The fitting and consensus of closure systems

Bruno Leclerc

École des Hautes Études en Sciences Sociales Centre d'Analyse et de Mathématique Sociales 54 boulevard Raspail 75270 Paris cedex 06 leclerc@ehess.fr

with Florent Domenach (Intercollege, Nicosia, Cyprus)

An example (from Day 1983, *Math. Biosciences*, after Johnson and Selander 1971, Schnell, Best and Kennedy 1978): k = 3 trees on 11 species of kangaroo rats

Strict consensus (retain classes present in all trees):

Quota rule consensus (retain classes present in σ trees): $\sigma = 2$

The output is a tree for $\sigma > k/2$ (Margush and McMorris 1981)

Adam's consensus

Frequent subclasses consensus

Closure system

Finite set *S* (objects to choose, to classify, ...) family $C \subseteq 2^S$ of subsets of *S* satisfying:

(i) $S \in C$ (universal set) (ii) $C, C' \in C \Rightarrow C \cap C' \in C$

Then, *C* is a *closure system* (CS), or a *Moore family* on *S*.

The associated closure operator φ_C on 2^S : $\varphi_C(A) = \bigcap \{C \in C : A \subseteq C\}$

Example: after using a classification procedure on a set S of objects to classify, one often gets a *set of classes* C satisfying (i), (ii) and:

(iii) $s \in S \implies \{s\} \in C$ (individual classes)

Elements of a class $C \in C$ ought to be *similar* or *sharing common properties*

Lattice structure of a closure system C on S, ordered by inclusion

for $C, C' \in \mathcal{C}$,

meet $C \cap C'$

join $C \lor C' = \varphi_{\mathcal{C}}(C \cup C')$

- covering relation p
- join-irreducible $J \in \mathcal{J}_C$. For any $C \in C$, $C = \vee \{J \in \mathcal{J}_C: J \subseteq C\} = \vee \mathcal{J}(C)$ (full join irreducible representation)
- meet-irreducible $M \in \mathcal{M}_{\mathcal{C}}$. For any $C \in \mathcal{C}$,

$$C = \bigcap \{ M \in \mathcal{M}_{\mathcal{C}} : C \subseteq M \} = \bigcap \mathcal{M}(C)$$

Types of closure systems

Distributive CS: $C, C' \in C \Rightarrow C \cup C' \in C$, Tree of subsets: $C, C' \in C \Rightarrow C \cap C' \in \{\emptyset, C, C'\}$, (a tree completed with the empty set) Nested CS: $C, C' \in C \Rightarrow C \cap C' \in \{C, C'\}$.

(both tree and distributive)

Convex geometry: every element of C has a unique irredundant (minimal) join-irreducible representation.

Combinatorial geometry (matroid) and so on...

Obtaining closure systems (1)

Data

Type of variable v	Structure of domain D of v	Subsets of S	Type of closure system
Numerical, ordinal	Linear order	$\{s \in S: v(s) \le \alpha\}, \alpha \in D$ Intervals of D	Nested Convex
Nominal	Finite set $D = \{v_1, \dots, v_k\}$	$\{s \in S: \\ v(s) = v_i\}$	geometry Tree of subsets
Multicriterion evaluation	Product of linear orders	$\{s \in S: \\ v(s) \le \alpha\}, \\ \alpha \in D$	Distributive
Taxonomic	Rooted tree	$\{s \in S: \\ v(s) \le \alpha\}, \\ \alpha \in D$	Tree of subsets

Obtaining closure systems (2)

Choice models

W complete ordering (weak order) on S for $s \in S$, $Ws = \{s' \in S: (s', s) \in S\}$ (elements at least as good as s), then, $\{Ws: s \in S\}$ is a nesting family on S

$\begin{array}{ll} \text{Classification models} \\ \text{Hierarchy \mathcal{H} on S, (H1) & S \in \mathcal{H}$, \\ (H2) & s \in S \implies \{s\} \in \mathcal{H}$, \\ (H3) & H, H' \in \mathcal{H} \implies H \cap H' \in \{\emptyset, H, H'\}, \end{array}$

then $\mathcal{H} \cup \{\emptyset\}$ is a *hierarchical classification system*. Others: *pyramids*, *weak hierarchies*, ...

(Galois) lattices

Databases, Association rules mining,...

The lattice structure of **M**

Let \mathbf{M} be the set of all closure systems on S;

- $2^{S} \in \mathbf{M}$,
- for $C, C' \in \mathbf{M}, C \cap C' \in \mathbf{M}$

So, **M** is a closure system on 2^S .

- For any family \mathcal{F} of subsets of S, is there is a smallest CS $\Phi(\mathcal{F})$ including \mathcal{F} (make all intersections of subsets of \mathcal{F} comprising $S = \cap \emptyset$)
- Join-irreducibles of M are closure systems {A, S}, with a unique (proper) closed subset A ⊂ S.
 Then, for C ∈ M,

$$\mathcal{C} = \Phi(\mathcal{F}) \iff \mathcal{M}_{\mathcal{C}} \subseteq \mathcal{F}$$

• So, **M** is a *convex geometry* (lower locally distributive) on 2^S .

Consensus of closure systems

searching a consensus function f

 $\mathbf{M}^k \xrightarrow{f} \mathbf{M}$

(aggregation of a *profile* $C^* = (C_1, C_2, ..., C_k) \in \mathbf{M}^k$ of CS's into a *unique* CS)

So, we can apply results on the consensus problem

- in lattices (Monjardet 1990, Barthélemy and Janowitz 1991, L. 1994, and others)
- particularly, in convex geometries (Raderanirina 2001, L. 2003)

Median consensus

Given a metric *d* on **M**, find a *median* $C^{\mu} \in \mathbf{M}$ such that

 $\rho(C^{\mu}, C^*) = \sum_{1 \le i \le k} d(C^{\mu}, C_i) \rightarrow \min$

- often difficult to compute,
- not necessarily unique,
- satisfies Young's *consistency*: for $C^* \in \mathbf{M}^k$, $C^{*} \in \mathbf{M}^{k'}$,

$$\mu(\mathcal{C}^*) \cap \mu(\mathcal{C}^{**}) \neq \emptyset \implies \mu(\mathcal{C}^*\mathcal{C}^{**}) = \mu(\mathcal{C}^*) \cap \mu(\mathcal{C}^{**}),$$

where $\mu(C^*)$ is the set of the medians of C^* $C^*C'^* \in \mathbb{M}^{k+k'}$ is the concatenation of C^* and C'^* .

• Problem: do medians satisfy

$$\bigcap_{1 \le i \le k} C_i \subseteq C^{\mu}$$

(a *unanimity property*: does C^{μ} preserves those closed sets present in all C_i 's)

Two classical metrics on a lattice

• MPL metric ∂ :

 $\partial(C, C')$ is the minimum path length in the covering graph (**M**, p)

• (Generalized) symmetric difference metric δ :

 $\delta(C, C') = |\mathcal{J}_C \Delta \mathcal{J}_{C'}| = |C \Delta C'|$

• Since **M** is a convex geometry, $\partial = \delta$, a characterization of LLD lattices (L. 2003)

Federation consensus rules and quota rules

Federation on $K = \{1, ..., k\}$: inclusion monotone family \mathcal{K} of subsets of K: $[L \in \mathcal{K}, L' \supseteq L] \Rightarrow [L' \in \mathcal{K}]$

Federation consensus function $c_{\mathcal{K}}$ on **M**:

$$c_{\mathcal{K}}(\mathcal{C}^*) = \bigvee_{L \in \mathcal{K}} \left(\bigcap_{i \in L} \mathcal{C}_i \right)$$

Include:

Oligarchic consensus functions: $\mathcal{K} = \{L \subseteq K : L \supseteq I\}$ for a fixed $I \subseteq K$. $c_{\mathcal{K}}(C^*) = \bigcap_{i \in I} C_i$,

Quota rules: with $1 \le q \le k$

(majority rule:
$$q > k/2$$
)

 $c_q(\mathcal{C}^*) = \Phi(\mathcal{A}_q),$

where $\mathcal{K} = \{L \subseteq K : |L| \ge q\}$, for a fixed q,

 \mathcal{A}_q is the set of closed sets present in at least q elements of the profile

Results in the lattice **M**

• Properties of c_q :

Unanimity: $\bigcap_{1 \le i \le k} C_i \subseteq c_q(C^*)$;

Isotony: $C_i \subseteq C'_i$ for all $i = 1, ..., k \Rightarrow c_q(C^*) \subseteq c_q(C'^*)$.

In *convex geometries*, quota rules share *consistency* with the median procedure (L. 2003). Consider a relative frequency $\alpha \in [0, 1[$:

$$c_{\alpha}(C^*) = c_{\alpha}(C^{**}) = C \implies c_{\alpha}(C^*C^{**}) = C$$

Sketched proof. From $\mathcal{M}(\mathcal{C}) \subseteq \mathcal{A}_q \subseteq \mathcal{C}$, $\mathcal{M}(\mathcal{C}') \subseteq \mathcal{A'}_q \subseteq \mathcal{C'}$, and standard properties of frequencies: for any $\mathcal{C} \subseteq \mathcal{S}$ min($u(\mathcal{C}, \mathcal{C}^*)$) $u(\mathcal{C}, \mathcal{C}^{**})$) $\leq u(\mathcal{C}, \mathcal{C}^{**})$ $u(\mathcal{C}, \mathcal{C}^{**})$)

for any $C \subseteq S$, $\min(\gamma(C, C^*), \gamma(C, C^{**})) \leq \gamma(C, C^*C^{**}) \leq \max(\gamma(C, C^*), \gamma(C, C^{**}))$, one gets $\mathcal{M}(C) \subseteq \mathcal{A}_q(C^*C^{**}) \subseteq C$

This property is not true, e.g., in the partition lattice (Barthélemy and L. 1995). Problem : does it characterize LLD ones ?

Weak majorities and medians

For any median C^{μ} ,

$$C^{\mu} \subseteq c_{k/2}(C^*),$$

that is, $C^{\mu} \subseteq \Phi(\mathcal{A}_{k/2})$,

where $A_{k/2}$ is a set of closed sets present in at least half of the elements of the profile.

Any closed set of a median CS is an intersection of "majority closed sets".

Consequence: if such closed sets do not exist (but *S*), the trivial closure system $\{S\}$ is the unique median of C^* .

Axiomatic results

A consensus rule $f: \mathbb{M}^k \to \mathbb{M}$ satisfies *unanimity* and is *neutral monotonic*: for all $A, B \subset S, C^*, C'^* \in \mathbb{M}^k$, $\{i: A \in C_i\} \subseteq \{i: B \in C'_i\} \Rightarrow [A \in f(C^*) \Rightarrow B \in f(C'^*)]$

if and only if it is *oligarchic* (Raderanirina 2001, Monjardet and Raderanirina 2004, by particularization of Monjardet 1990)

with many related results on special cases of closure systems, choice functions, ...

- the above result applies to the unanimity rule c_k .

Discussion

Significant results were obtained, especially for quota rules (including majority rule)

A limitation:

Quota rules, and related methods only take into account presence or absence of closed sets in a significant number (oligarchies, majorities) or in all (unanimity) elements of the profile:

- Small *q*: lack of significance of the consensus
- Consensus closed sets vanish when q increases. Unless the elements of the profile C^* are close to each other, $c_q(C^*)$ may become trivial

• Actual common features not recognized: see the 2-profile below

No common non trivial closet set Common association of: ab, bc, cd A possible consensus closure system for $\sigma = 2$ (unanimity on nestings):

For a finer approach, we consider *implications* and their *overhangings* variant

Adams' intersection rule (1972, 1986) for the consensus of classification trees:

• $S \in a(C^*)$

Let C be an obtained class,

- select the maximal C'_i 's in C_i s.t. $C'_i \subset C$,
- For a tuple $(C'_1, C'_2, ..., C'_k)$, set $C' = \bigcap_{1 \le i \le k} C'_i \in a(C^*)$, and iterate...

Adam's Theorem

Let us associate to a tree \mathcal{H} its *nesting order* \oplus on 2^S : $A \oplus B$ if $A \subset B$ and $H_A \subset H_B$ H_A is the smaller class in \mathcal{H} including A

Given a profile $\mathcal{H}^* = (\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_k)$ of hierarchical classification systems with overhangings/nesting orders $\mathbb{E}_1, \mathbb{E}_2, ..., \mathbb{E}_k$

Adams' tree is the unique tree \mathcal{H} (with nesting order \times) s.t.:

(A1) $\bigcap_{1 \le i \le k} \mathbb{E}_i \subseteq \mathbb{E}$ (preservation of unanimity) (A2) $H, H' \in \mathcal{H}$ and $H \subseteq H'$ imply $(H, H') \in \bigcap_{1 \le i \le k} \mathbb{E}_i$ (qualified nestings)

Discussion (2)

Quota rules:

- sensitive to noising (existence of common classes required)
- take frequencies into account

Adams rule:

- able to provide new classes (based on common *subclasses*)
- does not take frequencies into account
- what about other closure systems than trees?
- other frequencies than unanimity ?

Implication relation (of a closure system)

A binary relation \rightarrow on 2^S: $A \rightarrow B$ if every closed set containing A also contains B

Characterization (*complete* – or *full* – *implication system* CIS, Armstrong 1974):

- (I1) $B \subseteq A \Rightarrow A \Rightarrow B$,
- (I2) $A \rightarrow B$ and $B \rightarrow C \Rightarrow A \rightarrow C$,
- (I3) $A \rightarrow B$ and $C \rightarrow D \Rightarrow A \cup C \rightarrow B \cup D$.

Important literature (databases, lattice or symbolic data analysis, data mining,...), with strong results (existence of a canonical implication basis, Maier 1983, Guigues and Duquenne 1986)

Survey by Caspard and Monjardet (2003)

Overhanging/nesting order (of a closure system)

A binary relation \times on 2^S : $A \times B$ if $A \subset B$ and not $A \rightarrow B$

(there exists a closed set containing A and not B)

Example: Adams' nestings for hierarchical CS's

Characterization (Domenach and L. 2003):

(01) $A \times B \Rightarrow A \subset B$, (02) $A \subset B \subset C \Rightarrow [A \times C \iff A \times B \text{ or } B \times C]$, (03) $A \times A \cup B \Rightarrow A \cap B \times B$.

From (O1) and(O2), \times is a *strict order* on 2^S .

Cryptomorphisms... Four isomorphic or dually isomorphic lattices

M set of all closure systems on S, **C** set of all closure operators on 2^S , set of all complete implication systems on *S*, • set of all complete overhanging orders on *S*, among others...

Μ	С		0
2 ^S (maximum)	$\varphi_{\min} = id_2s$	$\{(X, Y) \in (2^S)^2:$	$\{(X, Y) \in (2^S)^2 \colon X \subset Y\}$
	(minimum)	$Y \subseteq X$ (minimum)	(maximum)
$\{S\}$ (minimum)	$\varphi_{\max}(A) = S$	$(2^S)^2$ (maximum)	\varnothing (minimum)
	(maximum)		
join $\mathcal{M} \lor \mathcal{M}'$	meet (pointwise	meet $\mathcal{I} \cap \mathcal{I}'$	join Œ∪Œ'
	intersection)		
meet $\mathcal{M} \cap \mathcal{M}'$	join	join IvI	meet Œ∧Œ'
$\{S, A\}, A \subset S$	$\varphi(X) = A \text{ if } X \subseteq A;$	$(2^A)^2 \cup \{(X,Y) \in (2^S)^2:$	$\{(X,Y) \in (A] \times (2^{S} - (A]):$
(join irreducible)	$\varphi(X) = S$ otherwise	$A \subseteq X$ (meet irred.)	$X \subset Y$ (join irred.)
	(meet irred.)		
			$\{(X,Y) \in (2^S)^2 \colon X \subset Y\} -$
$ X\}, A \subset S, s \in S-A$	$ \varphi(X) = X$ otherwise	or $A \subseteq X$, $Y = X + s$	$\{(X,Y) \in (2^S)^2 \colon A \subseteq X, Y =$
(meet irred.)	(join irred.)	(join irred.)	X+s} (meet irred.)

Overhanging orders (special cases)

```
(Domenach and L. 2004-2007...)
```

- Classification systems: (O1), (O2), (O3) and
- (OE) $\emptyset \times \{s\}$ for any $s \in S$,
- (OS) $A \notin \{\emptyset, \{s\}\} \Rightarrow \{s\} \times A \cup \{s\}, \text{ for all } s \in S.$
- Nested families: (O1), (O2) and
- (ON) $A \times C$ and $B \times C \Rightarrow A \cup B \times C$.
- Trees of subsets: (O1), (O2), either (ON) or (OE) and (OT) $A \times C$ and $B \times C \Rightarrow A \cup B \times C$ or $A \cap B = \emptyset$ (Adams' axiom).
- Distributive CS: (O1), (O2) and
- (OD) $s \in S, A \subseteq S$, and $\{a\} \times \{a, s\}$ for any $a \in A \iff A \times A \cup \{s\}$.
- Convex geometries: (O1), (O2), (O3), (OE) and
- (OC) $A \cup B \subseteq C, A \cap B \times C \Rightarrow A \times C \text{ or } B \times C.$

Fitting overhangings: a dual closure

Data: a binary relation R on 2^S , with $(A, B) \in R$ implies $A \subset B$,

Problem: find an overhanging approximation of *R*.

An obvious solution: since

- **O** is \cup -stable,
- The empty relation \varnothing is the minimum of \mathbf{O} ,

there is a *dual closure operator* ω on $2^{(2^S)^2}$ $\omega(R) = \bigcup \{ \mathbb{C} \in \mathbf{O} : \mathbb{C} \subseteq R \}.$

Getting $R \subseteq \omega(R)$, while there are reasons to prefer an approximation "from the top".

Fitting overhangings: a uniqueness result (Domenach and L. 2004)

Given a binary relation R on 2^S , with $(A, B) \in R$ implies $A \subset B$, there is *at most one closure system* C (with overhanging order \times) satisfying:

(AR1) $R \subseteq \times$ (preservation of R)(AR2)For any meet-irreducible M of C, $(M, M^+) \in R$ (qualified overhangings)

Remark: (A2) is a (very) partial converse of (A1)

Proof. Assume that both *C* and *C*' satisfy (A*R*1) and (A*R*2). Observe first that *S* belongs to *C* and *C*'. If the symmetric difference $C\Delta C'$ is not empty, let *C* be a maximal element of $C\Delta C'$. Assume without loss of generality that *C* belongs to *C*. If *C* was not a meet-irreducible *C*, it would be an intersection of meet-irreducibles, all belonging to both *C* and *C*' and, so, *C* would belong to *C*', and not to $C\Delta C'$. Thus, *C* is covered by a unique element C^+ of *C*, with $C^+ \in C'$. By (A*R*2), the pair (*C*, *C*⁺)

Thus, C is covered by a unique element C⁺ of C, with C⁺ \in C'. By (AR2), the pair (C, C⁺) belongs to R and, by (AR1), C \oplus ' C⁺. Set C' = $\varphi'(C)$. We have $C \subset C'$, since $C \notin C'$, and C' \oplus ' C⁺, since $C' = \varphi'(C) = \varphi'(C') \subset \varphi'(C^+) = C^+$. But $C \subset C'$ implies $C' \in C$, with $C \subset C' \subset C^+$, a contradiction with the hypothesis that C⁺ covers C in C.

Adams theorem:

- hierarchical case
- $R = \bigcap_{1 \le i \le k} \times_i E_i$
- axiom (AR2) is weaker than particularized (A2)

and existence guaranteed by Adams algorithm!

The solution for (AR1) and (AR2) does not always exist

Example 1: $R = \emptyset$, solution $C = \{S\}$

Example 2: $R = \{(A, S)\}$, with $A \subset S$,

solution $C = \{A, S\}$

Example 3: $R = \{(A, B)\}$, with $A \subset B \subset S$,

no *C* satisfying (A*R*1) and (A*R*2)

Properties

- If *R* satisfies Conditions (O1) and (O2), then there exists a closure system C satisfying Conditions (A*R*1) and (A*R*2).
- Approximation "from the top": if Œ satisfies Conditions (AR1) and (AR2), then, for any overhanging order Œ',

 $R \subseteq \mathbb{E}' \subseteq \mathbb{E}$ implies $\mathbb{E}' = \mathbb{E}$.

What about the consensus case?

A profile $C^* = (C_1, C_2, ..., C_k)$ of closure systems A minimal frequency requested on nestings (fixed $\sigma \le k$)

Set $R = \bigcup_{I \subseteq K, |I| \ge \sigma} \bigcap_{1 \le i \le k} \mathbb{E}_i$ (then, $\omega(R)$ corresponds to $c_q(\mathcal{C}^*)$)

- Adams' intersection method: trees, $\sigma = k$.

In terms of overhangings

(FO) for all $A, B \subseteq X$, $|\{i \in K : A \times B\}| \ge p$ implies $A \times B$,

(frequent overhangings preservation)

(QO) for all $M \in \mathcal{M}(\mathcal{C})$, $|\{i \in K : M \times M^+\}| \ge p$.

(qualified overhangings)

In terms of implications

(FI) for all $A, B \subseteq X, A \rightarrow B$ implies $|\{i \in K : A \rightarrow_i B\}| \ge k - p$, (frequent implications preservation)

(UI) for all $M \in \mathcal{M}(\mathcal{C})$, $|\{i \in K : M \rightarrow_i M^+\}| < k - p$.

(disqualified implications)

Back to kangaroo rats

 $\sigma = 2$

- includes the majority classes

- brings further ones : ABC, ABD, with reasons to distinguish them from larger groups

- no longer a tree

Conjecture: for a relation $R = \bigcup_{I \subseteq K, |I| \ge \sigma} \bigcap_{1 \le i \le k} \mathbb{E}_i$,

there always exists a closure system satisfying Conditions (AR1) and (AR2).

Two kinds of problems

- Possibility results and algorithms
- Impossibility results