Calculabilité avancée (SINBU06) - Examen - Session 1

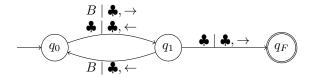
Durée : 1 heure (Barème indicatif)

Documents: autorisés

Exercice 1. (3 points)

- 1. Qu'est ce qu'un langage semi-décidable?
- **2.** Les langages semi-décidables sont également appelés « récursivement énumérables ». Expliquer brièvement ce qu'est une « énumération » « récursive » d'un langage semi-décidable.

Exercice 2. (10 points)


<u>Rappel</u> : le langage $L_{\bar{u}} = \{\langle M \rangle \# w \mid w \notin L(M)\}$ n'est pas semi-décidable.

1. Montrer que $L_{\bar{u}} \leq_m^T L_1 = \{\langle M \rangle \# w \mid w \in L(M) \text{ ou } ww \notin L(M)\}.$

Important : Exercice 3 ou (exclusif) 4 au choix, vous ne pouvez répondre qu'à un seul des deux

Exercice 3. (7 points)

Soit M_{bb2} la machine de Turing à trois états $Q = \{q_0, q_1, q_F\}$, d'alphabet de ruban $\Gamma = \{B, \clubsuit\}$, et dont la fonction de transition est donnée par l'automate suivant :

1. Définir la fonction locale $f:S^N\to S$ d'un automate cellulaire en dimension d=1, sur l'ensemble d'états $S=\Gamma\cup (Q\times\Gamma)$, avec voisinage $N=\{-1,0,1\}$, qui « simule » M_{bb2} , en expliquant vos raisonnements pour m'aider à comprendre votre construction.

Exercice 4. (7 points)

1. En DM, vous avez montré $L_{\bar{u}} \leq_m^T L_{\infty} = \{\langle M \rangle \mid M(w) \uparrow \text{ pour tout } w \in \Sigma^* \}$. Montrer que $L_{\infty} \leq_m^T L_{\bar{u}}$.