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Abstract

The interval number of a graph G is the minimum k such that one can
assign to each vertex of G a union of k intervals on the real line, such that
G is the intersection graph of these sets, i.e., two vertices are adjacent
in G if and only if the corresponding sets of intervals have non-empty
intersection.

In 1983 Scheinerman and West [The interval number of a planar graph:
Three intervals suffice. J. Comb. Theory, Ser. B, 35:224–239, 1983] proved
that the interval number of any planar graph is at most 3. However the
original proof has a flaw. We give a different and shorter proof of this
result.

1 Introduction

For a positive integer k, a k-interval representation of a graph G = (V,E) is a
set {f(v) | v ∈ V } where f(v) is the union of at most k intervals on the real
line representing vertex v ∈ V , such that uv (u 6= v) is an edge of G if and
only if f(u)∩ f(v) 6= ∅. In 1979 Trotter and Harary [16] introduced the interval
number of G, denoted by i(G), as the smallest k such that G has a k-interval
representation. In 1983 Scheinerman and West [13] constructed planar graphs
with interval number at least 3 and proposed a proof for the following:

Theorem 1 (Scheinerman, West [13]). If G is planar, then i(G) ≤ 3.

In this paper we point out a flaw in that proof and give an alternative proof
of Theorem 1. The original proof is based on induction, maintaining a very
comprehensive description of the (partial) representation and its properties.
However in certain cases, one of the required properties can not be maintained
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during the construction. A precise description of the problematic case is given
in Section 4. Let us also remark that in his thesis [12], Scheinerman proposes a
slightly different argumentation for the considered case which also leads to the
same problem.

In the remaining part of the introduction we discuss some related work. In
Section 2 we introduce the notions used in the new proof, which is then given
in Section 3. We conclude with final remarks in Section 5.

Related work. A graph with i(G) ≤ 1 is called an interval graph. A con-
cept closely related to the interval number is the track number of G, denoted
by t(G), which is the smallest k such that G is the union of k interval graphs.
Equivalently, t(G) is the smallest k such that G admits a k-interval representa-
tion that is the union of k 1-interval representations, each on a different copy of
the real line (called a track) and each containing one interval per vertex. More
recently, Knauer and Ueckerdt [10] defined the local track number of G, denoted
by t`(G), to be the smallest k such that G is the union of d interval graphs, for
some d, where every vertex of G is contained in at most k of them. It is easy
to see that for every graph G we have i(G) ≤ t`(G) ≤ t(G).

Gonçalves [7] proved that the track number of planar graphs is at most 4,
which is best-possible [8]. It is an open problem whether there is a planar graph
with local track number 4 [10]. Balogh et al. [2] show that any planar graph of
maximum degree at most 4 has interval number at most 2. For further recent
results about interval numbers of other classes of planar graphs and general
graphs, let us refer to [3] and [6], respectively.

Finally, let us mention that West and Shmoys [17] proved that deciding
i(G) ≤ k is NP-complete for each k ≥ 2, while Jiang [9] proved the same for
t(G) ≤ k, and Stumpf [14] for t`(G) ≤ k.

2 Preliminaries

All graphs considered here are finite, simple, undirected, and non-empty. If
G = (V,E) is a graph and {f(v) | v ∈ V } is a k-interval representation of G for
some k, we say that a subset S of the real line is intersected by some f(v) if
S ∩ f(v) 6= ∅. For a point p with p ∈ f(v), we also say that p is covered by f(v).
A vertex v has a broken end b if b is an endpoint of an interval in f(v) and b is not
covered by any other f(w) for w ∈ V −{v}. We say that a vertex v is displayed
if f(v) contains a portion (i.e., a non-empty open interval) not intersected by
any other f(w) for w ∈ V − {v}. An edge uv ∈ E is displayed if f(u) ∩ f(v)
contains a portion not intersected by any other f(w) for w ∈ V − {u, v}.

The depth of the representation {f(v) | v ∈ V } is the largest integer d such
that some point of the real line is covered by at least d sets f(v) with v ∈ V . For
d ≥ 1, the depth d interval number of G, denoted by id(G), is the smallest k such
that G admits a k-interval representation of depth d. Scheinerman and West [13]
proved that there are planar graphs G with i2(G) ≥ 4, while Gonçalves [7]
proved that i2(G) ≤ 4 for all planar graphs G. In Theorem 3 we obtain that
for any 4-connected planar graph G it holds i2(G) ≤ 3. Finally, we shall prove
here that i3(G) ≤ 3 for all planar graphs G, which is also the original claim of
Scheinerman and West.
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3 An alternative proof of Theorem 1

In this section we give a new proof for Theorem 1, i.e., that every planar graph
G has interval number at most 3. A triangulation is a plane embedded graph
in which every face is bounded by a triangle. In other words, a triangulation
is a maximally planar graph on at least three vertices with a fixed plane em-
bedding. As every planar graph is an induced subgraph of some triangulation
(For example, iteratively adding a new vertex to a non-triangular face together
with one edge to each of the face’s incident vertices, eventually results in such
a triangulation.) and the interval number is monotone under taking induced
subgraphs, we may assume without loss of generality that G is a triangulation.

A triangle in G is non-empty if its interior contains at least one vertex of
G. We shall construct a 3-interval representation of G by recursively splitting
G along its non-empty triangles. This leaves us with the task to represent
4-connected triangulations, i.e., triangulations whose only non-empty triangle
is the outer triangle, and to “glue” those representation along the non-empty
triangles of G. More precisely, we shall roughly proceed as follows:

(I) Consider a non-empty triangle ∆ with inclusion-minimal interior and the
set X of all vertices in its interior.

(II) Call induction on the graph G1 = G − X, obtaining a 3-interval rep-
resentation f1 of G1 with additional properties on how inner faces are
represented.

(III) Since the subgraph G2 of G induced by V (∆) ∪X is 4-connected, we can
utilize a recent result of the second and fourth author to decompose G2

into a path and two forests.

(IV) Using this decomposition, we define a 3-interval representation f2 of G2

that coincides with f1 on V (∆).

We remark that the essentials of the construction in step (IV) can be already
found in [1]. Also, the decomposition of a triangulation along its non-empty
triangles is a common method in the field of intersection graphs; see e.g., [4,5,15].
Hence the key to our new proof is the most recent [11] decomposition used in
step (III), which we shall state next.

Let G = (V,E) be a 4-connected triangulation with outer vertices x, y, z.
We denote by ux the unique inner vertex of G adjacent to y and z (if there were
several, G would not be 4-connected), and call the vertex ux the vertex opposing
x. Similarly, the vertex uy opposing y and the vertex uz opposing z are defined.
Note that since G is 4-connected we have that ux, uy, uz all coincide if |V | = 4,
and are pairwise distinct if |V | ≥ 5. We use the following recent result of the
second and fourth author (Lemma 3.1 in [11]), which we have adapted here to
the case of 4-connected triangulations (see Figure 1 for an illustration):

Lemma 2 (Knauer, Ueckerdt [11]). Let G be a plane 4-connected triangulation
with outer triangle ∆out = x, y, z and corresponding opposing vertices ux, uy, uz.
Then the inner edges of G can be partitioned into three forests Fx, Fy, Fz such
that

• Fx is a Hamiltonian path of G \ {y, z} going from x to ux,
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Figure 1: The decomposition in Lemma 2 for the case G 6∼= K4 (left) and G ∼= K4

(right).

• Fy is a spanning tree of G \ {x, z},

• Fz is a spanning forest of G \ {y} consisting of two trees, one containing
x and one containing z, unless G ∼= K4. In this case Fz = zuz.

Note that the conditions on the decomposition in Lemma 2 imply that the
edge xuy is in Fx and the edge zuy is in Fz (since x and z are in different
components of Fz and z is not in Fx). We are now ready to give our new proof
of Theorem 1.

Proof of Theorem 1. We have to show that every planar graph G admits a 3-
interval representation of depth at most 3, in particular that i(G) ≤ 3. As
every planar graph is an induced subgraph of some planar triangulation and the
interval number is monotone under taking induced subgraphs, we may assume
without loss of generality that G is a triangulation.

We proceed by induction on the number n of vertices in G, showing that G
admits a 3-interval representation of depth 3 with the additional invariant that
(I1) every vertex is displayed, and (I2) every inner face contains at least one
displayed edge.

The base case is n = 3, i.e., G is a triangle with vertices x, y, z. In this case,
it is easy to define a 3-interval representation of G with invariants (I1) and
(I2). For example, take f(x) := [0, 3], f(y) := [1, 4] ∪ [6, 7], and f(z) := [2, 5],
and note that edges xy and yz are displayed.

Now assume that n ≥ 4, i.e., G contains at least one non-empty triangle.
Let ∆ be a non-empty triangle in G with inclusion-minimal interior among all
non-empty triangles in G. Let X ⊂ V be the (non-empty) set of vertices in the
interior of ∆, Gout = G−X be the triangulation induced by V −X, and Gin be
the 4-connected triangulation induced by V (∆) ∪X. By induction hypothesis
there exists a 3-interval representation {f(v) | v ∈ V −X} of Gout of depth 3
satisfying the invariant (I1) and (I2). In particular, the three vertices x, y, z
of ∆, which now form an inner face of Gout, are already assigned to up to three
intervals each. We shall now extend this representation to the vertices in X.

By invariant (I2) at least one edge of ∆, say xz, is a displayed edge. Consider
the vertices ux, uy, uz opposing x, y, z in Gin, respectively, and let Fx, Fy, Fz be
the decomposition of the inner edges of Gin given by Lemma 2 (note that we
can choose x, y, z arbitrarily in Lemma 2). For convenience, if Gin

∼= K4, let
Fz additionally have vertex x as a one-vertex component. We define, based on
this decomposition, three intervals for each vertex v ∈ X as follows.
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• Represent the path Fx−{x} on an unused portion of the real line by using
one interval per vertex, and in such a way that every vertex and every edge
is displayed. Let this representation be denoted by {f1(v) | v ∈ X}.

• Consider y to be the root of the tree Fy, and for each vertex v in Fy−{y}
consider the parent w of v in Fy, i.e., the neighbor of v on the v-to-y path
in Fy. Create a new interval for v strictly inside the displayed portion
of w. If w = y, such a portion exists in f(y) as (I1) holds for f , and if
w 6= y, such a portion exists in f1(w). Let these new intervals be denoted
by {f2(v) | v ∈ X}.

• Consider the three trees that are the components of Fz − {uyz}, that
is, of Fz after removing the edge uyz. Say T1 contains vertex uy (and
possibly no other vertex), T2 contains z, and T3 contains x. Consider uy,
respectively z and x, to be the root of T1, respectively T2 and T3. For
each vertex v in T1 − {uy}, respectively T2 − {z} and T3 − {x}, consider
the parent w of v in T1, respectively T2 and T3, and create a new interval
for v in the displayed portion of w. (Again, if w ∈ {x, z}, such a portion
exists in f(w) as (I1) holds for f , and if w /∈ {x, z}, such a portion exists
in f1(w).) Let these new intervals be denoted by {f3(v) | v ∈ X − {uy}}.

• Finally, create a new interval f3(uy) in the displayed portion of edge xz
(to represent xuy and zuy).

Defining f(v) = f1(v) ∪ f2(v) ∪ f3(v) for each v ∈ X, it is straightforward
to check that {f(v) | v ∈ V } is a 3-interval representation of G = Gout ∪ Gin

of depth 3. Moreover, the edge xz, every inner edge of Gin except for uyx and
uyz, and every vertex of X is displayed. Hence this representation satisfies our
invariants (I1) and (I2), which concludes the proof.

4 The approach of Scheinerman and West

To explain the proof strategy of Scheinerman and West, we introduce some more
terminology from their paper. For a plane embedded graph G let G0 denote
the (outerplanar) subgraph induced by its external vertices, i.e., those lying on
the unbounded, outer face. The edges of G0 that bound the outer face are the
external edges, while those that bound two inner faces are the chords. The graph
G0 is considered together with its decomposition into its inclusion-maximal 2-
connected subgraphs, called blocks. Furthermore, we fix for each component of
G0 a non-cut-vertex z as the root of that component and say that z = zH is
the root of its corresponding block H. For each remaining block H of G0 let
zH be the cut-vertex of G0 in H that is closest to the root of the corresponding
component. For a chord xy of G0 contained in block H with root zH and a
third vertex u 6= x, y of H, say that u is on the z∗H-side of xy if u and zH lie in
different connected components of H − {x, y}.

The argument of Scheinerman and West proceeds by induction on the num-
ber of vertices in G with a stronger induction hypothesis on how G0, i.e., the
subgraph of G induced by the external vertices, is represented. Every edge xy of
G0 shall be represented in such a way that for a possible future vertex v which
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Figure 2: Figure 3 from [13] illustrating how to use a z∗H -reusable endpoint b
of f(x), which is covered by some vertex u and assigned to a chord xy of H,
in order to insert a new vertex v that is adjacent to x and y. Note that the
interval for u is split into two.

is adjacent to x and y we can define only one interval I that has at least two of
the following three properties:

P1: I ∩ f(x) 6= ∅, P2: I ∩ f(y) 6= ∅, P3: I is displayed.

If xy is displayed, it is easy to find an interval I for v having properties P1 and
P2. Moreover if x, respectively y, has a broken end, it is easy to satisfy P1,
respectively P2, and P3. However if xy is not displayed and neither x nor y has
a broken end, Scheinerman and West propose to alter the existing representation
of another vertex u whose interval covers an endpoint of x. As their modification,
which is depicted in Figure 2, splits an interval of u into two, it is necessary
that u appears at most twice so far, meaning that f(u) consists of at most two
intervals. This shall be achieved by specifying the current representation of G
quite precisely.

Given a rooted plane embedded graph G = (V,E), i.e., with a fixed root zH
for each block H of G0, a representation {f(v) | v ∈ V } is called P-special if
every vertex is displayed and each of the following holds:

(1) Each root is represented by one interval and every other external vertex
is represented by at most two intervals.

(2) For each block H of G0 all edges incident to zH are displayed.

(3) Each non-displayed edge xy of any block H of G0 is assigned to an endpoint
b of f(x) or f(y), say f(x), such that the following hold.

(3.1) If xy is an external edge, the endpoint b is a broken end.

(3.2) If xy is a chord, the endpoint b is a broken end, or b is covered by f(u)
for only one other vertex u, where additionally u is on the z∗H -side of
xy and ux is an external edge of G0. An endpoint b satisfying this
condition is called z∗H-reusable for edge xy.

(3.3) For each endpoint b there is at most one edge assigned to b.

(3.4) Each vertex covers at most one endpoint which has an edge assigned.
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Figure 3: A plane embedded 9-vertex graph G with one block H and root
zH = x1, and how it is reduced to an independent set according to the induction
rules in [13]. In each of the six steps, the set X is highlighted and the smaller
graph is obtained by removing all vertices in X.

Now Scheinerman and West propose to show by induction on the number
of vertices in G that every rooted plane embedded graph G admits a P-special
3-interval representation. They remove a small set of carefully chosen external
vertices from G, induct on the smaller instance to obtain a P-special repre-
sentation, create intervals for the removed vertex/vertices, extend and/or alter
the existing representation, and argue that the result is a P-special 3-interval
representation of G.

The problem lies in the last step. Some removed vertex v may cover an
edge ux that is external in G − v, but a chord in G. But it may be that some
non-displayed chord xy of G − v is assigned to an endpoint b of f(x) that is
z∗H -reusable and covered by u. This assignment cannot be kept, since ux is
no longer external, which however is required for z∗H -reusability as it is defined
in (3.2) above. Thus, the invariants of the induction cannot be maintained.

Let us explain in more detail below (discussing only the relevant cases) on
basis of a small example graph that the above problem can indeed occur, and
why some straightforward attempt to fix it does not work. To this end, consider
the plane embedded 9-vertex graph G in the top-left of Figure 3. The thick
edges highlight the subgraph G0, which has only one block H, and let us pick
vertex x1 to be the root of that block, i.e., zH = x1. The base case of the
inductive construction is an independent set of vertices. Otherwise, we identify
a set X of external vertices that we want to remove as follows. Consider a
leaf-block H of G0, i.e., one that contains no root of another block, its root zH ,
and distinguish the following cases.

Case I: Every chord of H is incident to zH . In this case label the vertices
of H as zH , v1, . . . , vk, k ≥ 1, in this cyclic order around the outer face of
H. If k ≥ 2, let X = {v1, . . . , vp}, where p is the smallest integer greater
than or equal to 2 for which vp has degree 2 in H.

Case II: Some chord of H is not incident to zH . Consider an inner face
C of H that does not contain zH and is bounded by only one chord xy,
and distinguish further.
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Case IIa: C is a triangle. Let X = {v}, where v 6= x, y is the third
vertex in C.

Case IIb: C has at least four vertices. In this case label the vertices
of C as x, v1, . . . , vk, y, k ≥ 2, in this cyclic order around C, and let
X = {v1, v2}.

Figure 3 shows how our example graph G is reduced to an independent set
according to these rules. Next, we consider these steps in reverse order and
construct an interval representation following the case distinction as proposed
in [13]. Let us refer to Figure 4 for a step-by-step illustration of this construction.
The problem arises in Step 5.

Step 1: base case. Represent x1 with a single interval.

Step 2: Case I, X = {x2, x3}. Insert intervals for x1, x2 into the displayed in-
terval for x1 = zH . Place overlapping, displayed intervals for x1, x2 in an
unused portion of the real line.

Step 3: Case IIa, X = {x4}. As the chord xy = x2x3 is displayed, called
subcase (1), add a displayed interval for v = x4 and place the second
interval available for v in the displayed portion for xy. Assign one broken
end of v to each of the external edges xv = x2x4 and yv = x3x4.

Step 4: Case IIa, X = {x5}. As the chord xy = x3x4 is not displayed, but
assigned to a broken end b of x = x4, called subcase (2), add the displayed
interval for v = x5 so that it overlaps f(x) at b. Add a second interval for
v in the displayed portion of f(y). Assign the chord xy to the z∗H -reusable
endpoint b, which is here covered by u = x5 with ux being an external
edge.

Step 5: Case IIa, X = {x6}. As the chord xy = x4x5 is displayed, we are in
subcase (1) again. We add a displayed interval for v = x6 and place a
second interval for v in the displayed portion for xy. Now the problem is
that the chord x3x4 can no longer be assigned to the endpoint b, since the
edge x4x5 is no longer external.

One might be tempted to assume that the problem can be fixed by relaxing
the definition of z∗H -reusability as follows. Instead of ux being external,
maybe it suffices to require that u appears at most twice so far. Let us call
this new concept almost z∗H-reusability. However, the assumption that ux
is external is crucial for Case IIb, as we will demonstrate in Steps 6 and 7
below.

Step 6: Case IIb, X = {x7, x8}. Assign v1 = x8 an interval in the displayed
interval for x = x3, and assign v2 = x7 an interval in the displayed interval
for v3 = x6. As the chord xy = x3x4 is not displayed, but assigned
to an almost z∗H -reusable endpoint b of y = x4, we are in subcase (2c)
of [13]. Here it is concluded in [13] that the vertex u covering b must be
u = vk = x6 due to the externality of edge ux. Hence it would suffice to
place overlapping displayed intervals for v1 and v2 in an unused portion of
the line and add intervals for the inner neighbors of v1, v2 in the displayed
portion for v1, v2, and v1v2, according to the subset of these vertices that
they are adjacent to.
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Figure 4: The steps of the inductive construction in [13] applied to the graph
in Figure 3. Note that after Step 5 the chord x3x4 is not displayed and the
right endpoint of the longer interval for x4 is not z∗H -reusable since edge x4x5

is not external. Further note that after Step 7 vertex x5 is represented by four
intervals.

9



However, in our example we have u = x5, which at least appears only
twice so far, but which is an inner neighbor of v1 and v2, and thus has to
spend its third interval in the displayed portion of v1v2. We end up with
chord xy still assigned to the endpoint b that is covered by u, but neither
is ux external, nor is u appearing only twice so far. In particular, we are
not prepared to insert a future vertex adjacent to x and y, as we illustrate
in Step 7.

Step 7: Case IIa, X = {x9}. The chord xy = x3x4 is not displayed, but as-
signed to the endpoint b of x = x4, which is covered by u = x5 with u
however being internal and appearing three times already. Thus, if we
apply the proposed modification as illustrated in Figure 2, we split one
interval of u into two, causing f(u) to consist of four intervals.

This concludes our example. Let us remark that the fourth interval for x5

in Step 7 of Figure 4 might seem superfluous, but is actually needed to give u
a displayed portion. This in turn is necessary as there might be a neighbor w
of x5 of degree 1. For example, with w inside face x5x6x7, it would have been
inserted between Steps 5 and 6, according to Case I with zH = x5, spending
one interval in the displayed portion of u.

Also note that in this particular example other ways of assigning endpoints
in Step 5 would have allowed the process to continue. However, the first author
together with Daniel Gonçalves tried some time to obtain new invariants to fix
this induction but did not succeed.

5 Concluding remarks

As mentioned above, Axenovich et al. [1] used some steps of the construction
from Section 3 to prove that every graph G whose edges decompose into k − 1
forests and another forest of maximum degree 2 admits a k-interval represen-
tation of depth at most 2. Note that if G is a 4-connected triangulation with
outer triangle ∆out, the decomposition of G − E(∆out) given by Lemma 2 can
be easily extended to a decomposition of all edges in G into two forests and a
path, which immediately gives the following.

Theorem 3. If G is planar and 4-connected, then i2(G) ≤ 3.

Given that the largest interval number among all planar graphs is 3, while
the largest track number is 4, it remains open to determine whether the largest
local track number among all planar graphs is 3 or 4, c.f., [10, Question 19]. We
feel that the gluing of several triangulations along separating triangles is likely to
be possible along the lines discussed in [10] for planar 3-trees. However, finding a
3-local track representation of a 4-connected planar triangulation, strengthening
Theorem 3, seems to be more difficult. What is the largest local track number
among all planar graphs?

Acknowledgments. We would like to thank Maria Axenovich and Daniel
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[8] D. Gonçalves and P. Ochem. On star and caterpillar arboricity. Discrete
Math., 309(11):3694–3702, 2009.

[9] M. Jiang. Recognizing d-interval graphs and d-track interval graphs. Al-
gorithmica, 66(3):541–563, 2013.

[10] K. Knauer and T. Ueckerdt. Three ways to cover a graph. Discrete Math.,
339(2):745–758, 2016.

[11] K. Knauer and T. Ueckerdt. Decomposing 4-connected planar triangula-
tions into two trees and one path. J. Comb. Theory, Ser. B, 134:88–109,
2019.

[12] E. R. Scheinerman. Intersection Classes and Multiple Intersection Param-
eters of Graphs. PhD thesis, Princeton University, 1984.

[13] E. R. Scheinerman and D. B. West. The interval number of a planar graph:
Three intervals suffice. J. Comb. Theory, Ser. B, 35:224–239, 1983.

[14] P. Stumpf. On covering numbers of different kinds. Bachelor thesis, Karls-
ruhe Institute of Technology, August 2015.

[15] C. Thomassen. Interval representations of planar graphs. J. Comb. Theory,
Ser. B, 40(1):9–20, 1986.

11



[16] W. T. Trotter and F. Harary. On double and multiple interval graphs. J.
Graph Theory, 3:205–211, 1979.

[17] D. B. West and D. B. Shmoys. Recognizing graphs with fixed interval
number is NP-complete. Discrete Appl. Math., 8:295–305, 1984.

12


