The fitting and consensus of closure systems

Bruno Leclerc

École des Hautes Études en Sciences Sociales
Centre d'Analyse et de Mathématique Sociales
54 boulevard Raspail
75270 Paris cedex 06
leclerc@ehess.fr
with Florent Domenach (Intercollege, Nicosia, Cyprus)

An example (from Day 1983, Math. Biosciences, after Johnson and Selander 1971, Schnell, Best and Kennedy 1978):
$\mathrm{k}=3$ trees on 11 species of kangaroo rats

Strict consensus (retain classes present in all trees):

Quota rule consensus (retain classes present in σ trees): $\sigma=2$

The output is a tree for $\sigma>k / 2$ (Margush and McMorris 1981)

Adam's consensus

Frequent subclasses consensus

Closure system

Finite set S (objects to choose, to classify, ...)
family $\mathcal{C} \subseteq 2 S$ of subsets of S satisfying:
(i) $S \in C \quad$ (universal set)
(ii) $C, C^{\prime} \in C \Rightarrow C \cap C^{\prime} \in C$

Then, C is a closure system (CS), or a Moore family on S.
The associated closure operator φ_{C} on $2 S$:

$$
\varphi_{C}(A)=\cap\{C \in C: A \subseteq C\}
$$

Example: after using a classification procedure on a set S of objects to classify, one often gets a set of classes \boldsymbol{C} satisfying (i), (ii) and:
(iii) $s \in S \Rightarrow\{s\} \in C \quad$ (individual classes)

Elements of a class $C \in C$ ought to be similar or sharing common properties

Lattice structure of a closure system C on S, ordered by inclusion for $C, C^{\prime} \in C$,
meet $C \cap C^{\prime}$
join $\quad C \vee C^{\prime}=\varphi_{C}\left(C \cup C^{\prime}\right)$

- covering relation p
- join-irreducible $J \in \mathcal{J}_{C}$. For any $C \in \mathcal{C}$,

$$
C=\vee\left\{J \in \mathcal{J}_{C}: J \subseteq C\right\}=\vee \mathcal{J}(C)
$$

(full join irreducible representation)

- meet-irreducible $M \in \mathcal{M}_{C}$. For any $C \in \mathcal{C}$,

$$
C=\cap\left\{M \in \mathcal{M}_{C}: C \subseteq M\right\}=\cap \mathcal{M}(C)
$$

Types of closure systems

Distributive CS: $\quad C, C^{\prime} \in \mathcal{C} \Rightarrow C \cup C^{\prime} \in C$,
Tree of subsets: $\quad C, C^{\prime} \in C \Rightarrow C \cap C^{\prime} \in\left\{\varnothing, C, C^{\prime}\right\}$,
(a tree completed with the empty set)
Nested $C S: \quad C, C^{\prime} \in C \Rightarrow C \cap C^{\prime} \in\left\{C, C^{\prime}\right\}$.
(both tree and distributive)
Convex geometry: every element of C has a unique irredundant (minimal) joinirreducible representation.

Combinatorial geometry (matroid) and so on...

Obtaining closure systems (1)

Data

Type of variable v	Structure of domain D of v	Subsets of S	Type of closure system
Numerical, ordinal	Linear order	$\begin{aligned} & \{s \in S: v(s) \leq \\ & \alpha\}, \alpha \in D \end{aligned}$	Nested
		Intervals of D	Convex geometry
Nominal	$\begin{aligned} & \text { Finite set } D= \\ & \left\{v_{1}, \ldots, v_{k}\right\} \end{aligned}$	$\left\{\begin{array}{l} \{s \in S: \\ \left.v(s)=v_{i}\right\} \end{array}\right.$	Tree of subsets
Multicriterion evaluation	Product of linear orders	$\left\{\begin{array}{l} \{s \in S: \\ \alpha \in \underset{D}{v(s) \leq \alpha\}} \\ \alpha \in \end{array}\right.$	Distributive
Taxonomic	Rooted tree	$\left\{\begin{array}{l} \{s \in S: \\ \alpha \in(s) \leq \alpha\}, \\ \alpha \in D \end{array}\right.$	Tree of subsets

Obtaining closure systems (2)

Choice models

W complete ordering (weak order) on S for $s \in S, W s=\left\{s^{\prime} \in S:\left(s^{\prime}, s\right) \in S\right\} \quad$ (elements at least as good as s), then, $\{W s: s \in S\}$ is a nesting family on S

Classification models

Hierarchy \mathcal{H} on S,	(H1)	$S \in \mathcal{H}$,
	(H2)	$s \in S \Rightarrow\{s\} \in \mathcal{H}$,
	(H3)	$H, H^{\prime} \in \mathcal{H} \Rightarrow H \cap H^{\prime} \in\left\{\varnothing, H, H^{\prime}\right\}$,

then $\mathcal{H} \cup\{\varnothing\}$ is a hierarchical classification system. Others: pyramids, weak hierarchies, ...
(Galois) lattices
Databases, Association rules mining,...

The lattice structure of \mathbf{M}

Let \mathbf{M} be the set of all closure systems on S;

- $2^{S} \in \mathbf{M}$,
- for $C, C^{\prime} \in \mathbf{M}, C \cap C^{\prime} \in \mathbf{M}$

So, \mathbf{M} is a closure system on $2 S$.

- For any family \mathcal{F} of subsets of S, is there is a smallest $\operatorname{CS} \boldsymbol{\Phi}(\mathcal{F})$ including \mathcal{F} (make all intersections of subsets of \mathcal{F} comprising $S=\cap \varnothing$)
- Join-irreducibles of \mathbf{M} are closure systems $\{A, S\}$, with a unique (proper) closed subset $A \subset S$.
Then, for $\boldsymbol{C} \in \mathbf{M}$,

$$
\mathcal{C}=\Phi(\mathcal{F}) \Longleftrightarrow \mathcal{M}_{\mathcal{C}} \subseteq \mathcal{F}
$$

- So, \mathbf{M} is a convex geometry (lower locally distributive) on $2 S$.

Consensus of closure systems

searching a consensus function f

$$
\mathbf{M}^{k} \xrightarrow{f} \mathbf{M}
$$

(aggregation of a profile $\boldsymbol{C}^{*}=\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \ldots, \boldsymbol{C}_{k}\right) \in \mathbf{M}^{k}$ of CS's into a unique CS)

So, we can apply results on the consensus problem

- in lattices (Monjardet 1990, Barthélemy and Janowitz 1991, L. 1994, and others)
- particularly, in convex geometries (Raderanirina 2001, L. 2003)

Median consensus

Given a metric d on \mathbf{M}, find a median $\mathbf{C}^{\mu} \in \mathbf{M}$ such that
$\rho\left(C^{\mu}, C^{*}\right)=\Sigma_{1 \leq i \leq k} d\left(C^{\mu}, C_{i}\right) \rightarrow \min$

- often difficult to compute,
- not necessarily unique,
- satisfies Young's consistency: for $C^{*} \in \mathbf{M}^{k}, C^{*} \in \mathbf{M}^{k}$,

$$
\mu\left(C^{*}\right) \cap \mu\left(C^{*}\right) \neq \varnothing \Rightarrow \mu\left(C^{*} C^{*}\right)=\mu\left(C^{*}\right) \cap \mu\left(C^{\prime *}\right),
$$

where $\mu\left(C^{*}\right)$ is the set of the medians of C^{*}

$$
C^{*} \mathbf{C}^{*} \in \mathbf{M}^{k+k^{\prime}} \text { is the concatenation of } C^{*} \text { and } C^{\prime *}
$$

- Problem: do medians satisfy

$$
\bigcap_{1 \leq i \leq k} C_{i} \subseteq C^{\mu}
$$

(a unanimity property: does C^{μ} preserves those closed sets present in all C_{i}^{\prime} 's)

Two classical metrics on a lattice

- MPL metric ∂ :
$\partial\left(C, C^{\prime}\right)$ is the minimum path length in the covering graph (\mathbf{M}, p)
- (Generalized) symmetric difference metric δ :

$$
\delta\left(C, C^{\prime}\right)=\left|\mathcal{J}_{C} \Delta \mathcal{J}_{C^{\prime}}\right|=\left|C \Delta C^{\prime}\right|
$$

- Since \mathbf{M} is a convex geometry, $\partial=\delta$,
a characterization of LLD lattices (L. 2003)

Federation consensus rules and quota rules

Federation on $K=\{1, \ldots, k\}$: inclusion monotone family \mathcal{K} of subsets of K :

$$
\left[L \in \mathcal{K}, L^{\prime} \supseteq L\right] \Rightarrow\left[L^{\prime} \in \mathcal{K}\right]
$$

Federation consensus function $c_{\mathcal{K}}$ on \mathbf{M} :

$$
c_{\mathcal{K}}\left(C^{*}\right)=v_{L \in \mathcal{K}}\left(\cap_{i \in L} C_{i}\right)
$$

Include:
Oligarchic consensus functions: $\mathcal{K}=\{L \subseteq K: L \supseteq I\}$ for a fixed $I \subseteq K$.

$$
c_{\mathcal{K}}\left(C^{*}\right)=\bigcap_{i \in I} C_{i},
$$

Quota rules: with $1 \leq q \leq k \quad$ (majority rule: $q>k / 2$)

$$
c_{q}\left(C^{*}\right)=\boldsymbol{\Phi}\left(\mathcal{A}_{q}\right),
$$

where $\mathcal{K}=\{L \subseteq K:|L| \geq q\}$, for a fixed q,
\mathfrak{A}_{q} is the set of closed sets present in at least q elements of the profile

Results in the lattice \mathbf{M}

- Properties of c_{q} :

Unanimity: $\cap_{1 \leq i \leq k} C_{i} \subseteq c_{q}\left(C^{*}\right) ;$
Isotony: $C_{i} \subseteq C^{\prime} i$ for all $i=1, \ldots, k \Rightarrow c_{q}\left(C^{*}\right) \subseteq c_{q}\left(C^{*}\right)$.
In convex geometries, quota rules share consistency with the median procedure (L. 2003). Consider a relative frequency $\alpha \in[0,1[$:

$$
c_{\alpha}\left(C^{*}\right)=c_{\alpha}\left(C^{\prime *}\right)=C \quad \Rightarrow \quad c_{\alpha}\left(C^{*} C^{\prime *}\right)=C
$$

Sketched proof. From $\mathcal{M}(C) \subseteq \mathcal{A}_{q} \subseteq C, \mathcal{M}\left(C^{\prime}\right) \subseteq \mathcal{A}^{\prime}{ }_{q} \subseteq C^{\prime}$, and standard properties of frequencies:
for any $C \subset S, \min \left(\gamma\left(C, C^{*}\right), \gamma\left(C, C^{*}\right)\right) \leq \gamma\left(C, C^{*} C^{*}\right) \leq \max \left(\gamma\left(C, C^{*}\right), \gamma\left(C, C^{*}\right)\right)$, one gets $\mathcal{M}(C) \subseteq \mathfrak{A}_{q}\left(C^{*} C^{*}\right) \subseteq C$

This property is not true, e.g., in the partition lattice (Barthélemy and L. 1995).
Problem : does it characterize LLD ones ?

Weak majorities and medians

For any median C^{μ},

$$
C^{\mu} \subseteq c_{k / 2}\left(C^{*}\right)
$$

that is, $C^{\mu} \subseteq \Phi\left(\mathcal{A}_{k / 2}\right)$,
where $\mathcal{A}_{k / 2}$ is a set of closed sets present in at least half of the elements of the profile.
Any closed set of a median CS is an intersection of "majority closed sets".

Consequence: if such closed sets do not exist (but S), the trivial closure system $\{S\}$ is the unique median of C^{*}.

Axiomatic results

A consensus rule $f: \mathbf{M}^{k} \rightarrow \mathbf{M}$ satisfies unanimity and is
neutral monotonic: for all $A, B \subset S, C^{*}, C^{*} \in \mathbf{M}^{k}$,

$$
\left\{i: A \in C_{i}\right\} \subseteq\left\{i: B \in C^{\prime}{ }_{i}\right\} \Rightarrow\left[A \in f\left(C^{*}\right) \Rightarrow B \in f\left(C^{*}\right)\right]
$$

if and only if it is oligarchic (Raderanirina 2001, Monjardet and Raderanirina 2004, by particularization of Monjardet 1990)
with many related results on special cases of closure systems, choice functions, ...

- the above result applies to the unanimity rule c_{k}.

Discussion

Significant results were obtained, especially for quota rules (including majority rule)

A limitation:

Quota rules, and related methods only take into account presence or absence of closed sets in a significant number (oligarchies, majorities) or in all (unanimity) elements of the profile:

- Small q : lack of significance of the consensus
- Consensus closed sets vanish when q increases. Unless the elements of the profile C^{*} are close to each other, $c_{q}\left(C^{*}\right)$ may become trivial
- Actual common features not recognized: see the 2-profile below

No common non trivial closet set
Common association of: $a b, b c, c d$

A possible consensus closure system for $\sigma=2$ (unanimity on nestings):

For a finer approach, we consider implications and their overhangings variant

Adams' intersection rule $(1972,1986)$ for the consensus of classification trees:

- $S \in a\left(C^{*}\right)$

Let C be an obtained class,

- select the maximal C_{i}^{\prime} 's in C_{i} s.t. $C_{i}^{\prime} \subset C$,
- For a tuple $\left(C^{\prime}{ }_{1}, C^{\prime} 2, \ldots, C^{\prime} k\right)$, set $C^{\prime}=\cap_{1 \leq i \leq k} C^{\prime} \in a\left(C^{*}\right)$, and iterate...

Adam's Theorem

Let us associate to a tree \mathcal{H} its nesting order \mathbb{E} on $2 S$:
$A \subset B$ if $A \subset B$ and $H_{A} \subset H_{B}$
H_{A} is the smaller class in \mathcal{H} including A

Given a profile $\mathcal{H}^{*}=\left(\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{k}\right)$ of hierarchical classification systems with overhangings/nesting orders $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{k}$

Adams' tree is the unique tree \mathcal{H} (with nesting order \mathbb{E}) s.t.:
(A1) $\cap_{1 \leq i \leq k} \mathrm{E}_{i} \subseteq \mathrm{E}$
(preservation of unanimity)
(A2) $H, H^{\prime} \in \mathcal{H}$ and $H \subseteq H^{\prime}$ imply $\left(H, H^{\prime}\right) \in \cap_{1 \leq i \leq k} \mathrm{E}_{i}$
(qualified nestings)

Discussion (2)

Quota rules:

- sensitive to noising (existence of common classes required)
- take frequencies into account

Adams rule:

- able to provide new classes (based on common subclasses)
- does not take frequencies into account
- what about other closure systems than trees?
- other frequencies than unanimity?

Implication relation (of a closure system)

A binary relation \rightarrow on $2^{S}: \quad A \rightarrow B$ if every closed set containing A also contains B

Characterization (complete - or full - implication system CIS, Armstrong 1974):
(I1) $B \subseteq A \Rightarrow A \rightarrow B$,
(I2) $A \rightarrow B$ and $B \rightarrow C \Rightarrow A \rightarrow C$,
(I3) $A \rightarrow B$ and $C \rightarrow D \Rightarrow A \cup C \rightarrow B \cup D$.

Important literature (databases, lattice or symbolic data analysis, data mining,...), with strong results (existence of a canonical implication basis, Maier 1983, Guigues and Duquenne 1986)

Survey by Caspard and Monjardet (2003)

Overhanging/nesting order (of a closure system)

A binary relation \mathbb{E} on $2 S: \quad A \oplus B$ if $A \subset B$ and not $A \rightarrow B$
(there exists a closed set containing A and not B)

Example: Adams' nestings for hierarchical CS's

Characterization (Domenach and L. 2003):
(O1) $A \oplus B \Rightarrow A \subset B$,
(O2) $A \subset B \subset C \Rightarrow[A \mathrm{E} C \Longleftrightarrow A \mathrm{E} B$ or $B \mathrm{E} C]$,
(O3) $A \oplus A \cup B \Rightarrow A \cap B \mathbb{E} B$.

From (O1) and(O2), E is a strict order on $2 S$.

Cryptomorphisms...

Four isomorphic or dually isomorphic lattices

M set of all closure systems on S,
C set of all closure operators on 2^{S},
I set of all complete implication systems on S,
\mathbf{O} set of all complete overhanging orders on S,
among others...

M	C	I	0
2^{S} (maximum)	$\begin{aligned} & \varphi_{\min }=\mathrm{id}_{2 S} \\ & (\text { minimum }) \end{aligned}$	$\begin{aligned} & \left\{(X, Y) \in\left(2^{S}\right)^{2}:\right. \\ & Y \subseteq X\} \text { (minimum) } \end{aligned}$	$\left\{(X, Y) \in\left(2^{S}\right)^{2}: X \subset Y\right\}$ (maximum)
$\{S\}$ (minimum)	$\begin{gathered} \varphi_{\max }(A)=S \\ (\text { maximum }) \end{gathered}$	$\left(2^{S}\right)^{2}$ (maximum)	\varnothing (minimum)
join $\mathcal{M} v \mathcal{M}^{\prime}$	meet (pointwise intersection)	meet $\mathfrak{Q} \cap \mathrm{T}^{\prime}$	join $E \cup E^{\prime}$
meet ${ }^{M} \cap{ }^{\prime}{ }^{\prime}$	join	join IVI'	meet $\mathrm{E} \wedge \mathrm{E}^{\prime}$
$\begin{aligned} & \{S, A\}, A \subset S \\ & \text { (join irreducible) } \end{aligned}$	$\varphi(X)=A$ if $X \subseteq A ;$ $\varphi(X)=S$ otherwise (meet irred.)	$\begin{aligned} & \left(2^{A}\right)^{2} \cup\left\{(X, Y) \in\left(2^{S}\right)^{2}:\right. \\ & A \subseteq X\} \text { (meet irred.) } \end{aligned}$	$\begin{aligned} & \left\{(X, Y) \in(A] \times\left(2^{S}-(A]\right):\right. \\ & X \subset Y\} \text { (join irred.) } \end{aligned}$
$\{X \subseteq S: A \subseteq X \Rightarrow s \in$ $X\}, A \subset S, s \in S-A$ (meet irred.)	$\varphi(X)=X+s$ if $A \subseteq X$ $\varphi(X)=X$ otherwise (join irred.)	$\left\{(X, Y) \in\left(2^{S}\right)^{2}: X \subseteq Y\right.$ or $A \subseteq X, Y=X+s\}$ (join irred.)	$\begin{aligned} & \left\{(X, Y) \in\left(2^{S}\right)^{2}: X \subset Y\right\}- \\ & \left\{(X, Y) \in\left(2^{S}\right)^{2}: A \subseteq X, Y=\right. \\ & X+s\} \text { (meet irred.) } \end{aligned}$

Overhanging orders (special cases)
(Domenach and L. 2004-2007...)

- Classification systems: (O1), (O2), (O3) and
(OE) $\quad \varnothing \mathbb{E}\{s\}$ for any $s \in S$,
(OS) $\quad A \notin\{\varnothing,\{s\}\} \Rightarrow\{s\} \mathbb{E} A \cup\{s\}$, for all $s \in S$.
- Nested families: (O1), (O2) and
(ON) $\quad A$ © C and $B \oplus \subset \Rightarrow A \cup B$ © C.
- Trees of subsets: (O1), (O2), either (ON) or (OE) and
(OT) $\quad A \oplus C$ and $B \mathbb{E} C \Rightarrow A \cup B \mathbb{E} C$ or $A \cap B=\varnothing \quad$ (Adams' axiom) .
- Distributive CS: (O1), (O2) and
(OD) $s \in S, A \subseteq S$, and $\{a\} \mathbb{E}\{a, s\}$ for any $a \in A \Longleftrightarrow A \mathbb{E} A \cup s\}$.
- Convex geometries: (O1), (O2), (O3), (OE) and
(OC) $\quad A \cup B \subseteq C, A \cap B \subset C \Rightarrow A$ © C or $B \subset C$.

Fitting overhangings: a dual closure

Data: a binary relation R on $2^{S}, \quad$ with $(A, B) \in R$ implies $A \subset B$,
Problem: find an overhanging approximation of R.
An obvious solution: since

- \mathbf{O} is \cup-stable,
- The empty relation \varnothing is the minimum of \mathbf{O},
there is a dual closure operator ω on $2^{\left(2^{S}\right)^{2}}$

$$
\omega(R)=\cup\{\mathrm{E} \in \mathbf{O}: \mathbb{E} \subseteq R\} .
$$

Getting $R \subseteq \omega(R)$, while there are reasons to prefer an approximation "from the top".

Fitting overhangings: a uniqueness result (Domenach and L. 2004)

Given a binary relation R on $2^{S}, \quad$ with $(A, B) \in R$ implies $A \subset B$, there is at most one closure system \boldsymbol{C} (with overhanging order \mathbb{E}) satisfying:
$(\mathrm{A} R 1) \quad R \subseteq \mathrm{E}$
(AR2) For any meet-irreducible M of $\mathcal{C},\left(M, M^{+}\right) \in R$
(preservation of R)
(qualified overhangings)

Remark: (A2) is a (very) partial converse of (A1)

Proof. Assume that both C and C^{\prime} satisfy (AR1) and (AR2). Observe first that S belongs to C and C^{\prime}. If the symmetric difference $C \Delta C^{\prime}$ is not empty, let C be a maximal element of $C \Delta C^{\prime}$. Assume without loss of generality that C belongs to C. If C was not a meet-irreducible C, it would be an intersection of meet-irreducibles, all belonging to both C and C^{\prime} and, so, C would belong to C^{\prime}, and not to $C \Delta C^{\prime}$.
Thus, C is covered by a unique element C^{+}of C, with $C^{+} \in C^{\prime}$. By (AR2), the pair (C, C^{+}) belongs to R and, by $(\mathrm{A} R 1), C \mathbb{E}^{\prime} C^{+}$. Set $C^{\prime}=\varphi^{\prime}(C)$. We have $C \subset C^{\prime}$, since $C \notin C^{\prime}$, and $C^{\prime} \mathrm{E}^{\prime}$ C^{+}, since $C^{\prime}=\varphi^{\prime}(C)=\varphi^{\prime}\left(C^{\prime}\right) \subset \varphi^{\prime}\left(C^{+}\right)=C^{+}$. But $C \subset C^{\prime}$ implies $C^{\prime} \in C$, with $C \subset C^{\prime} \subset C^{+}$, a contradiction with the hypothesis that C^{+}covers C in C.

Adams theorem:

- hierarchical case
- $R=\cap_{1 \leq i \leq k} \mathrm{E}_{i}$
- axiom (AR2) is weaker than particularized (A2) and existence guaranteed by Adams algorithm!

The solution for (AR1) and (AR2) does not always exist

Example 1: $R=\varnothing$,

Example 2: $R=\{(A, S)\}$, with $A \subset S$,

Example 3: $R=\{(A, B)\}$, with $A \subset B \subset S$,
solution $C=\{S\}$
solution $C=\{A, S\}$
no C satisfying (AR1) and (AR2)

Properties

- If R satisfies Conditions (O1) and (O2), then there exists a closure system C satisfying Conditions (AR1) and (AR2).
- Approximation "from the top": if E satisfies Conditions (AR1) and (AR2), then, for any overhanging order \mathbb{E}^{\prime},

$$
R \subseteq \mathrm{E}^{\prime} \subseteq \mathbb{E} \text { implies } \mathbb{E}^{\prime}=\mathbb{E} .
$$

What about the consensus case?
A profile $C^{*}=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ of closure systems
A minimal frequency requested on nestings (fixed $\sigma \leq k$)

Set $R=\cup_{I \subseteq K, I I \geq \sigma} \cap_{1 \leq i \leq k} \mathbb{E}_{i} \quad$ (then, $\omega(R)$ corresponds to $c_{q}\left(C^{*}\right)$)

- Adams' intersection method: trees, $\sigma=k$.

In terms of overhangings

(FO) for all $A, B \subseteq X,\left|\left\{i \in K: A \mathbb{E}_{i} B\right\}\right| \geq p$ implies $A \subseteq B$,
(frequent overhangings preservation)
(QO) for all $M \in \mathcal{M}(C),\left|\left\{i \in K: M \mathbb{E}_{i} M^{+}\right\}\right| \geq p$.
(qualified overhangings)
In terms of implications
(FI) for all $A, B \subseteq X, A \rightarrow B$ implies $|\{i \in K: A \rightarrow i B\}| \geq k-p$,
(frequent implications preservation)
(UI) for all $M \in \mathcal{M}(C),,\left\{i \in K: M \rightarrow i M^{+}\right\} \mid<k-p$.

Back to kangaroo rats

$$
\sigma=2
$$

- includes the majority classes
- brings further ones : ABC, ABD, with reasons to distinguish them from larger groups
- no longer a tree

Conjecture: for a relation $R=\cup_{I \subseteq K, I I \geq \sigma} \cap_{1 \leq i \leq k} \mathrm{E}_{i}$, there always exists a closure system satisfying Conditions (AR1) and (AR2).

Two kinds of problems

- Possibility results and algorithms
- Impossibility results

