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ABSTRACT. Huang proved that every set of more than half the vertices of the d-dimensional hyper-
cube Qd induces a subgraph of maximum degree at least

√
d, which is tight by a result of Chung,

Füredi, Graham, and Seymour. Huang asked whether similar results can be obtained for other
highly symmetric graphs.

First, we present three infinite families of Cayley graphs of unbounded degree that contain in-
duced subgraphs of maximum degree 1 on more than half the vertices. In particular, this refutes a
conjecture of Potechin and Tsang, for which first counterexamples were shown recently by Lehner
and Verret. The first family consists of dihedrants and contains a sporadic counterexample encoun-
tered earlier by Lehner and Verret. The second family are star graphs, these are edge-transitive
Cayley graphs of the symmetric group. All members of the third family are d-regular containing an
induced matching on a d

2d−1 -fraction of the vertices. This is largest possible and answers a question
of Lehner and Verret.

Second, we consider Huang’s lower bound for graphs with subcubes and show that the corre-
sponding lower bound is tight for products of Coxeter groups of type An, I2(2k + 1), and most
exceptional cases. We believe that Coxeter groups are a suitable generalization of the hypercube
with respect to Huang’s question.

Finally, we show that induced subgraphs on more than half the vertices of Levi graphs of projec-
tive planes and of the Ramanujan graphs of Lubotzky, Phillips, and Sarnak have unbounded degree.
This gives classes of Cayley graphs with properties similar to the ones provided by Huang’s results.
However, in contrast to Coxeter groups these graphs have no subcubes.

1. INTRODUCTION

Recently, Huang [23] proved the Sensitivity Conjecture [30] by showing that an induced sub-
graph on more than half of the vertices of the d-dimensional hypercube Qd has maximum degree
at least

√
d. For a graph G = (V,E) denote by α(G) the size of a largest independent set in G,

by ∆(G) its maximum degree, and for a K ⊆ V by G[K] the subgraph induced by K. Define the
sensitivity σ(G) of G as the minimum value ∆(G[K]) among all the K ⊆ V on more than α(G)

vertices. Since in a regular bipartite G one has α(G) = |V |
2

, Huang’s result can be expressed as
σ(Qd) ≥

√
d. Huang asks what can be said about σ(G) ifG is a “nice” graph with high symmetry.

Further, since by a result of Chung, Füredi, Graham, and Seymour [12] the bound for Qd is tight,
he wonders for which graphs a tight bound on the sensitivity follows from his method.
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2 I. GARCÍA-MARCO AND K. KNAUER

The present paper studies both of these questions by considering (simple, undirected1, right)
Cayley graphs of groups to be “nice” with high symmetry. That is, for a group Γ and a subset
C ⊆ Γ define Cay(Γ, C) with {x, y} ∈ E if and only if x−1y ∈ C. First positive results in this
direction were obtained by Alon and Zheng [6], who proved that in a d-regular Cayley graph G of
an elementary abelian 2-group, then σ(G) ≥

√
d. Then recently, Potechin and Tsang [31] showed

that for every d-regular Cayley graph G of an abelian group any set of vertices of more than half
the vertices induces a subgraph with maximum degree at least

√
d/2 – hence answering Huang’s

question in the bipartite case. Moreover, they conjectured this lower bound to hold for Cayley
graphs of general groups. However shortly after, Lehner and Verret [25] found a bipartite cubic
Cayley graphG of a dihedral group with σ(G) = 1 <

√
3/2 – thus, refuting the above conjecture.

Moreover, they construct an infinite family of bipartite Cayley graphs of 2-groups of unbounded
degree, with σ(G) = 1 for every member G of the family. Thus, concerning Huang’s questions,
σ(G) cannot be bounded from below by a function of the degree for general Cayley graphs.

In the first part of the present paper, we give three more insensitive families of Cayley graphs,
i.e., they have unbounded degree but σ(G) = 1 for all their members G.

The first family are bipartite dihedrants, i.e., Cayley graphs of the dihedral group (Theorem 2.1).
The smallest member of this family is the graph presented in [25, Section 3] as well as the smallest
non-cyclic, bipartite Cayley graph with σ = 1 among all groups.

The second family are the star-graphs [2], i.e., Cayley graphs of Sn with respect to all transpo-
sitions containing 1. These graphs, that were initially motivated as an “attractive alternative” to the
hypercube (see [1]) form a family of bipartite edge-transitive Cayley graphs. The first non-trivial
member is the Nauru graph G(12, 5), see Figure 1 and [16] for a beautiful collection of models.
Another feature that distinguishes this family from the previous one is that they are Cayley graphs
with respect to a minimal set of generators of the group. We show that besides their very high
symmetry star graphs have sensitivity 1 (Theorem 3.3).

The third family consists of d-regular Cayley graphs that have an induced subgraph of max-
imum degree 1 on a d

2d−1 -fraction of the vertices (Theorem 4.1). This is largest possible in a
d-regular graph and settles a question posed in [25, Remark 2]. In particular, we find the small-
est such graphs and construct bipartite tight Cayley graphs by using the Kronecker double cover
(Corollary 4.4).

The second part of the paper concerns the question of when σ can be bounded from below in a
tight way. A first answer to this could be that many groups including dihedral groups admit Cayley
graphs that are isomorphic to Cayley graphs of abelian groups, see [29]. Hence, in the bipartite
case their sensitivity admits a lower bound in term of their degree by [31]. Also, in [25, Remark 4],
the authors describe their groups as close to abelian (dihedral groups have a cyclic group of index
2, while 2-groups are nilpotent). They ask for a natural family of Cayley graphs of non-abelian
groups for which σ grows in terms of the degree.

To this end consider the following easy consequence of Huang’s result. If a bipartite Cayley
graph G has a largest hypercube of dimension κ(G) as a subgraph, then σ(G) ≥

√
κ(G) (Propo-

sition 5.1)2. In light of the second part of Huang’s question it is thus natural to ask when this
bound is tight. Clearly, all the three above families and also the family of [25] have κ ≡ 1 and
hence they give tight examples for this bound. In [12], Chung, Füredi, Graham, and Seymour
show that Huang’s bound is tight for the hypercube itself, i.e., σ(Qd) = d

√
de. We generalize this

construction to sublattices of the hypercube (Lemma 5.5).
We obtain infinite families of Cayley graphs with unbounded κ, where Huang’s lower bound

is tight. Namely, we study Coxeter groups. Our main result here is that the Cayley graph G of a

1Even if graphs are considered undirected, in figures we use arcs to represent generators of order larger than 2 to
increase readability.

2Note that this observation is also essential for the result for abelian groups in [31].
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Coxeter group of type An or I2(2k+ 1) as well as their direct products satisfy σ(G) = d
√
κ(G)e

(Corollary 6.7). We furthermore extend this result to type I2(n) × I2(n′) (Theorem 6.8) as well
as to many small Coxeter groups with the help of a computer (Table 2). Moreover, we show that
graphs G of Coxeter groups of type Bn and Dn satisfy σ(G) ≤ d

√
κ(G)e+ 1 (Theorem 6.9). We

conjecture, that for every Cayley graphG of a Coxeter group σ(G) = d
√
κ(G)e (Conjecture 6.10).

Next, we study the sensitivity of bipartite Cayley graphs in the absence of cubes, i.e., where
Proposition 5.1 cannot be applied. We show that the Levi graphs of projective planes have un-
bounded sensitivity (Corollary 7.3). Further we show that (Kronecker double covers of) the Ra-
manujan graphs of Lubotzky, Phillips, and Sarnak have unbounded sensitivity (Corollary 7.4).
Thus, providing families of cube-free, bipartite Cayley graphs that behave similarly to the hyper-
cube with respect to sensitivity. The second family in particular has unbounded girth.

In the final section, after some concluding remarks we give an outlook on sensitivity in non-
bipartite Cayley graphs. We show that the first guess on how to generalize the hypercube to higher
chromatic number fails (Theorem 8.1).

Our experimental results were obtained combining SageMath [36], GAP [19], and CPLEX [14].

2. THE DIHEDRAL GROUP

Let Dn denote the dihedral group of symmetries of a regular n-gon, that is, the group

Dn = 〈a, b | an = b2 = (ab)2 = 1〉 = {1, a, . . . , an−1, b, ab, . . . , an−1b}.

For a positive integer m, we denote by [m]3 ∈ {1, 2} the right-most nonzero entry in its repre-
sentation in base 3. For example, for m = 33 we have that m = 33 + 2 · 3 and, thus, [m]3 = 2.

The following result provides a family of bipartite (d+ 1)-regular dihedrants with sensitivity 1
for all d ≥ 0.

Theorem 2.1. Let n = 3d and consider G = Cay(Dn, C), where C = {a3ib | 0 ≤ i ≤ d} ⊆ Dn.
The set M = {ai | [i]3 = 1}∪ {aib | [i]3 = 2}∪ {1, b} induces a matching with n+ 1 vertices. As
a consequence, σ(G) = 1.

Proof. Denote c` = a3
`
b for all 0 ≤ ` ≤ d. Take x ∈ M and let us prove that it has exactly one

neighbor in M . We separate the proof in four cases.
If x = ai with [i]3 = 1. We take j the largest exponent such that 3j divides i and write

i =
∑

j<m<d βm3m + 3j . We observe that for all ` ∈ {0, . . . , d}

[(i+ 3`) mod n]3 =

{
1 if ` 6= j,
2 if ` = j.

Hence xc` = aia3
`
b = ai+3`b ∈ M if and only if ` = j. As a consequence, x has exactly one

neighbor in M .
If x = aib with [i]3 = 2. We take j the largest exponent such that 3j divides i and write

i =
∑

j<m<d βm3m + 2 · 3j . We observe that for all ` ∈ {0, . . . , d}

[(i− 3`) mod n]3 =

{
1 if ` = j,
2 if ` = j.

Hence xc` = aiba3
`
b = ai−3

` ∈ M if and only if ` = j. As a consequence, x has exactly one
neighbor in M .

If x = 1, it is clear that xc` = c` ∈M if and only if ` = d.
If x = b, it is clear that bc` = an−3

` ∈M if and only if ` = d.
Hence M induces a matching and it is easy to check that M has n + 1 elements. As a conse-

quence σ(G) = 1. �
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Exhaustive enumeration by computer shows that there is no smaller bipartite non-cyclic Cayley
graph with σ = 1, than the cubic 18-vertex dihedrant given by Theorem 2.1 for n = 9. This graph
has been obtained earlier by [25].

3. STAR GRAPHS

The star graph is the bipartite graph SGn = Cay(Sn, {(12), (13), . . . , (1n)}). As the main
result of this section, we will see in Theorem 3.3 that star graphs all have sensitivity equal to 1. In
other words, we will show that they have an induced subgraph with more than half of the vertices
and maximum degree equal to 1.

Given π ∈ Sn, we denote its support by supp(π) = {i ∈ {1, . . . , n} |π(i) 6= i}. A permu-
tation π ∈ Sn is called a derangement if it has no fixed points or, in other words, if supp(π) =
{1, . . . , n}.

Lemma 3.1. Let n ∈ Z+ and denote by dn the number of derangements of n elements. Then, dn
is odd if and only if n is even.

Proof. It is easy to check that dn satisfies the recursive formula dn = (n− 1)(dn−1 + dn−2) for all
n ≥ 3. Since d1 = 0 and d2 = 1, the result follows by induction. �

Lemma 3.2. If π, τ ∈ Sn are adjacent in the star graph SGn, then the sets supp(π) − {1} and
supp(τ)− {1} differ in at most one element.

Proof. Since π and τ are adjacent in SGn, then τ = π · (1r) for some r ∈ {2, . . . , n}. We are
going to prove that the symmetric difference of supp(π) and supp(τ) is contained in {1, r} and,
hence, the result follows. We write π = c1 · · · ct as a product of cycles with disjoint support, we
clearly have that supp(π) = ∪ti=1supp(ci). We divide the proof in several cases:

If 1, r /∈ supp(π). Then τ = c1 · · · ct · (1r) is a product of cycles with disjoint support, thus
supp(τ) = supp(π) ∪ {1, r}.

If 1 /∈ supp(π), r ∈ supp(π). We may assume that c1 = (rb2 · · · bk), then τ = (1rb2 · · · bk) ·
c2 · · · ct and, thus, supp(τ) = supp(π) ∪ {1}.

If 1 ∈ supp(π), r /∈ supp(π). Proceeding as in the previous case we have that supp(τ) =
supp(π) ∪ {r}.

If 1, r ∈ supp(π) and both belong to the support of different disjoint cycles, say c1 = (1 a2 · · · ak),
c2 = (r b2 · · · bl). Then c1 · c2 · (1r) = (1a2 · · · akrb2 · · · bl). Thus, supp(τ) = supp(π).

If 1, r ∈ supp(π) and both are in the support of the same cycle, say c1 = (1a2 · · · ak) and r = ai
for some i ∈ {2, . . . , k}. If k = 2, then c1 is the permutation (1r) and supp(τ) = supp(π)−{1, r}.
If k > 2 and r = b2, then c1 · (1r) = (ra3 · · · ak) and supp(τ) = supp(π) − {1}. If k > 2 and
r = ak, then c1 · (1r) = (1a2 · · · ak−1) and supp(τ) = supp(π)−{r}. Finally, if k > 2 and r = ai
with 2 < i < k, then c1 · (1r) = (1a2 · · · ai−1) · (rai+1 · · · ak) and supp(τ) = supp(π). �

Theorem 3.3. The star graph SGn = Cay(Sn, {(12), (13), . . . , (1n)}) has an induced subgraph
with more than half of the vertices and maximum degree equal 1. In other words, σ(SGn) = 1.

Proof. Let H be the domino, that is, the graph with vertices {u1, u2, u3, v1, v2, v3} and edges
{u1u2, u2u3, v1v2, v2v3, u1v1, u2v2, u3v3}. Consider the map f : V (SGn) −→ V (H) defined as

f(π) =



u1, if | supp(π)− {1}| = n− 1 and π ∈ An,
v1, if | supp(π)− {1}| = n− 1 and π /∈ An,
u2, if | supp(π)− {1}| = n− 2 and π /∈ An,
v2, if | supp(π)− {1}| = n− 2 and π ∈ An,
u3, if | supp(π)− {1}| < n− 2 and π ∈ An,
v3, if | supp(π)− {1}| < n− 2 and π /∈ An.

Let us check that f is a graph homomorphism (see Figure 1 for an example when n = 4). We
observe that f(An) = {u1, v2, u3}, f(Sn − An) = {v1, u2, v3}. Since the domino is the complete
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FIGURE 1. Homomorphism from the Nauru graph SG4 onto the domino.

bipartite graph K3,3 minus the edges u1v3, v1u3, in order to prove that f is a homomorphism we
just have to check that if f(π) = u1 and f(τ) = v3 (respectively, f(π) = v1 and f(τ) = u3), then
π and τ are not neighbors in SGn; this follows from Lemma 3.2.

Now we are going to prove that the induced subgraphsK andK ′ with vertices f−1({u1, u2, v3})
and f−1({v1, v2, u3}), respectively, have both maximum degree equal to 1. Let π ∈ V (K), we
separate the proof in three cases:

Case f(π) = v3. Then π has no neighbors in K (since f is a homomorphism).
Case f(π) = u2. Then, π /∈ An and | supp(π) − {1}| = n − 2. Let r be the only element in
{2, . . . , n} − supp(π). If s ∈ {2, . . . , n} − {r}, then r is a fixed point for π · (1s) ∈ An and then,
π · (1s) /∈ V (K) because f(π · (1s)) ∈ {v2, u3}. As a consequence, the only neighbor of π that
might belong to V (K) is π · (1r) and the degree of π in K is at most 1.

Case f(π) = u1. Then π ∈ An and | supp(π)− {1}| = n− 1. We separate two cases:

• If 1 /∈ supp(π). Then π · (1s) /∈ An is a derangement for all s ∈ {2, . . . , n}. Therefore
π · (1s) /∈ K because f(π · (1s)) = v1. Thus, π is an isolated vertex in K.
• If 1 ∈ supp(π). Let r = π−1(1) ∈ {2, . . . , n}. If s ∈ {2, . . . , n}−{r}, then π · (1s) /∈ An

and we claim that {2, . . . , n} ⊆ supp(π · (1s)). To prove the claim we take i ∈ {2, . . . , n}
and we aim at proving that [π · (1s)](i) 6= i. We know that π(i) 6= i; we separate three
cases:

– if π(i) /∈ {1, s}, then [π · (1s)](i) = π(i) 6= i,
– if π(i) = 1, then i = r and [π · (1s)](i) = s 6= r = i; and
– if π(i) = s, then [π · (1s)](i) = 1 6= i.

Thus, we conclude that f(π · (1s)) = v1 and π · (1s) /∈ K for all s 6= r. As a consequence,
the only neighbor of π that might belong to V (K) is π · (1r) and the degree of π in K is
at most 1.

A similar argument works for K ′. To get the result we now prove that K and K ′ do not have
the same number of elements and, as a consequence, one has more than half of the vertices of
SGn (see Figure 1 for the case n = 4, where K ′ has 13 vertices). Since f−1({u1, v2, u3}) = An
and f−1({v1, u2, v3}) = Sn − An and both sets have the same cardinality, we just need to verify
that f−1(u1) and f−1(v1) do not have the same number of elements. It suffices to observe that
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the elements of f−1({u1, v1}) are in bijection with the set of derangements of either n or n − 1
elements and, thus, |f−1(u1)| + |f−1(v1)| = dn + dn−1 which, by Lemma 3.1, is an odd number.
This completes the proof. �

One can be more precise in the proof of Theorem 3.3 and determine that K has exactly n!
2

+

(−1)n+1 vertices and K ′ has n!
2

+ (−1)n vertices. Indeed, following the notation of the proof, we
have that |f−1(u1)| equals the number of even (belonging to An) derangements of n elements plus
the number of even derangements of n − 1 elements, then by [35, sequence A003221] we have
that

|f−1(u1)| =
dn − (−1)n(n− 1)

2
+
dn−1 − (−1)n−1(n− 2)

2
=
dn + dn−1 + (−1)n+1

2

and |f−1(v1)| = dn+dn−1−(−1)n+1

2
= |f−1(u1)| − (−1)n+1 and we get that

|V (K)| = |An|+ |f−1(u1)| − |f−1(v1)| =
n!

2
+ (−1)n+1.

Thus, we conclude that the graph with more that half of the vertices of SGn is K for n odd, and
K ′ for n even.

4. TIGHT GROUPS

It is easy to see that an induced subgraph of maximum degree 1 in a d-regular n-vertex graph
has at most d

2d−1n vertices. We say that a graph is tight if it attains equality. Lehner and Verret ask
if there are tight Cayley graphs of groups, see [25, Remark 2]. Here we give some examples and
an infinite family.

First of all one has that Cay(D3m, {b, ab}) ∼= C6m, the cycle graph on 6m vertices. This graph
has an induced matching on 2

3
of the vertices, hence it is tight of degree 2.

An exhaustive computer search yields that on up to 60 vertices there are exactly three tight
cubic Cayley graphs. Two of them on 50 and 60 vertices, respectively, are depicted in Figure 2.
The other one is another Cayley graph of A5 and is the first member of the infinite family shown
in Theorem 4.1.

FIGURE 2. The smallest cubic tight Cayley graphs Cay(Z5 ×D5, {(1, a), (0, b)})
and Cay(A5, {(12345), (12)(34))}), which is an orientation of the skeleton of the
truncated icosahedron. The white vertices induce matchings on 3

5
of the vertices.
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Theorem 4.1. For m ∈ Z+, let Γ = S2m+1 if m is odd and Γ = A2m+1 if m is even. Further, let
ck be the order 2 permutation of {1, . . . , 2m+ 1} defined by:

ck(i) =


i+m if i < k −m,
i+m+ 1 if k −m ≤ i ≤ m,
i−m if m < i < k
i if i = k
i−m− 1 if k < i ≤ 2m+ 1.

Then, the set M = {π ∈ Γ |π(1) ≥ m + 1} has m+1
2m+1
|Γ| elements and induces a matching in

G = Cay(Γ, C) with C = {ck |m+ 1 ≤ k ≤ 2m+ 1}.

Proof. We observe that the signature of ck is (−1)m and then ck ∈ A2m+1 if and only if m is even.
Now, we consider the partition M = t2m+1

i=m+1Mi, where Mi = {π ∈M |π(1) = i}. It is clear that
|Mi| = |Γ|/(2m+ 1) for all i, and then M has m+1

2m+1
|Γ| elements.

Take i ∈ {m + 1, . . . , 2m + 1} and consider π ∈ Mi. We claim that π · ck ∈ M if and only
if k = i and, as a consequence, M induces a matching in G. Indeed, π · ci ∈ Mi ⊆ M because
[π · ci](1) = ci(π(1)) = ci(i) = i and, for all k 6= i, then π · ck /∈ M because [π · ck](1) =
ck(π(1)) = ck(i) ≤ m �

We wonder if the set C described in this result is a minimal set of generators of Γ in every case.
Otherwise, the subgroup of Γ spanned by C would provide a smaller tight group.

It is also worth pointing out that the same result (and the same argument of the proof) holds for
any set C = {ck |m + 1 ≤ k ≤ 2m + 1} ⊆ Γ satisfying that ck is an order 2 permutation with
ck(k) = k and ck(i) ≤ m for all k 6= i ≥ m+ 1.

We remark that while the above construction gives a tight Cayley graph for every degree, the
obtained graphs are pretty large. E.g., for degree 4, we obtain a Cayley graph of S7. However,
we know of at least one smaller such graph, namely Cay(A7, {(1234567), (123)(45)(67)}). It has
degree 4 and 2520 vertices and an induced matching of 1440 vertices, i.e., it is tight. We wonder
what size the smallest 4-regular tight Cayley graph is. By computational means we checked that
the answer is at least 84.

Note further, that the above graphs are the only non-bipartite graphs that have appeared so far.
However, we can also construct bipartite ones. For this we recall a couple of definitions and prove
a lemma that has been used implicitly in [25, 31]. A covering map from a graph Ĝ to a graph G
is a surjective graph homomorphism ϕ : Ĝ → G such that for every vertex v ∈ Ĝ, ϕ induces a
one-to-one correspondence between edges incident to v and edges incident to ϕ(v). If there is a
covering map from Ĝ to G, we say that Ĝ is a covering of G. Finally, for a graph G and every
0 < β ≤ 1, we denote by ∆β(G) the minimum value ∆(G[H]) among all the H ⊂ V (G) with
|H| ≥ β|V (G)|.

Lemma 4.2. Let Ĝ be a covering of G and β ∈ (0, 1]. Then ∆β(Ĝ) ≤ ∆β(G).

Proof. Let ϕ : Ĝ → G be a covering map and let us assume without loss of generality that G is
connected. It is easy to see that all fibers of ϕ have the same size k and, thus |V (Ĝ)| = k · |V (G)|.
Now, take K ⊂ V (G) such that |K| ≥ β|V (G)| and ∆β(G) = ∆(G[K]). Considering K̂ :=

ϕ−1(K) one has that |K̂| = k · |K| and then |K̂|
|V (Ĝ)| = |K|

|V (G)| ≥ β. Since ϕ is a homomorphism and
two neighbors of a given vertex cannot be mapped by ϕ to the same vertex, then the maximum
degree induced by K̂ is at most the maximum degree induced by K. This yields the claim. �

The cross product G×H = (V × V ′, E ′′) of two graph G = (V,E) and H = (V ′, E ′) has an
edge {(u, u′), (v, v′)} ∈ E ′′ if and only if {u, v} ∈ E and {u′, v′} ∈ E ′. The Kronecker double
cover of a graph G is the bipartite graph G×K2. It is easy to see that G×K2 is a covering of G.



8 I. GARCÍA-MARCO AND K. KNAUER

Remark 4.3. Given a Cayley graph Cay(Γ, C) its Kronecker double cover Cay(Γ, C)×K2 is the
bipartite Cayley graph Cay(Γ× Z2, C × {1}).

This remark together with Lemma 4.2 and Theorem 4.1 yield:

Corollary 4.4. There are infinite families of unbounded degree bipartite tight Cayley graphs.

We have checked with a computer that the smallest cubic bipartite tight Cayley graph comes
from the above construction and is a Cayley graph of Z10 × D5. We do not know which is the
smallest 4-regular bipartite tight Cayley graph.

Note that a source of tight transitive graphs are odd graphs, see [25]. In particular, the smallest
cubic tight transitive graph is the Petersen graph G(5, 2) and the smallest cubic bipartite tight
transitive graph is its Kronecker cover, namely the Desargues graph G(10, 3).

5. BOUNDS AND CONSTRUCTIONS CLOSE TO THE HYPERCUBE

In the present section we give a very elementary generalization of the lower bound of Huang [23]
and a more involved generalization of the construction of Chung, Füredi, Graham, and Sey-
mour [12]. Both will be applied in the following section to Coxeter groups.

For any graph G, we denote by

κ(G) = max{n ∈ Z+ |Qn is a subgraph of G},

i.e., κ(G) is the dimension of the largest hypercube contained in G.

Proposition 5.1. Let G be a bipartite Cayley graph and H a regular subgraph of G, then σ(G) ≥
σ(H). In particular, σ(G) ≥

√
κ(G).

Proof. Since G and H are bipartite and regular, their maximum independent sets contain half the
vertices. Now, for every x ∈ V (G), we consider the set of vertices x ·H = {x · h |h ∈ V (H)}.
The sets (x · H)x∈V (G) cover G and every element in G belongs to exactly |V (H)| of these sets.
If one takes a set K ⊆ V (G) with |K| > 1

2
|V (G)|, then∑

x∈V (G)

|K ∩ (x ·H)| = |K||V (H)| > 1

2
|V (G)||V (H)|

and, by the pigeonhole principle, there exists an x ∈ V (G) such that |K ∩ (x · H)| > 1
2
|V (H)|.

Since the induced graph with vertices x · H is isomorphic to H , we conclude that the maximum
degree of the subgraph induced byK is at least σ(H). The second statement follows from Huang’s
result [23]. �

Before we go into constructions let us introduce a coloring variant of the parameter σ: For a
graph G = (V,E) and a non-negative integer k denote by

ιk(G) = max{|A| − |B| | V = A tB and ∆(G[A]),∆(G[B]) ≤ k}

its k-imbalance. Hence, for a regular bipartite graph G there is a subset K on |V |+ιk(G)
2

vertices
with ∆(G[K]) ≤ k. In particular, σ(G) ≤ min{k | ιk(G) > 0}. An easy observation is that
if H is a subgraph of G with the same vertex set, then ιk(G) ≤ ιk(H) for every k ≥ 0. For
the next property, define the Cartesian product of graphs G = (V,E) and H = (V ′, E ′) as
G�H = (V × V ′, E ′′), where {(u, u′), (v, v′)} ∈ E ′′ if and only if u = v and {u′, v′} ∈ E ′ or
u′ = v′ and {u, v} ∈ E.

Lemma 5.2. For graphsG,H and non-negative integers k, `, we have ιk(G)ι`(H) ≤ ιk+`(G�H).
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Proof. Let A t B be a partition of G such that both sets induce subgraphs of maximum degree at
most k and |A|− |B| = ιk(G). Similarly, let A′tB′ be a partition of H such that both sets induce
subgraphs of maximum degree at most ` and |A′| − |B′| = ι`(H).

Define two new sets A′′ = A× A′ ∪ B × B′ and B′′ = A× B′ ∪ B × A′. Clearly, A′′ and B′′

partition the vertex set of G�H . Let us analyze without loss of generality the maximum degree
induced by A′′. Let v = (a, a′) with a ∈ A ⊆ V (G) and a′ ∈ A′ ⊆ V (H). The degree of v is
constituted by its degree in A′′∩{a}×A′ and its degree in A′′∩A×{a′}. Thus, it equals the sum
of the degree of a in A and the degree of a′ in A′. The analogous argument holds for v = (b, b′)
with b ∈ B ⊆ V (G) and b′ ∈ B′ ⊆ V (H). We conclude that both A′′ and B′′ induce subgraphs
of maximum degree at most k + `.

Finally, we compute the imbalance ιk+`(G�H) ≥ |A′′|− |B′′| = |A||A′|+ |B||B′|− |A||B′|−
|B||A′| = (|A| − |B|)(|A′| − |B′|) = ιk(G)ι`(H). �

In [12], Chung, Füredi, Graham, and Seymour exhibited an induced subgraph ofQn with 2n−1+
1 vertices and maximum degree d

√
ne for all n ≥ 1. Next we extend this construction to certain

lattices.
We introduce some notation for posets and lattices. For a poset P , we say that y covers x and

we write x ≺ y, if x < y and there is is no z ∈ P with x < z < y. We denote by GP = (P,E)
its cover graph, i.e, {x, y} ∈ E whenever x ≺ y. We say that P ⊆ Q are cover subposets if
x ≤P y ⇐⇒ x ≤Q y for all x, y ∈ P and GP is an induced subgraph of GQ. For x ∈ P
denote by ↑x = {y ∈ P | x ≤ y}, and for F ⊆ P denote by ↑F = ∪x∈F ↑x. A lattice L is
a partially ordered set, such that for any x, y ∈ L there a unique smallest element x ∨ y ≥ x, y
called the join of x and y and a unique largest element x ∧ y ≤ x, y called the meet of x and y.
The Boolean lattice Bn is the inclusion order of all subsets of the set [n] = {1, . . . , n}. Its cover
graph is the hypercube Qn.

We from now on consider a lattice L that is a cover subposet of Bn. Before proceeding to
studying sensitivity related results, let us discuss the generality of this class. First, note that L is
not a necessary a sublattice of Bn, i.e., it may have different join and meet operations. However,
since L is a subposet of Bn we can assume without loss of generality that the minimum and
maximum 0̂, 1̂ of L correspond to the empty and the full set in Bn, respectively. See Figure 3 for
three examples.

FIGURE 3. Three lattices that are cover subposets of B3, B4, and B5, respectively.

We proceed to define an important subclass of these lattices. A graph G is a partial cube if G is
(isomorphic to) an isometric subgraph of Qn, i.e., dG(x, y) = dQn(x, y) for all x, y ∈ G, where d
denotes the distance function. Fixing z ∈ G and defining x ≤ y if dG(z, y) = dG(z, x) + dG(x, y)
yields a poset denoted P (G, z).
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Lemma 5.3. If G is a partial cube and z ∈ G a vertex, then the poset P (G, z) is isomorphic to a
cover subposet of Bn with cover graph G.

Proof. Let G be (isomorphic to) an isometric subgraph of Qn and choose the isomorphism such
that z is identified with the empty set in Bn. Since G is bipartite, G is the cover graph of
P (G, z). Furthermore, since G is isometric it is in particular an induced subgraph of Qn. Let,
now x ≤P (G,z) y in P (G, z). This by definition means dG(z, y) = dG(z, x) + dG(x, y) which by
isometry condition is equivalent to dQn(z, y) = dQn(z, x) + dQn(x, y). Now, since z corresponds
to the empty set for the sets X, Y corresponding to x, y this means X ⊆ Y , which is equivalent to
x ≤Bn y. �

Lemma 5.3 yields a rich class of lattices that are cover subposets of a Boolean lattice:

Remark 5.4. If G is a partial cube with a vertex z ∈ G such that P (G, z) is a lattice L, then L is
a cover subposet of Bn. The dual graph G of a central hyperplane arrangement is a partial cube,
see e.g. [15, 24]. If the hyperplane arrangement is simplicial, then G is regular and for any vertex
z ∈ G the poset P (G, z) is a lattice L and G = GL, see [10].

The left-most lattice in Figure 3 arises from a central hyperplane as described in Remark 5.4.
Indeed the so-called weak (right) order of a Coxeter group [8] is an example, that arises from
taking the dual graph of a Coxeter arrangement. See the left of Figure 4 for another example.
The lattice in the middle of Figure 3 arises from a partial cube, that is not the dual graph of a
hyperplane arrangement. The right-most lattice in Figure 3 arises from an induced subgraph of
Q5, that is not a partial cube.

We return to studying sensitivity related notions. In a lattice L that is a cover subposet of Bn,
we call the vertices even and odd depending on the cardinalities of the corresponding sets. The
set of even and odd vertices of a subset S ⊆ L is denoted even(S) and odd(S), respectively. For
F ⊆ L define r(F) = max{|F | | F ∈ F} and t(F) = max{|X| | X ⊆ F and ∀F ∈ X :
F \ (

⋃
K∈X
K 6=F

K) 6= ∅}. This is, t(F) denotes the size of a largest subset X of F such that every
F ∈ X contains an element that is in no other set from X . Given F we define:

X(F) = even( ↑F) ∪ odd(L\ ↑F).

Define G(F) := GL[X(F)] and G′(F) := GL[L \X(F)] as the induced subgraph of GL on X(F)
and on the complement of X(F), respectively.

Lemma 5.5. Let L be lattice that is a cover subposet of Bn, F ⊆ L, and k = max{r(F), t(F)}.
We have:

max{∆(G(F)),∆(G′(F))} ≤ k.

As a consequence, if GL is regular, then

ιk(GL)

2
≥
∑
1≤i≤k

|even( ↑Fi)|−|odd( ↑Fi)|−
∑

1≤i<j≤k

|even( ↑(Fi∨Fj))|−|odd( ↑(Fi∨Fj))|± . . .

Proof. Since the statement for G′(F) is proved analogously, here we only prove ∆(G(F)) ≤
max{r(F), t(F)}. So let {S, S ′} be an edge of G(F).

If S is even, then S ′ ≺ S is a cover relation, S ′ is odd, and for all F ∈↓ (S) ∩ F we have
S ′∨F = S. Thus, the coordinate corresponding to the element S\S ′ is contained in

⋂
( ↓(S)∩F).

Hence, deg(S) ≤ |
⋂

( ↓(S) ∩ F)| ≤ r(F).
If S is odd, then S ≺ S ′ is a cover relation, S ′ is even and the only element s ∈ S ′ \ S belongs

to some F ⊆ S ′ = S ∪ {s} such that F ∈ F. Thus, the neighbors S ≺ S ′1, . . . S
′
k give rise to a set

X = {F1, . . . , Fk} ⊆ F such that si ∈ Fi \ (∪j 6=iFj) for all 1 ≤ i ≤ k. Thus, deg(S) ≤ t(F).
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For the second part of the statement we estimate |X(F)| = |even( ↑F)| + |odd(L\ ↑F)| via
inclusion-exclusion. The size of the first term can be written as

|even( ↑F)| =
∑
1≤i≤k

|even( ↑Fi)| −
∑

1≤i<j≤k

|even( ↑(Fi ∨ Fj))| ± . . .

Similarly, we can express the size of the second term as:

|odd(L\ ↑F)| = |odd(L)| −
∑
1≤i≤k

|odd( ↑Fi)|+
∑

1≤i<j≤k

|odd( ↑(Fi ∨ Fj))| ∓ . . .

Since GL is bipartite and regular we have |odd(L)| = |even(L)| = |L|
2

. We can write |X(F)|
as:
|L|
2

+
∑
1≤i≤k

|even( ↑Fi)| − |odd( ↑Fi)| −
∑

1≤i<j≤k

|even( ↑(Fi ∨ Fj))| − |odd( ↑(Fi ∨ Fj))| ± . . .

This concludes the proof. �

When L is the Boolean lattice Bd itself, the first part of Lemma 5.5 is [12, Proposition 3.3].
Thus, applying Lemma 5.5 with an appropriate set F = {F1, . . . , Fk}; for example, F is any
partition of {1, . . . , d} with

√
d − 1 < k <

√
d + 1 and

√
d − 1 < |Fi| <

√
d + 1 for all

i ∈ {1, . . . , k}, one recovers the following:

Theorem 5.6 ([12]). For any integer d, we have ιd√de(Qd) ≥ 2. In particular, σ(Qd) ≤ d
√
de.

Note that with Remark 5.4 there is a wider class of lattices where Lemma 5.5 can be applied. In
particular if the graphGL of the lattice L is the dual graph of a simplicial hyperplane arrangement,
then GL is regular. Clearly, Lemma 5.5 is only useful together with a smartly chosen set F. We
will come back to this in the next section.

6. COXETER GROUPS

We consider Cayley graphs of Coxeter groups and provide explicit constructions showing that
the bound in Proposition 5.1 in each case is either an equality or at most one unit away from an
equality.

More precisely, we first introduce the notion of cube-like Coxeter groups. This allows us to
establish equality for Coxeter groups of types I2(2k + 1), An, and their products. Further we
show equality for types I2(n) and I2(n) × I2(n′), and many small Coxeter groups by computer.
We also show that types Bn and Dn cannot deviate by more than one unit from the lower bound.
We finish the section with a conjecture.

We start with the necessary definitions and refer the reader to [9,38] for more thorough introduc-
tions into the combinatorics of Coxeter groups. A finite Coxeter system is a pair (W,S), where W
is a group with generators S = {a1, . . . , an} and presentation W = 〈a1, . . . , an | (aiaj)mij = 1〉
where mij > 1 and mii = 2. In [13], Coxeter classified all finite Coxeter groups as (direct
products of) the members of three infinite families of increasing rank An,Bn,Dn, one family of
dimension two I2(n), and six exceptional groups: E6, E7, E8, F4, H3 and H4.

Since any Coxeter group W corresponds to a unique Coxeter system (W,S), we denote the
Cayley graph Cay(W,S) just as Cay(W ). See Figure 4 for a drawing of the Cayley graphs of A3

and B3. It is well known that the Cayley graph of a Coxeter groups Cay(W ) is the dual graph
of a simplicial hyperplane arrangement – the Coxeter arrangement of the corresponding type. As
explained in Remark 5.4 this gives that Cay(W ) is a partial cubes – an isometric subgraph of a
hypercube. The dimension of this hypercube corresponds to the number of hyperplanes in the
arrangement, which is the number r of reflections of W , i.e., the elements of order 2. See Table 1
for the number of reflections of the irreducible Coxeter groups and for the dimension of the largest
hypercube contained in their corresponding Cayley graphs, this number coincides with the size of
the largest independent set of their Coxeter-Dynkin diagrams.
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FIGURE 4. Induced subgraphs of maximum degree 2 in Cay(A3) and Cay(B3).

An Bn Dn I2(n) E6 E7 E8 F4 H3 H4

κ dn
2
e dn

2
e dn+1

2
e 1 3 4 4 2 2 2

r n(n+1)
2

n2 n(n− 1) n 36 63 120 12 10 30
TABLE 1. Largest cube and number of reflections in irreducible Coxeter groups.

Following Remark 5.4, from the simpliciality of the Coxeter arrangement we get that Cay(W )
is regular and the cover graph of a lattice LW that is the cover subposet of a Boolean lattice. We
are thus in the position to apply Lemma 5.5 once we have found an interesting set F. In order to
get there, we will proceed to introduce more specific properties of LW , mostly taken from [9,38].
Taking as base-point of Cay(W ) the neutral element e ∈ W , with the notation of Lemma 5.3,
the lattice P (Cay(W ), e) = LW is called the weak (right) order [8]. For two group elements we
have w ≤ w′ if dCay(W )(e, w

′) = dCay(W )(e, w) + dCay(W )(w,w
′). This makes it convenient to

denote the length of an element w ∈ W is `(w), which is the distance from e in Cay(W ), i.e.,
`(w) = dCay(W )(e, w).

For J ⊆ S, we denote by WJ the subgroup of W generated by J . The Coxeter system (WJ , J)
is called a parabolic subgroup of (W,S). Note that the graph Cay(WJ) is a subgraph of Cay(W )
and hence σ(Cay(WJ)) ≤ σ(Cay(W )), by Proposition 5.1. The set W J = {w ∈ W | `(wj) >
`(w) for all j ∈ J} is the corresponding quotient. We collect some facts about WJ and W J with
respect to LW .

(1) the elements of WJ define an order-interval I(WJ) that induces a sublattice of LW ,
(2) the elements of W J define an order-interval I(W J), whose graph we denote by G(W J),

moreover I(W J) is isomorphic to the reversed order I(W J)∗,
(3) the set of isomorphic intervals {jW J | j ∈ WJ} partitions LW and each of them intersects

I(WJ) exactly in the element j,
(4) the set {WJ i | i ∈ W J} partitions LW and each of them induces a graph Gi isomorphic to

a subgraph of GI(WJ ).
(5) the edges of Cay(W ) are partitioned into the edges of {Gi | i ∈ W J} and {jG(W J) | j ∈

WJ}.
The last item yields that Cay(W ) is a subgraph of Cay(WJ)�G(W J), thus with Lemma 5.2

we conclude:
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Lemma 6.1. Let (W,S) be a Coxeter system and J ⊆ S. We have

ιk(Cay(WJ))ι`(G(W J)) ≤ ιk+`(Cay(W )).

We call a Coxeter system (W,S) cube-like if it admits an abelian parabolic subgroup WJ such
that ι0(G(W J)) > 0. A consequence of Lemma 6.1 together with Theorem 5.6 is:

Proposition 6.2. If (W,S) is cube-like with respect to J ⊆ S, then we have σ(Cay(W )) =

d
√
κ(Cay(W ))e and Cay(W ) has an induced subgraph of maximum degree σ(Cay(W )) on |W |

2
+

ι0(G(W J)) vertices.

Proof. Denote d = κ(Cay(W )), by Proposition 5.1 we have that σ(Cay(W )) ≥ d
√
de. Since WJ

is abelian and minimally generated by J , Cay(WJ) is a cube contained in Cay(W ). Denote its
dimension by d′ = |J |, we have that d′ ≤ d. By Theorem 5.6, we have that ιd√d′eCay(WJ) ≥ 2.
Lemma 6.1 yields

ιd
√
d′e+0(Cay(W )) ≥ ιd

√
d′e(Cay(WJ))ι0(G(W J)) ≥ 2ι0(G(W J)) > 0.

As a consequence σ(Cay(W )) ≤ d
√
d′e ≤ d

√
de ≤ σ(Cay(W )); so they are all equalities and

we are done. �

A useful feature of cube-like Coxeter groups is that they are closed under products:

Proposition 6.3. If (W,S) and (W ′, S ′) are cube-like, then so is their product (W × W ′, S ×
{e′} ∪ {e} × S ′). Moreover, ι0(G(W J)�G(W ′J ′)) ≥ ι0(G(W J))ι0(G(W ′J ′)).

Proof. If J, J ′ yield the two parabolic subgroups witnessing that (W,S) and (W ′, S ′) are cube-
like, then also J×{e′}∪{e}×J ′ generates an abelian parabolic subgroup of (W ×W ′, S×{e′}∪
{e}×S ′). The graphG of quotientW×W ′J×{e′}∪{e}×J ′ is the Cartesian productG(W J)�G(W ′J ′).
It follows from Lemma 5.2, that

ι0(G(W J)�G(W ′J ′)) ≥ ι0(G(W J))ι0(G(W ′J ′)) > 0. �

We present some necessary and one sufficient criterion for being cube-like:

Proposition 6.4. Let (W,S) be a Coxeter system with r reflections. If (W,S) is cube-like with
respect to J , then

(1) d
√
κ(Cay(W ))e = d

√
|J |e,

(2) r − |J | is even,
(3) J is inclusion-maximal with respect to generating an abelian subgroup.

Conversely, if r − |J | is even and the middle layer of I(W J) is odd, then (W,S) is cube-like with
respect to J .

Proof. 1. This is proved implicitly in Proposition 6.2.
2. The length of any shortest path from the minimum to the maximum of LW is r and for any
parabolic subgroup WJ , such path can be obtained by first going from the minimum to the maxi-
mum of LWJ

and then traversing a translate of the interval I(W J). Since the diameter of the cube
generated by J is |J | we get that r − |J | is the length of I(W J).

Now, we use the fact 2., that order reversing is an automorphism of I(W J). If the length of
I(W J) is odd, then this automorphism identifies layers of different parity, hence both parts of a
bipartition of GJ will be of the same size and ι0(GJ) = 0.
3. Whenever WJ is abelian for some J ⊆ S, then J corresponds to an independent set in the
Coxeter-Dynkin diagram of W . When (W,S) is cube-like with respect to J ⊆ S, then J corre-
sponds to a maximal independent set. Indeed, if this is not the case, there exists J ( J ′ ⊆ S such
that WJ ′ is abelian. As a consequence, G(WJ ′) = G(WJ)�G(WJ ′\J) and G(WJ ′\J) = Q|J ′\J |, a
hypercube of dimension |J ′ \ J | ≥ 1. Hence, G(W J) ' G(W J ′)�Q|J ′\J |; but this implies that
ι0(G(W J)) = 0, a contradiction.
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For the sufficient condition, if we have an odd number of layers such that by fact 2. opposite
ones are of the same size the bipartition class not containing the middle layer is even, but the one
containing the middle layer will be odd. Hence ι0(GJ) > 0. �

From Proposition 6.4 together with Table 1 we can infer that the the following Coxeter groups
are not cube-like with respect to any J ⊆ S: B2(n2+1),B2(n+1)2+1 for n even, D8n2 ,D8n2+1 for
n ≥ 1, I2(n) for n = 0 mod 2 and E6. Indeed, in all these groups there are no J ⊆ S satisfying
the necessary conditions of Proposition 6.4. We will show next that Coxeter groups of type An

and I2(2k + 1) are cube-like. As a consequence any Cayley graph G of them or their products
satisfies σ(G) = d

√
κ(G)e.

The Coxeter system I2(n) is (Dn, {b, c}), where both b and c are generators of order 2.

Theorem 6.5. For any k ≥ 0 the Coxeter group I2(2k + 1) is cube-like.

Proof. The graph Cay(I2(2k + 1)) is a cycle of length 4k + 2. The maximal abelian parabolic
subgroup is generated by a single element j, i.e., the maximal cube is an edge. The corresponding
quotient I(W j) is an interval consisting of a single chain of length 2k. In particular the middle
layer is odd and ι0(Gj) > 1, by Proposition 6.4. �

The symmetric group Sn+1 with generators S = {(12), (23), . . . , (n(n + 1))} constitutes the
Coxeter system of type An. As an example consider A3. Its illustration in the left of Figure 4
shows that this Coxeter group is cube-like, even though it does not satisfy the sufficient condition
in Proposition 6.4. This exemplifies the construction shown below.

Theorem 6.6. For all n ≥ 0 the Coxeter system An is cube-like with respect to a set J such that
ι0(G(An

J)) ≥ dn
2
e!.

Proof. We set J = {(12), (34), . . . , (nn + 1)} is n is odd and J = {(12), (34), . . . , (n − 1n)}
otherwise. Clearly the parabolic subgroup generated by J is abelian. For the proof we identify
the permutations with strings of length n + 1 in the standard way, e.g., e = [1, 2, 3, . . . , n +
1]. For a permutation π, its length `(π) equals the number of pairs that are ordered differently
from [1, 2, . . . , n + 1]. We refer to the two bipartition classes of Cay(An) as even and odd and
correspondingly denote the parity of a permutation π by p(π) ∈ {0, 1}. Let P J be the poset on
{1, . . . , n + 1} whose relations are of the form (i ≺ j) if (ij) ∈ J . Now W J can be seen as
the set of linear extensions of P , i.e., all linear orders on {1, . . . , n + 1} that respect the relations
prescribed by P .

Let us first consider the case n even. In this setting P consists of the single element {n + 1}
and a disjoint union of chains 1 ≺ 2, . . . , n− 1 ≺ n called M . We label these chains C1, . . . , Cn

2
.

For the sake of the proof we say that an arc-diagram D is a perfect matching of Kn. Any linear
extension LM ofM corresponds to an arc diagram, where each edge is labeled with a chain among
C1, . . . , Cn

2
. More precisely, a linear extension of M can be seen as a permutation π of {1, . . . , n}

such that i < j whenever π(i) ≺ π(j); then the linear extension corresponds to the arc-diagram
D with edges ej = (π(2j − 1), π(2j)) for 1 ≤ j ≤ n/2, and the edge ej is labeled by Cj . Thus,
given one arc diagram D there are n

2
! linear extensions with this diagram. Moreover, all of them

have the same parity p(D). To see the latter it is sufficient to distinguish how two arcs intersect
whose assigned chains are exchanged. We skip this case distinction.

Now, there are n + 1 possible ways to insert {n + 1} into a given linear extension of M with
diagram D. Note that dn+1

2
e of these have parity p(D) and bn+1

2
c of these have parity (p(D) + 1)

mod 2.
Since the number of arc-diagrams, i.e., the number of perfect matchings of Kn is odd, for some

p ∈ {0, 1} there is one more arc-diagram of parity p than there are of parity (p + 1) mod 2. So,
take a diagram D of parity p. It corresponds to dn+1

2
en
2
! linear extensions of parity p and bn+1

2
cn
2
!

linear extensions of parity p+ 1 mod 2. We thus have ι0(GJ) ≥ n
2
!.
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In the case that n is odd, the same proof works except that P is entirely partitioned into chains
of length 2. The analogous analysis yields ι0(GJ) ≥ n+1

2
!. �

The results of the present section can be applied to the sensitivity of some Coxeter groups:

Corollary 6.7. Let G be the n-vertex Cayley graph of the product

I2(2k1 + 1)× . . .× I2(2ki + 1)×A(n1)× . . .×A(nj).

Then σ(G) = d
√
κ(G)e and there exists a set of n

2
+ Πj

`=1(d
n`

2
e!) vertices inducing this degree.

We proceed to study σ for Coxeter groups, where we cannot apply the above strategy.

Theorem 6.8. LetG be the Cayley graph of a Coxeter group of type I2(n) or I2(n)×I2(n′). Then
σ(G) = d

√
κ(G)e.

Proof. The Cayley graph of I2(2) is a square and, then, κ(I2(2)) = 2 and σ(I2(2)) = 2 = d
√

2e.
Let us see that also the product of two even cycles Ci�Cj has a subgraph on more than half

the vertices with max degree at most 2. If i = j = 4, one can take the subgraph consisting of an
induced 8-cycle and a vertex without neighbors in this cycle. So assume that i > 4. Take a proper
3-coloring of Cj with a, b, x, such that x is used at least once and such that the neighbors of every
vertex colored x are colored differently. Now, in Ci�Cj every copy of Ci has color a, b or x. In
every copy of Ci colored with x, we always pick the same subgraph of maximum degree 1 and
with more than i/2 vertices (we can do this because i > 4). In the other copies of Ci we choose
one of the two bipartition classes of Ci, depending on whether its color is a of b. The resulting
subgraph has more than half of the vertices and maximum degree 2.

Thus, Coxeter groups of the form I2(n)× I2(n′) are fine, too. �

group order κ subgraph of degree ≤ 2
F4 1152 2 768
H3 120 2 85
H4 14400 2 8624 ≤ · ≤ 9599
E6 51840 3 25926 ≤ ·
D4 192 3 120 ≤ · ≤ 122
D5 1920 3 1004 ≤ · ≤ 1199
B3 48 2 34
B4 384 2 235 ≤ · ≤ 252
B5 3840 3 1976 ≤ · ≤ 2398

B3 × I2(2) 192 4 98 ≤ · ≤ 115
B3 × I2(3) 288 3 150 ≤ · ≤ 175
B3 × I2(4) 384 3 200 ≤ · ≤ 235

I2(2)× I2(3)× I2(3) 144 3 73 ≤ · ≤ 79
I2(1)× I2(2)× I2(4) 64 4 33
I2(1)× I2(3)× I2(4) 96 3 52

TABLE 2. Largest subgraphs of maximum degree d
√
κe in small Coxeter groups.

The group Bn equals the wreath product Z2 o{1,...,n} Sn . Equivalently, this group can be seen as
the group with elements 2[n] × Sn, where 2[n] denotes the power set of {1, . . . , n}, with operation
(A, π) · (B, τ) = (A4 π−1(B), π · τ) being 4 the symmetric difference of the two sets, and
generators S = {a1, . . . , an} with ai = (∅, (i i+ 1)) for all i ∈ {1, . . . , n−1} and an = ({1}, id).

The group Dn is a subgroup of Bn of index 2; it can be seen as the group with elements
E[n]×Sn, whereE[n] denotes the elements in 2[n] with an even number of elements, and generators
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S = {a1, . . . , an−1, a′n} with ai = (∅, (i i+ 1)) for all i ∈ {1, . . . , n− 1} and a′n = ({1, 2}, (12))
and .

Theorem 6.9. Let G be a Cayley graph of Bn or Dn. Then σ(G) ≤ d
√
κ(G)e+ 1.

Proof. We first observe that Bn has a bipartite Cayley graph, indeed the bipartition classes are
U1, U2 ⊆ 2[n] × Sn where U1 = {(A, π) | |A| and π have different parity} and U2 = {(A, π) | |A|
and π have the same parity}. The induced subgraph with vertices {∅} × Sn is isomorphic to
Cay(An−1) and, by Corollary 6.7, it has an induced subgraph K with more than n!/2 vertices and

maximum degree k = d
√
dn−1

2
ee.

Now we consider K ∪ {(A, π) ∈ U1 |A 6= ∅}, which has |K| + 1
2
(|Bn| − n!) > 1

2
|Bn|

elements and we are going to prove that the maximum induced degree is at most k + 1. Take
(B, τ) ∈ K ∪ {(A, π) ∈ U1 |A 6= ∅}. If B 6= ∅, then (B, τ) ∈ U1 and (B, τ) · aj /∈ U1 for all
j ∈ {1, . . . , n − 1}; thus, (B, τ) has degree at most one. If B = ∅, then (B, τ) · aj ∈ K for at
most k values of j ∈ {1, . . . , n − 1} and, hence, its degree is at most k + 1 ≤ d

√
dn
2
ee + 1 =

d
√
κ(Cay(Bn))e+ 1.

A similar proof works for Dn. �

We have shown that several Coxeter groups are tight with respect to the lower bound from
Proposition 5.1. Also consider Table 2 (see also Figure 4 for B3) for further results into this
direction that were obtained by computer. All the results from Table 2 have been obtained by
solving a straight-forward integer linear program in CPLEX, except for E6 where the linear pro-
gram exceeded the memory of the computer. In this case an exhaustive search through all pairs
of 2-elements sets of J as candidate for F for Lemma 5.5 gave the result. Note in particular,
while in every cube-like Coxeter group the construction from Lemma 5.5 yields a solution via
Theorem 5.6, E6 is not cube-like by Proposition 6.4. This shows the generality of lattices that
are cover subposets of cubes, see Remark 5.4. For E7 and E8 even this exhaustive method was
not feasible by computer. However, we believe to have gathered sufficient evidence to dare the
following:

Conjecture 6.10. Let G be the Cayley graph of a Coxeter group and Qd the largest subgraph
isomorphic to a cube. Then G contains a set K of more than half the vertices, that induced a
subgraph of maximum degree d

√
de, i.e., σ(G) = d

√
κ(G)e.

7. THE ABSENCE OF CUBES

In a sense most of the paper so far has been about Huang’s lower bound (Proposition 5.1) being
tight, i.e., if a bipartite Cayley graph contains a largest cube Qd, then there is an induced subgraph
of maximum degree at most d

√
de on more than half the vertices.

However, we do not want to give the wrong impression that this lower bound is tight in general
bipartite Cayley graphs. In this section we provide families of cube-free graphs and with un-
bounded sensitivity. Observe that if a graph has girth at least 6, then it does not contain non-trivial
hypercubes, since these have a 4-cycle.

An (n, d, λ)-graph is a d-regular graph (which might have loops) on n vertices in which all
nontrivial (different from d) eigenvalues have absolute value at most λ.

The following Theorem 7.2 was provided to us by Noga Alon. For its statement we need the
notion of Kronecker double cover introduced at the end of Section 4 and for its proof we use
Lemma 7.1, which is a direct consequence of the so-called expander mixing lemma (see, e.g., [3,
5], [21, Section 5] or [7, Lemma 2.1]). One consequence of Theorem 7.2 will be Corollary 7.3,
which slightly improves the bound we obtained in an earlier version of this paper.

Lemma 7.1. Let K be an (n, d, λ)-graph and consider S, T ⊆ V (K) with |S|+ |T | = n. Then,

e(S, T ) ≥ (d− λ)
|S||T |
n

,
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where e(S, T ) is the number of (ordered) edges uv with u ∈ S, v ∈ T . In particular, there is a
vertex of S that has at least (d− λ) |T |

n
neighbors in T .

Proof. The expander mixing lemma asserts that∣∣∣∣e(S, T )− d |S||T |
n

∣∣∣∣ ≤ λ

√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
.

In particular, if |S|+ |T | = n, this implies that

e(S, T ) ≥ (d− λ)
|S||T |
n

and thus there is a vertex of S that has at least (d− λ) |T |
n

neighbors in T . �

Theorem 7.2. LetG be the Kronecker double cover of an (n, d, λ)-graph, then σ(G) > (d−λ)/2.

Proof. Take H such that G = H ×K2, i.e., G is the Kronecker double cover of H . Take a set U
with more than n vertices in G. Since |U | > n, then U must contain vertices in both vertex classes
of G. Take S, T be the nonempty sets of vertices of H corresponding to the vertices of U in each
of the two vertex classes of G. Without loss of generality we assume |T | > n/2. If |T | = n,
then T = V (H) every vertex in S has its d neighbors in T . Otherwise, we consider S ′ ⊆ S with
|S ′| = n − |T |. Applying Lemma 7.1 with S ′ and T we get that there is a vertex of S ′ that has
at least (d − λ) |T |

n
> (d − λ)/2 neighbors in T . The desired result follows from the definition of

double cover. �

Consider the polarity graph of the Desarguesian projective plane P (2, q) (with loops), which
is a (q2 + q + 1, q + 1,

√
q)-graph. Note that this graph is not transitive (and, thus, not a Cayley

graph) in general. Now, its Kronecker double cover is the Levi graph, i.e., point-line incidence
graph, of P (2, q), which we denote by Lq. It is known that Lq has girth 6. Moreover, Lq is the
Cayley graph of Dq2+q+1 with respect to a set of q + 1 involutions, see [26, Theorem 1]. As a
direct consequence of Theorem 7.2 we have the following result providing a family of cube-free
(q + 1)-regular Cayley graphs and unbounded sensitivity.

Corollary 7.3. The graph Lq satisfies σ(Lq) > (q + 1−√q)/2.

Note that we do not need the projective plane to be Desarguesian for the proof to work (see,
e.g., [37]).

Using the list of small vertex-transitive graphs [11,22,34], we verified that each vertex-transitive,
bipartite G on at most 47 vertices and with girth at least 6 has σ(G) ≤ 2. Also compare sequences
A185959 and A006800 in [35] for the numbers of Cayley and transitive graphs, respectively. In
particular, examination by computer shows that σ(Lq) = 2 for q ≤ 4 and σ(Lq) = 3 for q = 5, 7.
Indeed, L2 is the well-known Heawood graph and yields the smallest transitive bipartite graph
with girth 6 and σ = 2. The 62-vertex Levi graph of the Desarguesian projective plane P (2, 5)
is the smallest transitive graph with σ = 3 that we know of. In particular, Corollary 7.3 yields
σ(L8) ≥ 4 and the computer finds that this is an equality.

Theorem 7.2 can also be used to provide bipartite Cayley graphs with high sensitivity and
arbitrarily high girth. Indeed, a famous construction of Ramanujan graphs by [27] gives families
of unbounded girth. For p, q distinct primes congruent to 1 modulo 4 they construct a (p + 1)-
regular Cayley graph Xp,q in which all nontrivial eigenvalues have absolute value at most 2

√
p.

Its properties depend on the Legendre symbol of p and q. Namely, if
(
p
q

)
= −1, then Xp,q is

a bipartite Cayley graph of PGL(2, q) (of order q(q2 − 1)) with girth at least 4 logp q − logq 4.

If
(
p
q

)
= 1, then Xp,q is a non-bipartite Cayley graph of PSL(2, q) (of order q(q2−1)

2
) with girth

at least 2 logp q. In this case, we denote by Y p,q the Kronecker double cover of Xp,q Since the
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Kronecker double cover of a Cayley graph is a bipartite Cayley graph (see Remark 4.3), Y p,q is a
bipartite Cayley graph of arbitrary high girth and Theorem 7.2 yields:

Corollary 7.4. The graph Y p,q satisfies σ(Y p,q) > (p+ 1)/2−√p.
Interestingly, the bound of Corollary 7.4 depends on the degree of the graph, but not on the

number of vertices of the graph Y p,q.
There are many graphs with similar properties to the ones in the preceding corollaries. Indeed,

by a result of [4] for every 0 < δ < 1 there exists cδ such that for any group Γ of order n, the
Cayley graph Cay(Γ, C) with respect to a random set C ⊆ Γ of size cδ log n has λ ≤ (1 − δ)d
almost surely. Moreover, it is known that the girth of Cay(Γ, C) is large with high probability
for many groups, see [18]. As a direct consequence of Theorem 7.2 we have the following lower
bound on σ.

Corollary 7.5. For every 0 < δ < 1 there is a cδ > 0 such that the following holds. Let Γ be any
group of order n and let G = Cay(Γ× Z2, C × {1}) be the Cayley graph of Γ× Z2 with respect
to a set C of cδ log(n) random elements of Γ. Then σ(G) ≥ δd/2 almost surely.

One may wonder if the above constructions give minimal Cayley graphs, i.e., with respect to
inclusion-minimal generating sets. However, we observe the following:

Lemma 7.6. Let G be an (n, d, λ)-graph. If G×K2 is a minimal Cayley graph, then λ ≥ d− 4.

Proof. Since G×K2 = Cay(Γ, C) is minimal, removing any generator from C creates a discon-
nected graph. Thus, there is a 1- or 2-factor F , whose edge-removal disconnects G. Let S be
the set of vertices in one of these connected components and T = V (G ×K2) − S (observe that
|T | ≥ n). Denote by 0, 1 the vertices of K2 and write Si = S ∩ (G×{i}) and Ti = T ∩ (G×{i})
for i = 0, 1. We have that |S0| = |S1|, |T0| = |T1| and, then, |S0| + |T1| = n. Consider
S ′ = {s | (s, 0) ∈ S0} ⊆ V (G) and T ′ = {t | (t, 1) ∈ T1} ⊆ V (G) (observe that |T ′| ≥ n/2).
Thus, we get e(S ′, T ′) ≤ 2|S ′|. On the other hand, by Lemma 7.1, we get that

e(S ′, T ′) ≥ (d− λ)
|S ′||T ′|
n

≥ (d− λ)
|S ′|
2
.

The result follows from both inequalities. �

The Levi graphs of projective planes from Corollary 7.3 are Kronecker double covers of (q2 +
2 + 1, q+ 1,

√
q) graphs. Hence, by Lemma 7.6, we deduce that Lq is not a minimal Cayley graph

for q > 5. So Levi graphs are not minimal Cayley graphs whenever σ > 3. Similarly, one can see
that the graphs Y p,q in Corollary 7.4 with p > 5 cannot provide minimal Cayley graphs. Since the
sensitivity of a d-regular bipartite graph is upper bounded by d− 1, we have that this construction
does not yield minimal Cayley graphs with σ > 5.

So while Corollaries 7.3 and 7.4 give rise to families of Cayley graphs of κ ≡ 1 and un-
bounded σ, one might still believe that minimal Cayley graphs could satisfy Huang’s lower bound
with tightness. However, the Möbius-Kantor graph G(8, 3) is bipartite and the Cayley graph
Cay(P1, {X, Y, Z}), where

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
and P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} < SU(2) is the (first) Pauli group, see the
left part of Figure 5. This group can also be described as central product of Z4 with D4. While
G(8, 3) has girth 6 one can check that σ(G(8, 3)) = 2 > 1 = d

√
κ(G(8, 3))e.

Indeed G(8, 3) is also isomorphic to both Cay(M16, C) and Cay(QD16, C), where M16 =
{xrys | x8 = y2 = e, yx = x5y} is the modular group of order 16, QD16 = {xrys | x8 =
y2 = e, yx = x3y} is the quasidihedral group of order 16, and C = {x, y}. Yet another way of
representing the Möbius-Kantor graph is as the dihedrant Cay(D8, {b, ab, a3b}). However, this
generating set is not minimal. For further information on this remarkable graph, see [28].
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FIGURE 5. Two Cayley graphs of the Pauli group. Left: the Möbius-Kantor
graph G(8, 3) as Cay(P1, {X, Y, Z}). Right: the lexicographic product Q3[K2]
as Cay(P1, {iI,−iX,−iZ}), where iI corresponds to the thick gray arcs.

Another example is the lexicographic product Q3[K2]. One way of representing this graph is
as Cay(P1, {iI,−iX,−iZ}) where again P1 is the Pauli group, see the right part of Figure 5.
Another representation is Q3[K2] ∼= Cay(Z2

2 × Z4, {(1, 0, 1), (0, 1, 1), (0, 0, 1)}). One calculates

σ(Q3[K2]) = 4 > 2 = d
√
κ(Q3[K2])e. We believe that the family of graphs Gm := Qm[K2] with

m ∈ Z+ is a good candidate to provide minimal Cayley graphs where the difference σ(Gm) −√
κ(Gm) is unbounded.
All this leads to a question analogous to χ-boundedness [20] or τ -boundedness [17].

Question 7.7 (σ-boundedness). Is there a function f such that for every minimal bipartite Cayley
graph G, we have σ(G) ≤ f(κ(G))?

8. CONCLUSIONS

Most of the paper is about Huang’s lower bound (Proposition 5.1) being tight, i.e., if a bipartite
Cayley graph contains a largest cube Qd, then there is an induced subgraph of maximum degree
at most d

√
de on more than half the vertices. We show that this holds for some dihedrants, the

star graphs, and some tight groups, where these results can be seen as proving insensitivity. We
further prove the lower bound to be tight for large classes of Coxeter groups, and conjecture it
for general Coxeter groups (Conjecture 6.10). On the other hand we show that there are also
cube-free graphs of unbounded sensitivity, e.g., Levi graphs of projective planes. A curiosity is
that the latter class as well as the first family of insensitive graphs are dihedrants with respect
to non-minimal generating sets. While we have provided insensitive Cayley graphs with respect
to minimal generating sets, it remains open if there are bipartite Cayley graphs with respect to a
minimal generating set that have bounded κ and unbounded σ (Question 7.7).

Further, we believe that the k-imbalance ιk, i.e., the coloring parameter associated to sensitivity
σ deserves further investigation. Indeed, apart from cube-like Coxeter groups and in particular
Qd, our results on star graphs and tight groups can be read in terms of this stronger parameter.

Let us finally conclude with some thoughts on non-bipartite Cayley graphs. Since many things
already do not work in the bipartite case, let us go back to abelian groups. The result of [31] gives
a lower bound on the induced maximum degree when more than half of the vertices are taken, but
in a non-bipartite Cayley graph α is less than half the vertices. We show that the stronger version
is false, i.e., there abelian groups with Cayley graphs of unbounded degree but σ ≡ 1.
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Theorem 8.1. We have σ(Cay(Zr3, {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)})) = 1, for all posi-
tive integers r.

Proof. First note that α(Cay(Zr3, {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)})) = 3r−1. We show
that there is a set of 3r−1 + 1 vertices inducing degree 1 whose complement contains a max-
imum independent set, by induction on r. While the case r = 1 is trivial, let us consider
r > 1 and take a set A of 3r−2 + 1 vertices inducing degree 1 and disjoint independent set
B of size 3r−2 both in Cay(Zr−13 , {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}). Our solution for
Cay(Zr3, {(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}) is A′ = A × {0} ∪ B × {1, 2}. This set has
size 3r−2 + 1 + 2(3r−2) = 3r−1 + 1 and induces degree 1. Moreover, the set B × {0} ∪ (B +
(1, . . . , 0))× {1} ∪ (B + (2, . . . , 0))× {2} induces a maximum independent set complementary
to A′. �

We do not know if there is a family of tripartite Cayley graphs playing the role of hypercubes
with respect to σ. More generally, we wonder:

Question 8.2. Is there an infinite family G of non-bipartite (minimal) sensitive Cayley graphs, i.e.,
is there a function f such that d ≤ f(σ(G)) for all d-regular G ∈ G?
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