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Abstract

Building on a recent characterization of tope graphs of Complexes of Oriented Matroids (COMs),
we tackle and generalize several classical problems in Oriented Matroids (OMs), Lopsided Sets (aka
ample set systems), and partial cubes via Metric Graph Theory.

Our first main result is that every element of an OM from a class introduced by Mandel is incident
to a simplicial tope, i.e, such OMs contain no mutation-free elements. This allows us to refute a
conjecture of Mandel from 1983, that would have implied the famous Las Vergnas’ simplex conjecture.
Further, we show that the mutation graph of uniform OMs of order at most 9 are connected, thus
confirming a stronger conjecture of Cordovil-Las Vergnas in this setting.

The second main contribution is the introduction of corners of COMs as a natural generalization
of corners in Lopsided Sets. Generalizing results of Bandelt and Chepoi, Tracy Hall, and Chalopin
et al. we prove that realizable COMs, rank 2 COMs, as well as hypercellular graphs admit corner
peelings. Using this, we confirm Las Vergnas’ conjecture for antipodal partial cubes (a class much
lager than OMs) of small rank or isometric dimension.

1 Introduction

The hypercube Qn of dimension n is the graph whose vertex set is {+,−}n where two vertices are adjacent
if they differ in exactly one coordinate. A graph G is called a partial cube if G is an isometric subgraph
of a hypercube Qn, i.e., dG(u, v) = dQn

(u, v) for all u, v ∈ G. In this case, the minimum such n is the
isometric dimension of G.

An Oriented Matroid (OM) is a mathematical structure that abstracts the properties of hyperplane
arrangements, directed graphs, vector arrangements and others. It has been studied extensively in com-
binatorial, as well as in topological and algebraic settings. For graph theorists it might be attractive
to consider the tope graph of an OM. It can easily be shown that the tope graph is a partial cube and
determines a simple OM uniquely up to isomorphism [6], hence no information is lost in this approach.

In this paper based on recent graph theoretical characterization [31], we analyse OMs and related
structures through their tope graphs. In particular, in the first part of the paper this view leads us to new
results concerning Las Vergnas simplex conjecture and mutations. While the approach to this section is
graph theoretical, we try to present it in a way that a reader more familiar with the standard approach to
OMs can understand it. In the second part of the paper we explore how these problems and ideas can be
extended beyond OMs into two directions. First, we consider Complexes of Oriented Matroids (COMs),
which are a recent generalization of OMs, who share the property that their tope graph is a partial cube
and determines a simple COM uniquely up to isomorphism [4]. Second, we consider antipodal partial
cubes, i.e., those isometric subgraphs G of Qn such that for every v ∈ G also its antipode −v, where all
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signs are reversed, is a vertex of G. Note that if G is isometrically embedded in Qn with minimal n, the
embedding is unique up to an isomorphism [42, Chapter 5], so an antipode is well defined even if the
embedding is not given. Antipodal partial cubes are the tope graphs of so-called acycloids [20]. Both of
these generalizations are natural since G is the tope graph of an OM if and only it is antipodal and the
tope graph of a COM [31].

So, what is a tope graph? One of the standard ways to define an OM, a COM (or an acycloid) is as
a pairM = (E,L ) of a finite ground set E and a set of covectors L ⊂ {+,−, 0}E with certain properties,
see Section 2. One obtains the tope graph, by considering the subgraph induced in the hypercube by
the topes, i.e., covectors without 0-entries. Considering an OM as its tope graph, we will denote it just
as G. All OM notions have an equivalent description in terms of the tope graph, e.g., the order of E is
the isometric dimension of G. The rank of an OMM = (E,L ), classically defined as the length of the
maximal chains in L with respect to the product order induced by 0< +, 0< −, can be read of its tope
graph G as well, see Section 2.

If G is an OM, then a vertex v ∈ G is called simplicial if deg(v) = r(G). Simplicial vertices correspond
to simplicial topes and it is a well known fact that the degree of each vertex (tope) must be at least r(G).
The well-known simplex conjecture of Las Vergnas [34] in terms of tope graphs of OMs reads as follows:

Conjecture 1 (Las Vergnas). Every OM has a simplicial tope.

The conjecture is motivated by the fact that it holds for all OMs that are realizable (by hyperplanes
in Euclidean space) [52]. The largest class known to satisfy Conjecture 1 was found in [37, Theorem 7].
We call that class Mandel here and consider it in depth in Section 4. Realizable OMs and OMs of rank at
most 3 are Euclidean and the latter are Mandel, but the class is larger. Indeed, Mandel [37, Conjecture
8] even conjectured the following as a “wishful thinking statement”, since by the above it would imply
the conjecture of Las Vergnas.

Conjecture 2 (Mandel). Every OM is Mandel1.

Let us now consider some strengthenings of Las Vergnas’ conjecture. Recall that G is a partial cube,
and hence its edges are partitioned into so-called Θ-classes corresponding to E, i.e., the coordinates of
the hypercube G is embedded in. We say that such G is Θ-Las Vergnas, if every Θ-class of G contains
an edge incident to a simplicial vertex. In the language of OMs this means that G has no mutation-
free elements. It is known that rank 3 OMs are Θ-Las Vergnas [36]. This brings us to the first main
result of this paper. In Theorem 4.5 we extend the class of Θ-Las Vergnas OMs significantly, by showing
that Mandel OMs are Θ-Las Vergnas. On the other hand, OMs that are not Θ-Las Vergnas have been
discovered [8,47,53] . See Figure 1 for an illustration of one of them. Together with Theorem 4.5 this
disproves Mandel’s conjecture (Corollary 4.6).

Result 1. Mandel OMs are Θ-Las Vergnas, hence Mandel’s Conjecture fails.

The next is a strengthening of Las Vergnas’ conjecture for uniform Oriented Matroids (UOMs), see
Section 2 for a definition. A well-known operation that one can apply to a simplicial vertex of an UOM is
a mutation - transforming one UOM to another one, see Section 3. One can consider the mutation graph
G n,r , whose vertices are (reorientation classes of) UOMs of rank r and of order n. Two reorientation
classes are connected if and only if there exists a mutation between them. The graph G n,r is motivated by
the topological representation of OMs. In particular, by Ringel’s Homotopy Theorem [48,49] it follows
that G n,3 is connected. Moreover, the subgraph of G n,r induced by the realizable UOMs is connected
by [50]. Las Vergnas’ conjecture would imply that G n,r has minimum degree at least 1 (where loops can
occur). A much stronger affirmation appears in [50]:

Conjecture 3 (Cordovil-Las Vergnas). For all r, n the graph G n,r is connected.

1Note that it was us and not Mandel who baptized this class of OMs, we merely want to combine eponymous homage and
correct attribution.
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Figure 1: A halfspace E+e of a non-Mandel OM G, where Ee is the Θ-class witnessing that G is not Θ-Las
Vergnas. The bold subgraph is an OM of rank 3 on the vertices incident with Ee in G.

In Section 3 we introduce two variations of G n,r that seem natural in the graph theoretic language
of OMs, denoted G n,r

and G n,r . In the graph G n,r the vertices are graph isomorphism classes, instead
of the reorientation classes, while in G n,r

the vertices are all the OMs of rank r and order n (over the
same ground set). Indeed, it is easy to see that the connectivity of G n,r

implies the connectivity of G n,r

and the connectivity of G n,r implies that G n,r is connected. (Observation 3.1).

Our results with respect to Conjecture 3 include that G n,3
is connected, which is a consequence of

Ringel’s Homotopy Theorem [48,49] and strengthens the fact that G n,3 is connected (Proposition 3.2).
Moreover, we show that connectivity of G n,r implies connectivity of G n,r (Proposition 3.3). Since G n,r

is much smaller that G n,r , the fact that Conjecture 3 is closed under duality, see [7, Exercise 7.9], allows
us to verify Conjecture 3 for all n ≤ 9, computationally. See Table 1 for orders of the graphs G n,r and
Figure 5 for a depiction of G 8,4.

Result 2. The Cordovil-Las Vergnas Conjecture holds for UOMs of order at most 9.

In the last part of the paper (Sections 5, 6) we explore how the notion of simpliciality generalizes to
classes of partial cubes containing OMs. First we consider Complexes of Oriented Matroids (COMs) [4].
This class can be seen as a common generalization of OMs as well as,e.g., distributive lattices, antima-
troids, median graphs, CAT(0) cube complexes, linear extensions of posets, pseudoline arrangements,
hyperplane arrangements, Pasch graphs, and Lopsided Sets (LOPs). COMs have been acknowledged
already several times in their short existence, see [5, 16, 25, 27, 33, 40, 43, 46]. As their name suggest,
COMs may be seen as complexes whose cells are OMs. In terms of the tope graph G of a COM its OM
cells can be identified as its so-called antipodal subgraphs. If a COM is a LOP, then these cells are just
subgraphs isomorphic to hypercubes, see Section 2 for the details.

We generalize the notion of simpliciality from OMs to COMs as follows: a vertex v ∈ G is simplicial
if it is contained in a unique maximal antipodal subgraph A ⊆ G and deg(v) = r(A). In LOPs sim-
plicial vertices are usually called corners and have important implications for results in computational
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learning theory, see [9]. The notion of corners in COMs allows us to prove the existence of simplicial
vertices in certain COMs. In Section 5.2 we show that realizable COMs (Proposition 5.5), COMs of
rank 2 (Theorem 5.11), and hypercellular graphs (Theorem 5.14) admit corner peelings, which is a way
of deconstructing a COM in a well-behaved way. This result generalizes the corresponding results on
realizable LOPs [53], LOPs of rank 2 [9], and bipartite cellular graphs [3]. Furthermore, together with
the examples from [8, 47, 53] this yields locally realizable COMs that are not realizable and refutes a
conjecture of [4, Conjecture 2] (Remark 5.6).

Lastly, we consider the question of generalizing Conjecture 1 to antipodal partial cubes. First we
consider the case where the rank is at most 3. In this case the distinction between general antipodal
partial cubes and OMs is easy, since OMs of rank at most 3 are exactly the planar antipodal partial
cubes [20]. Based on this, for rank 3 OMs Conjecture 1 can be deduced from Euler’s Formula and
the fact that partial cubes are triangle-free. We extend this result by showing that all (hence also the
non-planar) antipodal partial cubes of rank at most 3 have simplicial vertices in Section 6.

Conjecture 1 has been verified for UOMs of rank 4 up to 12 elements [8]. In Section 6 we prove that
even general antipodal partial cubes of isometric dimension up to 7 have simplicial vertices. It could be
that every antipodal partial cube of rank r has minimum degree at most r.

Result 3. Realizable COMs, COMs of rank 2 and hypercellular graphs have corner peelings, thus in particular
simplicial vertices. The minimum degree of antipodal partial cubes of rank 3 or of isometric dimension at
most 7 is at most their rank, i.e., they satisfy the Las-Vergnas property.

2 Preliminaries

Based on a recent result from [31], we start by presenting OMs, Affine Oriented Matroids (AOMs) and
Uniform Oriented Matroids (UOMs) solely as graphs, in particular as a subfamily of partial cubes. A
reader familiar with these concepts can avoid this view and read the paper nevertheless. We begin with
necessary standard definitions from Metric Graph Theory:

As stated above, a partial cube is an isometric subgraph of a hypercube, where the minimal dimension
it embeds into is called its isometric dimension. The notion is well defined since an embedding of a partial
cube is unique up to automorphisms of the hypercube [42, Chapter 5]. As mentioned above, we call a
partial cube G of isometric dimension n antipodal if when embedded in Qn for every vertex v of G also
its antipode −v, i.e., the vertex with all coordinates flipped, is in G. A subgraph H of G is convex, if all
the shortest paths in G connecting two vertices of H are also in H. A convex subgraph H of a partial
cubes G is a partial cube as well, since every convex (or isometric) subgraph of an isometric subgraph
of a hypercube is isometric in the hypercube as well. In fact the embedding of H is inherited from G.
We say a subgraph H of G is antipodal, if it is a convex subgraph of G and an antipodal partial cube on
its own (where antipodes in H are considered with respect to its embedding in a minimal hypercube).
Finally, we call a subgraph H of a graph G gated if for every vertex x of G there exists a vertex vx of H
such that for every u ∈ H there is a shortest path in G from x to u passing through vx . Gated subgraphs
are convex [23, Section 12.1]. As mentioned earlier, embedding a partial cube G in Qn yields a partition
of the edges of G into so-called Θ-classes corresponding to the dimensions of Qn. Each Θ-class consists
of the edges corresponding to a flip of a fixed coordinate. We denote by E f a Θ-class of G where f
corresponds to a coordinate in {1, . . . , n}. We write E+f for the vertices having the coordinate f equal to
+ and analogously define E−f . The sets E+f and E−f are called halfspaces of G and induce graphs that are

partial cubes as well since they are already isometrically embedded in a hypercube. If {Es1
f1

, Es2
f2

, . . . Esk
fk
}

are halfspaces in a partial cube G, for fi coordinate and si ∈ {+,−}, 1 ≤ i ≤ k, the partial cube induced
by the intersection ∩k

i=1Esi
fi

is sometimes called a restriction of G. Note that in the standard language of
oriented matroids, Θ-classes correspond to elements of a simple OM, hence also isometric dimension is
sometimes just called the number of elements.
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Starting from a graph theoretical perspective we state a characterization – that serves as a definition
for now – of (simple) OMs, AOMs, UOMs, LOPs, and COMs.

Theorem 2.1 ( [13,15,31]). There is a one to one correspondence between the classes of (simple):

(i) OMs and antipodal partial cubes whose antipodal subgraphs are gated [15,31],

(ii) AOMs and halfspaces of antipodal partial cubes whose antipodal subgraphs are gated [31],

(iii) UOMs and antipodal partial cubes whose proper antipodal subgraphs are hypercubes [13,31].

(iv) LOPs and partial cubes whose antipodal subgraphs are hypercubes [35], hypercubes [13,31].

(v) COMs and partial cubes whose antipodal subgraphs are gated [31],

While the proof of the above theorem is rather complicated, the correspondence with the standard
definition of the OMs, AOMs, UOMs through covectors L ⊂ {+,−, 0} (see below) is simple. One di-
rection we already described above, namely given L the vertices of the tope graph are the elements
without 0-entries (topes) inducing a subgraph in QE . Conversely, one can get the covectors from the
tope graph by associating to its antipodal subgraphs sign-vectors, that encode their relative position to
the halfspaces. This is explained in more detail below.

An operation that is well known in the study of partial cubes is a (partial cube) contraction π f that
for a coordinate f contracts all the edges in a Θ-class E f . The family of partial cubes is closed under
the operation of contraction as well as are the families of OMs, AOMs (in their graph representation)
and the class of antipodal partial cubes, see [31]. The partial cube contraction operation corresponds to
deletion in covector systems.

The rank r(G) of a partial cube G is the largest r such that G can be transformed to Qr by a sequence
of partial cube contractions. The definition of rank in oriented matroid theory is equivalent, see [13,15].
Furthermore, notice that viewing the vertices of G ⊆Qn as a setS of subsets of {1, . . . , n}, r(G) coincides
with the VC-dimension of S , see [54]. The latter correspondence has led to some recent interest in
partial cubes of bounded rank, see [12]. See Figure 2 for an antipodal partial cube of rank 3.

Ee

Ef

πe

πf

Figure 2: Contracting an antipodal partial cube to Q3.

The inverse of a contraction is an expansion. In fact one can look at expansions in partial cubes the
following way: if H is a contraction of G, i.e. H = πe(G), then one can consider in H sets H1 = πe(E+e )
and H2 = πe(E−e ). Notice that they completely determine the expansion, since G can be seen as a graph
on the disjoint union of H1 and H2 where edges between them correspond to H1∩H2. By expansion of H
we refer to the subgraphs H1, H2 and sometimes to G. If G and H are OMs, then we say that H1, H2 is an
OM-expansion, also called single-element extension in OM theory (we define OM-expansion in terms of
covectors as well, see below). More generally, if H is an antipodal partial cube, then an expansion H1, H2
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of H is antipodal if the expanded graph G is again antipodal. It is well-known, see e.g [31,45], that G is
antipodal if and only if H1 = −H2. Clearly, a OM-expansion is antipodal. An OM-expansion H1, H2 is in
general position if each maximal proper antipodal subgraph is either completely in H1 or completely in
H2 but not in H1 ∩H2. We reestablish the definition of the general position in terms of covectors below.
Expansions in general position are central to the notion of Mandel OMs as well as to the definition of
corners in COMs, i.e., in both Section 4 and Section 5.2. It is well-known, that every OM admits an
expansion and indeed even an expansion in general position, see [51, Lemma 1.7] or [7, Proposition
7.2.2].

We introduced COMs and their subclasses as graphs. Nevertheless, for certain results it is convenient
to define covectors and cocircuits of COMs which are standard ways to introduce OMs. The covectors
are represented as a subsetL ⊆ {+,−, 0}n and have to satisfy certain axioms in order to encode a COM,
OM, AOM, LOP or UOM. If X ∈ L and e ∈ [n] is a coordinate of X , we shall write X e ∈ {+,−, 0} for
the value of X in coordinate e. When considering tope graphs, one restricts usually to simple systems.
Here, a system of sign-vectors L is simple if it has no “redundant” elements, i.e., for each e ∈ [n],
{X e : X ∈ L}= {+,−, 0} and for each pair e ̸= f in [n], there exist X , Y ∈ L with {X eX f , YeYf }= {+,−}.
We will assume simplicity without explicit mention. By the graph-theoretical representation of COMs
given in [31], the covectors correspond to the antipodal subgraphs of a COM G. Indeed, in a partial cube
every convex subgraph is an intersection of halfspaces, see e.g. [1], and one can assign to any convex
subgraph H a unique sign-vector X (H) ∈ {0,+,−}n by setting for any coordinate e ∈ {1, . . . , n}:

X (H)e =











+ if X ⊆ E+e ,

− if X ⊆ E−e ,

0 otherwise.

This correspondence yields a dictionary in which important concepts on both sides, graphs and sign-
vectors translate to each other. We have spoken about isometric dimension and rank. Another instance
of this is that if the v ∈ G is a vertex of an antipodal partial cube, then for its antipode u we have X (u) =
−X (v). Thus, we will often denote the antipodes of a set of vertices H just by −H. Another noteworthy
instance is the relation of gates and composition. The composition of two sign vectors X , Y ∈ {0,+,−}n

is defined as the sign-vector obtained by setting for any coordinate e ∈ {1, . . . , n}:

(X ◦ Y )e =

¨

X e if X e ̸= 0,

Ye otherwise.

Proposition 2.2. [31] If H is a gated subgraph of a partial cube G, then for a vertex v with gate u in H,
we have X (u) = X (H) ◦ X (v).

A set of covectors forms a COM if it satisfies the following two axioms:

(FS) X ◦ −Y ∈ L for all X , Y ∈ L .

(SE) for each pair X , Y ∈ L and for each e ∈ [n] such that X eYe = −1, there exists Z ∈ L such that
Ze = 0 and Z f = (X ◦ Y ) f for all f ∈ [n] with X f Yf ̸= −1.

It is easy to see, check e.g. [4], that a set of covectors is an OM if and only if it is a COM satisfying
additionally:

(Z) 0 ∈ L .

For similar axiomatizations for LOPs, AOMs, and UOMs we refer to [4,5]. We now reestablish some
definitions stated in terms of graphs in terms of covectors. What was defined as a partial cube contraction
on the tope graph of an OM, corresponds to so called deletion in OMs. In particular, if L is a set of
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covectors of an OM and e ∈ [n] is an element of it, thenL ′ =L\e = {X\e | X ∈ L} is a set of covectors
of a smaller OM, that is said to the obtain by the deletion of e. On the contrary, of L is said to be a
single-element extension of L ′ (recall that in the graph setting it is named an expansion). The extension
is said to be in general position if the union of images of {X ∈ L | X e = +} and {X ∈ L | X e = −}
under the deletion covers all the covectors of L ′. In fact, as we will see in Section 4, the image of
{X ∈ L | X e = +} under deletion is maximal with the property that it induces a COM inL ′. We will use
this to define a corner of an OM. For G1, G2 being the images of {X ∈ L | X e = +} and {X ∈ L | X e = −}
under deletion, we will sometimes also say that the expansion is along G1 and G2.

We will content ourselves with the definition of OMs and COMs with covectors and for other classes
use Theorem 2.1 as a definition. In order to formulate (SE) in terms of antipodal subgraphs, we give
some more terminology about how subgraphs and Θ-classes can relate. We will say that a Θ-class E f
crosses a subgraph H of G if at least one of the edges in H is in E f . Moreover, E f separates subgraphs
H, H ′ if H ⊆ E+f and H ′ ⊆ E−f or the other way around. We collect the coordinates separating H and H ′

in the set S(H, H ′) – usually called the separator. Let us now state the axiom of strong elimination for
graphs:

(SE) Let X , Y be antipodal subgraphs of G and Ee a Θ-class such that X ⊆ E+e and Y ⊆ E−e , i.e., e ∈
S(X , Y ). There is an antipodal subgraph Z of G that is crossed by Ee and for all f ̸= e we have:

– if X , Y ⊆ E+f then Z ⊆ E+f , and if X , Y ⊆ E−f then Z ⊆ E−f
– if E f crosses one of X , Y and the other is a subset of E+f then Z ⊆ E+f , and if E f crosses one

of X , Y the other is a subset of E−f then Z ⊆ E−f
– if E f crosses both X and Y , then it crosses Z .

In some parts of the paper we will abuse a bit the distinction between covectors and antipodal
subgraphs in the way that we have suggested in the above definitions.

1

2
3 4

5

1

2
3 4

5

(− + − + +)

(+ + − + +)

(+ + − + −)
(+ + + + −)

(− + + + −)

(− + + + +)

(− − + + +)

(− − + − +)

(− − + − −)
(− − + + −)

(− + + − −)

(0 + − + +)

(+ + − + 0)

(+ + 0 + −)

(− + 0 + +)

(0 + 0 + 0)

(−0 + ++)

(−0 + +−)

(−0 + −−)

(− − +0+)

(− − +0−)

(− + +0−)

(− − + − 0)

(− − + + 0)

(− + + + 0)

(0 + + + −)

(−0 + +0)

(− − +00)

(−0 + 0−)

Figure 3: A realizable COM and its tope graph. Its bounded faces, edges and vertices are the antipodal
subgraphs.

Some COMs, OMs, AOMs, and LOPs can be particularly nicely represented by a geometric construc-
tion. Let {H1, . . . , Hn} be a set of hyperplanes in an Euclidean space Rd and C a full-dimensional open
convex set in Rd . The hyperplanes cut C in d-dimensional chambers and to every point in C one can
associate a vector in {+,−, 0}n that denotes its relative position to the hyperplanes (if they are given with
positive and negative side). These are the covectors. One can form a graph G whose vertices are the
chambers where two chambers are adjacent if and only if they are separated by exactly one hyperplane.
Such graphs are always COMs. If C = Rd then the graph is an AOM, and if moreover all {H1, . . . , Hn}
cross the origin point, then the graph is an OM. If {H1, . . . , Hn} are the coordinate hyperplanes of Rd and
C is arbitrary, then the graph is a LOP. If a COM, OM, AOM, or LOP G is isomorphic to a graph obtained
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in this way, we call it realizable. See Figure 3 for a realizable COM and its tope graph. Realizable COMs
embody many nice classes such as linear extension graphs of posets, see [4] and are equivalent to special
convex neural codes, namely so-called stable hyperplane codes, see [27,33].

If G is an OM, then the set of antipodal subgraphs is usually ordered by reverse inclusion to yield the
big face lattice F (G) whose minimum is G itself. This ordering in terms of covectors can be equivalently
defined by setting X ≤ Y for covectors X , Y , as the product ordering of {+,−, 0}n relative to the ordering
0 ≤ +, 0 ≤ −. If G is of rank r, then it follows from basic OM theory that the F (G) is atomistic and
graded, where r + 1 is the length of any maximal chain. Hence the latter can also be used to define the
rank of G. The atoms, i.e. the covectors corresponding to the antipodal subgraphs of rank r − 1, are
called cocircuits in the standard theory of OMs.

Another graph associated to an OM G of rank r is its cocircuit graph of G, i.e., the graph G∗ whose
vertices are the antipodal subgraphs of G of rank r − 1 (equivalently cocircuits) where two vertices are
adjacent if their intersection in G is an antipodal subgraph of rank r − 2 (i.e. two cocircuits X , Y are
adjacent if there exists a covector Z with X , Y ≺ Z). We denote the cocircuit graph of G by G∗, since it
generalizes planar duality in rank 3, see [20], however in higher rank (G∗)∗ is not well-defined, because
the cocircuit graph does not uniquely determine the tope graph, see [14]. There has been extensive
research on cocircuit graphs [2, 17, 32, 41]. However their characterization and recognition remains
open. Cocircuit graphs play a crucial role for the notion of Euclideaness and Mandel in Section 4.

In a general COM G, the poset F (G) remains an upper semilattice, since antipodal subgraphs are
closed under intersection, but there is no minimal element. There are different possible notions of
cocircuits that allow to axiomatize COMs, see [4]. We consider cocircuits in the setting of pure COMs
G, i.e., all maximal antipodal subgraphs of G are of the same rank and G∗ is connected. If G is a non-
antipodal pure COM, then its cocircuits are just the maximal antipodal subgraphs. We will introduce the
cocircuit graph of pure COMs in Section 5.2, where it will serve for proving the existence of corners in
COMs of rank 2.

3 Mutation graphs of uniform oriented matroids

Let us define mutations of UOMs through their tope graph. If v is a simplicial vertex in a UOM G of
rank r, then v is contained in a unique convex hypercube minus a vertex, let us denote it by Q−r . This is a
well known assertion and it directly follows from Lemma 4.3. If one fills in the missing vertex of Q−r and
instead removes v and does the same to the antipodes of the vertices in G, one obtains a new UOM G′

of rank r. This operation is called a mutation. Hence, a mutation is an operation that transforms a UOM
into another UOM. A simple analysis shows that the operation is reversible, i.e. the inverse operation is
also a mutation, and that the rank of both UOMs is equal.

Thus, one can now consider a mutation graph whose vertices are UOMs embedded into Qn, for some
n ∈ N of fixed rank r and edges are corresponding to mutations. In fact, one can consider three mutation
graphs corresponding to the different notions of equivalence of OMs, that will now be introduced.

As stated above, the isometric embedding of a partial cube into a hypercube of minimum dimension is
unique up to automorphisms of the hypercube, see e.g. [42, Chapter 5]. Indeed, partial cubes G1, G2 ⊆Qn
are isomorphic as graphs if and only if there is f ∈ Aut(Qn) such that f (G2) = G1. This leads to the
fact that isomorphisms of simple OMs and their tope graphs correspond to each other. Since (unlabeled,
non-embedded) isomorphic tope graphs are sometimes considered as equal, this allows to speak about
isomorphism classes of OMs in a natural way. The situation is the same if one consider OMs in the
standard definition since an isomorphism of an OM directly translates to an isomorphism of its tope
graph, see e.g. [6,7].

A more refined notion of isomorphisms for partial cubes are reorientations. For partial cubes G1, G2 ⊆
Qn one says that G1 is a reorientation of G2 if there is f ∈ Zn

2 ⊆ Aut(Qn) such that f (G2) = G1, i.e., f
only switches signs. This yields an equivalence relation whose classes are called reorientation classes.

We give the three resulting graphs:

8



• G n,r
is the graph whose vertices are UOMs of rank r and isometric dimension n, embedded into

Qn. Two graphs are connected if and only if there exists a mutation between them.

• G n,r is the graph whose vertices are reorientation classes of UOMs of rank r and isometric dimen-
sion n embedded into Qn. Two reorientation classes are connected if and only if there exists a
mutation between them.

• G n,r is the graph whose vertices are graph isomorphism classes of UOMs of rank r and isometric
dimension n. Two classes are connected if and only if there exists a mutation between them.

The three different mutation graphs are related as follows:

Observation 3.1. Let 0≤ r ≤ n. We have G n,r
connected =⇒ G n,r connected =⇒ G n,r connected.

Proof. If G n,r
is connected, then also G n,r is, since there is a weak homomorphism from the first to the

second, mapping an OM to its equivalence class. Similarly, if G n,r is connected then also G n,r is, since a
reorientation can be seen as an isomorphism.

We start by analyzing the connectivity of mutation graphs for small rank. Since OMs of rank 1 or
2 are simply isomorphic to an edge or an even cycle, respectively, the first interesting case is when the
rank of OMs is 3. Our first result on the topic, together with Observation 3.1 settles the connectivity of
all three graphs in rank 3:

Proposition 3.2. For every n the graph G n,3
is connected.

Proof. It is a well known fact, implied by the Topological Representation Theorem [18], that OMs of
rank 3 can be represented as pseudo-circle arrangements on a 2-dimensional sphere. Further, this ar-
rangement can be assumed to be centrally symmetric and then by restricting the sphere along an equator
that does not contain any intersection of the pseudo-circles, one obtains a wiring diagram, see Figure 4,
i.e., a set of pseudo-lines traversing from left to right pairwise intersecting exactly once. Note that dif-
ferent choices of equator yield different wiring diagrams, but the all represent the OM in the same way,
and only differ in what line is the topmost entering on the left. Then, every pseudoline splits the plane
into positive and negative half, and every point in the plane yields a covector, by associating to each
pseudo-line a coordinate and putting a +,−, 0 in it, depending on the point being on positive, negative
side or on the pseudo-line. This, way for each covector Y of the OM exactly one of Y,−Y is represented.
Maximal cells correspond to topes where two are adjacent if the cells intersect on a line-segment. The
OM being uniform corresponds to arrangement being simple, i.e., no three lines cross in a point. A muta-
tion of the wiring-diagram means pulling a bounding line of a simplicial cell over its opposite corner. A
special case is if the simplicial cell is crossed by the bounding vertical lines, see Figure 4. This operation
corresponds to what we described as mutation in tope graphs.

We now use the proof of Ringel’s Homotopy Theorem [48, 49] as shown in [7, Section 6.4]. Ringel
shows that any two labeled simple wiring diagrams can be transformed into another by performing
mutations.

Suppose now that we have two UOMs of rank three M and M ′ and want to transform one into
the other by mutations. Both can be represented by wiring diagrams, as stated above. Then by Ringel’s
Theorem we can assume thatM can be transformed into a reorientation ofM ′. So to prove that G n,3

is
connected we only need to consider the case whereM andM ′ differ in the reorientation of one element
e. RepresentM as a wiring-diagram A , where e is the top-element on the left and construct a wiring
diagramA ′ as shown in Figure 4, with e being the bottom element on the left. Note thatA ′ represents
M ′, and the mutations transformingA intoA ′ by Ringel’s Theorem push the line e without changing
its orientation. Thus, we have obtainedM ′ fromM by mutations.

We show that two of the open questions about the connectivity of mutation graphs are equivalent.
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e

e′

A A′

Figure 4: How to construct the new pseudoline arrangement in the proof of Proposition 3.2. The arrow
points to the positive side of e. The grey cell is the simplicial cell on which a mutation is applied.

n\r 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1
3 1 1 1 4 11 135 482 312356
4 1 1 1 11 2628 9276595 ?
5 1 1 1 135 9276595 ?
6 1 1 1 4382 ?
7 1 1 1 312356
8 1 1 1
9 1 1
10 1

Table 1: Known orders of G n,r , retrieved from http://www.om.math.ethz.ch/.

Proposition 3.3. If G n,r is connected, then G n,r is connected.

Proof. Notice that the property of being a realizable OM is independent of reorientation or permuting
the elements. If G n,r is connected, then there exists a sequence of mutations from any [A] ∈ G n,r to
a realizable class [B] ∈ G n,r . This sequence can then be lifted to a sequence of mutations from any
A′ ∈ G n,r to a realizable B′ ∈ G n,r . This proves that there exists a path from every A′ ∈ G n,r to a
reorientation classes of realizable OMs. Since by [50] the induced subgraph of all realizable classes in
G n,r is connected, this proves that G n,r is connected.

Proposition 3.3 allows to approach Conjecture 3 for small values of n and r from the computational
perspective, since it allows computations on the smaller graph G n,r . To provide an idea of the com-
putational weight of this task, Table 1 shows the known orders of such graphs G n,r for small n and r.
Moreover, Figure 5 displays the graph G 8,4.

We verified computationally that for all the parameters from Table 1 where the isomorphism classes
of OMs are known, their mutation graph G n,r is connected. By Proposition 3.3 also the corresponding
G n,r are connected. This was possible by considering UOMs as (tope)graphs in which finding possible
mutations is easy, since only degrees of vertices need to be checked. We calculated the isomorphism
class of the mutated graphs using the software Bliss [28] that is designed for calculations of isomor-
phisms of graphs. The computationally most demanding task was the graph G 9,4 where efficient graph
representation was needed.

Corollary 3.4. The graph G n,r is connected for n≤ 9.

Testing graph isomorphism instead of OM-isomorphism was an essential ingredient in order to obtain
Corollary 3.4. Checking connectivity of G n,r

is far more demanding. We do not know anything about
the connectivity of this graph beyond rank 3, see Proposition 3.2.
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Figure 5: The graph G 8,4 where red vertices are isomorphism classes of realizable UOMs and blue ones
are non-realizable

4 Mandel’s OMs and Euclideanness

In this section we focus on Las Vergnas’ and Mandel’s Conjectures. The main result is that Mandel OMs
areΘ-Las Vergnas and therefore not all OMs are Mandel. In order to make the result accessible to readers
familiar with the OM terminology as well as to readers more familiar with graphs we try to argue in the
proof along both views.

The concept of Euclideanness is based on the orientations of cocircuit graph introduced in Section 2.
Furthermore, the property of being Mandel relies on the definition of extensions in general position and
Euclideanness.

Let G be an OM of rank r. Recall the definition of cocircuit graph G∗ from Section 2. Graph G∗ has
cocircuits of G for vertices, i.e. in graph theoretical language the antipodal subgraphs of G of rank r−1.
Two cocircuits X , Y are adjacent if there exists a covector Z with X , Y ≺ Z (hence Z has rank r − 2) in
the big face lattice F (G), or equivalently if the intersection of the antipodal subgraphs corresponding
to X and Y in G is an antipodal subgraph of rank r − 2.

Consider now a maximal subset F of the Θ-classes of G such that there exist a covector Z of rank
r −2 with Ze = 0, for all e ∈ F . In other words, there exists an antipodal subgraph of rank r −2 crossed
by the Θ-classes in F . Let X1, . . . , Xn be a maximal path in G∗ such that (X i)e = 0 for all e ∈ F , i.e. all
the corresponding antipodal subgraph are crossed by the Θ-classes in F . It follows from the topological
representation of OMs [37], that X1, . . . , Xn induce a cycle in G∗. Moreover, Xn/2+i is the antipode of X i
in G, for 1 ≤ i ≤ n/2. Furthermore, for each Θ-class E f /∈ F there are exactly two antipodal cocircuits
X i and Xn/2+i such that (X i) f = (Xn/2+i) f = 0, meaning that E f crosses exactly two pairwise antipodal
subgraphs corresponding to X i and Xn/2+i on the cycle. The cocircuit graph G∗ is the (edge-disjoint)
union of such cycles.

Let now H be a halfspace of G, i.e. H is (the tope graph of) an AOM. The induced subsequence
Xk, . . . , Xℓ of the above cycle is called a line L in H. This name comes from the fact that in the topological
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representation the sequence corresponds to a pseudo-line, see [37]. Let now e be an element (or Ee be a
Θ-class) of H. We say that e (or Ee) crosses a line L of H, if there exists a unique X i on L with (X i)e = 0,
i.e. the corresponding antipodal subgraph is crossed by Ee. Note that for a line L of an AOM, if there
exists X i with (X i)e = 0, then X i is either unique, or all cocircuits on L are crossed by Ee. Equivalently,
exactly one or all of the antipodal subgraphs on the line are crossed by Ee. This allows to define the
orientation of line L with respect to e (or Ee): If L is not crossed by e (equivalently Ee) we leave its edges
undirected. Otherwise, let X i be the element of L that is crossed by it and assume that X j ⊂ E−e for j < i
and X j ⊂ E+e for j > i. We orient all edges of the form X j , X j+1 from X j to X j+1. This is, the path L is
directed from E−i to E+i .

The edges of the cocircuit graph H∗ of an AOM H are partitioned into lines and for every element e
(or Θ-class Ee) we obtain a partial orientation of H∗ by orienting every line with respect to Ee. Let us
call this mixed graph the orientation of H∗ with respect to Ee. Following Mandel [37, Theorem 6], an
AOM is Euclidean if for every element e (or Θ-class Ee) the orientation of the cocircuit graph H∗ with
respect to e is strictly acyclic, i.e., any directed cycle (following undirected edges or directed edges in
the respective orientation) consists of only undirected edges. In other words, any cycle that contains a
directed edge contains one into each direction.

Following Fukuda [19], an OM is called Euclidean if all of its halfspaces are Euclidean AOMs. Since
non-Euclidean AOMs exist, see [19,37], also non-Euclidean OMs exist. However, there is a larger class
of OMs that inherits useful properties of Euclidean AOMs and that was introduced by Mandel [37].

We call an OM Mandel if it has an expansion in general position such that G1 (and implicitly G2, since
they are isomorphic with the antipodal map) are Euclidean AOMs. In terms of the covectors description,
this can be stated as follows: if L is a set of covectors of an OM, and there exists L ′ a single-element
extension in general position of it with respect to an element e, i.e. L ′\e = L , with the property that
{X ∈ L ′ | X = +} induces an Euclidean AOM, then L is said to be Mandel. Mandel [37, Theorem 7]
proved (and it is up to today the largest class known to have this property) that these OMs satisfy the
conjecture of Las Vergnas:

Theorem 4.1 ( [37]). If an OM G is Mandel, then it has a simplicial vertex.

In the following we go along the lines of Mandel’s proof of Theorem 4.1 from [37] while refining
it to such an extent, that we can disprove Conjecture 2. In particular, we use a stricter version of the
induction in the proof to obtain Θ-Las Vergnas properties of Mandel OMs.

We shall repeatedly use the following fact, that is trivial with the covectors definition of OMs but
is a bit more complicated to prove in the graph view. Nevertheless, it was also proved with graphs
in [31, Lemma 6.2].

Observation 4.2. Let G, G′ be OMs such that G′ is an OM deletion (i.e. a partial cube contraction) of G,
with respect to an element e (a Θ-class Ee). Then for every cocircuit X ′ of G′ there exists a cocircuit X in G,
such that X f = X ′f for all f ̸= e. In graph theoretical view, there exists a maximal antipodal subgraph of G
that contracts to the maximal antipodal subgraph corresponding to X ′. The same holds for COMs.

The following is a characterization of simplicial vertices in an OM, that can be found in [37, Propo-
sition 5, page 320] and [34, Proposition 1.4]. We provide a slightly different formulation together with
a formulation in terms of the tope graph. Recall that in an OM G a vertex v is simplicial if the degree of
v coincides with the rank of G. Also recall, that by definition G is Θ-Las Vergnas if for every Θ-class Ee
of G, there exists a simplicial vertex incident with Ee. In terms of the covectors description, this means
that for every element e there exists a simplicial tope X and a covector Y with Y ≺ X such that Ye = 0.
We will say that X is incident with e.

Lemma 4.3. Let G be an OM of rank r. A tope v ∈ G is simplicial if and only if there is a set of elements
F of size r and r cocircuits, such that for each e ∈ F there is a corresponding cocircuit X with X f = 0 for
f ∈ F \ {e}, Xe ̸= 0 and X ≤ v. In the graph interpretation, this is equivalent to r Θ-classes F and r
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antipodal subgraphs incident with v such that each is crossed by F \ {Ee} but not by Ee, each for a different
Ee. In this case, v is incident with elements (Θ-classes) in F.

As a last basic ingredient for the Theorem 4.5 we need the following. Let G be the tope graph of a
simple OM and e one of its elements. Let v be a tope in the positive halfspace of G with respect to e.
Since the lattice of covectors is atomistic and graded, there is a set of cocircuits such that their join is
exactly v. In particular, for at least one of the latter cocircuits, say X , it must hold X e ̸= 0. This is:

Observation 4.4. Let e be an element (Ee be a Θ-class) of a simple OM G. There exists a cocircuit X (a
maximal proper antipodal subgraph A) such that X e ̸= 0 (A is not crossed by Ee).

We are prepared to give the main theorem of the section. In the proof we will make use of the
direct sum G1 ⊕ G2 of OMs G1 and G2. In the OM language this is defined as the OM with covectors
{(X1, X2) | X1 ∈ G1, X2 ∈ G2}. Considering OMs as graphs, this is equivalent to the Cartesian product of
graphs G1, G2, being defined as the graph G1□G2 whose vertices are V (G1)× V (G2) where two vertices
(x1, y1), (x2, y2) adjacent if and only if x1 = x2 and y1 is adjacent to y2 in G2, or y1 = y2 and x1 is
adjacent to x2 in G1. We will denote by K2 the complete graph on two vertices, or equivalently the
unique simple OM with ground set of size 1.

Theorem 4.5. Let G be a simple, Mandel OM of rank r and e one of its elements (Ee a Θ-class of G). Then
there is a simplicial tope (a vertex of degree r) in G, incident with e (incident with Ee), i.e., G is Θ-Las
Vergnas.

Proof. By the definition of Mandel OM, there exists a single-element extension (an expansion) of G in
general position such that the two halfspaces in the obtained OM are Euclidean AOMs. Both halfspaces
correspond to intersecting subsets of covectors of G, say G1 and G2. Speaking of OMs as graphs this
means that G is expanded along G1 and G2. Let Ee ∈ E be a Θ-class of G. We prove the slightly stronger
assertion (than asserted in the theorem) that there exists a simplicial tope v (i.e. of degree r) in G1 \G2
incident with Ee, for any chosen G1, G2, making G Mandel. We will proceed by induction on the size of
G and distinguish two cases:

Case 1. G is not the direct sum (the Cartesian product) with factor K2, where the factor K2 corresponds to
element e (Θ-class Ee).

By Observation 4.4 and the antipodality, G has at least two cocircuits X1, X2 (maximal antipodal
subgraphs) with the property (X1)e, (X2)e ̸= 0 (not crossed by Ee). Then at least one lies in G1. Without
loss of generality assume that it is in E−e , otherwise reorient Ee. This is, there is a line in G1 that has at
least one cocircuit X1 (an antipodal subgraph of rank r − 1) with (X1)e = − (in E−e ).

Orient the lines of G1 with respect to Ee. Note that every line of G1 is a subline of a cycle in G∗ that
either has all its cocircuits X with X e = 0 (i.e. maximal proper antipodal subgraphs crossed by Ee) or
exactly two of them. Since the expansion according to G1 and G2 is in general position this implies that
every line of G1 is either crossed by Ee in exactly one cocircuit, or in all of them. Thus, all the lines are
oriented, except the ones with all its cociruits X (antipodal subgraphs) having X e = 0 (being crossed by
Ee).

By the definition of Euclideaness, the orientation is strictly acyclic, hence we can find in G1 ∩ E−e a
cocircuit (i.e. an antipodal subgraph of rank r−1) X such that each of its out-neighbors Y in the cocircuit
graph has Ye = 0 (i.e. is intersected by Ee). Let X 0 be the set of all elements (Θ-classes E f ), such that
X f = 0 (that cross X ). Let H be the OM-deletion (a partial cubes contraction) of G along all its elements
(Θ-classes) besides e (Ee) and the ones in X 0. Let H1, H2 be the respective images of G1, G2 in H. Then
by Observation 4.2, each covector of H1 and H2 is an image of a covector in G1 or G2, respectively. In
graph theoretical language, this means that all the antipodal subgraphs of H lie completely in H1 or
in H2. This proves that H1 and H2 define an expansion in general position of H. Moreover, also the
orientation of the lines in H1 are inherited from the orientation of lines in G1. Hence the orientation of
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H with respect to Ee is strictly acyclic as well. This proves that H is Mandel by the expansion in general
position according to H1 and H2.

By definition, H is obtained by deleting elements f (contracting Θ-classes), for which X f ̸= 0 (not
crossing X ). It is not hard to see, that the sub-lattice of covectors Y with X ≤ Y has a maximal chain of
length r − 1 which is unaffected by the deletion. Thus, the rank of H is r since it properly contains X of
rank r −1. In graph theoretical sense, this also follows from the gatedness of antipodal subgraphs in an
OM implying that the structure of the antipodal subgraph corresponding to X is not affected by any of
the contractions. We will denote by X ′ the cocircuit obtained from X by the deletion.

Let X ′ be the antipode of X ′ in H. Then X ′ is also a cocircuit of H and only e separates X ′ and X ′.
As graphs they are disjoint antipodal subgraph connected by edges in Ee. Thus H ∼= H ′ ⊕ K2, where H ′

consist of all Y with X ≤ Y in H. In the graph language, H ∼= A□K2, where A is the antipodal subgraph
corresponding to X ′. Since we are in the Case 1, this gives that H is strictly smaller than G.

By the induction assumption, H has a tope v′ of degree r in H1 \ H2, incident with e (with Ee). In
fact, since H ∼= H ′ ⊕ K2 (or H ∼= H ′□K2) with the K2 factor corresponding to e (Ee), the latter holds for
all the topes in H. By Lemma 4.3, there is a set B of r cocircuits and a set F of r Θ-classes, such that
for each Eg ∈ F there is a corresponding cocircuit Y with Yf = 0 for f ∈ F \ {Eg}, Yg ̸= 0 and Y ≤ v′.
Note that Ee ∈ F . In other words, there are r antipodal subgraphs of rank r − 1 incident with v′ such
that v′ has degree r − 1 in each member. Since a tope of degree r cannot have more than r covectors
Y with Y ≤ v′, we have X ′ ∈ B . By assumption v′ ∈ H1 \ H2 and since H1, H2 define an expansion in
general position, all the members ofB are in H1. By Observation 4.2, there is a set C of r cocircuits of
G together with the same set F of r Θ-classes, such that each member of C corresponds to to a member
of B in H (corresponding antipodal subgraphs of C contract to corresponding antipodal subgraphs of
B). Moreover, since the members ofB are in H1, the cocircuits in C are in G1. Clearly, X ∈ C .

Consider a tope v ∈ G1 such that X ≤ v (v is an element of the antipodal subgraph corresponding to
X ) and the OM-deletion (partial cube contraction) maps v to v′. To prove that v has degree r in G, by
Lemma 4.3, it suffices to prove that for each cocircuit Y in C it holds Y ≤ v (the antipodal subgraphs
in C include v). Let Y ∈ C \ {X }, and Y ′ the corresponding cocircuit (antipodal subgraph) inB . Then
Y ′ and X ′ are adjacent in H∗, hence X and Y lie on a line in G1. Since Y ′e = 0 also Ye = 0, i.e. the
corresponding antipodal subgraphs are crossed by Ee. Thus the line they are both on is oriented from
X to Y . Since X was chosen to have all its out-neighbors crossed by Ee, Y must be adjacent to it. This
implies that for each E f /∈ X 0 ∪ {Ee}, Yf ̸= −X f . In particular, since X ≤ v and by assumption Y ′ ≤ v′,
the former implies that Y ≤ v. In the tope graphs this is seen as v being in the intersection of the
antipodal subgraphs corresponding to X and Y since v′ is the intersection of the antipodal subgraphs
corresponding to X ′ and Y ′.

We have found a tope v that has degree r. Since e (or Ee) is in F , it is incident with it. By construction
it lies in G1 \ G2.

Case 2. G is the direct sum (the Cartesian product) with factor K2, where the factor K2 corresponds to
element e (Θ-class Ee).

If G has an element f (a Θ-class E f ) such that G is not the direct sum with factor K2 corresponding
to it, then by Case 1, G has a simplicial tope v (of degree r) in G1 − G2. Moreover, in this case all the
vertices of G are incident with Ee, in particular also v is.

If all of the elements (Θ-classes) of G correspond to factors K2, then G is a hypercube and all its
vertices are simplicial and incident to Ee.

OMs with a Θ-class not incident to a simplicial vertex have been found of different sizes [8,47,53].
We conclude:

Corollary 4.6. There exist OMs that are not Mandel. The smallest known such OM has 598 vertices (topes),
isometric dimension 13 (elements) and is uniform of rank 4. See Figure 1.
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5 Corners and corner peelings

In [9] the corners of lopsided sets (LOPs) have been defined as vertices of degree r that lie in a unique
maximal hypercube subgraph of dimension r. This has a nice correspondence to the results from Section
4: If G is a LOP and also an AOM, i.e, a halfspace E+e of an OM G′, then G has a corner if and only if
G′ has a simplicial vertex incident to Ee. By the examples from [3,9,53] this proves that there are LOPs
without corners. This was first observed in [9], where it is translated to an important counter example
in computational learning theory.

In the present section we introduce corners and corner peelings for general COMs. The first subsec-
tion is concerned with the first definitions and results, and in particular contains a proof for existence of
corner peelings of realizable COMs. The second subsection contains corner peelings for COMs of rank 2
and hypercellular graphs. Since the results in this section are more concerned with graphs, we use the
graph theoretic language and use covectors only when needed.

5.1 First definitions and basic results

We will approach our general definition of corner of a COM, that generalizes corners on LOPs and has
strong connections with simplicial vertices in OMs. The intuitive idea of a corner in a COM, is a set of
vertices whose removal gives a new (maximal) COM. As a matter of fact it is convenient for us to first
define this remaining object and moreover within an OM.

Recall the definition of an expansion in general position from Section 2. We will say that the subgraph
T of an OM H is a chunk of H, if H admits an expansion in general position H1, H2, such that T = H1.
We call the complement C = H \H1 a corner of H. In the case that H has rank 1, i.e. H is isomorphic to
an edge K2, then a corner is simply a vertex of H.

This definition extends to COMs by setting C to be a corner of a COM G if C is contained in a unique
maximal antipodal subgraph H and C is a corner of H. We need two more helpful observation:

Lemma 5.1. If G′ is an isometric subgraph of a COM G such that the antipodal subgraphs of G′ are antipodal
subgraphs of G, then G′ is a COM.

Proof. By Theorem 2.1 all antipodal subgraphs of G are gated, but since G′ is an isometric subgraph and
it has no new antipodal subgraph also the antipodal subgraphs of G′ are gated. Thus, by Theorem 2.1
G′ is a COM.

We are now ready to prove that chunks and corners as we defined them achieve what we wanted. This
proof uses the correspondence between sign-vectors and convex subgraphs as introduced in Section 2.

Lemma 5.2. If C is a corner of a COM G, then the chunk G \ C is an inclusion maximal proper isometric
subgraph of G that is a COM.

Proof. Let us first consider the case where G = H is an OM. Let T,−T be an expansion of H in general
position, i.e., −T is the set of antipodes of T . Since expansions in general position are OM-expansions,
T is a halfspace of an OM. Thus, T is a COM — even an AOM. This proves that T is a sub-COM. Assume
that it is not maximal and let R ⊇ T be a COM contained in H. Let X ⊆ R be an antipodal subgraph
of H that is not completely in T , and is maximal with this property. Since the expansion is in general
position, it holds X ⊆ −T and −X ∈ T ⊆ R. Let Ee ∈ S(X ,−X ), i.e., Ee separates X from −X . Such Ee
clearly exists, since R is a proper sub-COM of H, thus X ̸= H.

Considering R as a COM we apply (SE) to X ,−X with respect to Ee in order to obtain Z ⊂ R that
is crossed by Ee. Note that X and −X are crossed by the same set of Θ-classes X 0. By (SE) the set
Z0 of Θ-classes crossing Z strictly contains X 0. Thus, if S(Z , X ) = ;, then Z is an antipodal subgraph
containing X , i.e., X was not a maximal antipodal subgraph of R. Let otherwise E f ∈ S(Z , X ). Apply
(SE) to X , Z with respect to E f in order to obtain Z ′ ⊂ R which is crossed by E f . Since Z0 ⊋ X 0, we have
Z ′0 ⊋ X 0 and furthermore S(Z ′, X ) ⊊ S(Z , X ). Proceeding this way, we will eventually obtain an eZ ⊆ R
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with eZ0 ⊇ X 0 and S(eZ , X ) = ;. Thus, eZ ∈ R is an antipodal subgraph containing X . By the choice of X ,
eZ is not completely in T . This violates the assumption that X was maximal. Thus, R= T .

Now, let G be a COM that is not an OM and let H be the unique maximal antipodal subgraph of G
containing C . By the above T = H\C is an isometric subgraph of H and a COM. Now, it follows that G\C
is an isometric subgraph of G. Namely, since no vertex of C is adjacent to a vertex of G \H and T being
an isometric subgraph of H, all shortest paths in G through C , can be replaced by shortest paths through
T . Finally, Lemma 5.1 implies that G \ C is a COM. Maximality follows from the first paragraph.

Recall that simplicial vertices in LOPs are called corners. Before providing further central properties
of corners in COMs, let us see that we indeed generalize corners of LOPs.

Proposition 5.3. A subset C of the vertices of a LOP G is a corner if and only if C = {v} is contained in a
unique maximal cube of G.

Proof. OMs that are LOPs are cubes, so let v be a vertex of Qn. The expansion with H1 = Qn \ {v} and
H2 = Qn \ {−v} clearly is antipodal. Moreover, every proper antipodal subgraph of Qn is contained in
either H1 or H2. Thus, this expansion is in general position. Consequently v is a corner or Qn. Since
chunks are maximal sub-COMs, by Lemma 5.2, single vertices are precisely the corners of Qn.

If now v is a corner of a LOP G, then by the definition of corners of COMs and the fact that in a LOP
all proper antipodal subgraphs are cubes, v is contained in a unique maximal cube of G.

Conversely if v is a vertex of a LOP contained in a unique cube, then this cube is also the unique
maximal antipodal subgraph of the LOP, since in a LOP all proper antipodal subgraphs are cubes. Thus
v is a corner of the LOP.

Note that, as mentioned earlier, every OM admits an expansion in general position, see [51, Lemma
1.7] or [7, Proposition 7.2.2]. This yields directly from the definition:

Observation 5.4. Every OM has a corner.

Note however that COMs do not always have corners, e.g., with Proposition 5.3 one sees that the
AOMs obtained from the UOMs with a mutation-free element have no corner.

Lemma 5.2 yields the following natural definition. A corner peeling in a COM G is an ordered partition
C1, . . . , Ck of its vertices, such that Ci is a corner in G − {C1, . . . , Ci−1}. In the following we generalize a
results from [53] for realizable LOPs.

Proposition 5.5. Every realizable COM has a corner peeling.

Proof. We show that a realizable COM G has a realizable chunk T . Represent G as a central hyperplane
arrangementH in an Euclidean space intersected with an open polyhedron P given by open halfspaces
O . Without loss of generality we can assume that the supporting hyperplanes of the halfspaces in O are
in general position with respect to the hyperplanes in H . We shall call points in the Euclidean space,
that can be obtained as intersection of subset of hyperplanes H minimal dimensional cells. It follows
from the correspondence between antipodal subgraphs and covectors of a COM [31, Theorem 4.9], that
topes (chambers) surrounding minimal dimensional cells correspond to antipodal subgraphs of G.

Now, take some halfspace O ∈ O and push it into P until it contains the first minimal dimensional
cell C ofH . The obtained realizable COM T is a chunk of G, because restricting the antipodal subgraph
(an OM) corresponding to the cell C with respect to O is taking a chunk of C , while no other cells of G
are affected and the resulting graph T is a COM.

In [4, Conjecture 2] it was conjectured that all locally realizable COMs, i.e., those whose antipodal
subgraphs are realizable OMs, are realizable. Proposition 5.5 yields a disproof of this conjecture, since
all antipodal subgraphs of a LOP are hypercubes, i.e., LOPs are locally realizable, but by the example in
Figure 1 and others there are LOPs that do not have corner peelings. Thus, they cannot be realizable.
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Remark 5.6. There are locally realizable COMs, that are not realizable.

Indeed , LOPs are even zonotopally realizable, i.e., one can choose realizations for all cells such that
common intersections are isometric. It remains open whether every locally realizable COM is zonotopally
realizable, see [4, Question 1].

5.2 Corners and corner peelings in further classes

In this section we consider the question of the existence of corners and corner peelings in various classes
of graphs. By Proposition 5.3 simplicial vertices in LOPs are corners. Thus, Theorem 4.5 yields:

Corollary 5.7. Every halfspace of a Mandel UOM has a corner.

In the following we focus on COMs of rank 2 and hypercellular graphs. In both these proofs we use
the zone graph ζ f (G) of a partial cube G with respect to a Θ-class f , see [30]. In general the zone graph
is not a partial cube, but indeed a characterization of COMs from [31] (generalizing a result of Handa
for OMs [24]) allows the following definition in COMs. Let G be a COM, and F a subset of its Θ-classes.
The zone graph ζF (G) is the graph obtained from G, whose vertices are the minimal antipodal subgraphs
of G that are crossed by all the classes in F . It turns out that all such antipodal subgraphs have the same
rank, say r. Two such antipodal subgraphs are connected in ζF (G) if they lie in a common antipodal
subgraph of G of rank r + 1. The above mentioned characterizing property of COMs is that ζF (G) is
always a COM. In the standard language of OMs, zone graphs are known as contractions of OMs. The
zone graph operation will be used frequently in Section 5.2.Section 2. We start with some necessary
observations on cocircuit graphs of COMs.

Cocircuit graphs of COMs

In the following we generalize the concept of orientation of the cocircuit graph introduced in Section 4
from AOMs to general COMs.

Lemma 5.8. If G is a COM and a hypercube Qr a minor of G, then there is an antipodal subgraph H of G
that has a Qr minor. In particular, the rank of a maximal antipodal subgraph of a COM G is the rank of G.

Proof. Since Qr is antipodal, by Lemma 4.2, there exist an antipodal subgraph H of G that contracts to
it. Then H is the desired subgraph.

We define the cocircuit graph of a non-antipodal rank r COM as the graph whose vertices are the
rank r antipodal subgraphs and two vertices are adjacent if they intersect in a rank r − 1 antipodal
subgraph. By Lemma 5.8 the vertices of the cocircuit graph of a non-antipodal COM G correspond to the
maximal antipodal subgraphs of G. The cocircuit graph of a COM can be fully disconnected hence we
limit ourselves to COMs having all its maximal antipodal subgraphs of the same rank with G∗ connected.
We call them pure COMs. Note that AOMs are pure COMs.

Let G be a pure COM, {A1, A2} be an edge in G∗ and F be the set of Θ-classes crossing A1 ∩ A2. We
have seen in Section 4 that if G is an AOM, then the maximal proper antipodal subgraphs of G crossed
by Θ-classes in F induce a path of G∗ which we called a line. The following lemma is a generalization
of the latter and of general interest with respect to cocircuit graphs of COMs, even if we will use it only
in the case of rank 2.

Lemma 5.9. Let G be a COM that is not an OM, {A1, A2} be an edge in G∗, and F be the set of Θ-classes
crossing A1 ∩ A2. Then the maximal proper antipodal subgraphs of G crossed by Θ-classes in F induce a
subgraph of G∗ isomorphic to the line graph of a tree.
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Proof. Let G, A1, A2, F be as stated and r the rank of G. Consider the zone-graph ζF (G). Recall that
its vertices are antipodal subgraphs of rank r − 1 crossed by Θ-classes in F where two subgraphs are
adjacent if they lie in a common rank r antipodal subgraph. Since ζF (G) is a COM, see e.g. [31] and
has rank 1, we have that ζF (G) is a tree. By definition, the maximal proper antipodal subgraphs of G
crossed by Θ-classes in F correspond to edges of ζF (G), with two such edges connected if they share a
vertex. Hence they form a subgraph of G∗ that is isomorphic to the line graph of ζF (G).

Lemma 5.9 implies that G∗ can be seen as the edge disjoint union of line graphs of trees. We can
use this to orient edges of G∗. Similarly as in the settings of AOMs, we will call a line in G a maximal
path L = A1, . . . , An in the cocircuit graph G∗ such that Ai−1 ∩Ai is the set of antipodes of Ai ∩Ai+1 with
respect to Ai . Let now Ee ∈ E be a Θ-class of G. Similarly as before we say that Ee crosses a line L of G∗

if there exists Ai on ℓ that is crossed by Ee but Ai−1 ∩ Ai or Ai ∩ Ai+1 is not crossed by it. If Ai exists, it
is unique. The orientation of L with respect to Ee is the orientation of the path L in G∗ from E−e to E+e if
Ee crosses L and not orienting the edges of L otherwise. Notice that in this way we can orient the edges
of G∗ with respect to Ee by orienting all the lines simultaneously. The orientation of each edge (if it is
oriented) is well defined: If {A j , A j+1} ∈ E−e is an edge in a line graph of a tree that is crossed by Ee in Ai
and A j+1 is closer to Ai than A j is, then {A j , A j+1} is oriented from A j to A j+1. Similarly if {A j , A j+1} ∈ E+e
and A j is closer to Ai than A j+1 is, then {A j , A j+1} is oriented from A j to A j+1. Furthermore, {A j , Ak} is
not oriented if A j , Ak are at the same distance to Ai . See Figure 6 for an illustration.

Ee

E−
e

E+
e

Figure 6: A pure rank 2 COM and its cocircuits graph oriented with respect to Ee.

COMs of rank 2

Mandel proved that every AOM of rank 2 is Euclidean, which by Corollary 5.7 implies that every rank 2
halfspace of a UOM has a corner. We generalize this result.

Let us first consider what corners in rank 2 COMs are. Up to isomorphism the only rank 2 OMs are
even cycles. An expansion in general position of an even cycle G = C2n is given by G1, G2 = −G1, where
G1 consists of an induced path on n+1 vertices. Hence a corner in a rank 2 COM consist of n−1 vertices
inducing a path, included in a unique antipodal C2n. For example, the COM in Figure 6 has 11 corners.
Those contained in a square are single vertices and the ones contained in the C6 are paths with two
vertices.

Proposition 5.10. Let G be a pure COM of rank 2 and Ee a Θ-class of G. Then G has a corner in E+e and
in E−e .

Proof. Let Ee ∈ E be a Θ-class of a pure rank 2 COM G. We shall prove that G has a corner in E+e , by
symmetry it follows that it has one in E−e as well. Without loss of generality assume that there is no Θ-
class E f completely contained in E+e , otherwise switch E+e with E+f or E−f depending on which is entirely
in E+e . Orient the edges of G∗ with respect to Ee.

Since the rank of G is 2, the maximal antipodal subgraphs are even cycles and each line consist of
sequence of cycles pairwise crossing in edges from E f , for some E f . We will say that the line follows E f .
The induced subgraph of G∗ of all the maximal antipodal subgraphs crossed by E f is the line graph of a
tree, by Lemma 5.9. We will denote it by G∗f . Let G∗f be crossed by some Eg in Ai . Then this splits the
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vertices of G∗f −{Ai} into the ones lying in E+g and the ones lying in E−g . We denote these by E+g (G
∗
f ) and

E−g (G
∗
f ), respectively.

We shall prove that there is no directed cycle in G∗ ∩ E+e consisting of only directed edges. For the
sake of contradiction assume that such a cycle exists and take one that is the union of as few parts of
lines as possible. Let the cycle be a union of a part of L1, a part of L2,. . . , and a part of Ln. Also denote
by Ee1

, . . . , Een
the respective Θ-classes followed by L1, . . . , Ln.

Since Li and Li+1 intersect, Li must be crossed by Eei+1
and Li+1 must be crossed by Eei

. Without loss
of generality assume that L2 passes Ee1

from E−e1
to E+e1

, L3 passes Ee2
from E−e2

to E+e2
, . . . , and L1 passes

Een
from E−en

to E+en
, otherwise reorient Ee1

, . . . , Een
.

First we show that each Li passes Eei+1
from E+ei+1

to E−ei+1
. Assuming otherwise the intersection of

Li−1 and Li lies in E−ei+1
, while the intersection of Li+2 and Li+3 lies in E+ei+1

, by the assumption in the
previous paragraph. Then one of the lines Li+4, Li+5, . . . Li−1 must pass Eei+1

from E+ei+1
to E−ei+1

, say L j

passes it. If this passing is in E+ei
, then the cycle is not minimal, since one could just replace the lines

Li+1, . . . , L j by the line following Eei+1
starting from the intersection of Li and Li+1 to the crossing of Eei+1

and L j . In fact such a directed line exists since by assumption the lines following Eei+1
pass Ei from E−i

to E+i thus the orientation of the shortest path from the intersection of Li and Li+1 to the crossing of L j
and Eei+1

is correct.
On the other hand, assume the passing is in E−ei

. By assumption, the intersection of Li+1 and Li+2 is
in E+ei

. Hence one of the lines Li+3, Li+4, . . . L j must pass Eei
, say Ll . In particular it must pass it in E+ei+1

,
by the choice of L j . But then again the cycle is not minimal, since one could just continue on the line
following Eei

starting from the intersection of Li−1 and Li to the crossing of Eei
and Ll . This cannot be.

Now we show that for each ei , ei+1 it holds that E−ei+1
(G∗e ) ⊂ E−ei

(G∗e ). Since Li+1 passes Eei
from E−ei

to E+ei
it follows that Li+1 passes Ee in E−ei

. Since G∗e is the line graph of a tree, this implies that either
E+ei+1
(G∗e ) ⊂ E−ei

(G∗e ) or E−ei+1
(G∗e ) ⊂ E−ei

(G∗e ). On the other hand, Li passes Eei+1
from E+ei+1

to E−ei+1
hence

Li passes Ee in E+ei+1
. Again since G∗e is the line graph of a tree, this implies that E+ei

(G∗e ) ⊂ E+ei+1
(G∗e ) or

E−ei
(G∗e ) ⊂ E+ei+1

(G∗e ). Hence, E−ei+1
(G∗e ) ⊂ E−ei

(G∗e ) and E+ei
(G∗e ) ⊂ E+ei+1

(G∗e ).
Inductively E−en

(G∗e ) ⊂ E−en−1
(G∗e ) ⊂ · · · ⊂ E−e1

(G∗e ) ⊂ E−en
(G∗e ) – contradiction. This proves that there is

no directed cycle in G∗ ∩ E+e consisting of only directed edges.
We can now prove that G has a corner in E+e . First, assume that G∗ ∩ E+e is non-empty and let

A ∈ G∗ ∩ E+e be a maximal antipodal subgraph, i.e., an even cycle, that has no out-edges in G∗. By the
choice of Ee, each line L that passes A is crossed by Ee. We now analyze how lines pass A. Let L1, L2 be
lines passing A, following E f1 , E f2 , respectively. Since E f2 crosses at most one antipodal subgraph of G∗f1 ,
this implies that L1 and L2 simultaneously pass only A. In particular each antipodal subgraph of G∗e is
passed by at most one line passing A. Since G∗e is the line graph of a tree, its every vertex is a cut vertex.
Then each line L, passing A and A f ∈ G∗e , and following some E f , splits G∗e − {A f } into two connected
components, E+f (G

∗
e ) and E−f (G

∗
e ). Thus we can inductively find L such that any other line passing A

passes an antipodal subgraph in G∗e in E+f (G
∗
e ), reorienting E f if necessary.

We now show that A includes a corner. Let A′ be an antipodal subgraph on L that is a neighbor of A.
Then A∩ A′ corresponds to an edge in E f . Define the set C to include all the vertices of A in E−f besides
the one vertex lying in A∩A′. Then C is a corner of A, we will show that C is a corner of G. For the sake
of contradiction assume that a vertex v of C lies in a maximal antipodal subgraph A′′ different from A.

We prove that we can choose A′′ such that it shares an edge with A. Assuming otherwise, since G
is a pure COM, there is a path in G∗ between A and A′′. This implies that there is a cycle Ck in G with
subpath v′vv′′, where v′ ∈ A\ A′′ and v′′ ∈ A′′ \ A. By [11, Lemma 13], the convex cycles span the cycle
space in a partial cube. If A is one of the convex cycles spanning Ck, then there is a convex cycle incident
with A in v and sharing an edge with A. If A is not used to span Ck, then a convex cycle incident with
edge v′v must be used, thus again we have a convex cycle sharing v and an edge with A.

We hence assume that A and A′′ share an edge g. By definition of C , either g ∈ E−f , or g ∈ E f but

19



not in A∩A′. The latter case implies that L can be extended with A′′, which cannot be since A in G∗ has
no out-edges. Moreover, by the choice of L, all the other lines passing A pass E f form E+f to E−f . Then
in the former case, some other line passing A can be extended, leading to a contradiction. This implies
that G has a corner.

Finally, consider the option that G∗ ∩ E+e is empty. Since G∗e is the line graph of a tree, we can pick
A ∈ G∗e that corresponds to a pendant edge in a tree, i.e. an edge with one endpoint being a leaf. Then
it is easily seen that A has a corner in E+e . This finishes the proof.

The following is a common generalization of corresponding results for cellular bipartite graphs [3]
(being exactly rank 2 hypercellular graphs, which in turn are COMS [11]) and LOPs of rank 2 [9].

Theorem 5.11. Every rank 2 COM has a corner peeling.

Proof. Notice that a rank 2 COM is pure if and only if it is 2 connected. Consider the blocks of 2-
connectedness of a rank 2 COM G. Then a block corresponding to a leaf in the tree structure of the block
graph has 2 corners by Proposition 5.10. This implies that G has a corner. Proposition 5.2 together with
the observation that G minus the corner has rank at most 2 yield a corner peeling.

Hypercellular graphs

Hypercellular graphs were introduced as a natural generalization of median graphs, i.e., skeleta of
CAT(0) cube complexes in [11]. They are COMs with many nice properties one of them being that
all their antipodal subgraphs are Cartesian products of even cycles and edges, called cells. See Figure 7
for an example.

Figure 7: A hypercellular graph.

More precisely, a partial cube G is hypercellular if all its antipodal subgraphs are cells and if three
cells of rank k pairwise intersect in a cell of rank k − 1 and altogether share a cell of rank k − 2, then
all three lie in a common cell, for all 2 ≤ k ≤ r(G). See Figure 8 for three rank 2 cells (cycles) pairwise
intersecting in rank 1 cells (edges) and sharing a rank 0 cell (vertex) lying in a common rank 3 cell
(prism). Since median graphs are realizable COMs, see [39], which is also conjectured for hypercellular
graphs [11], they have corner peelings by Proposition 5.5. Here, we prove that hypercellular graphs
have a corner peeling, which can be seen as a support for their realizability.

The following lemma determines the structure of corners in hypercellular graphs, since the corners
of an edge K2 and an even cycle C2n are simply a vertex and a path Pn−1, respectively.

Lemma 5.12. Let G = □iAi be the Cartesian product of even cycles and edges. Then the corners of G are
precisely sets of the form □i Di ⊂ G, where Di is a corner of Ai for every i.

Proof. Let D = G2 \G1 be a corner of G, i.e. G1, G2 define an expansion in general position. Every subset
of the form A1□ . . .□Ai−1□{v}□Ai+1□ . . .□An is an antipodal subgraph, thus it is either completely in
G1 or in G2. We can use the latter to define an expansion in general position of Ai according to H1, H2,
by v ∈ H j if A1□ . . .□Ai−1□{v}□Ai+1□ . . .□An ∈ G j , for j ∈ {1, 2}. In fact each maximal antipodal
subgraph A of Ai is either completely in H1 or in H2 (but not both) since A1□ . . .□Ai−1□A□Ai+1□ . . .□An
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Figure 8: Any three cycles of a hypercellular graph that pairwise intersect in an edge and share a vertex
lie in a common cell.

is a maximal antipodal of G either completely in G1 or in G2 (but not both). Moreover, since G1 = −G2
also H1 = −H2.

It remains to prove that H1, H2 are isometric. Let v1, v2 ∈ H1. If there exists a
unique shortest v1, v2-path P in Ai , then pairs of vertices of A1□ . . .□Ai−1□{v1}□Ai+1□ . . .□An
and A1□ . . .□Ai−1□{v2}□Ai+1□ . . .□An also have unique shortest paths. This implies that also
A1□ . . .□Ai−1□P□Ai+1□ . . .□An ∈ G1, since G1 is isometric. Thus P ∈ H1. The only option that v1, v2 do
not have a unique v1, v2-path is that Ai is a cycle of length 2k, for k > 2, and v1, v2 antipodal vertices in
Ai . Then for each vertex u of Ai different form v1, v2 holds that A1□ . . .□Ai−1□{u}□Ai+1□ . . .□An ∈ G2,
thus u ∈ H2. But then the neighbors of v1 in Ai are in H2 which by the previous case implies that v1 ∈ H2.
Similarly v2 ∈ H2, which cannot be, since then G2 = G. This proves that H1, H2 are isometric. In par-
ticular, if Ai is a cycle C2n, then H2, H2 are paths Pn+1, and if Ai is an edge K2, then H1, H2 are vertices.
Thus each Di = H2 \H1 is a corner.

By definition of the corners Dj , it holds D = (G2 \ G1) ⊂ □i Di , i.e. G \□i Di ⊂ G1. We prove that the
equality holds. Let F be a set of Θ-classes that cross □i Di . Contracting all the Θ-classes in F gives a COM
πF (G) = □iA

′
i where A′i = πF (Ai) is a 4-cycle if Ai is a cycle and A′i = Ai if Ai is an edge. Thus the rank of

πF (G) is the same as the rank of G. Now if (G2 \G1) ⊊ □i Di , it holds πF (G1) = πF (G), since πF (□i Di) is
a vertex. Defining the expansion of πF (G1) according to H1 = πF (G1) = πF (G), H2 = πF (G2) = πF (G),
gives a graph H that has a higher rank than πF (G) and G. But H can be obtain as a contraction of
the graph H ′ obtained by expanding G with respect to G1 and G2. Since G1, G2 define an expansion in
general position H ′ has the same rank as G. This is impossible.

We have proved that if G has a corner, then it is of the form □i Di . As mentioned, every OM has a
corner. By symmetry, every set of vertices of the form □i Di is a corner of G.

We shall need the following property about hypercellular graphs.

Lemma 5.13. Every zone graph ζ f (G) of a hypercellular graph G is hypercellular.

Proof. Every zone graph of the Cartesian product of even cycles and edges is the Cartesian product of
even cycles and edges, as it can easily be checked. Let ζ f (G) be a zone graph of a hypercellular graph
G. Then every cell of rank r in ζ f (G) is an image of a cell of rank r + 1 in G. Hence for every three
rank r cells pairwise intersecting in rank r −1 cells and sharing a rank r −2 cell from ζ f (G), there exist
three rank r+1 cells pairwise intersecting in rank r cells and sharing a rank r−1 cell in G. Additionally
the latter three cells lie in a common cell H in G. Then the image of H in ζ f (G) is a common cell of the
three cells from ζ f (G).

Let Ee be a Θ-class of a COM G. As usual, see e.g. [4,11], we call the union of antipodal subgraphs
crossed by Ee the carrier of Ee. The following is another generalization of the corresponding result for
cellular graphs [3] and as mentioned above for median graphs.

Theorem 5.14. Every hypercellular graph G has a corner peeling.
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Proof. We prove the assertion by induction on the size of G. The technical difficulty of the proof is that
removing a corner in a hypercellular graph possibly produces a non-hypercellular graph. Hence we shall
prove the above statement for the larger family F of COMs defined by the following properties:

(1) Every antipodal subgraph of G ∈ F is a cell.

(2) Every carrier of G ∈ F is convex.

(3) Every zone-graph of G ∈ F is in F .

We first prove that hypercellular graph are a part of F . By Lemma 5.13 only the first two properties
must be checked. Now, (1) holds by definition of hypercellular graphs. Moreover, (2) follows from the
fact that for any Θ-class Ee in a hypercellular graph the carrier of Ee is gated [11, Proposition 7], thus
also convex.

We now prove that the graphs in F have a corner peeling. Let G ∈ F and Ee an arbitrary Θ-class in
G. Since the carrier of Ee is convex the so-called Convexity Lemma [26] implies that for any edge g ∈ E+e
with exactly one endpoint in the carrier its Θ-class Eg does not cross the carrier. Now if the union of cells
crossed by Ee does not cover the whole E+e , then for any edge g in E+e with exactly one endpoint in the
union, one of E+g or E−g is completely in E+e . Repeating this argument with Eg one can inductively find a
Θ-class E f with the property that the carrier of E f completely covers E+f , without loss of generality.

Let ζ f (G) be the zone graph of G with respect to E f , i.e., the edges of E f are the vertices of ζ f (G)
and two such edges are connected if they lie in a common convex cycle. By (3) ζ f (G) is in F , thus by
induction ζ f (G) has a corner Df . By definition there is a maximal antipodal subgraph A f in ζ f (G) such
that the corner Df is completely in A f . Moreover, there exists a unique maximal antipodal subgraph A
in G whose zone graph is A f .

We lift the corner Df from A f to a corner D of A in the following way. If E f in A corresponds to an
edge factor K2, then A is simply K2□A f . In particular we can define D = {v}□Df where v is a vertex of
K2 in E+f . By Lemma 5.12, this is a corner of A. Since Df lies only in the maximal antipodal graph A f , D
lies only in A.

Otherwise, assume E f in A corresponds to a Θ-class of a factor C2k (an even cycle). We can write
A= C2k□A′. Then A f = K2□A′ with a corner Df = {v}□D′, where D′ is a corner of A′ by Lemma 5.12. We
lift Df to D = Pk−1□D′. Here Pk−1 is the path in C2k consisting of the vertices in E+f apart from the one
lying on the edge not corresponding to v in the zone graph. As above since Df lies only in the maximal
antipodal graph A f , D lies only in A.

We have proved that G has a corner D. To prove that it has a corner peeling it suffice to show that
G\D is a graph in F . Since removing a corner does not produce any new antipodal subgraph, all the
antipodal subgraphs of G\D are cells, showing (1). The latter holds also for all the zone graphs of G\D.
To prove that (2) holds for G\D consider a Θ-class Ee of G\D. By Lemma 5.2, G\D is an isometric
subgraph of G, i.e. all the distances between vertices are the same in both graphs. Since the carrier of Ee
in G is convex and removing a corner does not produce any new shortest path, the carrier of Ee is convex
in G\D. The same argument can be repeated in any zone graph of G\D. This finishes the proof.

We have shown corner peelings for COMs of rank 2 and hypercellular graphs. A common generaliza-
tion are Pasch graphs [10,11], which form a class of COMs [31] that exclude the examples from [3,9,53]:

Question 1. Does every Pasch graph have a corner peeling?

6 The minimum degree in antipodal partial cubes

Las Vergnas’ conjecture can be seen as a statement about the minimum degree of an OM of given rank.
Here we examine the relation of rank and minimum degree in general antipodal partial cubes.
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6.1 Lower bounds

As stated in Section 1, if G is the tope graph of an OM, then r(G)≤ δ(G), see [7, Exercise 4.4]. In general
rank r antipodal partial cubes the minimum degree is not bounded from below by r. More precisely:

Proposition 6.1. For every r ≥ 4 there is an antipodal partial cube of rank r and minimum degree 4.
Moreover, there is an antipodal partial cube of rank 4 and minimum degree 3.

Proof. In [31] it is been shown that every partial cube G with n Θ-classes – thus embeddable in Qn – is a
convex subgraph of an antipodal partial cube AG . Here, AG is obtained by replacing in a Qn+3 one Qn by
G and its antipodal Qn by −G. It is straight-forward to see that the minimum degree of AG is δ(G) + 3
and that the rank of AG is at least n+ 2. Indeed, for instance taking G as a path of length k > 1 we get
δ(AG) = 4 and r(AG) = k+ 2.

Another construction is as follows. Take Q−−n (i), with 1≤ i < n and n≥ 4, to be the graph obtained
from Qn by removing a vertex v, its antipode −v and i neighbors of −v. Such a graph is affine and each
antipode (in Qn) of the removed neighbors of −v is without the antipode in Q−−n (i), is of degree n− 1
and of rank n−1. Then construct the antipodal graph taking two antipodal copies of it. Such graph will
have minimum degree n− 1 and rank n. For n= 4 this gives the second part of the result.

On the other hand, it is shown in [44] that if an antipodal partial cube G has δ(G) ≤ 2, then
r(G) = δ(G). This implies that if an antipodal partial cube G has r(G)≤ 3, then r(G)≤ δ(G).

In relation to a question about cubic non-planar partial cubes we ask the following:

Question 2. Are there antipodal partial cubes with minimum degree 3 and arbitrary rank?

Indeed, since planar antipodal partial cubes are tope graphs of OMs of rank 3, see [20], any example
for the above question has to be a non-planar antipodal partial cube of minimum degree 3. It has been
wondered whether the only non-planar cubic partial cube is the (antipodal) Desargues graph [29], see
the left of Figure 2. To our knowledge even the restriction to antipodal partial cubes remains open. For
transitive cubic partial cubes it is known that the Desargues graphs is the only non-planar one, see [38].
On the other hand, it is open whether there are infinitely many non-planar partial cubes of minimum
degree 3.

6.2 Upper bounds

Bounding the minimum degree in a partial cubes G from above by its rank is a generalization of Las
Vergnas conjecture. As discussed in previous sections Las Vergnas conjecture is proved for OMs of rank
at most 3. In fact tope graphs of OMs of rank 3 are even Θ-Las Vergnas, by Theorem 4.5 and the fact
that they are Euclidean. We show that this property extends to general antipodal partial cubes of rank 3.

For this approach we introduce a couple of natural notions from [31]. A partial cube G is called
affine if it is a halfspace E+e of an antipodal partial cube. The antipodes A(G) of an affine partial cube are
those u ∈ G such that there is −u ∈ G such that the interval

[u,−u] = {v ∈ G | there is a shortest path from u to − u through v}

coincides with G. The antipodes of G are exactly the vertices of E+e incident to Ee when G is viewed as
subgraph of G′. We need a auxiliary statement about the rank of affine partial cubes.

Lemma 6.2. If an affine partial cube G is a halfspace of an antipodal partial cube G′ of rank r, then G has
rank at most r − 1.

Proof. Suppose there is a sequence of contractions from G to Qk. Then the same sequence of contraction
in G′ yields a minor H with Qk as a halfspace. Since H is antipodal, H =Qk+1.

Lemma 6.3. Every affine partial cube of rank at most 2 has a vertex of degree at most 2 among its antipodes.
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Proof. Since antipodal partial cubes of rank 2 are even cycles, it only remains to consider non-antipodal
affine partial cubes. If G is an affine partial cube of rank 2, then by Lemma 6.2 it is a halfspace of an
antipodal partial cube G′ of rank 3. By [21, Theorem 7] since G′ is not a cycle its minimum degree is at
least 3. Hence if in G there are vertices of degree 2, then they are among its antipodes.

To show that G has vertices of degree 2, we use that by [12, Section 6.1], that every rank 2 partial
cube can be augmented by adding vertices of degree at least 3 to a COM G′′ of rank 2.

Finally, by Proposition 5.10 the graph G′′ has a corner v, which in particular is a vertex of degree at
most 2. By the above v must already have been present in G. This concludes the proof.

Proposition 6.4. Let G be an antipodal partial cube of rank 3 and Ee a Θ-class. There is a degree 3 vertex
incident to Ee.

Proof. Suppose that the claim is false. Let G be a counterexample and Ee a Θ-class, such that all vertices
incident to Ee have degree at least 4. Consider the contraction G′ = πe(G) of G and let G′2, G′1 be the
antipodal expansion of G′ leading back to G. Since their preimage under πe has degree at least 4, all
vertices in G′1 ∩ G′2 have degree at least 3. But G′1 ∩ G′2 are the antipodes of the affine partial cube G′1.
Moreover, G′1 is of rank 2 by Lemma 6.2. Thus, we have a contradiction with Lemma 6.3.

While we have already used several times, that even OMs of rank 4 are notΘ-Las Vergnas, surprisingly
enough Las Vergnas’ conjecture could still hold for general antipodal partial cubes. We have verified it
computationally up to isometric dimension 7. See Table 2 for the numbers.

n 2 3 4 5 6 7 8

antipodal 1 2 4 13 115 42257 ?
OM 1 2 4 9 35 381 192449

Table 2: Numbers of antipodal partial cubes and OMs of low isometric dimension. The latter can also
be retrieved from http://www.om.math.ethz.ch/.

Since already on isometric dimension 6 there are 13488837 partial cubes, instead of filtering those
of isometric dimension 7 by antipodality, we filtered those of isometric dimension 6 by affinity. There
are 268615 of them. We thus could create all antipodal partial cubes of dimension 7 and count them
and verify Las Vergnas’ conjecture also for this set. We extend the prolific Las Vergnas’ conjecture to a
much wider class.

Question 3. Does every antipodal partial cube of rank r have minimum degree at most r?

7 Conclusions and future work

We have shown that Mandel OMs have the Θ-Las Vergnas property, therefore disproving Mandel’s con-
jecture. Finally, Las Vergnas’ conjecture remains open and one of the most challenging open problems
in OM theory. After computer experiments and a proof for rank 3, we dared to extend this question to
general antipodal partial cubes, see Question 3. Another strengthening of Las Vergnas’ conjecture is the
conjecture of Cordovil-Las Vergnas. We have verified it by computer for small examples and it holds for
low rank in general. However, here we suspect the existence of a counter example at least in the setting
of G n,r

.
Our second main contribution is the introduction of corner peelings for COMs and the proof of their

existence in the realizable, rank 2, and hypercellular cases. A class that is a common generalization of
the latter two is the class S4 of Pasch graphs. Do these graphs admit corner peelings? See Question 1.

Let us close with two future directions of research that appear natural in the context of the objects
discussed in this paper.
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7.1 Shellability

In the context of an OM or AOM, a shelling is a special linear ordering of the vertices of its tope graph
that yields a recursive coatom ordering of the full face lattice. See [7] for the definitions. It thus, is natural
to compare corner peelings and shellings.

It is known that AOMs and OMs are shellable, see [7]. Shellability is defined for pure regular com-
plexes thus the question of existence of shellings can be asked for all such COMs. However, the pure
COM consisting of two 4-cycles joined in a vertex is not shellable.

Question 4. Which COMs are shellable?

A necessary condition might be r-connectedness, if a COM has rank r. Another useful hint might
be the fact that an amalgamation procedure for COMs described in [4] is similar to the notion of con-
structibility, which is a weakening of shellability, see [22].

Corner peelings of LOPs are related to extendable shellability of the octahedron, see [9, 53]. While
OMs have corners, AOMs do not always have corners, as shown by the example of Figure 1. Hence,
shellability does not imply the existence of a corner or a corner peeling. However, there still might be a
connection:

Question 5. If a shellable COM G has a corner peeling, can one find a shelling sequence that is a refinement
of a corner peeling sequence of G?

7.2 Murty’s conjecture

An important open problem in OMs is a generalization of the Sylvester-Gallai Theorem, i.e., for every set
of points in the plane that does not lie on a single line there is a line, that contains only two points.

The corresponding conjecture in OMs can be found in Mandel’s thesis [37], where it is attributed to
Murty. In terms of OMs it reads:

Conjecture 4 (Murty). Every OM of rank r contains a convex subgraph that is the Cartesian product of an
edge and an antipodal graph of rank r − 2.

The realizable case of Murty’s conjecture is shown by [52] and more generally holds for Mandel
OMs [37]. Indeed, we suspect that along our strengthening of Mandel’s theorem (Theorem 4.5) a Θ-
version of Mandel’s results can be proved:

Conjecture 5. Every Θ-class in a Mandel OM of rank r is incident to a vertex of an antipodal graph that is
the Cartesian product of an edge and an antipodal graph of rank r − 2.

On the other hand it would be interesting to find OMs, that do not have this strengthened property.
Still, Murty’s conjecture in general seems out of reach. We propose a reasonable weaker statement to
attack:

Question 6. Does every OM of rank r contain a convex Q⌈ r
2 ⌉.
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