
Grey-Box Checking

Edith Elkind1, Blaise Genest1&2, Doron Peled1, Hongyang Qu1&3.

1Department of Computer Science, Warwick, Coventry, CV4 7AL, UK
2 CNRS & IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3 LIF, 39 rue Joliot Curie, F 13453 Marseille Cedex13, France

Abstract. There are many cases where we want to verify a system that
does not have a usable formal model: the model may be missing, out of
date, or simply too big to be used. A possible method is to analyze the
system while learning the model (black box checking). However, learning
may be an expensive task, thus it needs to be guided, e.g., using the
checked property or an inaccurate model (adaptive model checking). In
this paper, we consider the case where some of the system components
are completely specified (white boxes), while others are unknown (black
boxes), giving rise to a grey box system. We provide algorithms and lower
bounds, as well as experimental results for this model.

1 Introduction

Tools for analyzing a system (e.g., model-checkers) usually require an accurate
model of the system. However, such a model may be difficult to find; while some
tools can perform the analysis based on a model constructed directly from the
source code, there are few tools that can deal with a binary file or with a chip.
A recent paper [12] proposed a method of checking black box systems, that is,
systems for which we do not have a model. Later, it was extended to testing based
on an approximately accurate model that can be automatically changed when
discrepancies are found [9]. This approach is based on interactive learning of
finite state systems [2] combined with conformance testing [14, 6], and has many
applications. For instance, [15] considers deriving a specification from observing
a system, and [7, 1] apply these techniques in order to guess an efficient property
to be used as an interface in assume-guarantee reasoning.

In this paper, we extend the black box checking procedure of [12] to the case
where some parts of the system in question are known. Specifically, we focus on
the situation where we know the high level description of the system as well as
some of its components, while the internal structure of the remaining components
is unknown. We call such a system a grey box, and use the terms ‘white box’
and ‘black box’ to denote the known and the unknown parts, respectively. For
instance, a component in a distributed system or a module in a hierarchical
system can play the role of the (known) white box or the (unknown) black
box. We propose the framework of grey box checking in a concurrent system,
where several asynchronous components communicate with each other. We can

easily extend our approach and get good complexity bounds for (sequential)
hierarchical systems as well [8].

In some settings, each component can be analyzed separately; in others, we
can only test the system as a whole. In both cases, the information available
about the white box can speed up the testing considerably. In the first case, the
problem essentially reduces to learning the unknown components and thus its
complexity does not depend on the size of the white box. Even for the more
challenging case where all components have to be run together, we provide al-
gorithms that can learn a grey box system in time that is polynomial in the
size of the white box (but still exponential in the size of the black box). On the
other hand, we prove that such a system may be much harder to learn than
a stand-alone black box. We give a lower bound showing that the increase in
complexity can be exponential in the size of the alphabet.

Our algorithms are based on the black box checking procedure of [12]. To
decrease complexity, we use conformance testers that are better suited to our
setup than the standard Vasilevskii-Chow algorithm [14, 6]. Our first oracle re-
lies on enumerating all finite automata up to a certain size and has an almost
optimal worst case complexity. The second oracle combines the algorithm of [14,
6] with ideas from partial order reduction and performs better in some of our
experiments (see Section 6). Also, both algorithms use the information about
the white box to speed up the learning algorithm of [2]. The experimental data
provided by a new tool we are developing shows that the best compromise is to
run both algorithms together, so that they help each other find discrepancies.
This appears to speed up the process by several orders of magnitude.

While our goal is similar to that of adaptive model checking [9], we see our
work as complementing the adaptive approach rather than replacing it. Indeed,
adaptive model checking uses an inaccurate model to help the learner; here, we
use partial but accurate information about the system being tested. The useful-
ness of the adaptive model checking has been argued by [9], which demonstrates
that the learning algorithm is robust enough to deal with a partially wrong spec-
ification. However, there are small modifications to the system (e.g., adding a
new state that separates two components of the system) that cannot be handled
efficiently by this method. Our approach is likely to be successful if the changes
can be limited to a small part of the system, which will then be treated as a black
box; in particular, this applies to the case described above. Moreover, sometimes
the two techniques can be combined. For instance, we may have an accurate
model of a component, some old model of another component that was changed
since the model was made, and another component that is totally unknown.
Then we can use our approach for the product, and the adaptive approach when
analyzing the second component.

2 Preliminaries

A finite automaton is a tuple A = (S, s0, Σ,→) where

– S is the finite set of states,

2

– s0 is the initial state of A.
– Σ is the finite set of letters (alphabet) of actions.
– →⊆ S ×Σ ×S is the deterministic transition function, that is, for all a ∈ Σ

and s, t, t′ ∈ S, if s
a−→ t and s

a−→ t′ then t′ = t.

We do not designate a set of accepting states; every state of A is considered
to be accepting. A run ρ of A is a finite or infinite sequence of transitions
(vi, ai, vi+1) ∈→ with v0 = s0. An experiment is any sequence of labels (ai) ∈
Σ∗. Since every automaton that we consider is deterministic, any experiment is
associated with at most one run. Abusing notation, we will identify a run with
the corresponding sequence of labels. The language L(A) of A is the set of all
maximal runs1. One can easily test whether an experiment u is a prefix of a run:
it suffices to feed the sequence u to the system after a reset, letter by letter, and
check that each time the next letter is enabled through executing a transition
of the system. In this paper, the time complexity of testing is defined to be the
sum of the lengths of the testing sequences.

ok error

pause

data

send

pauseerror

data

send

ack

error

ack

resume

Fig. 1. The automaton Interface.

2.1 The Black-box Checking Procedure

A property ϕ, written in some formal notation such as LTL or Büchi automata,
describes a set of allowed (or good) runs. Let L(ϕ) be the set of runs (the lan-
guage of) the specification ϕ. We denote by A |= ϕ (A satisfies ϕ) the fact
that L(A) ⊆ L(ϕ). Black-box checking was proposed in [12] for verification of
(partially) unknown systems. Suppose that we are given such a system A and a
property ϕ that we want to verify on A, i.e., our goal is to find a run of A that
does not respect ϕ, called a counterexample. To do so, we infer an automaton
A∗ by running experiments on A. If we find a counterexample w for A∗ �|= ϕ,
either w ∈ L(A) and we found a genuine counterexample, or w is a discrepancy
between A and A∗ and can be used to change A∗ so that it models A more
1 A run is maximal if it is not a prefix of another run

3

accurately. If A |= ϕ, we will have to repeat this procedure until L(A∗) = L(A).
However, if A �|= ϕ, we may find a counterexample before we learn A. In what
follows, we describe this approach in more detail.

The Learning Algorithm In [2], Angluin describes an algorithm L∗ for learn-
ing the minimal deterministic automaton that corresponds to a given black box
A.

Angluin’s learning algorithm builds a candidate automaton A∗ by making
experiments on the system A, i.e., invoking a procedure test(v) that returns
1 if v is executable in the black box after a reset, and 0 otherwise. Once it
has obtained a candidate solution A∗ that is consistent with all experiments
run so far, it calls an oracle that checks the candidate automaton A∗ whether
L(A∗) = L(A). If not, the oracle gives a minimal-size experiment w (discrepancy)
distinguishing A∗ from A, i.e., a sequence w that is either in L(A) \L(A∗) or in
L(A∗)\L(A). The learning algorithm then uses w to refine the current solution.
Later, we show how to build this oracle using Vasilevskii-Chow [14, 6] algorithm.

To construct a candidate automaton, the algorithm keeps two sets of se-
quences: a prefix-closed set of access sequences V ⊆ Σ∗ and a set of distinguish-
ing sequences W ⊆ Σ∗. Each sequence v in V corresponds to reaching a state
of A∗ by executing v from s0. Different sequences may lead to the same state.
Also, the algorithm keeps a table T : (V ∪ V.Σ)×W → {0, 1} such that for any
v ∈ V ∪ V.Σ we have T (v, w) = 1 if and only if vw ∈ L(A).

We define the equivalence ∼⊆ V ×V as v ∼ v′ if T (v, w) = T (v′, w) for every
w ∈ W . Angluin shows that for (V, W) to represent an automaton, it suffices
that T is closed, i.e., for every v ∈ V and a ∈ Σ s.t. T (v, a) = 1, there exists
v′ ∈ V with v′ ∼ va. If T is not closed because a is executable after v, but va �∼ v′

for all v′ ∈ V , we add va to V . The original version of Angluin’s algorithm also
performed a check that the table T is consistent: it verified that for all v ∼ v′,
if T (v, a) = 1, then T (v.a, w) = T (v′.a, w) for all w ∈ W , and if this is not the
case, the sequence a w is added to W .

When the table T is closed, we set A∗ = ([V/ ∼], ε, Σ, δ), where the transition
relation δ is defined as follows. Let [v] be a ∼ equivalence class of v. Set δ([v], a) =
[v′] when v′ ∼ va. This relation is well defined when the table T is closed and
consistent. We invoke the oracle on A∗. If the oracle returns a discrepancy σ, we
add for each v of σ that is not in V a row for each v a, a ∈ Σ.

Let n be an upper bound on the number of states of the minimal deterministic
automaton modeling the black box. Angluin’s original algorithm makes at most
n3|Σ| membership queries and at most n calls to the oracle.

Here is the formal description of one phase of the algorithm Angluin after
the oracle returned a discrepancy σ. Here, the procedure add row(v) adds a new
access sequence v to V , updating T (v w) for each w ∈ W by making the experi-
ment resetv w. Similarly add column(w) adds a new distinguishing sequence w
to W , updating T (v w) for each v ∈ V by making the experiment resetv w.

4

subrouting ANGLUIN(V, W, T, σ) returns (V, W, T) =
if T is empty then

let V, W := {ε};
for each a ∈ Σ, set T (ε, a) according to experiment a

else
for each prefix v′ of σ do

add rows(v′);
while (V, W, T) is inconsistent or not closed do

if (V, W, T) is inconsistent then
find v1, v2 ∈ V , a ∈ Σ, w ∈ W,

such that T (v1, aw) �= T (v2, aw)
add column(aw)

else
find v ∈ V , a ∈ Σ,

such that va �∈ [u] for any u ∈ V
for every prefix v′ of va do

add rows(v′)
end while

end ANGLUIN

Rivest and Schapire [13] show how to modify Angluin’s algorithm to reduce
the number of membership queries to n2|Σ|. Their algorithm also uses n calls
to the oracle. Suppose that any counterexample returned by the oracle is of size
O(n) (this is indeed the case for all oracles considered in this paper). Then the
running time of the (modified) Angluin’s algorithm is O(n3|Σ|+ Toracle), where
Toracle is the total time spent by the oracle.

Rivest and Shapire noticed that consistency check is also performed by the
conformance algorithm. In fact, this is exactly what is done by Vasilevskii-Chow
algorithm when l = 1 (see next subsection). In their algorithm, the set W is
incremented by the discrepancy and its suffixes, instead of adding prefixes con-
catenated by a letter from Σ to V , as in Angluin’s algorithm.

Proposition 1 [13] The L∗ algorithm performs at most n2 · |Σ| tests of size at
most n, where n is the number of states of the minimal deterministic automaton
modeling the black box. Its complexity is O(n3 · |Σ|).

Vasilevskii-Chow Algorithm The oracle is built using the Vasilevskii-Chow
algorithm. This algorithm uses the sets V, W and a known upper bound n on the
size of the minimal deterministic automaton modeling the black box. In order to
check whether A = A∗, VC algorithm runs both automata on some sequences
y ∈ Σ∗; we have check(y) = 1 if y is either in L(A) \ L(A∗) or in L(A∗) \ L(A).
The sequences that are tested are those of the form y = vxw with v a selected
representative per each equivalence class of [V/ ∼], w ∈ W and |x| ≤ n−|[V \ ∼]|.
Intuitively, if two equivalent access sequences are not consistent, then one is not
consistent with the actual black box and a new distinguishing sequence can be
found.

5

VC(V,W,m):
k = sizeof([V/ ∼]);
for l = 1, . . . , n − k

for each word x of size l, v ∈ [V/ ∼], w ∈ W
if check(vxw) then return vxw;

return void;

Proposition 2 [14, 6] It is sufficient to test sequences of the form y = vxw
with v selected as representative for each equivalence class of [V/ ∼], w ∈ W
and |x| ≤ n − k in order to find a difference between A∗ and A, where k is the
number of equivalent classes of [V/ ∼] and n is a bound on the number of states
of A. The algorithm makes k2|Σ|n−k+1 membership queries. Its time complexity
is O(n k2|Σ|n−k+1).

Observe that the L∗ algorithm invokes Vasilevskii-Chow algorithm at most
n times, and after each call the value of k increases by at least 1. Therefore, the
total number of queries made by Vasilevskii-Chow algorithm during these calls
is at most |Σ|n + 4|Σ|n−1 + · · · + n2|Σ|) = O(n2|Σ|n, and the total time spent
by Vasilevskii-Chow algorithm is O(n3|Σ|n).

Black Box Checking Finally, we describe the black box checking procedure
[12], which is a way to test whether a given black box A with at most m states
satisfies a property ϕ. We assume that we can use some model-checker that
depends on the formalism provided for ϕ.

We begin by using the learning algorithm initialized with V = ε and W = Σ.
Then we feed the model checker with the candidate automaton. The model
checker tests whether this model satisfies ϕ. If not, it obtains a counterexample
w that it tests against the black box. If the counterexample is a valid one, then
the procedure can stop and report that it has found a problem w. Otherwise,
w is a false negative, and the learner is fed with this distinguishing sequence.
If no counterexample is found, the model checker finds that the model provided
satisfies ϕ, and conformance test according to the Vasilevskii-Chow algorithm is
applied to the candidate model and the black box. This test either replies that
A and A∗ are equivalent, and thus the property is satisfied by the black box, or
it provides a distinguishing sequence that is fed to the learner.

3 Our Model

We associate a set of components (Si, si
0, Σ

i,→i) with the automaton G =
(
∏

Si,
∏

si
0,

⋃
Σi,→), where (si)i=1···n

a−→ (ti)i=1···n iff for all i, either a /∈ Σi

and si = ti, or a ∈ Σi and si
a−→ ti. We want to verify a property of the

whole system G, and we know the alphabet Σi used by every box (if not we take
Σi = Σ).

As a running example, we consider a data acquisition system (DAS) similar
to the one used in [16]. It consists of three components Interface, Command,

6

Sensor that communicate as follows. The Command can request the Sensor to
send a data to the Interface. The Sensor can inform the Interface that an error
occurred. Finally, the Interface can stop and resume the Command, and send
the data it received to the environment, receiving acknowledgement from it.
Assume that the Interface is given by the automaton in Figure 1; the other two
components are unknown. In the beginning, we assume that both Sensor and
Command can always perform every of their internal actions; alternatively, if we
had an old specification of these components, we could use it to initialize these
components, as is done in adaptive model checking [9]. We want to verify that
between one pause and one send, the system G always performs a resume.
Of course, a bad sequence of actions seems possible with this Interface, with
the trace error, pause, data, send, but this error may not be possible in the
system with the actual Command and Sensor.

The algorithm that we use depends on what can be done with the system,
namely, whether the components can be analyzed separately, or only as a whole.
The latter case may occur if, for instance, the communication is coded in a
special way, or if the system is on a chip.

4 Independent Components

In this section, we assume that we can perform a test w on any black box
B. Our algorithm is a slight modification of the black box checking algorithm.
Let W be the product of all white boxes. Our goal is to model check the system
G = W×∏

i≤l(Bi). Suppose |W| = m, |Bi| ≤ n for all i = 1, . . . , l, i.e., |G| ≤ mnl.

– If no counterexample is found, we call the learner/conformance tester on
every black box separately to learn new black boxes B∗

i ; we then recompute
G∗ and loop.

– If a counterexample w is found, then for all i, we test wi = πΣi(w) on the
black box Bi. If every test passes, then the algorithm terminates and returns
w as a real counterexample. Otherwise, we have discrepancies to feed the
learner for each black box, and we loop.

Proposition 3 The maximal number of tests performed during the black box
checking of a system W × ∏

i≤l Bi is at most l n2 |Σ|n. The time complexity is
at most O(l n3 |Σ|n).

Observe that the time complexity of running the black box testing procedure
on G is O(m3n3l |Σ|mnl

). Thus, it is highly profitable to learn the components
separately. For both algorithms, we can apply the method in an incremental way
(increasing the size of the tested automata used by the Vasilevskii-Chow algo-
rithm, up to n); in case that the checked system does not satisfy the specification,
we typically find it much quicker than the worst case complexity (see [12]).

We now show how this algorithm behaves on the data acquisition example.
We begin by model-checking the candidate system against our property, (be-
tween one pause and one send, the system G always performs a resume) and

7

finds a first possible counterexample: error, pause, data, send. We find out
that Sensor never emits an error as its first execution (it rather does nothing
without receiving an action request). Thus, we learn that the current model for
Sensor is wrong and we ask the learner to give a better approximation. The
learner comes up with the following table (the rows contain the accessing se-
quences V , the columns contains the distinguishing sequences of W , initialized
at Σ). A

√
in the table means that w ∈ W is an executable sequence after v ∈ V .

This table can be interpreted as the following automaton for Sensor:

ε req

request

data

requestT (v, w) req data error
ε

√ x x
req √ √ x

req,req √ √ x
req,data √ x x

Fig. 2. First inferred black box Sensor: experiment Table and corresponding automa-
ton.

Then, the model-checker verifies the new system with the new Sensor, and
finds no errors since the action error is not allowed in the current model of
Sensor. Hence, the conformance tester checks both the Sensor and the Command.
For Sensor, the conformance tester comes up with the distinguishing sequence
request, error which is fed to the learner.

5 Testing a Grey Product

A more restrictive scenario is when we can only test whether w ∈ B×W, where
W is the (known) white box and B is the black box. In what follows, we show
how to modify our algorithm for this setting and provide an (almost) matching
lower bound. We focus on the case when there is one white box W of size m and
one black box B of size n; if there are several black boxes that cannot be tested
separately, we consider B to be their product. In some cases, B cannot be learned
exactly. For instance, if b is in the intersection of both alphabets and W has no
transition labeled by the letter b, then we cannot decide whether any state of B
has a transition labeled by b. Therefore, our goal is to learn a black box B∗ that
satisfies L(B × W) = L(B∗ × W). As W can be a machine that accepts every
word of Σ∗, our problem is a generalization of black-box learning; this implies
that one needs at least n2 × |Σ|n tests. We can also ignore what we know about
W and treat B × W = G as a black box of size at most mn, thus obtaining a
(mn)2 × |Σ|nm upper bound on the number of tests to perform; each of these
tests may be of size nm. Clearly, if m is much bigger than n, this approach does
not seem attractive.

8

5.1 Lower Bounds

We start by proving two new lower bounds. They imply that testing a black box
combined with a known white box is much more difficult than testing the black
box alone; in particular, unlike in black box checking, the number of tests may
have to be exponential in the size of the alphabet.

Proposition 4 For any n ∈ N, |Σ| even, and x, y �∈ Σ, there exists a family of
black boxes F = (Br)r∈R and a white box W with |Br| ≤ n+1, |W| ≤ n|Σ|2 such
that 2Ω(n|Σ|) tests of size Ω(n|Σ|) are needed to distinguish between Br ×W and
Br′ ×W.

s1 s2 s3 sn

s0

x x

Σ \ Σ1

Σ \ Σ2 Σ \ Σ3
y

Σ1 Σ2 Σ3 Σn

Σ ∪ {x}

x

Fig. 3. A black box in BB.

Proof. The automata in F are constructed as follows. Any automaton in
this family has n + 1 states s0, . . . , sn and uses the alphabet Σ∪{x, y}. For each
1 ≤ i ≤ n, let Σi be a subalphabet of Σ of size |Σ|/2. There is a transition
si

a−→ si for every a ∈ Σi and a transition si
a−→ s0 for every a ∈ Σ \ Σi. Also,

for i = 1, . . . , n− 1 there is a transition si
x−→ si+1. The only transition labeled

by y is sn
y−→ s0. Finally, s0

a−→ s0 for every a �= y. Every choice of subalphabets
(Σ1, · · · , Σn) defines a black box in F , which means that |F| = (|Σ|

|Σ|/2)
n; using

Stirling’s formula, we obtain |F| = 2Ω(n|Σ|).
To describe the white box W , we fix a strict order ≺⊆ Σ × Σ on letters.

Intuitively, we want W to accept words that consist of n blocks of |Σ|/2 letters
from Σ separated by x, followed by y; within each block, the letters should be
ordered according to ≺. More formally, W is the minimal deterministic automa-
ton that accepts prefixes of the words w1 · · ·wt, t = n(|Σ|/2 + 1), that satisfy
the following: wt = y, wi(|Σ|/2+1) = x for all i = 1, . . . , n− 1, and finally, for any
i �= 0, 1 mod |Σ/2|+ 1, we have wi−1 ≺ wi. It is not hard to see that W can be
implemented using n|Σ|2 states.

Clearly, any word of the form w1 · · ·wt accepted by W is a word of the black
box associated with (Σ1, . . . , Σn), where Σi consists of the letters in the ith

9

block of w; all other black boxes do not accept this word. This implies that we
need at least 2Ω(n|Σ|) tests of size Ω(n|Σ|) each. �

Our second bound shows that the size of the counterexample cannot be
bounded by a number lower than nm. Hence, the Vasilevskii-Chow approach
of testing every sequence of a bounded size will require at least |Σ|nm tests.

Proposition 5 Let n �= m be two prime numbers. There exists a white box W
with m + 1 states and two black boxes B,B′ of size at most n + 1 such that a
word of size nm is needed to distinguish between B ×W and B′ ×W.

Proof. For all r > 0, consider an automaton Ar with r+1 states s1, · · · , sr+1

and transitions si
a−→ si+1 for all i < r, sr

a−→ s1, and sr
b−→ sr+1. The regular

language accepted by Ar is a∗ + (ar−1)(ar)∗b.
If W = Am and B = An, it is easy to see that the smallest word of G that

contains b is amn−1b because m and n are distinct primes. This is the smallest
word that distinguishes W × B from W × B′, where B′ is the automaton with
one state s and s

a−→ s.
�

5.2 An Almost Optimal Algorithm

To obtain an upper bound that is close to the lower bound of Proposition 4, we
consider all automata B∗

i of size at most n as candidates for the black box.

Proposition 6 Let B be an automaton of size at most n and W a known au-
tomaton of size m. One can learn B ×W with at most 2n×|Σ|×logn tests of size
at most nm. Its complexity is O(n × m × 2n×|Σ|×log n)

Proof. Let (Br)r∈{0,··· ,l} be the family of all deterministic finite automata of size
at most n. For all r < l, if Br ×W and Br+1 ×W agree on all words of size at
most nm, they are equivalent. Otherwise, they have a distinguishing sequence,
i.e., a word w of size at most nm such that w ∈ Br×W and w /∈ Br+1×W or vice
versa. It suffices to test this word to make sure that B �= Br+1 or B �= Br. Observe
that w can be chosen as the smallest sequence in (L(B∗

r) ∩ L(B∗
r+1) ∩ L(W)) ∪

(L(B∗
r+1) ∩ L(B∗

r) ∩ L(W)); moreover, since B∗
r is deterministic, computing its

complement B∗
r is easy. Hence, we have to perform at most l tests of size at most

nm to find a Br such that Br ×W = B ×W . To finish the proof, note that the
number of automata of size at most n is bounded by 2n×|Σ|×logn.

�

The algorithm of Proposition 6 is nearly optimal in the worst case. However,
it is impractical since it has to test every possible automaton without learning
anything before the very last test is performed. Thus, its average complexity is
equal to its worst case complexity. On the other hand, if we apply the black
box learning algorithm described in Section 2.1 to our grey box, the worst case
complexity will be exponential in m, but the average complexity will be much
lower. In what follows, we show how to combine the two approaches to construct

10

an algorithm whose worst number of tests performed is 2n×|Σ|×logn, but the
average number of tests performed is likely to be better; the experiments in
Section 6 show that this is indeed the case.

Our algorithm uses Angluin’s learning algorithm L∗ on the grey box. How-
ever, instead of using Vasilevskii-Chow algorithm for conformance testing, it
uses an oracle that only tests the candidate solution G∗ proposed by L∗ on the
distinguishing sequences considered in Proposition 6, i.e., those for pairs of au-
tomata B′ ×W , B′′ ×W , where B′ is a generated candidate and B′′ = G∗. As in
Proposition 6, after each test we eliminate one of the candidates, so there can
be at most 2n×|Σ|×log n such tests; moreover, if G∗ fails some test, we have a
discrepancy on G∗ allowing refinement with L∗. Also, we check that G∗ does not
accept sequences in W ; any such sequence is a discrepancy and can be used to
refine G∗.

For this algorithm to be efficient, we need to eliminate early many automata.
To do so, we use the information about B provided by tests made by L∗. Namely,
if uw is executable in B ×W , then it is executable in B. If uw is executable in
B ×W , but uwa is not executable in W , then we do not know whether uwa is
executable in B. If uwa is executable in W , but not in B × W , then we know
that it is not executable in B. We generate an automaton by choosing for each
state and label the destination of the transition from this state with this label.
The number of automata generated depends heavily on the order in which we
generate the transitions. Worse yet, the best ordering may change a lot with the
choice of transition. Hence, we decide not to impose this order statically but to
determine it dynamically: the next transition chosen is the one that makes the
largest number of tests progress, so that hopefully a contradiction is reached and
every extension of the current automaton is eliminated.

Another technique to speed up the algorithm is to use information about the
white box in order to lower the number of distinguishing sequences per state
of the candidate solution. We denote by white(v) the state of W reached after
reading the sequence v ∈ V , where V is the set of access sequences for the grey
box. We also denote by Ws the distinguishing sequences needed to distinguish
the states in {v ∈ V | white(v) = s}, for each state s of W . We define a new
equivalence relation on V as v ∼ v′ iff white(v) = white(v′) = s and for all
w ∈ Ws, T (v, w) = T (v, w′); the closure property is inherited from this new
equivalence. The modified L∗ algorithm only fills those lines T (v, w) with w ∈
Wwhite(v). Notice that |Ws| ≤ n. It may be the case that white(v) = white(v′)
with v and v′ accepting the same language, and hence we may have to apply
a minimization procedure to get a minimal automaton. The complexity of this
new L∗ algorithm is O(n3m2|Σ|), thus saving us a factor of m.

5.3 An Algorithm Based on Partial Order Reduction

Another way to reduce the number of experiments in the conformance step is
to use the information about the alphabet. This approach is inspired by partial
order reduction [4]. Suppose that we know an independence relation I given by

11

I = Σ2 \ D, with (a, b) ∈ D iff a, b ∈ Σi for some i. For instance, in the data
acquisition example, (request, send) ∈ I.

Definition 1. Let σ, ρ ∈ Σ∗. Define σ
1≡ρ iff σ = uabv and ρ = ubav, where

u, v ∈ Σ∗, and a I b.

That is, ρ is obtained from σ (or vice versa) by commuting the order of an
adjacent pair of letters. For example, for Σ = {a, b} and I = {(a, b), (b, a)} we

have abbab
1≡ababb and abbab ≡ bbbaa.

Definition 2. Let σ ≡ ρ be the transitive closure of the relation
1≡. This relation

is often called trace equivalence [10].

If u ≡ vw, we say2 that u subsumes v. Intuitively, u contains at least as
much information as v, up to commutations of adjacent independent letters. For
example, abbab subsumes, among others, the strings abab and bbba. Extend now
the relation ≡⊆ Σ∗ × Σ∗ to infinite sequences as follows:

Let be a total order on the alphabet Σ. We call it the alphabetic order. We
extend in the standard alphabetical way to words, i.e., v vu and vau vbw
for v, u , w ∈ Σ∗, a, b ∈ Σ and a b.

Definition 3. Let σ ∈ Σ∗. Denote by σ̃ the least string under the relation
that is trace equivalent to σ. If σ = σ̃, then we say that σ is in lexicographic
normal form (LNF) [11].

Denote by α(σ) the set of letters occurring in σ. Let ≺σ be a total order on
the letters from α(σ) called the summary of σ. It is defined as follows:

Definition 4. Define a ≺σ b if the last occurrence of a in σ precedes the last
occurrence of b in σ. That is, σ = vaubw, where v ∈ Σ∗, u ∈ (Σ \ {a})∗,
w ∈ (Σ \ {a, b})∗.

Our reduction will be based on generating executions that are in LNF.

Lemma 1. Let σ ∈ Σ∗ be in LNF, and a ∈ Σ. Then σa is not in LNF exactly
when we can decompose σ = vu, such that (a) vau ≡ vua and (b) vau vu.

Intuitively, this means that we can commute the last a in vua backwards over u to
obtain a string that is smaller in the alphabetic order than vu. Note that it is not
sufficient to check locally that a does not commute with the previous letter, i.e.,
the case with |u| = 1. Consider Σ = {a, b, c} and I = {(a, b), (b, a), (b, c), (c, b)}.
Then ca is in LNF, while cab ≡ bca, where bca ca.

Proof. If the two conditions (a) and (b) hold, then obviously vua cannot
be in LNF since it is not minimal under the alphabetic order among sequences
equivalent to it.

2 This is slightly different from the standard definition, where subsumption is defined
between equivalence classes of strings.

12

Conversely, let ρ be the minimal string such that ρ ≡ σa. Denote by first(v)
the first letter of a nonempty string v. Let v be the maximal common prefix of
ρ and σ (and thus also of σa). Write σ = vu (as in (i)), and ρ = vw. Consider
the following cases:

1. w starts with an a.
(a) u does not contain an a. Then au ≡ ua, satisfying (ii).
(b) u contains a. Write u = u1au2, where u1 contains no a. Then u =

u1au2 ≡ au1u2. Since ρ = vw vua, we have that a = first(w)
first(u1) = first(u). Thus, vau1u2 vu1au2 = vu, a contradiction to
the fact that σ is in LNF.

2. Write w = w1aw2, where w2 does not contain an a. Then, w = w1aw2 ≡
w1w2a ≡ ua and thus w1w2 ≡ u. Since vw vu, we have that first(w1) =
first(w) first(u). Thus, vw1w2 vu = σ and vw1w2 ≡ vu. This contra-
dicts the fact that σ is in LNF.

�

The following Lemma shows how we can use a summary to decide whether
σa is in LNF. Since |σ| is usually quite larger than the size of the summary
(essentially |Σ|), this makes the generation of normal forms much more efficient.
We will show later how to make the checks and updates even more efficiently.

Lemma 2. Let σ ∈ Σ∗ be in LNF with a summary ≺σ and a ∈ Σ. Then σa is
not in LNF exactly when there is b ∈ α(σ) such that a b and for each c such
that b �σ c, aIc.

In words, this means that it is sufficient to check the commutativity of a with a
suffix of the summary that commutes with a, and look among these letters for
one that comes after a in the alphabetic order. This replaces a similar check for
an actual suffix of σ.

Proof. Suppose that σ is in LNF and σa is not. Let u be the shortest suffix of
σ according to the conditions of the previous lemma, i.e., σ = vu and vau ≡ vua.
Let b be the head of u. Then a b. Let C = α(u). We have aIc for each c ∈ C,
hence at least for each b �σ c.

Conversely, let b ∈ α(σ) a letter satisfying the conditions of the Lemma. Let
u be the shortest suffix of σ that begins with b. Since ≺σ is the summary of σ,
it follows that all the letters c ∈ α(u) satisfy b �α(σ) c, hence aIc. This means
that (a) and (b) from the previous lemma hold.

�

To check whether a given letter from Σ can extend a sequence in such a way
that it remains in LNF, it suffices to remember the summary �.

For instance, assume we have request � data � error � resume � pause
� send � ack. Then if the action error is seen, the new order � will be request
� data � resume � pause � send � ack � error. Thus, each step of the
depth first search costs us O(|Σ|), and hence the set LNFk can be generated in
time O(k · |Σ| · |LNFk|). Since we have to test at least O(k · |LNFk|) actions, our
algorithm is almost optimal.

13

Like in other partial order approaches, this algorithm can provide us with a
reduction that is at most exponential in the number of concurrent (e.g., inde-
pendent black box) components. Similarly, in other extreme cases, there can be
no reduction at all. It is worth noting that the same idea can be used to improve
the learning algorithm; two equivalent (with respect to commutation) states will
never be distinguished, hence the tests for one are copied from the other one.

6 Experimental Results

Our implementation prototype for grey box checking is written in SML and in-
cludes roughly 6000 lines of code. We use three kinds of examples: an artificially
pathological example simple n with n components, DAS (data acquisition sys-
tem) with 4 components from [16] with every event observable, and finally, a
system in which the memory is incremented and decremented by two processes
through a COMA coherency protocol with unobservable actions (COMA was
already used in [9], though modeled differently). The two different versions of
COMA correspond to different initializations of the memory. Notice that we
only include the learner/conformance part, since the model checking part is
the same for all algorithms considered. The algorithms are based on Angluin’s
learning algorithm L∗, but call different conformance testers: VC for the usual
Vasilevskii-Chow algorithm, LNF for VC generating only sequences in LNF,
GBC for Grey Box checking, i.e., generating distinguishing sequences from the
possible automata, and LNFGBC, which uses mainly LNF with calls to GBC
when no short sequences were found by LNF.

For each example, we indicated the number of states of the product G to
learn, the number of letters of the alphabet, and the size ‘leng.’ of the largest
experiment needed to distinguish two different states. Then for each algorithm,
we give the number of experiments needed to learn the whole system, in units
(nothing specified) or in millions (M). We also give an indicative value of the
time needed in parentheses, in minutes (or seconds if ‘s’ is specified). All tests
were realized on a P-M@1.2Ghz (Banias) with 256MB of dedicated memory.
In Grey Box Checking, we consider only one component as known, the other
components being black boxes that cannot be tested separately. In COMA, the
black B and white W component are close in size. In simple 2, W is much bigger
than B. For DAS and simple 4, B is much bigger than W .

example states letters leng. VC LNF GBC LNFGBC
simple 2 19 2 18 .5M (9) .5M (9) 388 (1s) 444 (1s)
simple 4 82 6 9 7.2M (22) 2.3M (3) too long 2.3M (4)

DAS 73 12 4 .25M (13s) .13M (8s) too long .13M (10s)
COMA(1) 48 8 6 9.8M (33) 5.7M (16) 1821 (120) .4M (2)
COMA(2) 48 8 7 46M (190) 25M (75) 1731 (170) .4M (2)

Partial Order

14

– The overhead in time due to the computation of the lexicographic normal
form (LNF) is negligible in all the tests we did.

– Apart from simple 2, which has no commutation, partial order results in a
speedup from 2 to 7 times. While the speedup in DAS is due to the equiv-
alence relation that we consider on states (the length of the distinguishing
sequences is too small), the longer the distinguishing sequences are, the more
commutations can be found and the better the speed up is.

Grey Box Checking

– GBC tests very few distinguishing sequences compared with LNF. However,
the time taken is not linear in the number of tests performed.

– simple 2 is the pathological case for VC, which explains why Grey Box
Checking succeeds. One is, however, unlikely to find such cases in real life.

– In many cases, a pure Grey Box Checking approach is unpractical. However,
a distinction should be made between two cases: In Simple 4, no informa-
tion guides the generation of automata. Even generating all automata with
3 states takes hours, and is useless. On the other hand, in the more real-
life DAS example, the initialization gives a lot of information. Although the
number of letters is high, every automaton of size 8 respecting the informa-
tion can be generated within 90 seconds. There are roughly 430 000 such
(partial) automata, over possibly 896 if no information was known.

– When VC is efficient (‘leng.’ is small), Grey Box Checking is useless (DAS).
– Using both Grey Box Checking and LNF in LNFGBC can be much more effi-

cient than any of them separately in non artificial cases (COMA). Moreover,
the overhead of GBC as a helper of LNF is small even in the case where GBC
is useless, and can lead to impressive speedup (100 times in COMA(2)).

– Many improvements are possible, e.g., using some of the tests realized by
LNF as information to guide the generation of automata.

7 Conclusion

Black box checking [12] was suggested as a way to directly verify a system when
its model is not given but a way of conducting experiments is provided. A related
idea, called adaptive model checking [9], allowed using an inaccurate and unup-
dated model to do the verification, while refining it during verification process.
In this paper we studied a related problem, where our system is decomposed
into a known part (white box) and unknown part (black box, or a collection of
concurrently operating black boxes).

In particular, one of the most interesting cases that we address here is that
of an unknown system (i.e., a black box) that is connected to a device whose
specification is given (a white box), while both components are coupled. In this
case, we can perform the experiments only on the combined system. We prove
that the complexity of verifying such a system is strictly in between that of

15

verifying the properties of the black box alone and that of considering the com-
plete structure as a big black box for which no specification is given. We provide
algorithms and heuristic methods for verifying such systems.

We implemented the proposed algorithms and showed that this approach can
be practical. We performed several experiments verifying that the overhead of
these techniques is small, while in some real life cases, the speedup over the black
box checking algorithm can be up to two orders of magnitude.

References

1. R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by
Learning Assumptions. In CAV’05, LNCS, 2005.

2. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75, 87-106 (1987).

3. R. Alur, R. Grosu and M. McDougall. Efficient Reachability Analysis of Hierar-
chical Reactive Machines In CAV’00, LNCS 1855, p.280-295, 2000.

4. E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
5. E. Clarke, D. Long, K. McMillan. Compositional Model Checking. In LICS’89,

IEEE , p.353-362, 1989.
6. T.S. Chow. Testing software design modeled by finite-states machines. In IEEE

transactions on software engineering, SE-4, 1978, 178-187.
7. J. Cobleigh, D. Giannakopoulou, C. Pasareanu. Learning Assumptions for Com-

positional Verification. In TACAS’03, LNCS 2619, p.331-346, 2003.
8. E. Elkind, B. Genest, D. Peled and H. Qu. Grey-Box Checking. Internal Report,

available at http://www.crans.org/˜genest/EGPQ.ps.
9. A. Groce, D. Peled and M. Yannakakis. Adaptive Model Checking. In TACAS’02,

LNCS 2280 , p.357-370, 2002.
10. A. Mazurkiewicz, Trace Semantics, Proceedings of Advances in Petri Nets, 1986,

Bad Honnef, Lecture Notes in Computer Science, Springer Verlag, 279–324, 1987.
11. E. Ochmanski, Languages and Automata, in The Book of Traces, V. Diekert, G.

Rozenberg (eds.), World Scientific, 167–204.
12. D. Peled, M. Vardi and M. Yannakakis. Black Box Checking. In FORTE/PSTV’99,

1999.
13. R. Rivest and R. Schapire. Inference of Finite Automata Using Homing Sequences.

Information and Computation, 103(2), p.299-347, 1993.
14. M.P. Vasilevskii. Failure diagnosis of automata. Kibertetika, no 4, p.98-108, 1973.
15. W. Weimer and G. Necula Mining Temporal Specifications for Error Detection.

In TACAS’05, LNCS 3440, p.461-476, 2005.
16. G. Xie and Z. Dang. Testing Systems of Concurrent Black-boxes - an Automata-

Theoretic and Decompositional Approach. In FATES’05, LNCS, 2005.

16

