Stability of the Sand Piles Model

H.D.Phan and T.H.Tran

Institute of Mathematics Hanoi, Vietnam

Workshop on Lattice Theory Marseille, April 22-27, 2007

Introduction

Stable Sand Piles Model

Some examples

Sand Piles Model (SPM)

- Context: Discrete dynamical system, sand piles system
- Sand Piles System
- Configurations: are sequences of sand piles of decreasing height from left to right
- Evolution rule: 2 rules

Falling rule: One grain falls down from one column to the right next column if their height difference is at least 2.

Adding rule: Adding one grain on one random column such that the obtained one is a configuration

Sand Piles Model

Problem

1. Stationary
2. Structure
3. Uniqueness
4. Time

Well known results on SPM

- Goles+Kiwi (1993): falling rule: $\operatorname{SPM}(n)$ is of a lattice structure, unique fixed point
- Goles+Morvan+Phan (1998): falling rule: Describe all elements of $\operatorname{SPM}(n)$, show the recursive structure
> - Bak (1973): falling + adding rule: Show observation, investigations, examples and diagrams
> - Phan+Tran (2006): falling+adding rule:Simulate mathematically, inverstigate the tranformations between stable configurations, show the lattice structure and measure the time

Well known results on SPM

- Goles+Kiwi (1993): falling rule: $\operatorname{SPM}(n)$ is of a lattice structure, unique fixed point
- Goles+Morvan+Phan (1998): falling rule: Describe all elements of $\operatorname{SPM}(n)$, show the recursive structure
- Bak (1973): falling + adding rule: Show observation, investigations, examples and diagrams
- Phan+Tran (2006): falling+adding rule:Simulate mathematically, inverstigate the tranformations between stable configurations, show the lattice structure and measure the time

Fundamental definitions

```
> Partition of the positive integer n is a k}k\mathrm{ -tuple of positive
integers }a=(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{k}{})\mathrm{ such that
\sum}\mp@subsup{i=1}{k}{\mp@subsup{a}{i}{}}=n,\mp@subsup{a}{1}{}\geq\mp@subsup{a}{2}{}\geq\cdots\geq\mp@subsup{a}{k}{
\ Smooth partition is a partition ( }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{k}{})\mathrm{ such that
0\leq aj}-\mp@subsup{a}{i+1}{}\leq1
> Strict partition is a partition ( }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{k}{})\mathrm{ such that
a}-\mp@subsup{a}{i+1}{}\geq1
```


Fundamental definitions

- Partition of the positive integer n is a k-tuple of positive integers $a=\left(a_{1}, \ldots, a_{k}\right)$ such that

$$
\sum_{i=1}^{k} a_{i}=n, a_{1} \geq a_{2} \geq \cdots \geq a_{k}
$$

\Rightarrow Smooth partition is a partition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $0 \leq a_{i}-a_{i+1} \leq 1$

- Strict partition is a partition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{i}-a_{i+1} \geq 1$.

Fundamental definitions

- Partition of the positive integer n is a k-tuple of positive integers $a=\left(a_{1}, \ldots, a_{k}\right)$ such that

$$
\sum_{i=1}^{k} a_{i}=n, a_{1} \geq a_{2} \geq \cdots \geq a_{k}
$$

- Smooth partition is a partition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $0 \leq a_{i}-a_{i+1} \leq 1$.
$a_{i}-a_{i+1} \geq 1$.

Fundamental definitions

- Partition of the positive integer n is a k-tuple of positive integers $a=\left(a_{1}, \ldots, a_{k}\right)$ such that

$$
\sum_{i=1}^{k} a_{i}=n, a_{1} \geq a_{2} \geq \cdots \geq a_{k}
$$

- Smooth partition is a partition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $0 \leq a_{i}-a_{i+1} \leq 1$.
- Strict partition is a partition $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{i}-a_{i+1} \geq 1$.

Introduction

Partitions

Smooth partition

Strict partition

- Young lattice is the lattice of all partitions ordered by containment

Stable Sand Piles Model

- Configurations:are represented by partitions
- The initial configuration is (0)
- Stable configurations (temporary) are smooth partitions
- Evolution rule:
- Falling rule: the same as the evolution rule of Sand Piles Model.
- Adding rule: adding one grain on random column of a smooth partition.
- Stable Sand Piles Model (SSPM): Configurations are stable

Stable Sand Piles Model

First elements of SSPM

Introduction

Main results

Properties of the SSPM

- Configurations: smooth partitions
- Structure: sublattice of Young lattice: Theorem 1

2. Avalanche

- Minimal lenghth: Theorem 2
- Maximal length: Theorem 3

Main results

1. Properties of the SSPM

- Configurations: smooth partitions
- Structure: sublattice of Young lattice: Theorem 1

Avalanche

- Minimal lenghth: Theorem 2
- Maximal length: Theorem 3

Main results

1. Properties of the SSPM

- Configurations: smooth partitions
- Structure: sublattice of Young lattice: Theorem 1

2. Avalanche

- Minimal lenghth: Theorem 2
- Maximal length: Theorem 3

Lattice structure of SSPM

Theorem 1
SSPM is sublattice of the Young lattice and isomorphism to the lattice of strict partitions.

Proof.

- Prove that the ordered set SSPM is isomorphism to the Strict by dual mapping.
- Show explicitly $\inf (a, b)$ and $\sup (a, b)$

Strict lattice \quad SSPM lattice
Young lattice

Stable Sand Piles Model

First elements of SSPM

Minimal length

By upside down construction
Theorem 2

1. The minimal length from the initial configuration (0) to a equals $w(a)$.
2. The minimal length from a to b equals $w(a)-w(b)$, where $w(a)=\sum_{i=1}^{k} a_{i}$ is the weight of a.

Maximal length

1. Difficulties:

- We don't how adding will obtain the maximal length
- The global maximal length is different from the sum of the local maximal lengths
- Split a into maximal successive stairs
- Assign one suitable value (energy) to each
grain
- Calculate the sum of energy of all grains
- Construct the way to reach the maximal length.

Maximal length

1. Difficulties:

- We don't how adding will obtain the maximal length
- The global maximal length is different from the sum of the local maximal lengths

2. Solutions:

- Split a into maximal successive stairs
- Assign one suitable value (energy) to each grain
- Calculate the sum of energy of all grains
- Construct the way to reach the maximal length.

Maximal length

Theorem 3

Given $a, b \in S S P M, b \rightarrow a$ we have

The maximal length from 0 to a is

Where $c_{1}, c_{2}, \ldots, c_{l}$ are maximal successive stairs of a.
2. The maximal length from b to a is:

where $\Delta(a, b)$ are grains of a not belonging to b.

Maximal length

Theorem 3

Given $a, b \in S S P M, b \rightarrow a$ we have

1. The maximal length from 0 to a is

$$
\begin{aligned}
I_{m}(a)= & \frac{a_{1}\left(a_{1}+1\right)\left(2 a_{1}-1\right)}{2}+\frac{\left(a_{\left|c_{1}\right|+1}+2\left|c_{1}\right|-1\right) a_{c_{1}+1}}{2} \\
& +\sum_{i=2}^{I} \frac{\left(a_{\left|c_{1}\right|+\cdots+\left|c_{i-1}\right|+1}+2\left|c_{i-1}\right|-3\right) a_{\left|c_{1}\right|+\cdots+\mid c_{i-1}} \mid+1}{2}
\end{aligned}
$$

Where $c_{1}, c_{2}, \ldots, c_{l}$ are maximal successive stairs of a.

Maximal length

Theorem 3

Given $a, b \in S S P M, b \rightarrow a$ we have

1. The maximal length from 0 to a is

$$
\begin{aligned}
& I_{m}(a)= \frac{a_{1}\left(a_{1}+1\right)\left(2 a_{1}-1\right)}{2}+\frac{\left(a_{\left|c_{1}\right|+1}+2\left|c_{1}\right|-1\right) a_{c_{1}+1}}{2} \\
&\left.+\sum_{i=2}^{l} \frac{\left(a\left|c_{1}\right|+\cdots+\left|c_{i-1}\right|+1\right.}{}+2\left|c_{i-1}\right|-3\right) a\left|c_{1}\right|+\cdots+\left|c_{i-1}\right|+1 \\
& 2
\end{aligned}
$$

Where $c_{1}, c_{2}, \ldots, c_{l}$ are maximal successive stairs of a.
2. The maximal length from b to a is: $\sum_{(i, j \in \Delta(a, b)} e_{a}(i, j)$, $(i, j) \in \Delta(a, b)$
where $\Delta(a, b)$ are grains of a not belonging to b.

Example

$$
a=(4,3,2,2,2,1,1)
$$

1	2						
1	2	3	4	1			
1	2	3	4	5	2	2	

$I_{m}(a)=34$

$$
b=(3,2,2,1,1)
$$

$\mathrm{I}(\mathrm{a}, \mathrm{b})=12$

From $(3,2,2,1,1)$ to $(4,3,2,2,2,1)$

Difference between $I_{m}(a, b)$ and $I_{m}(a)-I_{m}(b)$

Future works

- Stability of Bidimention Sand Piles Model
- Two directions Sand Piles Model
- Other modified Sand Piles Models

Thank you for your attention:-)

H.D.Phan and T.H.Tran

Containment order

$$
a \leq b \text { if and only if } a_{i} \geq b_{i} \text { for all } i=1,2, \ldots, \min \{I(a), I(b)\}
$$

Dual mapping

From (0) to $(4,3,2,2,2,1)$

