TD 05 – The complexity cake

Exercice 1. Tranches de cake

Rappel: un diagramme de Venn montre les relations (d'inclusion) entre ensembles.

Rappel : une classe de complexité (en temps) est un ensemble de langages, défini à partir d'un ensemble d'algorithmes (ceux dont le temps d'exécution respecte une borne donnée).

1. Dessiner en justifiant le diagramme de Venn des classes suivantes : P, EXP, NP, NEXP.

Rappel : pour une classe de complexité C, on définit $coC = \{^cA \mid A \in C\}$, avec cA le langage complémentaire de A.

- **2.** Ajouter en justifiant les classes suivantes : *co*P, *co*NP, *co*EXP, *co*NEXP.
- 3. Citer deux inclusions connues pour être strictes.
- 4. Quelle est la question à 1 000 000 \$? (de la part du Clay Mathematics Institute)
- 5. Citer une autre question dont la réponse, si elle est négative, donne droit aux 1 000 000 \$.

Exercice 2. Ranger sa chambre

Pour chacun des problèmes suivants, donner la (plus petite) classe (possible) à laquelle il appartient, en justifiant.

Rappel : pour justifier que le langage associé à un problème appartient à une classe, on donne un *algorithme* dans cette classe, qui le *décide*.

SAT

1. | entrée : une formule propositionnelle ϕ | question : est-ce que $mod(\phi) \neq \emptyset$?

2-SAT

- 2. | entrée : une formule propositionnelle ϕ dont les clauses sont de taille exactement 2 | question : est-ce que $mod(\phi) \neq \emptyset$?
- 3. $L_{2SAT+} = L_{2SAT} \cup \{a01bb, t11wu\}.$

Clique

4. *entrée* : un graphe non-orienté G = (V, E) et un entier k *question* : G contient-il une clique 1 de taille k?

Accessibilité

5. entrée : un graphe orienté G et deux sommets s et t question : existe-t-il un chemin de s à t dans G?

Set packing

6. entr'ee: une famille $\{S_j\}_{j\in\{1,\dots,m\}}$ d'ensembles tels que $S_j\subseteq\{1,\dots,n\}$ pour tout $j\in\{1,\dots,m\}$, et un entier $\ell\in\mathbb{N}$ question: $\{S_j\}$ contient-il ℓ ensembles mutuellement disjoints?

Node cover

7. $\begin{array}{l} \textit{entrée}: \text{ un graphe } G = (V, E) \text{ et un entier } \ell \\ \textit{question}: \text{ existe-t-il un sous ensemble } V' \subseteq V \text{ tel que } |V'| \leq \ell \text{ et toute arête de } E \text{ a} \\ \text{l'une de ses extrémités dans } V' \text{?} \end{array}$

Directed Hamiltonian circuit

8. entrée : un graphe orienté G=(V,A) question : existe-t-il un circuit dans G qui inclue chaque sommet exactement une fois?

Clique cover

9. entr'ee: un graphe G et un entier $\ell \in \mathbb{N}$ question: existe-t-il un ensemble d'au plus ℓ cliques dans G tel que V est l'union de ces cliques?

10. Problem Parameters: A set of tiles $T = t_1, \ldots, t_m$. A set of horizontal constraints $H \subseteq T \times T$ such that if t_i is placed to the left of t_j , then it must be the case that $(t_i, t_j) \in H$. A set of vertical constraints $V \subseteq T \times T$ such that if t_i is placed below t_j , then it must be the case that $(t_i, t_j) \in V$. A designated tile t_1 that must be placed in the four corners of the grid.

Square domino

entrée : integer N, specified in binary.

question : determine whether there is a valid tiling of an $N \times N$ grid.

Ensemble indépendant

11. entrée: un graphe non-orienté G=(V,E) et un entier k question: G contient-il un ensemble indépendant 2 de taille k?