Complexité

M1 Informatique Luminy 2025-26

9hCM 9hTD 9hTP NF=MAX(ET; 0.3*CC+0.7*ET)

Résolution algorithmique de problèmes

« An algorithm is a finite answer to an infinite number of questions » Stephen Kleene

crédit photo?

Recherche d'un mot dans un texte

Entrée : deux chaînes de caractères m et t.

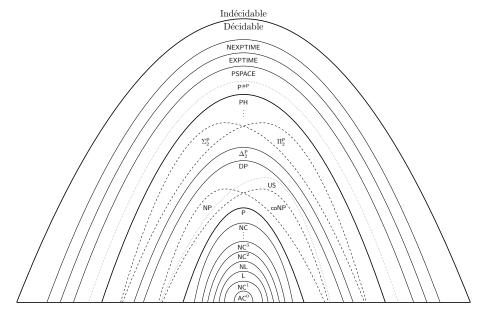
Question : est-ce que m a au moins une occurrence dans t?

Test de primalité

Entrée : un entier n.

Question : est-ce que *n* est un nombre premier?

Calculabilité et complexité des problèmes



Complexité algorithmique

La complexité algorithmique mesure la quantité de ressources (temps, mémoire) utilisées pour la résolution d'un problème par un programme.

- Fonction de la taille de l'entrée.
- Dans le pire cas (offre une garantie)
 ou en moyenne (attention, l'analyse est plus difficile).

Recherche d'un mot dans un texte

Entrée : deux chaînes de caractères m et t.

Question : est-ce que m a au moins une occurrence dans t?

? Temps linéaire : $\mathcal{O}(|m| + |t|)$ Knuth–Morris–Pratt (1970)

Test de primalité

Entrée : un entier n.

Question : est-ce que *n* est un nombre premier?

? Temps polynomial : $\tilde{\mathcal{O}}(\log(n)^6)$ Agrawal–Kayal–Saxena (2002)

Rappels : taille de l'entrée

Type de donnée

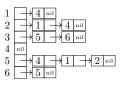
un entier naturel $n \in \mathbb{N}$ un entier relatif $n \in \mathbb{Z}$ un réel $r \in \mathbb{R}$ un tableau de n entiers une chaîne de caractères sun graphe avec n sommets et m arrêtes

Taille en bits (environ)

$$\begin{aligned} &\log_2(n) & \lfloor \log_2(n) \rfloor + 1 \\ &\log_2(n) & \lfloor \log_2(n) \rfloor + 2 \\ &\text{constante } (1,8,23 \text{ ou } 1,11,52) \\ &c \text{ n pour des entiers de 0 à } 2^c - 1 \\ &c |s| \text{ pour un alphabet de } \leq 2^c \text{ lettres} \\ &n^2 \text{ par matrice d'adjacence} \\ &n + m \text{ par listes d'adjacence} \end{aligned}$$

Parfums de graphes

- Orienté ou non
- Pondéré ou non
- Simple ou multiple
- Acyclique ou non
- Biparti ou non
- Planaire ou non
- Connexe ou non
- Topologique ou plongé
- Creux ou dense



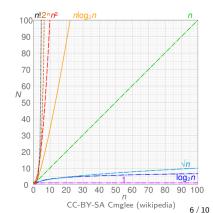
Rappels : notations de Landau

Bornes asymtotiques à un facteur multiplicatif près :

- On note $f(n) \in \mathcal{O}(g(n))$ lorsque $\exists c > 0 : \exists n_0 : \forall n \geq n_0 : f(n) \leq c g(n)$.
- On note $f(n) \in \Omega(g(n))$ lorsque $\exists c > 0 : \exists n_0 : \forall n \geq n_0 : f(n) \geq c g(n)$.
- On note $f(n) \in \Theta(g(n))$ lorsque $f(n) \in \mathcal{O}(g(n))$ et $f(n) \in \Omega(g(n))$.
- On note $f(n) \in o(g(n))$ lorsque $\forall \epsilon > 0 : \exists n_0 : \forall n \geq n_0 : f(n) \leq \epsilon g(n)$.

```
 \mathcal{O}(1) 
 \mathcal{O}(\log n) 
 \mathcal{O}(n) 
 \mathcal{O}(n \log n) 
 \mathcal{O}(n^2) 
 \mathcal{O}(n^3) 
 \mathcal{O}(n^k) \text{ avec } k \text{ fixé} 
 \mathcal{O}(k^n) \text{ avec } k > 1 \text{ fixé} 
 \mathcal{O}(n!)
```

constant
logarithmique
linéaire
quasi-linéaire
quadratique
cubique
polynomial
exponentiel
factoriel



Rappels : ordres de grandeur en temps

1 million d'instructions élémentaires par seconde :

	n	n log n	n ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	0	0	0	0	0	0	4 sec
n = 20	0	0	0	0	0	1 sec	77000 ans
n = 50	0	0	0	0	11 min	36 ans	∞
n = 100	0	0	0	1 sec	12891 ans	10 ¹⁷ ans	∞
n = 1000	0	0	1 sec	17 min	∞	∞	∞
$n = 10^4$	0	0	2 min	12 jours	∞	∞	∞
$n = 10^5$	0	2 sec	3 heures	32 ans	∞	∞	∞
$n = 10^6$	1 sec	20 sec	12 jours	32000 ans	∞	∞	∞

0 = moins de 1 seconde $\infty = \text{plus de } 10^{20} \text{ ans}$

Rappels : ordres de grandeur en temps

1 milliard d'instructions élémentaires par seconde :

	n	n log n	n ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	0	0	0	0	0	0	0
n = 20	0	0	0	0	0	0	77 ans
n = 50	0	0	0	0	1 sec	13 jours	∞
n = 100	0	0	0	0	13 ans	10 ¹⁴ ans	∞
n = 1000	0	0	0	1 sec	∞	∞	∞
$n = 10^4$	0	0	0	17 min	∞	∞	∞
$n = 10^5$	0	0	10 sec	12 jours	∞	∞	∞
$n = 10^6$	0	0	16 min	32 ans	∞	∞	∞

0 = moins de 1 seconde $\infty = \text{plus de } 10^{20} \text{ ans}$

Complexité algorithmique : définitions

Le temps de calcul d'un algorithme A sur une entrée $w \in \Sigma^*$ est le nombre d'instructions élémentaires exécutées, noté $t_A(w)$.

Définition? Modèle de calcul! MT, RAM, RASP, ...

Ce nombre donne le temps de calcul en secondes à un facteur multiplicatif près correspondant à la vitesse du processeur.

2 GHz = facteur
$$\frac{1}{2\cdot 10^9}.$$

La complexité (en temps) dans le pire cas d'un algorithme A est une fonction $\mathbb{N} \to \mathbb{N}$ de la taille de l'entrée :

$$T_A(n) = \max_{w \in \Sigma^n} t_A(w)$$

La complexité (en temps) dans le pire cas d'un problème P est la complexité du meilleur algorithme qui résoud ce problème :

$$T_P(n) = \inf_{\substack{\text{algo } A \\ \text{qui résoud } P}} T_A(n)$$

Divulgâcheur : rares sont les problèmes dont la complexité est connue (démontrée sup-inf), mais depuis les années 1970 on a une belle théorie de la complexité : NP-complétude, etc...

Bilbiographie

Diapos des CM, pas de correction des TD et TP. Vous devez venir en cours.

- Cormen: Introduction to Algorithms (1990)
- Perifel : Complexité Algorithmique (2014)
- Papadimitriou: Computational Complexity (1994)
- Arora-Barak : Computational Complexity (2009)
- Garey-Johnson : Computers and Intractability (1979)

Quiz