I POEM

I Partial Order Environment of Marseille

Peter Niebert
HongYang Qu

I ELSE

I e Réalisé avec Sarah

* Syntax a peu pres sous- ensemble de IF
2.0

* Genération de code C « style CADP »

- Avec « BEvent Zones »
- Analyse préliminaire de dépendence
- Generation inspirée par IF1.0

Why POEM

* ELSE was very incomplete

* Common problematic for Event Zones
and LFS: « Mazurkiewicz Traces »

- Static analysis of dependency was « ad hoc »

* Formula generation for « bounded model
checking »?

I Corner stones of « ELSE 2 »
(situation one year ago)

Specification Analysis method

IF 2 Event zone automa

LFS etc

UppAal SAT solving

I Corner stones of POEM
(today)

Specification Analysis method

IF 2 Event zones

Promela LES etc

UppAal SAT solving

Cornerstones of POEM

Specifications

|F 2

Promela

UppAal

Meéethodes d'analyse

Event zone automa

LFS etc

SAT solving

« Eierlegende Wollmilchsau » ?

« couteail suisse? »

I Cornerstones of POEM

I ° |[F, Promela, UppAal:

- Processes = automata with data

- Instances of process templates

- Complex data types

- Clocks, timing constraints

- Complex transitions (« while » programs)

I Cornerstones of POEM

- States = couples « discrete state », « zone »
* Representation in C

- Representation of implicit transitions as
function types

I * Analysis with event zone automata

* For enabledness checking
* For effect

- Dependency analysis checking for « time
progress » in event zones

I Cornerstones of POEM

I * LFS

- Exploration with Mazurkiewicz traces

I Cornerstones of POEM
°* Bounded Model Checking
I - Code execution sequences as logical
formulae
« initial state, transition, state, ..., transition, desired state »

- Structure of variables of such a formula

* Variable nstances to represent each state
In the sequence.

e « Window » formulae for transitions

-Maybe with auxiliary variables
— Compression . shorter sequences with multi steps

So why POEM

* Platform for experiments and
comparison of algorithms

- Bventually, we will be able to compare
Spin/ UppAal directly with algorithms in
POEM based on the same source
specifications

* «trace oriented », there aren't so many
around ...

I Talks

I ° Introduction (Peter)

* Particular topics

- Architecture of POEM (Peter)
- Independence in POEM (Peter)

- An implementation of traces in POEM
(HongYang)

- Some updates on algorithms (HongYang)
- Some problems for YOU

Architecture of POEM

(OCaml)
frontends Static backends
analysis

|IF 2 Event zones
Promela LES etc
UppAal SAT solving

Global data structure

Source structure

- Common
* Global data structure, Rewriting, error handling ...
- Frontends
* if2poem, promela2poem, ...
- Backends
* Poem2c (different variants), poem2sat?
- Middle
e Static analysis: type checking, ... dependency
- Chains

* |f2c, promelaZsat,

I Global Data Structure

°* One data structure for
I - Specification
- Symbol table, annotations

- As interface for frontend and, partially
backend

e Common services

- Printing, rewriting, collecting information ...

Global Data Structure

- (Indexed) Processes

I * GDSfor specification

* Variables, types, constants ...
* A behaviour given as complex automaton

- Automata : states and transitions

— Transitions :

* Complex conditions, branching
* Complex effect

'fect :

- « scoped while programs »

Independence in POEM

Basic model (currently)

* Transitions depend on variables and
write to variables

°* This gives a reader/ writer dependency
* The state of a process is a variable.

* Some variables « go together » with
respect to dependency

* Static analysis: ldentify « essential
variables »

I Representation of transitions

- Each transition iIs transformed to be
deterministic, non- branching and gets a
unique id

°* To obtain this, we may have to split
transitions. As a result, more transitions,
but also more independence:

I * Rewriting into a normal form

— Each transition refers to a lower number of
variables

I Representations of
I dependency

* Dependency relation
I * Cligue cover of dependency relation

- Number of cligues per transition? Smaller is
better.

- Minimal cover maybe NP-complete.
* Explicit read/ write dependency

- Number of (essential) variables per
transition?

Challenges

* How to compute efficiently « small »
distributed alphabets?

* Adequate order vs symmetry reduction
* We have a platform,

- You have a problem?
* Let's solve it!

- You have an algorithm?
* Let's integrate it!

I GUI

* Work In progress
I * Eclipse plugin
- Editors for IF and Promela
- GUI cover for tool chains

- Not ready: Counter example animation

- Planned as form of distribution for POEM

* Platform dependent plugin, so POEM will be plug
and play ;-)

