
Unfolding Synthesis of Asynchronous Automata?

Nicolas BAUDRU & Rémi MORIN

Laboratoire d’Informatique Fondamentale de Marseille
39 rue Frédéric Joliot-Curie, F-13453 Marseille cedex 13, France

Abstract. Zielonka’s theorem shows that each regular set of Mazurkiewicz traces
can be implemented as a system of synchronized processes provided with some
distributed control structure called an asynchronous automaton. This paper gives
a new algorithm for the synthesis of a non-deterministic asynchronous automaton
from a regular Mazurkiewicz trace language. Our approach is based on an unfold-
ing procedure that improves the complexity of Zielonka’s and Pighizzini’s tech-
niques: Our construction is polynomial in terms of the number of states but still
double-exponential in the size of the alphabet. As opposed to Métivier’s work,
our algorithm does not restrict to acyclic dependence alphabets.

Introduction

One of the major contributions in the theory of Mazurkiewicz traces [5] characterizes
regular languages by means of asynchronous automata [17] which are devices with a
distributed control structure. So far all known constructions of asynchronous automata
from regular trace languages are quite involved and yield an exponential explosion
of the number of states [7, 12]. Furthermore conversions of non-deterministic asyn-
chronous automata into deterministic ones rely on Zielonka’s time-stamping function
[8, 13] and suffer from the same state-explosion problem. Interestingly heuristics to
build small deterministic asynchronous automata were proposed in [15].

Zielonka’s theorem and related techniques are fundamental tools in concurrency
theory. For instance they are useful to compare the expressive power of classical models
of concurrency such as Petri nets, asynchronous systems, and concurrent automata [10,
16]. These methods have been adapted already to the construction of communicating
finite-state machines from collections of message sequence charts [1, 6, 11].

In this paper we give a new construction of a non-deterministic asynchronous au-
tomaton. Our algorithm starts from the specification of a regular trace language in the
form of a possibly non-deterministic automaton. The latter is unfolded inductively on
the alphabet into an automaton that enjoys several structural properties (Section 3). Next
this unfolding automaton is used as the common skeleton of all local processes of an
asynchronous automaton (Section 2). Due to the structural properties of the unfolding
this asynchronous automaton accepts precisely the specified regular trace language.

We show that the number of local states built is polynomial in the number of states
in the specification and double-exponential in the size of the alphabet (Subsection 3.4).
Therefore our approach subsumes the complexity of Zielonka’s and Pighizzini’s con-
structions (Subsection 1.3).
? Supported by the ANR project SOAPDC

1 Background and main result

In this paper we fix a finite alphabet Σ provided with a total order v. An automaton
over a subset T ⊆ Σ is a structure A = (Q, ı, T,−→, F) where Q is a finite set of
states, ı ∈ Q is an initial state, −→⊆ Q × T × Q is a set of transitions, and F ⊆ Q

is a subset of final states. We write q
a

−→ q′ to denote (q, a, q′) ∈−→. An automaton
A is called deterministic if we have q

a
−→ q′ ∧ q

a
−→ q′′ ⇒ q′ = q′′. For any word

u = a1...an ∈ Σ?, we write q
u

−→ q′ if there are some states q0, q1, ..., qn ∈ Q

such that q = q0
a1−→ q1...qn−1

an−→ qn = q′. The language L(A) accepted by some
automaton A consists of all words u ∈ Σ? such that ı

u
−→ q for some q ∈ F . A subset

of words L ⊆ Σ? is regular if it is accepted by some automaton.

1.1 Mazurkiewicz traces

We fix an independence relation ‖ over Σ, that is, a binary relation ‖ ⊆ Σ × Σ which
is irreflexive and symmetric. For any subset of actions T ⊆ Σ, the dependence graph
of T is the undirected graph (V, E) whose set of vertices is V = T and whose edges
denote dependence, i.e. {a, b} ∈ E ⇔ a6 ‖b.

The trace equivalence ∼ associated with the independence alphabet (Σ, ‖) is the
least congruence over Σ? such that ab ∼ ba for all pairs of independent actions a‖b.
For a word u ∈ Σ?, the trace [u] = {v ∈ Σ? | v ∼ u} collects all words that are
equivalent to u. We extend this notation from words to sets of words in a natural way:
For all L ⊆ Σ?, we put [L] = {v ∈ Σ? | ∃u ∈ L, v ∼ u}.

A trace language is a subset of words L ⊆ Σ? that is closed for trace equivalence:
u ∈ L ∧ v ∼ u ⇒ v ∈ L. Equivalently we require that L = [L]. As usual a trace
language L is called regular if it is accepted by some automaton.

1.2 Asynchronous systems vs. asynchronous automata

Two classical automata-based models are known to correspond to regular trace lan-
guages. Let us first recall the basic notion of an asynchronous system [3].

DEFINITION 1.1. An automaton A = (Q, ı, Σ,−→, F) over the alphabet Σ is called
an asynchronous system over (Σ, ‖) if we have

ID: q1
a

−→ q2 ∧ q2
b

−→ q3 ∧ a‖b implies q1
b

−→ q4 ∧ q4
a

−→ q3 for some q4 ∈ Q.

The Independent Diamond property ID ensures that the language L(A) of any asyn-
chronous system is closed for the commutation of independent adjacent actions. Thus
it is a regular trace language. Conversely it is easy to observe that any regular trace
language is the language of some deterministic asynchronous system.

We recall now a more involved model of communicating processes known as asyn-
chronous automata [17]. A finite family δ = (Σk)k∈K of subsets of Σ is called a distri-
bution of (Σ, ‖) if we have a6 ‖b ⇔ ∃k ∈ K, {a, b} ⊆ Σk for all actions a, b ∈ Σ. Note
that each subset Σk is a clique of the dependence graph (Σ, 6 ‖) and a distribution δ is
simply a clique covering of (Σ, 6 ‖). We fix an arbitrary distribution δ = (Σk)k∈K in the
rest of this paper. We call processes the elements of K. The location Loc(a) of an action
a ∈ Σ consists of all processes k ∈ K such that a ∈ Σk: Loc(a) = {k ∈ K | a ∈ Σk}.

DEFINITION 1.2. An asynchronous automaton over the distribution (Σk)k∈K consists
of a family of finite sets of states (Qk)k∈K , a family of initial local states (ık)k∈K

with ık ∈ Qk, a subset of final global states F ⊆
∏

k∈K Qk, and a transition relation
∂a ⊆

∏
k∈Loc(a) Qk ×

∏
k∈Loc(a) Qk for each action a ∈ Σ.

The set of global states Q =
∏

k∈K Qk can be provided with a set of global transitions
−→ in such a way that an asynchronous automaton is viewed as a particular automaton.
Given an action a ∈ Σ and two global states q = (qk)k∈K and r = (rk)k∈K , we put
q

a
−→ r if ((qk)k∈Loc(a) , (rk)k∈Loc(a)) ∈ ∂a and qk = rk for all k ∈ K \ Loc(a).

The initial global state ı consists of the collection of initial local states: ı = (ık)k∈K .
Then the global automaton A = (Q, ı, Σ,−→, F) satisfies Property ID of Def. 1.1.
Thus it is an asynchronous system over (Σ, ‖) and L(A) is a regular trace language. An
asynchronous automaton is deterministic if its global automaton is deterministic, i.e.
the local transition relations ∂a are partial functions.

1.3 Main result and comparisons to related works

Although deterministic asynchronous automata appear as a restricted subclass of deter-
ministic asynchronous systems, Zielonka’s theorem asserts that any regular trace lan-
guage can be implemented in the form of a deterministic asynchronous automaton.

THEOREM 1.3. [17] For any regular trace language L there exists a deterministic
asynchronous automaton whose global automaton A satisfies L = L(A).

In [12] a complexity analysis of Zielonka’s construction is detailed. Let |Q| be the
number of states of the minimal deterministic automaton that accepts L and |K| be the
number of processes. Then the number of local states built by Zielonka’s technique in
each process k ∈ K is |Qk| 6 2O(2|K|.|Q| log |Q|). The simplified construction by Cori
et al. in [4] also suffers from this exponential state-explosion [5].

Another construction proposed by Pighizzini [14] builds a non-deterministic asyn-
chronous automaton from particular rational expressions. This simpler approach pro-
ceeds inductively on the structure of the rational expression. Each step can easily be
shown to be polynomial. In particular the number of local states in each process is (at
least) doubled by each restricted iteration. Consequently in some cases the number of
local states in each process is exponential in the length of the rational expression.

In the present paper we give a new construction that is polynomial in |Q| (Th. 4.9):
It produces |Qk| 6 (3.|Σ|.|Q|)d local states for each process, where d = 2|Σ|, |Σ|
is the size of Σ, and |Q| is the number of states of some (possibly non-deterministic)
asynchronous system that accepts L.

With the help of two simple examples we present our new approach in the next
section. It consists basically in two steps: A naive construction applied on an unfolded
automaton. Comparisons with known techniques is hard since this twofold approach
has no similarity with previous methods. On the other hand we have applied recently
our unfolding strategy in the framework of Message Sequence Charts [2]. We believe
also that our approach can be strengthened in order to build deterministic asynchronous
automata from deterministic asynchronous systems with a similar complexity cost.

a, b

a, b, c

aa, c

b

b

b

b

a a, c

FIG. 1. Asynchronous system A FIG. 2. Asynchronous system A
′

2 Twofold strategy

In this section we fix a (possibly non-deterministic) automaton A = (Q, ı, Σ,−→, F)
over the alphabet Σ. We fix also a distribution δ = (Σk)k∈K of (Σ, ‖). We introduce
a basic construction of a projected asynchronous automaton Â associated with A. In
general L(Â) 6= L(A) even if we assume that A satisfies Axiom ID of Def. 1.1. Our
strategy will appear as a method to unfold an asynchronous system A into a larger au-
tomaton AUnf that represents the same language: [L(AUnf)] = L(A) and such that the
projected asynchronous automaton of the unfolding AUnf yields a correct implementa-
tion: L(ÂUnf) = [L(AUnf)] = L(A). Note that AUnf will not fulfill ID in general.

The construction of the projected asynchronous automaton Â over δ from the au-
tomaton A proceeds as follows. First the local states are copies of states of A: We put
Qk = Q for each process k ∈ K. The initial state (ı, ..., ı) consists of |K| copies of
the initial state of A. Moreover for each a ∈ Σ, the pair ((qk)k∈Loc(a) , (rk)k∈Loc(a))
belongs to the transition relation ∂a if there exist two states q, r ∈ Q and a transition
q

a
−→ r in A such that the two following conditions are satisfied:

– for all k ∈ Loc(a), qk
u

−→ q in A for some word u ∈ (Σ \ Σk)?;
– for all k ∈ Loc(a), rk = r; in particular all rk are equal.

To conclude this definition, a global state (qk)k∈K is final if there exists a final state
q ∈ F such that for all k ∈ K there exists a path qk

u
−→ q in A for some word

u ∈ (Σ \ Σk)?. The next result can be proved straightforwardly.

PROPOSITION 2.1. We have L(A) ⊆ [L(A)] ⊆ L(Â).

EXAMPLE 2.2. We consider the independence alphabet (Σ, ‖) where Σ = {a, b, c},
a‖b but a6 ‖c6 ‖b. Let A be the asynchronous system depicted in Fig. 1 and δ be the
distribution with two processes Σa = {a, c} and Σb = {b, c}. We assume here that all
states of A are final. Then we get L(Â) = Σ? whereas the word cc does not belong to
L(A). Consider now the asynchronous system A′ depicted in Fig. 2. We can check that
L(A′) = L(A) and L(Â′) = L(A).

This example shows that for some automata A the naive construction of the pro-
jected asynchronous automaton does not provide a correct implementation. However it
is possible to unfold the automaton A to get a larger automaton A′ for which the naive
construction is correct. The aim of this paper is to show that this unfolding process is
feasible with a polynomial cost for any asynchronous system A.

3 Unfolding algorithm

In the rest of the paper we fix some asynchronous system A = (Q, ı, Σ,−→, F) that
is possibly non-deterministic. The aim of this section is to associate A with a family of
automata called boxes and triangles which are defined inductively. The last box built by
this construction is called the unfolding of A (Def. 3.1).

Boxes and triangles are related to A by means of morphisms which are defined
as follows. Let A1 = (Q1, ı1, T,−→1, F1) and A2 = (Q2, ı2, T,−→2, F2) be two
automata over a subset of actions T ⊆ Σ. A morphism σ : A1 → A2 from A1 to A2

is a mapping σ : Q1 → Q2 from Q1 to Q2 such that σ(ı1) = ı2, σ(F1) ⊆ F2, and
q1

a
−→1 q′1 implies σ(q1)

a
−→2 σ(q′1). In particular, we have then L(A1) ⊆ L(A2).

Now boxes and triangles are associated with an initial state that may not correspond
to the initial state of A. They are associated also with a subset of actions T ⊆ Σ. For
these reasons, for any state q ∈ Q and any subset of actions T ⊆ Σ, we let AT,q denote
the automaton (Q, q, T,−→T , F) where −→T is the restriction of −→ to the transitions
labeled by actions in T : −→T =−→ ∩(Q × T × Q).

In this section we shall define the box 2T,q for all states q ∈ Q and all subsets
of actions T ⊆ Σ. The box 2T,q is a pair (BT,q , βT,q) where BT,q is an automaton
over T and βT,q : BT,q → AT,q is a morphism. Similarly, we shall define the triangle
4T,q for all states q and all non-empty subsets of actions T . The triangle 4T,q is a pair
(TT,q , τT,q) where TT,q is an automaton over T and τT,q : TT,q → AT,q is a morphism.

The height of a box 2T,q or a triangle 4T,q is the cardinality of T . Boxes and
triangles are defined inductively on the height. We first define the box 2∅,q for all states
q ∈ Q. Next triangles of height h are built upon boxes of height g < h and boxes of
height h are built upon either triangles of height h or boxes of height g < h, whether
the dependence graph (T, 6 ‖) is connected or not.

The base case deals with the boxes of height 0. For all states q ∈ Q, the box 2∅,q

consists of the morphism β∅,q : {q} → Q that maps q to itself together with the au-
tomaton B∅,q = ({q}, q, ∅, ∅, F∅,q) where F∅,q = {q} if q ∈ F and F∅,q = ∅ otherwise.
In general a state of a box or a triangle is final if it is associated with a final state of A.

DEFINITION 3.1. The unfolding AUnf of A is the box BΣ,ı.

3.1 Building triangles from boxes

Triangles are made of boxes of lower height. Boxes are inserted into a triangle recur-
sively on the height along a tree-like structure and several copies of the same box may
appear within a triangle. We want to keep track of this structure in order to prove prop-
erties of triangles (and boxes) inductively: This enables us to allow for different copies
of the same box within a triangle.

To do this, each state of a triangle is associated with a rank k ∈ N such that
all states with the same rank come from the same copy of the same box. It is also
important to keep track of the height each state comes from, because boxes of a tri-
angle are inserted recursively on the height. For these reasons, a state of a triangle
4T◦,q◦ = (TT◦,q◦ , τT◦,q◦) is encoded as a quadruple v = (w, T, q, k) such that w is a

2∅,q◦

2{a},qa
2{b},qb

2{c},qc

2{a,b},qa,b
2{a,b},q′

a,b
2{a,c},qa,c

2{a,c,d},qa,c,d
2{a,b,c},qa,b,c

FIG. 3. Tree structure of triangles 4T◦,q◦ with T ◦
= {a, b, c, d}

state from the box 2T,q with height h = |T | and v is added to the triangle within the
k-th box inserted into the triangle. Moreover this box is a copy of 2T,q . In that case
the state v maps to τT◦,q◦(v) = βT,q(w), that is, the insertion of boxes preserves the
correspondance to the states of A. Moreover the morphism τT◦,q◦ of a triangle 4T◦,q◦

is encoded in the data structure of its states.
We denote by B′ = MARK(B, T, q, k) the generic process that creates a copy B′ of

an automaton B by replacing each state w of B by v = (w, T, q, k). The construction
of the triangle 4T◦,q◦ starts with using this marking procedure and building a copy
MARK(2∅,q◦ , ∅, q◦, 1) of the base box 2∅,q◦ which gets rank k = 1 and whose marked
initial state (ı2,∅,q◦ , ∅, q◦, 1) becomes the initial state of 4T◦,q◦ . Along the construction
of this triangle, an integer variable k counts the number of boxes already inserted in the
triangle to make sure that all copies inserted get distinct ranks. The construction of the
triangle 4T◦,q◦ proceeds by successive insertions of copies of boxes according to the
single following rule.

RULE 3.2. A new copy of the box 2T ′,q′ is inserted into the triangle 4T◦,q◦ in con-
struction if there exists a state v = (w, T, q, l) in the triangle in construction and an
action a ∈ Σ such that

T1: βT,q(w)
a

−→ q′ in the automaton AT◦,q◦;
T2: T ′ = T ∪ {a} and T ⊂ T ′ ⊂ T ◦;
T3: no a-transition relates sofar v to the initial state of some copy of the box 2T ′,q′ in

the triangle in construction.

In that case some a-transition is added in the triangle in construction from v to the
initial state of the new copy of the box 2T ′,q′ .

Note here that Condition T2 ensures that inserted boxes have height at most |T ◦| −
1. By construction all copies of boxes inserted in a triangle are related in a tree-like
structure built along the application of the above rules. It is easy to implement the

construction of a triangle from boxes as specified by the insertion rules above by means
of a list of inserted boxes whose possible successors have not been investigated, in a
depth-first-search or breadth-first-search way. Condition T2 ensures also that if a new
copy of the box 2T ′,q′ is inserted and connected from v = (w, T, q, l) then T ⊂ T ′ ⊂
T ◦. This shows that this insertion process eventually stops and the resulting tree has
depth at most |T ◦ − 1|. Moreover, since we start from the empty box and transitions in
boxes 2T,q carry actions from T , we get the next obvious property.

LEMMA 3.3. If a word u ∈ Σ? leads in the triangle 4T◦,q◦ from its initial state to
some state v = (w, T, q, l) then u ∈ T ? and all actions from T appear in u.

Note also that it is easy to check that the mapping τT◦,q◦ induced by the data struc-
ture builds a morphism from TT◦,q◦ to AT◦,q◦ . For latter purposes we define the list of
missing transitions to state q′ ∈ Q in the triangle 4T◦,q◦ as follows.

DEFINITION 3.4. Let T ◦ ⊆ Σ be a subset of actions and q◦, q′ be two states of A.
The set of missing transitions MISSING(T ◦, q◦, q′) consists of all pairs (v, a) where
v = (w, T, q, l) is a state of 4T◦,q◦ and a is an action such that

– βT,q(w)
a

−→ q′ in the automaton AT◦,q◦;
– T ⊂ T ∪ {a} = T ◦.

Note here that the insertion rule T2 for triangles forbids to insert a copy of the box
BT◦,q′ and to connect its initial state with a transition labeled by a from state v. Note
also that |MISSING(T ◦, q◦, q′)| is less than the number of states in 4T◦,q◦ .

3.2 Building boxes from triangles

As announced in the introduction of this section the construction of the box 2T◦,q◦

depends on the connectivity of the dependence graph of T ◦. Assume first that T ◦ ⊆ Σ is
not connected. Let T1 denote the connected component of (T ◦, 6 ‖) that contains the least
action a ∈ T ◦ w.r.t. the total order v over Σ. We put T2 = T ◦ \ T1. The construction
of the box 2T◦,q◦ starts with building a copy of the box 2T2,q◦ . Next for each state w

of 2T2,q◦ and each transition βT2,q◦(w)
a

−→ q in AT◦,q◦ with a ∈ T1, the algorithm
adds some a-transition from the copy of w to the initial state of a new copy of 2T1,q .

We come now to the definition of boxes associated with a connected set of actions.
This part is more subtle than the two previous constructions which have a tree-structure
and create no new loop. Let T ◦ ⊆ Σ be a connected (non-empty) subset of actions.
Basically the box 2T◦,q◦ collects all triangles 4T◦,q for all states q ∈ Q. Each triangle
is replicated a fixed number of times and copies of triangles are connected in some very
specific way. We adopt a data structure similar to triangles (and unconnected boxes). A
node w of a box 2T◦,q◦ is a quadruple (v, T ◦, q, k) where v is a node of the triangle
4T◦,q and k ∈ N. The rank k will allow us to distinguish between different copies of
the same triangle within a box.

The construction of the box 2T◦,q◦ consists in two steps. First m copies of each
triangle 4T◦,q are inserted in the box and the first copy of 4T◦,q◦ gets rank 1; moreover
the first copy of its initial state is the initial state of the box. The value of m will be
discussed below. In a second step some transitions are added to connect these triangles
to each other according to the single following rule.

4T◦,q1 4T◦,q1 . . . 4T◦,q1

4T◦,q2 4T◦,q2 . . . 4T◦,q2

...
...

4T◦,qn 4T◦,qn . . . 4T◦,qn

FIG. 4. Square structure of a box 2T◦,q◦ with T ◦ connected

RULE 3.5. For each triangle 4T◦,q, for each state q′ ∈ Q, and for each missing transi-
tion (v, a) ∈ MISSING(T ◦, q, q′) we add some a-transition from each copy of state v to
the initial state of some copy of triangle 4T◦,q′ . In this process of connecting triangles
we obey to the two following requirements:

C1: No added transition connects two states from the same copy of a triangle.
C2: At most one transition connects one copy of 4T◦,q to one copy of 4T◦,q′ .

Condition C1 requires that there is no added transition from state (v, T ◦, q, l) with rank
l to the (initial) state (ı4,T◦,q, T

◦, q, l). To do so it is sufficient to have two copies of
each triangle. Condition C2 ensures that if we add from a copy of 4T◦,q of rank l some
transition (v1, T

◦, q, l)
a1−→ (ı4,T◦,q′ , T ◦, q′, l′) and some transition (v2, T

◦, q, l)
a2−→

(ı4,T◦,q′ , T ◦, q′, l′) to the same copy of 4T◦,q′ then v1 = v2 and a1 = a2. Recall
that the number of added transitions from a fixed copy of 4T◦,q to copies of 4T◦,q′ is
|MISSING(T ◦, q, q′)|. Altogether it is sufficient to take

m = max
q,q′∈Q

|MISSING(T ◦, q, q′)| + 1 (1)

From the definition of missing transitions (Def. 3.4) it follows that the data-structure
defines a morphism from the box 2T◦,q◦ to AT◦,q◦ . Furthermore Definition 3.4 and
Lemma 3.3 yield easily the following useful property.

LEMMA 3.6. Within a box 2T◦,q◦ associated with a connected set of actions T ◦, if a
non-empty word u ∈ Σ? leads from the initial state of a triangle to the initial state of a
triangle then the alphabet of u is precisely T ◦.

3.3 Some notations and a useful observation

First, for each path s = q
u

−→ q′ in some automaton G over Σ and for each action
a ∈ Σ we denote by s|a the sequence of transitions labeled by a that appear along s.

Let T be a non-empty subset of Σ. Let v be a state from the triangle TT,q . By
construction of TT,q , v is a quadruple (w, T ′, q′, k′) such that w is a state from the box
2T ′,q′ and k′ ∈ N. Then we say that the box location of v is l2(v) = (T ′, q′, k′).
We define the sequence of boxes L2(s) visited along a path s = v

u
−→ v′ in TT,q as

follows:

– If the length of s is 0 then s corresponds to a state v of TT,q and L2(s) = l2(v).
– If s is a product s = s′ · t where t is the transition v′′ a

−→ v′ then L2(s) = L2(s′)
if l2(v′′) = l2(v′) and L2(s) = L2(s′).l2(v′) otherwise.

Similarly we define the sequence of boxes L2(s) visited along a path s in a box BT,q

where T is an unconnected set of actions and the sequence of triangles L4(s) visited
along a path s in a box BT,q where T is a non-empty connected set of actions.

By means of Lemma 3.6 the next fact is easy to show.

LEMMA 3.7. Let T be a non-empty connected set of actions. Let a ∈ T be some action.
Let s1 = v

u1−→ v′ and s2 = v
u2−→ v′ be two paths from v to v′ in a box BT,q . If

s1|a = s2|a then L4(s1) = L4(s2).

3.4 Complexity of this unfolding construction

For all naturals n > 0 we denote by Bn the maximal number of states in a box BT,q

with |T | = n and q ∈ Q. Similarly for all naturals n > 1 we denote by Tn the maximal
number of states in a triangle TT,q with |T | = n and q ∈ Q. Noteworthy B0 = 1 and
T1 = 1. Moreover Tn is non-decreasing because the triangle 4T ′,q is a subautomaton
of the triangle 4T,q as soon as T ′ ⊆ T . In the following we assume 2 6 n 6 |Σ|.
Consider some subset T ⊆ Σ with |T | = n. Each triangle TT,q is built inductively
upon boxes of height h 6 n − 1. We distinguish two kinds of boxes. First boxes of
height h < n − 1 are inserted. Each of these boxes appears also in some triangle TT ′,q

with T ′ ⊂ T and |T ′| = n − 1. Each of these triangles is a subautomaton of TT,q with
at most Tn−1 states. Moreover there are only n such triangles which give rise to at most
n.Tn−1 states built along this first step. Second, boxes of height n − 1 are inserted and
connected to states inserted at height n − 2. Each of these states belongs to some box
2T ′,q′ with |T ′| = n − 2; it gives rise to at most 2.|Q| boxes at height n − 1 because
|T \ T ′| = 2: This produces at most 2.|Q|.Bn−1 new states. Altogether we get

Tn 6 n.Tn−1.(1 + 2.|Q|.Bn−1) 6 3.|Σ|.|Q|.Tn−1.Bn−1 (2)

Assume now 1 6 n 6 |Σ| and consider a connected subset T ⊆ Σ with |T | = n.
Then each box BT,q is built upon all triangles TT,q′ of height n. It follows from (1) that
m 6 Tn+1 6 2.Tn. Therefore the box BT,q contains at most 2.Tn copies of each trian-
gle TT,q′ . It follows that we have (∗) |BT,q | 6 2.|Q|.T2

n. Consider now a non-connected
subset T ⊆ Σ with |T | = n. Then BT,q consists of at most 1 + (n− 1).Q.Bn−1 boxes
of height at most n − 1. Therefore we have also (∗∗) |BT,q | 6 |Σ|.|Q|.B2

n−1. From
(2), (∗), and (∗∗) we get the next result by an immediate induction.

LEMMA 3.8. If 1 6 n 6 |Σ| then Tn 6 (3.|Σ|.Q)2
n−1 and Bn 6 (3.|Σ|.Q)2

n−1.

As a consequence the unfolding automaton AUnf has at most (3.|Σ|.Q)2
|Σ|−1 states.

4 Properties of the unfolding construction

In this section we fix a regular trace language L over the independence alphabet (Σ, ‖).
We assume that the possibly non-deterministic automaton A fulfills Property ID of
Def. 1.1 and satisfies L(A) = L.

4.1 Arched executions for boxes and triangles

Let G be some automaton over Σ and Ĝ be its projected asynchronous automaton. For
each global state q of Ĝ we denote by q↓k the local state of process k in q. Let q1 and q2

be two global states of Ĝ. A true step q1
a

−→ q2 of action a from q1 to q2 in Ĝ consists
of a transition q

a
−→ r in G such that q1↓k = q2↓k for all k 6∈ Loc(a), q1↓k = q and

q2↓k = r for all k ∈ Loc(a). If q1↓j = q2↓j for all processes j 6= k, q1↓k
a

−→ q2↓k,
and k 6∈ Loc(a) then q1

ε
−→ q2 is called a ε-step of process k from q1 to q2.

DEFINITION 4.1. An execution of u ∈ Σ? from q to q′ in Ĝ is a sequence of n true or
ε-steps qi−1

xi−→ qi such that q0 = q, qn = q′, and u = x1...xn with xi ∈ Σ ∪ {ε}.

For each execution s of u ∈ Σ? and each process k ∈ K we denote by s↓k the path of
G followed by process k along s. For each state q of G we denote by q̂ the global state
of Ĝ such that each process is at state q. A global state is coherent if it is equal to some
q̂. Notice that the initial state and all final states of Ĝ are coherent. An execution from
q1 to q2 in Ĝ is called arched if both q1 and q2 are coherent. The next observation shows
how arched executions are related to the language of Ĝ.

PROPOSITION 4.2. For all words u ∈ Σ? we have u ∈ L(Ĝ) if and only if there exists
an arched execution of u from the initial state of Ĝ to some of its final states.

The following result expresses a main property of boxes: It asserts that active pro-
cesses visit the same sequence of triangles along an arched execution within a box.

PROPOSITION 4.3. Let BT,q be a box with T a connected set of actions and s be an
arched execution in B̂T,q . Then L4(s↓k) = L4(s↓k′) for all k, k′ ∈ Loc(T).

Proof. Since T is connected it is sufficient to show that for all actions a ∈ T and for all
processes k, k′ ∈ Loc(a) we have L4(s↓k) = L4(s↓k′). So we fix an action a ∈ T

and two processes k, k′ ∈ Loc(a). Since k and k′ synchronize on the same transition
at each occurrence of a, we have (s↓k)|a = (s↓k′)|a. It follows by Lemma 3.7 that
L4(s↓k) = L4(s↓k′).

Since processes in K \ Loc(T) are involved in ε-steps only, we can change their
behavior within an execution of u without affecting the resulting word u and we get:

PROPOSITION 4.4. Let BT,q be a box with T some connected set of actions and s be
an arched execution of u in B̂T,q from ŵ to ŵ′. Then there exists some arched execution
s◦ of u in B̂T,q from ŵ to ŵ′ such that L4(s◦↓k) = L4(s◦↓j) for all j, k ∈ K.

Noteworthy it is easy to adapt these remarks to unconnected boxes and triangles due
to their tree-like structure.

4.2 A technical lemma and a key property

We come now to the main technical lemma of this paper. It completes Proposition 4.4
and asserts that we can split any arched execution s associated with a box BT,q with a
connected set of actions T into an equivalent series of arched executions s0 · t1 · s1 ·
t2 · ... · tn · sn where each si is an arched execution within a component triangle and
each ti corresponds to the unique added transition from a triangle to another triangle.
This decomposition will allow us to reason about arched executions inductively on the
construction of the unfolding.

LEMMA 4.5. Let BT,q be a box with T some connected set of actions and l1, ..., ln be
a sequence of triangle locations within BT,q with n > 2. Let s : ŵ

u
−→ ŵ′ be an arched

execution of u in B̂T,q from ŵ to ŵ′ such that L4(s◦↓k) = l1...ln for all k ∈ K. Then
there exist a transition w2

a
−→ w3 in BT,q and three arched executions s1 : ŵ

u1−→ ŵ2,
s2 : ŵ2

u2−→ ŵ3, and s3 : ŵ3
u3−→ ŵ′ such that

– L4(s1↓k) = l1 for all k ∈ K;
– s2↓k = w2

a
−→ w3 for all k ∈ K;

– L4(s3↓k) = l2...ln for all k ∈ K;
– (s1 · s2 · s3↓k) = (s↓k) for all k ∈ K;
– s1 · s2 · s3 is an execution of u1.u2.u3 in B̂T,q and u1.u2.u3 ∼ u.

Intuitively we require that all processes leave together the first triangle along the unique
transition w2

a
−→ w3 that leads from l1 to l2. This result relies on Lemma 3.6 and the

two properties C1 and C2 of Rule 3.5.
Observe now that the tree-structure of triangles and boxes associated to unconnected

sets of actions ensures that we can state a similar result for all triangles and all boxes.

LEMMA 4.6. Let T ⊆ Σ be a non-empty subset of actions. If s is an arched execution

of u from ŵ1 to ŵ2 in B̂T,q (resp. T̂T,q) then there exists some path w1
u′

−→ w2 in BT,q

(resp. TT,q) such that u′ ∼ u.

Proof. Observe first that this property holds also trivially for the empty boxes B∅,q . We
proceed now by induction on the size of T along the construction of triangles and boxes.
Let n = |T |. Assume that the property holds for all triangles TT †,q with |T †| 6 n.
Assume also that T is connected. By Lemma 4.5 we can split the execution s into an
equivalent series of arched executions s0 · t1 · s1 · t2 · ... · tn · sn where each si is an
arched execution within a component triangle and each ti corresponds to the unique
added transition from a triangle to another triangle. By induction hypothesis each si

corresponds to a path in the corresponding triangle. In that way we get a path for the
sequence s. The case where T is not connected is similar due to the tree-structure of
these boxes. The case of triangles is also similar.

Recall now that arched executions are closely related to the langage of the projected
asynchronous automaton (Prop. 4.2). As an immediate corollary we get the following
key result.

PROPOSITION 4.7. We have L(ÂUnf) ⊆ [L(AUnf)].

4.3 Main result

Due to the morphisms from boxes and triangles to asynchronous systems AT,q we
have the inclusion relation [L(BT,q)] ⊆ L(AT,q) for each box BT,q and similarly
[L(TT,q)] ⊆ L(AT,q) for each triangle TT,q . We can check by an easy induction that
boxes satisfy the converse inclusion relation, which leads us to the next statement.

PROPOSITION 4.8. We have [L(AUnf)] = L(A).

We come to the main statement of this paper.

THEOREM 4.9. The asynchronous automaton ÂUnf satisfies L(ÂUnf) = L(A). More-
over the number of states in each process is |Qk| 6 (3.|Σ|.|Q|)d where d = 2|Σ|.

Proof. By Proposition 4.8 we have [L(AUnf)] = L(A). By Proposition 2.1 we have
also [L(AUnf)] ⊆ L(ÂUnf) hence L(A) ⊆ L(ÂUnf). Now Proposition 4.7 shows that
L(ÂUnf) ⊆ [L(AUnf)] = L(A). The complexity result follows from Lemma 3.8.

References

1. Baudru N. and Morin R.: Safe Implementability of Regular Message Sequence Charts Spec-
ifications. Proc. of the ACIS 4th Int. Conf. SNDP (2003) 210–217

2. Baudru N. and Morin R.: The Synthesis Problem of Netcharts. (2006) – Submitted
3. Bednarczyk M.A.: Categories of Asynchronous Systems. PhD thesis in Computer Science

(University of Sussex, 1988)
4. Cori R., Métivier Y. and Zielonka W.: Asynchronous mappings and asynchronous cellular

automata. Inform. and Comput. 106 (1993) 159–202
5. Diekert V. and Rozenberg G.: The Book of Traces. (World Scientific, 1995)
6. Genest B., Muscholl A. and Kuske D.: A Kleene Theorem for a Class of Communicating

Automata with Effective Algorithms. DLT, LNCS 3340 (2004) 30–48
7. Genest B. and Muscholl A.: Constructing Exponential-size Deterministic Zielonka Au-

tomata. Technical report (2006) – 12 pages
8. Klarlund N., Mukund M. and Sohoni M.: Determinizing Asynchronous Automata. ICALP,

LNCS 820 (1994) 130–141
9. Métivier Y.: An algorithm for computing asynchronous automata in the case of acyclic

non-commutation graph. ICALP, LNCS 267 (1987) 226–236
10. Morin R.: Concurrent Automata vs. Asynchronous Systems. LNCS 3618 (2005) 686–698
11. Mukund M., Narayan Kumar K. and Sohoni M.: Synthesizing distributed finite-state sys-

tems from MSCs. CONCUR, LNCS 1877 (2000) 521–535
12. Mukund M. and Sohoni M.: Gossiping, Asynchronous Automata and Zielonka’s Theorem.

Report TCS-94-2, SPIC Science Foundation (Madras, India, 1994)
13. Muscholl A.: On the complementation of Büchi asynchronous cellular automata. ICALP,

LNCS 820 (1994) 142–153
14. Pighizzini G.: Synthesis of Nondeterministic Asynchronous Automata. Algebra, Logic and

Applications, vol. 5 (1993) 109–126
15. Ştefănescu A., Esparza J. and Muscholl A.: Synthesis of distributed algorithms using asyn-

chronous automata. CONCUR, LNCS 2761 (2003) 20–34
16. Thiagarajan P.S.: Regular Event Structures and Finite Petri Nets: A Conjecture. Formal and

Natural Computing, LNCS 2300 (2002) 244–256
17. Zielonka W.: Notes on finite asynchronous automata. RAIRO, Theoretical Informatics and

Applications 21 (Gauthiers-Villars, 1987) 99–135

