
Introduction to kernel methods March 15, 2011

Training an SVM in the primal
based on [Chapelle, 2007]

Preamble

In this practical session, the goal is to code (in Octave) a Support Vector Machine for binary
classification. The method implemented is the one described in [Chapelle, 2007], which considers
an unconstrained, convex and twice-differentiable formulation of the 2-norm soft-margin SVM. In
order to solve the learning problem a Newton descent strategy is used.

The effectiveness of the approach will be tested against a 2-dimensional toy dataset.

1 Data preparation

All the code and data will be stored in a directory called ‘primalsvm’.

1. Download the 2-dimensional training and test data at the following locations:

• Training data and corresponding labels

– http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_train_data.asc

– http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_train_labels.asc

• Test data and corresponding labels

– http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_test_data.asc

– http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_test_labels.asc

2. Using Octave’s find and save commands, store the set of positive and negative training data
in the files ‘bananaplus.asc’ and ‘bananaminus.asc’, respectively.

3. Using the plot command, plot the training data and, using the print command, save the
plot in a file called ‘banana.eps’ or ‘banana.png’ (or whatever extension is suitable with
the type of format you prefer).

2 RBF kernels

Program a function rbfkernel(U,V,sigma) that computes the RBF kernel of width sigma between
the nu data points of U and the nv data points of V (each row corresponds to an example): the
output of rbfkernel(U,V,sigma) is an n1×n2 matrix:

rbfkernel


U =


u>
1

u>
2
...

u>
nu

 , V =



v>
1

v>
2
...
.
..

v>
nv


, σ


=


kσ(u1,v1) kσ(u1,v2) · · · · · · kσ(u1,vnv)
kσ(u2,v1) kσ(u2,v2) · · · · · · kσ(u2,vnv)

...
... · · · · · ·

...
kσ(unu ,v1) kσ(u2,v2) · · · · · · kσ(unu ,vnv)


︸ ︷︷ ︸

nv columns

nu rows

Recall that the RBF kernel kσ of width σ is such that kσ(u,v) = exp

(
−‖u− v‖2

2σ2

)
.

Liva Ralaivola Master I Informatique 1

http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_train_data.asc
http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_train_labels.asc
http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_test_data.asc
http://www.lif.univ-mrs.fr/~liva/DONNEES/banana_test_labels.asc

Introduction to kernel methods March 15, 2011

3 SVM learning

Given a training set S = {(x1, y1), . . . , (xn, yn)}, the unconstrained 2-norm soft-margin SVM
formulation that we are going to work with is:

min
f∈Hk,b∈R

λ‖f‖2 +

n∑
i=1

|1− yi [f(xi) + b]|2+ ,

whose solution provides us with the function

x 7→ f(x) + b =

n∑
i=1

αik(xi,x) + b.

The difference with what we saw during the lecture is that, here, we directly work in the Repro-
ducing Kernel Hilbert space associated with kernel k: in the lecture, k was assumed to be the usual
(linear) kernel inner product.

Thanks to the representer theorem, we now that:

f(·) =

n∑
i=1

αik(xi, ·)

(where the xi’s are from the training set). The minimization problem can be rewritten as

min
α∈Rn

λα>Kα +

n∑
i=1

∣∣1− yi [k>i α + b
]∣∣2

+
, (1)

where ki is the i-th column of the Gram matrix of k associated with S, i.e.:

k>i = [k(xi,x1) · · · k(xi,xn)].

Let us call F the objective function of (1), that is,

F

(
β :=

[
b
α

])
:= λα>Kα +

n∑
i=1

∣∣1− yi [k>i α + b
]∣∣2

+
. (2)

F is convex and twice-differentiable with respect to β.

In order to solve (1), we are going to implement a Newton descent procedure. Such minimization
scheme relies on the minimization of successive second order approximations of the objective func-
tion under consideration. Namely, it is an iterative process that generates a sequence of points
β1,β2, . . . ,βt, . . . such that βt+1 is the minimum of the following second-order approximation F̃
of F at βt:

F̃t(β) = F
(
βt
)

+ (β − βt)>∇t +
1

2

(
β − βt

)>
Ht

(
β − βt

)
, (3)

where

• ∇t is the gradient of F (i.e. the vector of all partial derivatives) at βt:

∇t =

(
∂F

∂βi

∣∣∣∣
β=βt

)
i

,

• Ht is the Hessian of F (i.e. the matrix of second order derivatives) at βt:

Ht =

(
∂2F

∂βi∂βj

∣∣∣∣
β=βt

)
ij

.

Liva Ralaivola Master I Informatique 2

Introduction to kernel methods March 15, 2011

As F is convex, Ht is (semi-)positive definite and finding the minimum of F̃t (cf Equation 3) is
just easy: it suffices to compute the gradient and to make it be equal to 0. This gives:

βt+1 = βt −H−1t ∇t. (4)

This equation defines the iterative scheme of the optimization procedure: starting from an arbitrary
β0, it is used to compute the iterates βt that converge to the solution of (2).

In order to program an SVM, follow the following steps.

1. At every step of the optimization process, there will be nsv points xi such that yi[k
>
i α

t+bt] <
1 (recall that βt = [b α>]>), that we call support vectors. At step t, the matrix It is the n×n
diagonal matrix having ones only on the nsv diagonal entries corresponding to the indices of
the support vectors.

(a) Show that the Hessian matrix H is given by

Ht = 2

(
1>It1 1>ItK
KIt1 λK +KItK

)
.

(b) Show that the gradient ∇t is given by

∇t = Htβ
t − 2

(
1>

K

)
ItY.

Here, 1 is an n-dimensional vector of 1’s, Y is the n-dimensional vector of labels, and K is
the Gram matrix of the input data.

2. Implement the Newton optimization procedure. Given some small ε > 0, for instance, ε =
10−5, the algorithm stops when ∇>t H−1t ∇t ≤ ε.

Note: there might be instability problems because of a bad conditioning of Ht, this might be solved
by adding a small ridge—i.e. a positive value on the diagonal— on the Gram matrix K.

4 Testing, scaling, sparsifying

1. Measure the classification accuracy of your learned SVM on the test data. Try different
values of kernel width σ and regularization parameter λ.

2. Switch the training data and the test data. (The number of test data is 10 times as big as
the number of training data.) Evaluate the speed of the learning procedure.

3. (A little bit of thinking.) At the end of the procedure, the learned function

x 7→
∑
i

αik(xi,x) + b

will probably be expressed in terms of all training data, i.e. many αi’s will be nonzero. Here
is a quick (and dirty?) way to sparsify the solution:

(a) Choose n0 < n: this will define the size of the kernel expansion we are going to look for.
Randomly select n0 points xi1 , . . . ,xin0

from S and find parameters θ = [θ1 · · · θn0
]>

that minimize ∥∥∥∥∥∥
n∑
i=1

αik(xi, ·)−
n0∑
j=1

θjk(xij , ·)

∥∥∥∥∥∥
2

.

Liva Ralaivola Master I Informatique 3

Introduction to kernel methods March 15, 2011

(b) Test the quality of the resulting classifier

x 7→
n0∑
j=1

θjk(xij ,x) + b.

References

[Chapelle, 2007] Chapelle, O. (2007). Training a support vector machine in the primal. Neural
Computation, 19:1155–1178.

Liva Ralaivola Master I Informatique 4

	Data preparation
	RBF kernels
	SVM learning
	Testing, scaling, sparsifying

