set H
of G is full if and only if G shatters a subset D of osc(H) of size d = VC-dim(G). If H is a full
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convex subgraph of a COM, not all samples in I(H) have to be full. We show next, that the above
problem does not arise in OMs.

Lemma 13. Let M = (U,L) be an OM of rank d and let G = G(M) be its tope graph. A sample
S ∈↓L is full if and only if the convex subgraph [S] is full.

Proof. First notice that since in OMs the rank and the VC-dimension are equal, a sample S is full
if and only if rank(M\ S0) = d.

First suppose that the convex subgraph H is full. Then the sample S⊥ := S⊥(H) is full. Since
S⊥ = osc(H) ⊆ S for any S ∈ I(H) = [S⊥, S

>], we get S0 ⊂ (S⊥)0, thus rank(M \ S0) ≥
rank(M\ (S⊥)0) = d = rank(M). Hence, rank(M\ S0) = d, i.e., S is a full sample.

Conversely, let S be a full sample and we assert that H = [S] is a full convex subgraph. Let
M′ =M\ cross(H) and let G′ = πcross(H)(G) be its tope graph. Since cross(H) ⊆ S0 and S is full,
rank(M′) = d and hence VC-dim(G′) = d. The image of H in G′ is a single vertex vH . By Lemma
5, osc(vH) = osc(H). By Lemma 8, osc(vH) contains a subset of size d shattered by M′, whence
H is full. �

4. The main result

Theorem 3. The set T of topes of a complex of oriented matroids M = (U,L) of VC-dimension
d admits a proper labeled sample compression scheme of size d.

The proof of the theorem is based on the distinguishing and the localization lemma, provided
in the next subsections. Compressor and reconstructor are given in the last subsection and are
illustrated by Example 1.

4.1. The distinguishing lemma. In this subsection, M = (U,L) is an OM of rank d. The
distinguishing lemma allows to distinguish full samples of M by their restriction to subsets of size
d. It is constructing a function fM that assigns such a subset to each full sample and is used by
both compressor and reconstructor.

Lemma 14. Let M = (U,L) be an OM of VC-dimension d. Then there exists a function fM :↓
Lf →

(
U
d

)
such that for all S, S′ ∈↓Lf :

(i) if e ∈ fM(S), then e ∈ osc([S]),
(ii) fM(S) is shattered by M,

(iii) if e /∈ osc([S]), then fM(S) = fM\e(S \e),
(iv) if S|fM(S) = S′|fM(S′), then [S] = [S′].

Proof. Let G := G(M) be the tope graph of M. We proceed by induction on d. If d = 1, then
U = {e} and G is an edge between the topes T1 = (−1) and T2 = (+1). Then T1 and T2 are the
only full samples ofM (the unique other sample (0) is not full). Defining fM(T1) = fM(T2) = {e},
we obtain a function satisfying the conditions (i)-(iv).

Before treating the general case d ≥ 2, we establish the following claim:

Claim 1. If S is a full sample and e ∈ osc([S]), then there exists a cocircuit X of M such that
e ∈ X and X ≤ S. Moreover, S \X is a full sample of M(X).

Proof. Since S is a full sample, M′ = M \ S0 has VC-dimension d and thus rank d. Moreover,
[S \S0] is a tope T ofM′. By Lemma 5, e ∈ osc([S]) = osc([T ]) and T is incident to an edge in Ee,
i.e., there is a tope T ′ of M′ such that Sep(T, T ′) = {e}. Let X ′ be a cocircuit of M′ such that its
face ↑X ′ contains T but not T ′. This cocircuit X ′ exists, otherwise all cocircuits Y ′ of M′ would
have Y ′e = 0, but M′ is simple because M is. Now, since M′ has VC-dimension d, M′(X ′) ∼=↑X ′
has VC-dim d − 1 by Lemma 4. Thus, there exists a covector X of M such that X ′ = X \ S0

and VC-dim(X) = d − 1. If X is not a cocircuit, then ↑X is a proper face of ↑Y for a cocircuit
Y of M. Since the VC-dimension of any proper face is strictly smaller than the VC-dimension of
the face itself and since M has rank d, we obtain a contradiction. Thus X is a cocircuit of M. In
particular, e ∈ X and X ≤ S.
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It remains to show that S \ X is a full sample of M(X), i.e., that the VC-dimension of (↑
X \X) \ S0 is d − 1. To see this note that by Lemma 1, X \ S0 ∈ C∗(M\ S0) and since S is full
the VC-dimension of M\ S0 is d. Hence, the VC-dimension of M(X \ S0) is d − 1 by Lemma 4.
But since all sign-vectors in ↑ X agree on X, we have M(X \ S0) ∼= (↑ X \ X) \ S0. Hence,
VC-dim((↑X \X) \ S0) = VC-dim(M(X \ S0)) = VC-dim(M)− 1 = d− 1. �

Let now d ≥ 2. Fix a linear order on U = {1, . . . ,m}. For a full sample S, define the function
fM recursively by setting fM(S) = {eS , fM(X)(S \X)}, where eS is the smallest element of U such
that EeS osculates with [S] and X is any cocircuit ofM such that eS ∈ X and X ≤ S. By Claim 1,
X exists and by Lemma 11 [S] ⊆ [X] holds. Now we prove that fM satisfies the conditions (i)-(iv).
By Claim 1, S \X is a full sample of M(X) to which we can apply the induction hypothesis.

Condition (i): If e ∈ fM(S), then either e = eS or e ∈ fM(X)(S \X). In the first case, Ee and
[S] osculate by the choice of eS from osc([S]). In the second case, Ee and [S \X] osculate in the
tope graph ofM(X) by induction hypothesis. Since the tope graph ofM(X) is isomorphic to [X],
Ee crosses [X] and thus e /∈ X. Moreover, since X ≤ S, by Lemma 11, [S] ⊆ [X]. Thus [S \X] is
isomorphic to [S]. Hence, Ee and [S] osculate in G.

Condition (ii): Suppose that fM(S) = {eS , fM(X)(S \ X)} is not shattered by M. Define
D′ = fM(X)(S \X). By induction hypothesis, D′ is shattered byM(X). Hence, by Lemma 7 there

is a circuit Y ofM such that Y ⊆ {eS}∪D′ and eS ∈ Y . On the other hand, we have that D′ ⊆ X0

and eS ∈ X. Thus, |Y ∩ X| = 1, and since X is a cocircuit and Y is a circuit, this contradicts
orthogonality of circuits and cocircuits in OMs, see Theorem 1.

Condition (iii): Let e /∈ osc([S]). Then clearly e /∈ osc([S \ X]) in [X \ X]. Thus, e /∈ fM(S).
Moreover, contracting a class that does not osculate with [S] cannot yield a new class that osculates
with [S] by Lemma 5. Thus, by the definition of fM and induction hypothesis we have fM(S) =
{eS , fM(X)(S \X)} = {eS , f↑X\(X∪{e})(S \ (X ∪ {e}))} = fM\e(S \ e).

Condition (iv): Let S, S′ be two full samples such that S|fM(S) = S′|fM(S′). In particular, fM(S) =

{eS , fM(X)(S \ X)} = {eS′ , fM(X′)(S
′ \ X ′)} = fM(S′). By the minimality in the choice of the

elements eS and eS′ both are the smallest elements of the respective sets fM(S) and fM(S′), whence
eS = eS′ =: e. This means that fM(X)(S \X) = fM(X′)(S

′ \X ′) =: D′ and for cocircuits X and
X ′ both faces ↑X ∼=M(X) and ↑X ′ ∼=M(X ′) shatter the same set D′ ⊆ U . By Lemma 10 this
implies that X = X ′ or X = −X ′. Indeed, let X 6= X ′. Since X,X ′ maximally shatter D′, by
Lemma 10(ii) X = X ◦ X ′ and X ′ = X ′ ◦ X. By Lemma 10(iii) there exists a geodesic gallery
between ↑ X and ↑ X ′. Since X and X ′ are cocircuits of M, ↑ X and ↑ X ′ are facets of M.
Therefore ↑X and ↑X ′ must be consecutive in the gallery and the face containing them as facets
must coincide with M. Thus, X = −X ′.

But X = −X ′ cannot happen, otherwise, since e ∈ X ∩X ′, we have e ∈ Sep(X,X ′) and since
S ≥ X and S′ ≥ X ′, we get Se = −S′e, which contradicts the assumption S|fM(S) = S′|fM(S′).

Hence, X = X ′. Hence S, S′ ≥ X and by Lemma 11 we get [S] ⊆ [X] and [S′] ⊆ [X]. By induction
hypothesis, [S \X] = [S′ \X] in [X]. This means that [S] ∩ [X] = [S′] ∩ [X], but since [S] ⊆ [X]
and [S′] ⊆ [X], we conclude that [S] = [S′]. �

4.2. The localization lemma. The localization lemma designates for any realizable sample of a
COM the set of all potential covectors whose faces may contain topes which can be used by the
reconstructor.

Let M = (U,L) be a COM of VC-dimension d and let S ∈↓L be a realizable sample. Consider
the tope S′ = S \ S0 of the COM M′ := M \ S0 and let X ′ be a minimal covector of M′ such
that S′ ≥ X ′. Note that if M′ is an OM, then X ′ = 0 and ↑X ′ = M′. By Lemma 4, the OM
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M′(X ′) ∼=↑X ′ has VC-dimension ≤ d. Let

HS,X′ := {X ∈ L : X \ S0 = X ′ and M(X) has the same VC-dimension as M′(X ′)}.
Let D ⊆ U \ S0 be a set of size d′ = VC-dim(X ′) shattered by the OM M′(X ′). Let also

HD := {X ∈ L :M(X) maximally shatters D}.

Lemma 15. Let S ∈↓L, X ′ be a minimal covector of M′ =M\ S0 such that S \ S0 = S′ ≥ X ′,
and let D ⊆ U be shattered by M′(X ′) =↑X ′. Then ∅ 6= HS,X′ = HD.

Proof. By Lemma 1 there must be a covector X ∈ L such that X \ S0 = X ′. Moreover, if
M′(X ′) =↑X ′ shatters D, then M(X) also shatters D because the tope graph of M′(X ′) is a
pc-minor of the tope graph ofM(X). Suppose thatM(X) shatters a superset of D. Then there is
a covector Y ≥ X ofM such thatM(Y ) shatters D. Hence, Y \S0 ≥ X \S0 = X ′, butM′(Y \S0)
and M′(X ′) have the same VC-dimension, so by Lemma 4 Y \ S0 = X ′. Hence Y ∈ HS,X′ . In
particular, we have shown that any element of HS,X′ shatters D and |D| is its VC-dimension so it
maximally shatters D. Hence, HS,X′ ⊆ HD.

It remains to show HD ⊆ HS,X′ . Let Y ∈ HD \ HS,X′ and set Y ′ = Y \ S0. By assumption we
have X ′ 6= Y ′ and since M(Y ) maximally shatters D and D ⊆ S, also M′(Y ′) maximally shatters
D. In particular, D ⊆ X ′0 ∩ Y ′0 = (X ′ ◦ Y ′)0. By Lemma 9 the gates of [Y ′] in [X ′] are the topes
of ↑ (X ′ ◦ Y ′) ⊆↑X ′. Thus, [X ′ ◦ Y ′] is a gated subgraph of [X ′], and [X ′ ◦ Y ′] is crossed by D,
and D is shattered by [X ′]. By Lemma 6, the VC-dimension of M′(X ′ ◦ Y ′) is at least |D|, which
is the VC-dimension of M′(X ′). Lemma 4 yields X ′ ◦ Y ′ = X ′.

If Sep(X ′, Y ′) = ∅, then ↑X ′ =↑ (X ′ ◦ Y ′) ⊆↑Y ′. Since ↑X ′ is a maximal face of M′, we get
X ′ = Y ′. If Sep(X ′, Y ′) 6= ∅, then by Lemma 10 there exists a geodesic gallery (↑X ′ =↑X0, ↑
X1, . . . , ↑Xk =↑Y ′) from ↑X ′ to ↑Y ′ in M′. By the definition of a gallery, the union of ↑X ′ and
↑X1 is a face ↑Z )↑X ′ of M′. Thus, ↑X ′ is not a maximal face of M′ and this contradicts the
assumption that X ′ is a minimal covector of M′. �

4.3. The labeled compression scheme. Now, we describe the compression and the reconstruc-
tion and prove their correctness. The compression map generalizes the compression map for ample
classes of [44]. However, the reconstruction map is much more involved than the reconstruction
map for ample classes.

Compression. Let M = (U,L) be a COM of VC-dimension d. For a sample S ∈↓ L of M,
consider the tope S′ = S \ S0 of M\ S0 =:M′ and let X ′ be a minimal covector of M′ such that
S′ ≥ X ′. Denote by M′(X ′) =↑X ′ \X ′ the OM defined by the face ↑X ′ of M′.Define

α(S)e =

{
Se if e ∈ fM′(X′)(S′),
0 otherwise.

The map α is well-defined since S′ is a tope of M′(X ′) and hence the sample S′ is full in M′.
Moreover, by definition we have α(S) ≤ S, whence α(S) ∈↓ L. Finally, by Lemma 4 the OM
M′(X ′) has VC-dimension at most d and thus, by Lemma 14 α(S) has support of size ≤ d.

Reconstruction. To define the reconstruction map β, pick C ∈ {±1, 0}U in the image of α and
let D := C. Let X be any covector from HD, i.e., X is a covector of L that maximally shatters D.

By Lemma 15, such X exists. Now, let S̃ ∈↓L be a sample satisfying:

(1) S̃ ≥ X;

(2) Sep(S̃, C) = ∅;

(3) S̃ is full in M(X);

(4) fM(X)(S̃) = D.

Finally, set β(C) to be any tope T of M with T ≥ S̃.

To show that β is well-defined we give a canonical sample Ŝ satisfying (1)-(4). For S ∈↓L, let
C = α(S), D = C, and X ∈ HD. By Lemma 15, X satisfies X \ S0 = X ′, where X ′ is the minimal

covector of M′ =M\ S0 chosen in the definition of α(S). Set Ŝ := X ◦ S ≥ X.



14

Claim 2. The sample Ŝ satisfies the conditions (1)-(4) of the definition of β. Moreover, [Ŝ] =

[X] ∩ [S] and T̂ ≥ S for any tope T̂ ∈ [Ŝ].

Proof. Let C = α(S) for S ∈↓ L. Since X \ S0 = X ′ ≤ S′ = S \ S0, we have Sep(X,S) = ∅.

By Lemma 12 [Ŝ] = [X] ∩ [S] is a proper convex subgraph of [X]. Since X \ Ŝ0 = X ′ and both

M(X),M′(X ′) have the same VC-dimension |D|, the sample Ŝ is full in M(X).

Finally, since X ′ and S′ can be obtained from X and Ŝ by deletion of non-osculating elements

of S0, by Lemma 14(iii) we get fM(X)(Ŝ) = fM′(X′)(S
′) = D. Since [Ŝ] = [X] ∩ [S] 6= ∅, this

intersection contains at least one tope and therefore β(C) is well-defined. Moreover, for any tope

T̂ ∈ [Ŝ] we have T̂ ≥ S because [Ŝ] = [X] ∩ [S]. �

Correction. We prove that (α, β) defines a proper labeled sample compression scheme.

Claim 3. For all samples S ∈↓L, β(α(S)) ≥ S.

Proof. We show that for any choice of S̃ satisfying the conditions (1)-(4) in the definition of β and

for any choice of a tope T̃ ∈ [S̃], we have T̃ ≥ S. To prove this, we show that [S̃] = [Ŝ], where Ŝ is

the canonical sample defined in Claim 2. Since this implies that T̃ ∈ [Ŝ], by the second assertion

of Claim 2 we get T̃ ≥ S.

So, let S̃, S̃′ be two full samples of M(X) such that S̃, S̃′ ≥ X, Sep(S̃, C) = Sep(S̃′, C) = ∅,

and fM(X)(S̃) = fM(X)(S̃
′) = D. By Lemma 14 applied toM(X), we have [S̃] = [S̃′]. This proves

that all samples S̃ available to β yield the same (nonempty) convex subgraph [S̃] = [Ŝ] = [X]∩ [S].

Since T̂ ≥ S for any tope T̂ from [Ŝ], we conclude that for any choice of T̃ ∈ [S̃] as β(α(S)) we

have T̃ ≥ S. Hence, β(α(S)) ≥ S. �

Example 1. Consider the tope graph G of a COMM of VC-dimension 3 and a realizable sample
S = (+ + −0 − 0 + 0) in Figure 4. [S] is induced by 7 topes drawn as white vertices of G.
Contracting the 3 dashed Θ-classes corresponding to {4, 6, 8} = S0, yields the tope graph G′ of
M′ = M \ S0. Then S′ = S \ S0 = (+ + − − +). The compressor picks a minimal covector
X ′ = (+0−−+) ofM′ with S′ ≥ X ′; X ′ corresponds to the thick red edge in G′. The compressor
returns α(S) = (0 + 000000) and D = {2}. The reconstructor receives C = (0 + 000000) = α(S),
defines D = C = {2} and constructs the set HD. There are six covectors of M belonging to HD

corresponding to the thick red edges in G. By the localization lemma, they are the covectors which
have the same VC-dimension as X ′ and agree with X ′ on {1, 2, 3, 5, 7} = S. The reconstructor
picks X = (+0−−−−+−) ∈ HD. The OM M(X) is composed of the covectors X and the ends
T and T ′ of the corresponding red edge. Among T and T ′, only the tope T = (+ +−−−−+−)
satisfies the conditions (1)-(4) in the definition of β. Thus, β(α(S)) is set to T , which is a white
node of G.

5. Conclusion

We have presented proper labeled compression schemes of size d for COMs of VC-dimension d.
Even though we made strong use of the structure of COMs, it is tempting to extend our approach
to other classes, e.g., bouquets of oriented matroids [19], strong elimination systems [4], or CW
left-regular-bands [43]. Our treatment of realizable samples as convex subgraphs suggests an angle
at general partial cubes.

To achieve improper labeled compression schemes our results provide a new approach, extending
the one of [16, 17] presented in the introduction. Is it possible to extend a given set system or a
partial cube to a COM without increasing the VC-dimension too much?

In unlabeled sample compression schemes, the compressor α is less expressive since its image is in
2U and has to satisfy α(S) ⊆ S. Unlabeled compression schemes exist for realizable affine oriented
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Figure 4. An illustration of Example 1.

matroids [6] and ample set systems with corner peelings [9, 39]. The notion of corner peeling has
been extended to COMs [38], but it is open if they yield unlabeled compression schemes for COMs.
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