Quiz – Analyse de complexité des algorithmes

	Nom	Note:
	Nom:	
	Prénom :	/20
	rcice 1. Arithmétique	
Dar	ns cet exercice, on considère que la multiplication est une instruction élémentaire.	
1.	Voici un algorithme d'exponentiation simple. Entrée : deux entiers positifs n et p Sortie : n^p	
	res = 1	
	pour i de 1 à p faire:	
	res = res * n	
	retourner res	
	Quelle est la complexité de cet algorithme?	
	$\square \mathcal{O}(\log p) \qquad \square \mathcal{O}(p) \qquad \square \mathcal{O}(2^p)$ $\square ext{Logarithmique} \qquad \square ext{Lin\'eaire} \qquad \square ext{Exponentiel}$	/1 point /2 points
2.	Voici un algorithme d'exponentiation rapide. Entrée : deux entiers positifs n et p Sortie : n^p res = 1	
	<pre>tant que p > 0 faire: si p modulo 2 == 1 alors: res = res * n p = (p-1) / 2 sinon: p = p / 2 n = n * n retourner res</pre>	
	Quelle est la complexité de cet algorithme?	
	$\square \mathcal{O}(\log p) \qquad \square \mathcal{O}(2^p)$	/1: 1
	$\square \operatorname{Logarithmique} \qquad \square \operatorname{Lin\'{e}aire} \qquad \square \operatorname{Exponentiel}$	/1 point /2 points
	E xercice 2. Arithmétique élémentaire On s'intéresse ici aux opérations élémentaires de l'arithmétique.	
	Quelle est la complexité de l'algorithme d'addition de deux entiers naturels que l'on apprend à l'école primaire?	
	☐ Logarithmique ☐ Linéaire ☐ Quadratique ☐ Cubique	/1 point
4	Est-il possible qu'un algorithme théoriquement plus efficace existe?	
1.	□ Oui □ Non	/1 point
		/1 point

5.	Quelle est la complexité de l'algorithme de multiplication de deux entiers naturels que l'on apprend à l'école primaire?		
	\square Logarithmique \square Linéaire \square Quadratique \square Cubique	/1 point	
6.	Il existe un algorithme en $\mathcal{O}(n\log n)$ pour multiplier deux entiers de n bits. En quelle année a-t-il été découvert?		
	\square -300 av. JC. \square 1845 \square 1968 \square 2019	/1 point	
On	rcice 3. Tris souhaite trier un tableau de n entiers compris entre 0 et 100 .		
7.	Quelle est la complexité de l'algorithme du tri à bulles?		
	$\square \mathcal{O}(n) \qquad \square \mathcal{O}(n \log n) \qquad \square \mathcal{O}(n^2) \qquad \square \mathcal{O}(n^3)$	/1 point	
8.	Quelle est la complexité de l'algorithme du tri par insertion?		
	$\square \mathcal{O}(n)$ $\square \mathcal{O}(n \log n)$ $\square \mathcal{O}(n^2)$ $\square \mathcal{O}(n^3)$	/1 point	
9.	Quelle est la complexité en moyenne de l'algorithme du tri rapide (Quicksort)?		
	$\square \mathcal{O}(n)$ $\square \mathcal{O}(n \log n)$ $\square \mathcal{O}(n^2)$ $\square \mathcal{O}(n^3)$	/1 point	
10.	Quelle est la complexité (dans le pire cas) de l'algorithme du tri rapide (Quicksort)?		
	$\square \mathcal{O}(n) \qquad \square \mathcal{O}(n \log n) \qquad \square \mathcal{O}(n^2) \qquad \square \mathcal{O}(n^3)$	/1 point	
11.	Quelle est la complexité de la recherche dichotomique d'un élément dans un tableau trié? $\square \ \mathcal{O}(\log n) \qquad \square \ \mathcal{O}(n) \qquad \square \ \mathcal{O}(n^2) \qquad \square \ \mathcal{O}(n\log n)$	/1 point	
Pou	Graphes ar un graphe $G=(V,A)$, on note $n= V $ son nombre de sommets, et $m= A $ son nombre cêtes (cas non-orienté) ou d'arcs (cas orienté).		
	Les quelles de ces inégalités sont vraies pour tout graphe orienté G ?		
	$\Box \ m \leq n \qquad \Box \ m \leq \frac{n(n+1)}{2} \qquad \Box \ m \leq n^2 \qquad \Box \ m \leq n^3 \qquad \Box \ n \leq m$	/1 point	
13.	Lesquelles de ces inégalités sont vraies pour tout graphe non-orienté G ?		
	$\square \ m \le n \qquad \square \ m \le \frac{n(n+1)}{2} \qquad \square \ m \le n^2 \qquad \square \ m \le n^3 \qquad \square \ n \le m$	/1 point	
14.	Quelle est la complexité de calculer le degré $deg(v)$ d'un sommet $v \in V$ dans un graphe non-orienté représenté par matrice d'adjacence?		
	$\square \ \mathcal{O}(\log n) \qquad \square \ \mathcal{O}(deg(v)) \qquad \square \ \mathcal{O}(n) \qquad \square \ \mathcal{O}(n^2) \qquad \square \ \mathcal{O}(m)$	/1 point	
15.	Quelle est la complexité de rechercher si un graphe non-orienté donné possède un cycle eulérien (qui passe exactement une fois par chaque arête)?		
	$\square \mathcal{O}(1)$ $\square \mathcal{O}(n)$ $\square \mathcal{O}(n+m)$ $\square \mathcal{O}(n^2)$ $\square \mathcal{O}(n^3)$	/1 point	
16.	Quelle est la complexité de l'algorithme de Dijkstra, qui permet de trouver un plus court chemin de $s \in V$ à $t \in V$ dans un graphe orienté dont les arcs sont pondérés par des nombres réels positifs? (Cet algorithme calcule des plus courts chemin de s à tous les sommets du graphe G .) On suppose une implémentation simple avec deux tableaux.		
	$\square \mathcal{O}(m + n \log n)$ $\square \mathcal{O}((n + m) \log n)$ $\square \mathcal{O}(n^2)$ $\square \mathcal{O}(n m^2)$	/1 point	