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Intro. Computational complexity of automata networks
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f :{0,1}" — {0,1}"
fi :{0,1}" — {0,1} for i € [n]

Local functions (f;)ic[;y  Interaction digraph G¢ Dynamics %
n==4 (i,J) € G <= Ix: fi(x+ &) # fi(x)

0110}—{0111

fi(x) = x + +
h(x) = x2 & %
(x)=x3

f3(x)
fa(x) = p(x1, X2, x3) V —xa

p(x1,x2,x3) = [(x1 VX)) = —(x2x Ax3)]| = x2 A X3
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Intro. Computational complexity of automata networks
f :{0,1}" — {0,1}"
fi :{0,1}" — {0,1} for i € [n]

Local functions (f;)ic[;y  Interaction digraph G¢ Dynamics %
n==4 (i,J) € G <= Ix: fi(x+ &) # fi(x)

0110}—{0111

fi(x) = x + +
h(x) = x2 & %
(x)=x3

f3(x)
fa(x) = p(x1, X2, x3) V —xa

Plxix,x) = 2[(xa Vxe) = ~(e Axs)] = xe Axs 00001, {0001

Theorem [Alon 1985]. It is NP-complete to decide whether
a given f has at least one fixed point.
Theorem [Orponen 1992]. ...and counting them is #P-complete.

Remark. ...even under the promise A(Gy) < 2.

~—

1/12



Intro. Computational complexity of automata networks

Alphabets
e Boolean: X = {0,1}"
e Uniform: X = [q]" ={0,1,...,9 —1}"
e Nonuniform: X = [q1]] X [g2] % - -+ X [qn]

Update modes

Deterministic=Parallel:  : X — X with Vx,i: f(x); = fi(x)
Sequential

Block-sequential: ordered partition of [n]

Asynchronous (perfect)
Nondeterministic: r : X — P(X)

Gene regulation P(Gr) = Q(%)
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An automata network as input: Boolean circuits.

Deterministic Boolean Deterministic Uniform
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An automata network as input: Boolean circuits.

’Deterministic Boolean‘ Deterministic Uniform
Local functions (f;);c[n Circuits for (f))icy
—4 ®E® ®
i) — @\O %
f(x) = x
Al =2 01010
fa(x) = o(x1,x2,x3) V —xa %
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3. Encodings

An automata network as input: Boolean circuits.

’Deterministic Boolean‘ Deterministic Uniform
Local functions (f;);c[n Circuits for (f))icy
—4 ®E® ®
fl(X =x @\O %

- ) @O@
= @(x1,x2,x3) V xa
p(x1,x2,x3) = 2[(x1 Vx2) = (2 Ax3)]| = x2 Ax3
O) @d@

Theorem. Given f and G, does G = G ? is DP-complete*,
and in P under the promise A(Gr) < d for some fixed d € N.
*DP ={L;NLy| L € NP and L, € coNP}
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3. Encodings

An automata network as input: Boolean circuits.

Deterministic Boolean Deterministic Uniform‘

Local functions (f)ic(n

Circuits for (f;)ic[n
n=1
q=16

X
&
£

denote x; the bit of weight 2"~/ in integer x € [16]*
fA(x)=8-x1 +4- x4+ 2 x3+ (p(x1,x2,x3) V —1xq)

w(x1,x2,x3) = [a Vx)=—(eAx3)] = xAx3 g
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3. Encodings

An automata network as input: Boolean circuits.

Deterministic Boolean Deterministic Uniform‘
Local functions (f)ic(n Circuits for (f)icy
n= 1 X1 X2 X3
q=16
denote x; the bit of weight 2"~/ in integer x € [16]*
(x)=8-x1+4-x2+2 x3+ (p(x1,x2,x3) V 7xq) ?
N

p(x1,x2,x3) = —[(x1 VX)) = —(x2 Ax3)] = x2 A x3 2 /

NN
OJOJOIO)
fi
Remark. From n to 1 automaton quickly (succinct graph representation of ¥).
= Problems on fixed/bounded alphabets to enforce interactions.

Convention. If log,(q) ¢ N then checking validity (of outputs)
is coNP-complete = consider outputs modulo gq.
3/12
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6. First-Order questions on ¥;: given f

Metatheorem. Given f, any nontrivial property of % is hard to check.

Property “Graph FO".

Nontrivial.

Hard.
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6. First-Order questions on ¥;: given f

Metatheorem. Given f, any nontrivial property of % is hard to check.

Property “Graph FO". —,A,V,=-,3,V on signature {=, —}.

Yy B IxVy:y—x

dx 1 x — x

Ix1, x2,x3 1 (x1 = x2) A (x2 = x3) A (x3 — x1)
Vxi, x2, y1,y2 2 [(x1 = 1) A O = ye2)] = (1 = ye2)
Vxi,x2,y : [(x1 = Y) A (2 = ¥)] = (x1 = x2)

Nontrivial.

Hard.

Fixed point
3-cycle
Constant
Injectivity
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Metatheorem. Given f, any nontrivial property of % is hard to check.

Property “Graph FO". —,A,V,=-,3,V on signature {=, —}.
Yy B IxVy:y—x

dx : x — x  Fixed point
Ix1,x2,x3 1 (x1 = x2) A (x2 = x3) A(x3 — x1)  3-cycle
Vxi, x2, 1,2t [(x1 = y1) A (x2 = y2)] = (1 = y2)  Constant
Vxi,x2,y i [(x1 = y)A(x2 = ¥)] = (x1 = x2)  Injectivity

Nontrivial. % has an infinity of models and countermodels.

Hard.
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6. First-Order questions on ¥;: given f

Metatheorem. Given f, any nontrivial property of % is hard to check.

Property “Graph FO". —,A,V,=-,3,V on signature {=, —}.

Y = IxVy:y—x

dx : x — x  Fixed point
Ix1,x2,x3 1 (x1 = x2) A (x2 = x3) A(x3 — x1)  3-cycle

Vx1, %2, y1,y2 1 [(x1 = y1) A (2 = y2)] = (y1 = y2)  Constant

Vxi,x0,y o [(x1 = ¥) A (2 = y)] = (x1 = x2)  Injectivity

Nontrivial. % has an infinity of models and countermodels.

Hard.

1-dynamics
Input : the circuits of an automata network f.
Ouput : does Gr= 1 ?
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6. First-Order questions on ¥;: given f

Theorem [GGPT 2021]. Deterministic. If @) is nontrivial, then
1-dynamics is NP-hard or coNP-hard, otherwise it is O(1).
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Y = IxVy:y—x
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6. First-Order questions on ¥;: given f

Theorem [GGPT 2021]. Deterministic. If v/ is nontrivial, then
1)-dynamics is NP-hard or coNP-hard, otherwise it is O(1).

Proof sketch. Recall that ¢ is fixed.
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6. First-Order questions on ¥;: given f

Theorem [GGPT 2021]. Deterministic. If v/ is nontrivial, then
1)-dynamics is NP-hard or coNP-hard, otherwise it is O(1).

Proof sketch. Recall that ¢ is fixed.

1. Reduction from SAT requires N, S such that:
NU---UNU---UNFEY
NU---USU---UNEY

On each configuration the network evaluates ¢, and:
e not satisfied: produces a copy of NV,
e satisfied: produces a copy of S.
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6. First-Order questions on ¥;: given f

Theorem [GGPT 2021]. Deterministic. If v/ is nontrivial, then
1)-dynamics is NP-hard or coNP-hard, otherwise it is O(1).

Proof sketch. Recall that ¢ is fixed.

1. Reduction from SAT requires N, S such that:
BUNU---UNU---UNFEY
BUNU:---U SU---UN [
On each configuration the network evaluates ¢, and:
e not satisfied: produces a copy of NV,
e satisfied: produces a copy of S.

2. Model theory...
e Finite =, of structures (%)
e Ehrenfeucht-Fraissé games
e Hanf locality
...gives B, N, S and Uy, Uy, L3 and (|, [~&)-symmetry.
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6. First-Order questions on ¥;: given f

Extensions and perspectives.

[q]

Nondet

MSO
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Almost no control on |B|, |N|,|S|, but % has q" configurations...
Ok for FO questions on the limit dynamics &[]
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6. First-Order questions on ¥;: given f

Extensions and perspectives.

[g] On fixed alphabet ?
Almost no control on |B|, |N|,|S|, but % has q" configurations...
Ok for FO questions on the limit dynamics &[]

Nondet Analogous result for nondeterministic networks ?
Nontrivial-det & nontrivial-nondet...

MSO Monadic Second Order logic ?
Connectivity...

Enrich the signature {=, —} to distinguish configurations ?
Some P-complete problems...
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7. Asymptotic dynamics ¥4 Il: given G

Results on deterministic Boolean automata networks f : {0,1}" — {0, 1}"
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7. Asymptotic dynamics ¥4 Il: given G

Results on deterministic Boolean automata networks f : {0,1}" — {0, 1}"

P"*(G) = maximum number of fixed points on G

P™2(G) = minimum number of fixed points on G

+
P5(G) = 2
min G — 2
8 networks
123 AAN | VAA | VWA | VW
000 000 000 000 000
001 000 100 110 110
010 000 100 100 101
011 100 100 110 111
100 000 000 010 011
101 010 110 110 111
110 001 101 111 111
111 111 111 111 111

@Q—Q@® P(6)=3
Prin(G) =1

@ 8 networks
123 VAYAYANE IAVZAVANN IAVAVVAN IAVAVAV]
000 111 111 111 111
001 001 101 111 111
010 010 110 110 111
011 000 000 010 011
100 100 100 110 111
101 000 100 100 101
110 000 100 110 110
111 000 000 000 000
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7. Asymptotic dynamics ¥4 Il: given G

Results on deterministic Boolean automata networks f : {0,1}" — {0,1}"

P"*(G) = maximum number of fixed points on G

P™2(G) = minimum number of fixed points on G

—(D 6 =2  @Q—@ ¥(6)=3
N /o FR6) =2 N/ FRE=1
8 networks @ 8 networks
On n automata, there are 22" Boolean networks and 4™ signed digraph
T
{0, 4+, —, %}
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7. Asymptotic dynamics ¥4 Il: given G

Results on deterministic Boolean automata networks f : {0,1}" — {0, 1}"

P"*(G) = maximum number of fixed points on G

P™2(G) = minimum number of fixed points on G

Theorem [BDPR 2019 2022+]. Given a signed digraph G, deciding whether...

Problem k=1 k>?2 k given in input
NEXPTIME-complete
mE(G) > k P NP- let
¥e) = compiete NP#P—compIete if A(G) < d
) NEXPTIME-complete
MEG) < k
¥R (e) NPNP—compIete if A(G) < d NP#P—compIete if A(G) < d
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7. Asymptotic dynamics ¥4 Il: given G

Theorem. Given a signed digraph G, deciding whether "*(G) >
isin P for k =1, and NP-complete for any fixed k > 2

Proof sketch. k=1 k=2

Fixed points
@

Positive cycles
(even number of — arcs)
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7. Asymptotic dynamics ¥4 Il: given G

Theorem. Given a signed digraph G, deciding whether "*(G) >
isin P for k =1, and NP-complete for any fixed k > 2
Proof sketch. k=1| k=2

e Lemma [=> by Aracena 2008].
Pr*(G) > 1 <= each initial strongly connected component of G
has a positive cycle.

e Theorem [Robertson, Seymour, Thomas 1999; McCuaig 2004]. A
We can decide in polytime whether G has a positive cycle.
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7. Asymptotic dynamics ¥4 Il: given G

Theorem. Given a signed digraph G, deciding whether "*(G) >
isin P for k =1, and NP-complete for any fixed k > 2

Proof sketch. k=1

e Upper bound NP: not trivial because checking G = G is DP-complete.
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7. Asymptotic dynamics ¥4 Il: given G

Theorem. Given a signed digraph G, deciding whether "*(G) >
isin P for k =1, and NP-complete for any fixed k > 2

Proof sketch. k=1

e Upper bound NP: not trivial because checking G = G is DP-complete.
e Lower bound NP: reduction from SAT.

Basic observation.

2 fixed points 1 fixed point

The idea is to “neutralize” such negative chords by satisfying ¢.
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7. Asymptotic dynamics ¥4 Il: given G

Theorem. Given a signed digraph G, deciding whether "*(G) >
isin P for k =1, and NP-complete for any fixed k > 2

Proof sketch. k=1

e Upper bound NP: not trivial because checking G = G is DP-complete.
e Lower bound NP: reduction from SAT.

v =(x1V-xVx3)A(-x1V-x3)

2 fixed points
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7. Asymptotic dynamics ¥4 Il: given G

Theorem. Given a signed digraph G, deciding whether ["**(G) > k
isin P for k =1, and NP-complete for any fixed k > 2.

Proof sketch. k=1

e Upper bound NP: not trivial because checking G = G is DP-complete.
e Lower bound NP: reduction from SAT.
Y = (X1 \Y X2 \Y X3) A (_|X1 \Y _‘X3)

In order to get two fixed points x # y:

1. Each clause must be “neutralized”
by a literal equal in both fixed points.

But never x; = y; and —x; = —y; because:

2. Distinct fixed points must differ
on a positive cycle.
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7. Asymptotic dynamics ¥4 Il: given G

Extensions and perspectives

New...
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7. Asymptotic dynamics ¥4 Il: given G

Extensions and perspectives.

New... point of view on a classical direction P(Gr) = Q(%)
Many further questions:
e Limit cycles 7
o |Qf| ?
e Unsigned Gf 7
o Alphabet [q] ?
e Other update modes ?
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8. Update modes

Block-sequential = ordered partition of [n]
(parallel within each block, and blocks sequentialy)

B= ({17273}) B, = ({2}7 {173})

=h

X

oh

(x) =%
(xX)=x1V—x3
(x) =x

&h

X

010
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Block-sequential = ordered partition of [n]
(parallel within each block, and blocks sequentialy)

B= ({17273}) B, = ({2}7 {173})

=h

X

oh

(x) =%
(xX)=x1V—x3
(x) =x

&h

X 010

Remark. Block-seq.: fixed points are invariant, limit cycles are not.
Remark. From f and 3 we can compute f' = I8l in polytime.

10/12



8. Update modes

Block-sequential = ordered partition of [n]
(parallel within each block, and blocks sequentialy)

B= ({17273}) B, = ({2}7 {173})

=h

X

oh

(x) =%
(xX)=x1V—x3
(x) =x

&h

X 010

Remark. Block-seq.: fixed points are invariant, limit cycles are not.
Remark. From f and 3 we can compute f' = I8l in polytime.

Theorem [Aracena et al. 2013]. Fix k > 2. Given f, deciding whether 33
such %5 has a limit cycle of length k, is NP-complete.

Theorem [BGMPS 2021]. Fix k > 2. Given f, deciding whether 33

such ¥ has no limit cycle of length k, is NPNP_complete.
- 10/12



8. Update modes

We have the same %5 for any 3 among:
({1,2} 13,4} ,{5,6})
({2}, {1}y {34} ,{5,6})
({1,2} 14},{3} .{5,6})
({2}, {1}y {4}, {3} .{5,6})
({1,2} 13,4} ,16},{5})
({2}, {1}y {34} ,16},{5})
({1,2} 141 {3} .{6}.{5})
({2}, {1}y {4}, {3} .{6}.{5})
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8. Update modes

An update digraph is a {H, H}-edge-labeling of Gy.

Theorem [Aracena et al. 2009].
Same update digraph = Same dynamics.

’Given G, how many update digraphs ?‘
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An update digraph is a {H, H}-edge-labeling of Gy.

Theorem [Aracena et al. 2009].
Same update digraph = Same dynamics.

’Given G, how many update digraphs ?‘

Caution [Aracena et al. 2011]. Forbidden patterns.

Theorem [Palma et al. 2016]. #P-complete to count.

Theorem [NPSV 2020]. Polytime on digraphs of treewidth < 2.

Connexion between update digraphs and feedback arc sets.
Theorem [NPSV 2020]. # - OptP[log n]-complete to count B-minimum.
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8. Update modes

An update digraph is a {H, H}-edge-labeling of Gy.

Theorem [Aracena et al. 2009].
Same update digraph = Same dynamics.

’Given G, how many update digraphs ?‘

Caution [Aracena et al. 2011]. Forbidden patterns.

Theorem [Palma et al. 2016]. #P-complete to count.

Theorem [NPSV 2020]. Polytime on digraphs of treewidth < 2.

Connexion between update digraphs and feedback arc sets.
Theorem [NPSV 2020]. # - OptP[log n]-complete to count B-minimum.

A fun combinatorial problem: e n! < tournament
e 37 — 271 4 2 on periodic ECAs
e 7=(2,0) on acyclic

e impossible to get 5 7
11/12
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Intuitive “complexity” of automata networks
e Fixed or bounded alphabets to enforce interactions
Succinct graph representation
e Bounded degree to enforce some locality
May decrease the computational complexity
e Update modes offer a vast world (caution with encodings)
= A systematic study 7 [Paulevé Sené] poset of update modes

[Rios-Wilson Theyssier] symmetry versus asynchronism
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Conclusion

Intuitive “complexity” of automata networks
e Fixed or bounded alphabets to enforce interactions
Succinct graph representation
e Bounded degree to enforce some locality
May decrease the computational complexity
e Update modes offer a vast world (caution with encodings)
—> A systematic study 7 [Paulevé Sené] poset of update modes
[Rios-Wilson Theyssier] symmetry versus asynchronism
Long-term perspectives
e Extension of some partial information
on f;  from some h; of domain X" & X
on G mandatory and/or forbidden arcs, graph families

on ¢r number of fixed points, structural properties
e Model theory to state metatheorems

questions on & given & as input, with &, & € {f, Gr, ¥}

Thank you !
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