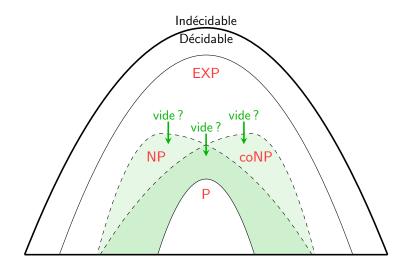
Complexité : NP-complétude

M1 Informatique Luminy 2025-26

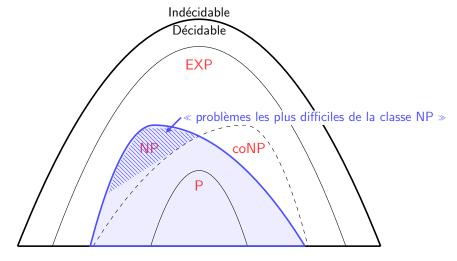
9hCM 9hTD 9hTP

NF = MAX(ET; 0.3*CC + 0.7*ET)

Classes de complexité



NP-complétude



C'est la notion de réduction qui permet de comparer la complexité des problèmes.

NP-complétude : définition

Un problème A est NP-difficile ou NP-dur lorsque :

- Il est parmi les plus difficiles de la classe NP.
- Il est au moins aussi difficile que tout autre problème de NP.

Expliquer comment résoudre efficacement $B \in NP$ en utilisant un algorithme efficace pour A s'appelle une réduction polynomiale de B vers A.

On note $B \leq_T^P A$ lorsque

 \ll A est au moins aussi difficile que $B\gg$

 $\underline{\mathsf{il}}$ existe un algorithme qui résoud B en utilisant :

- un nombre polynomial d'appels à un algorithme qui résoud A, et
- un temps polynomial en dehors de ces appels.

Exemple : 3-SAT \leq_T^P SAT car si je savais résoudre SAT efficacement, je pourrais utiliser le même algorithme pour résoudre 3-SAT efficacement.

Exemple : 3-Clique \leq^P_T Clique. Exemple : SAT \leq^P_T Clique et Clique \leq^P_T SAT. \ref{SP}

A est NP-difficile lorsque $\forall B \in \text{NP} : B \leq_T^P A$. Si en plus $A \in \text{NP}$ alors A est NP-complet.

NP-complétude : **SAT**

Théorème [Cook 1971, Levin 1973]. **SAT** est NP-complet.

Preuve (idée).

- 1. **SAT** ∈ NP. ✓
- 2. **SAT** est NP-dur, c'est-à-dire $\forall B \in NP : B \leq_{T}^{P} SAT$.

Soit $B \in NP$. On sait uniquement que :

B a un vérificateur poly V_B pour vérifier des couples instance-certificat.

Et on va en conclure que :

On peut résoudre B en construisant une formule et demandant si elle est dans SAT.

La démonstration consiste, pour une instance w de B, à construire une formule φ_w telle que :

- Une valuation x encode toute l'exécution $V_B(w, p_x)$ pour un certain p_x . Technique : avec une variable par possibilité dans l'espace-temps du calcul.
- $x \models \varphi_w$ si et seulement si 1 et 2 sont vrais :
 - x est une exécution correcte de V_B pour vérifier le certificat p_x de w,
 Technique : les clauses assurent la cohérence de x avec le programme de V_B
 à chaque étape du calcul. ⚠ Partie la plus méticuleuse de la démonstration!
 - 2. l'entrée (w, p_x) de cette exécution est acceptée.

Technique : une clause assure que la dernière étape du calcul accepte.

Alors : $\varphi_w \in \mathsf{SAT} \implies \exists x : x \models \varphi_w \stackrel{1\&2}{\Longrightarrow} \exists p_x : V_B(w, p_x) \text{ accepte } \Longrightarrow w \in B.$ $\varphi_w \notin \mathsf{SAT} \implies \exists x : x \not\models \varphi_w \stackrel{1\&2}{\Longrightarrow} \not\exists p_x : V_B(w, p_x) \text{ accepte } \Longrightarrow w \notin B.$

 \hookrightarrow aucun p_X ne certifie l'appartenance de w à B.

Comme l'espace-temps utilisé par V_B est de taille polynomiale, la formule obtenue est de taille polynomiale et elle est construite en temps polynomial.

NP-complétude : conséquences

Théorème [Cook 1971, Levin 1973]. **SAT** est NP-complet.

Utilisation:

si B est NP-difficile et on montre $B \leq_T^P A$ alors A est NP-difficile.

En effet, un algo efficace pour A

donnerait un algo efficace pour B qui donnerait un algo efficace pour tout NP.

Exemples:

SAT \leq_T^P **3-SAT** donc **3-SAT** est NP-complet.

car $3\text{-SAT} \in \mathsf{NP}$

 \star 3-SAT ≤^P_T Stable donc Stable est NP-complet.

 $\mathsf{car}\; \textbf{Stable} \in \mathsf{NP}$

* Stable \leq_T^P Clique donc Clique est NP-complet.

 $\mathsf{car}\; \mathbf{Clique} \in \mathsf{NP}$

Théorème. Les affirmations suivantes sont équivalentes :

- 1. P = NP.
- 2. Tous les problèmes NP-complets sont dans P.
- 3. Il existe un problème NP-complet dans P.

Remarque. La contraposées de $1 \implies 2$ est aussi pertinente.

Preuve. $1 \Longrightarrow 2 \Longrightarrow 3$ est immédiat, et $3 \Longrightarrow 1$ car...

tout problème de NP peut être réduit au problème NP-complet dans P. \square

3-SAT \leq_T^P Stable

On montre comment un algo poly pour **Stable** donnerait un algo poly pour **3-SAT**.

Algorithme de résolution du problème 3-SAT :

Entrée : φ avec les variables x_1, \ldots, x_n et les clauses C_1, \ldots, C_m .

Construire un graphe non-orienté G = (V, E) avec :

- 1. Pour chaque clause C_j avec $1 \le j \le m$, ajouter un nouveau triangle à G, dont les sommets sont étiquetés par les trois littéraux de la clause.
- 2. Pour chacune des n variables x_i avec $1 \le i \le n$, ajouter une arête entre toute paire de sommets étiquetés x_i et $\neg x_i$.

Répondre comme l'algorithme pour le problème **Stable** sur l'entrée (G, m).

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

Fig: A.E.Porreca

Temps poly:

Deux boucles en $\mathcal{O}(m) + \mathcal{O}(m^2)$. Graphe à 3m sommets et $\leq (3m)^2$ arrêtes, donc temps poly et 1 appel à **Stable**.

Correction:

Un stable de G de taille m doit contenir exactement un sommet par clause, et ne peut pas contenir x_i et $\neg x_i$. Donc \exists stable de taille $m \Longrightarrow \exists$ un modèle à φ . Et \exists un modèle à φ \Longrightarrow \exists stable de taille m.

→ on peut montrer la contraposée

3-SAT est NP-difficile et **3-SAT** \leq_T^P **Stable**, donc **Stable** est NP-difficile.

De plus $Stable \in NP$, donc Stable est NP-complet.

Stable $\leq_{\mathcal{T}}^{\mathsf{P}}$ Clique

Fig : A.E.Porreca

On montre comment un algo poly pour Clique donnerait un algo poly pour Stable.

Algorithme de résolution du problème Stable :

Entrée : un graphe non-orienté G = (V, E) et un entier k. Construire le graphe complémentaire $\bar{G} = (V, V^2 \setminus E)$ sans boucles. Répondre comme l'algorithme pour le problème **Clique** sur l'entrée (\bar{G}, k) .

$$\overline{G} = (V, E)$$

$$\overline{G} = (V, V^2 - E)$$

Temps poly:

Un parcours de la matrice et 1 appel.

Correction:

G a un stable de taille k $\iff \overline{G}$ a une clique de taille k

 \hookrightarrow le même ensemble de sommets.

Stable est NP-difficile et **Stable** \leq_T^P **Clique**, donc **Clique** est NP-difficile. De plus **Clique** \in NP, donc **Clique** est NP-complet.

La question

Ouvert. Est-ce que $P \neq NP$?

1 000 000 \$ Clay Mathematics Institute

Possible de vérifier efficacement ⇒ Possible de trouver efficacement ?

← est évident

Est-ce que trouver n'est fondamentalement pas plus difficile que vérifier?

 \hookrightarrow en vidéo (10') : P vs. NP and the Computational Complexity Zoo

Si P = NP:

Notre capacité à résoudre de nombreux problèmes passe bien à l'échelle. Mais comment faire de la cryptographie? Pas de fonctions *one-way*.

Si $P \neq NP$:

De nombreux problèmes d'optimisation ne passent pas à l'échelle.

 \hookrightarrow comme actuellement, mais c'est démontré donc plus besoin de chercher!

 $_{<}$ P =? NP Poll $_{>}$ par Gasarch en 2019 : $\boxed{}$ = $\boxed{}$ \neq (88%)

Un peu de théorie

Proposition. \leq_T^P est un pré-ordre sur les langages (problèmes).

Preuve. Réflexivité : $\forall A : A \leq_T^P A$ avec une réduction triviale.

Remarque. Les problèmes NP-complets sont tous « aussi difficiles les uns que les autres », à une composition de polynômes près (réduction).

En théorie de la complexité, on utilise davantage les réductions \ll many-one \gg polynomiales notées $A \leq_m^P B$, qui transforment en temps polynomial une instance w de A en une instance f(w) de B telle que :

$$w \in A \iff f(w) \in B$$

 \hookrightarrow la réponse à f(w) pour B donne la réponse à w pour A.

Pour aller plus loin.

Lire Karp, Reducibility Among Combinatorial Problems (1972).

→ voir le diagramme page 12 du pdf.

coNP-complétude

A est coNP-difficile lorsque $\forall B \in \text{coNP} : B \leq_{\tau}^{P} A$. Si en plus $A \in coNP$ alors A est coNP-complet.

Proposition. Tout problème NP-dur est coNP-dur pour les réductions \leq_{τ}^{P} .

Preuve. Soit A un problème NP-dur. Pour tout $B \in \text{coNP}$, le complémentaire $\overline{B} \in NP$, donc $\overline{B} \leq_{\tau}^{P} A$, et $B \leq_{\tau}^{P} \overline{B}$ en inversant la réponse. \square

 \implies Les réductions \leq_{τ}^{P} ne sont pas sensibles à la différence entre NP et coNP.

 \implies Les réductions \leq_m^P définissent une notion plus fine de coNP-complétude.

Théorème. Si A est NP-complet, alors \overline{A} est coNP-complet, pour \leq_m^P . Preuve. $\overline{A} \in \text{coNP}$ par définition, et si $B <_m^P A$ alors $\overline{B} <_m^P \overline{A}$ (même transformation). \square

Corollaire. UNSAT et TAUTO sont coNP-complets pour \leq_m^P .

Preuve. UNSAT : immédiat par le théorème qui précède car UNSAT=SAT.

TAUTO: UNSAT \leq_m^P TAUTO en réduisant une instance φ à $f(\varphi) = \neg \varphi$.

Théorème (bis). Si NP \neq coNP alors P \neq NP.

Preuve. P = coP donc si P = NP alors NP = coNP.

