TD 02 – Des chaînes

Exercice 1.

Pour chacun des systèmes de réécriture suivants, déterminer s'il est normalisant 1 , s'il est nœthérien et s'il est confluent. Si le système n'est pas confluent, proposer un système confluent qui conserve la relation d'équivalence $\stackrel{*}{\leftrightarrow}$.

1. Soit $\Sigma_1 = \{v, o\}$ et R_1 le système de réécriture sur Σ_1 comportant les règles :

 $\begin{array}{ccc} vo & \to & ooov \\ ov & \to & v \\ vv & \to & oooo \\ oo & \to & o \end{array}$

2. Soit $\Sigma_2 = \{a, b, c\}$ et R_2 le système de réécriture sur Σ_2 comportant les règles :

 $\begin{array}{ccc} aa & \rightarrow & \epsilon \\ bb & \rightarrow & \epsilon \\ ab & \rightarrow & c \end{array}$

3. Soit $\Sigma_3 = \{a, b, c\}$ et R_3 le système de réécriture sur Σ_3 comportant les règles :

 $\begin{array}{cccc} ab & \rightarrow & c \\ bc & \rightarrow & a \\ ac & \rightarrow & b \\ aa & \rightarrow & \epsilon \\ bb & \rightarrow & \epsilon \\ cc & \rightarrow & \epsilon \end{array}$

4. Soit $\Sigma_4=\{a,b,c\}$ et R_4 le système de réécriture sur Σ_4 comportant les règles :

 $\begin{array}{ccc} aba & \rightarrow & b \\ bab & \rightarrow & a \\ aa & \rightarrow & bb \end{array}$

Exercice 2. GPS

Soit un alphabet $\Sigma = \{a, b\}$ et un système de réécriture R sur Σ^* comportant les règles :

 $\begin{array}{c} aaaa \longleftrightarrow \epsilon \\ \\ abba \longleftrightarrow ababaababa \\ \\ \epsilon \longleftrightarrow bb \\ \\ abab \longleftrightarrow baabaababa \end{array}$

^{1.} Tout mot admet une forme normale.

- 1. Proposez un système de réécriture nœthérien R' sur Σ^* le plus simple possible tel que la relation d'équivalence $\stackrel{*}{\leftrightarrow}_{R'}$ soit la même que $\stackrel{*}{\leftrightarrow}_R$.
- **2.** De quelle loi peut-on munir Σ^* pour former un monoïde?
- 3. Le système R' est-il confluent? On donnera une preuve s'appuyant sur le théorème des paires critiques.
- **4.** Combien de classes d'équivalence sur Σ existent pour la relation $\stackrel{*}{\leftrightarrow}_{R'}$?
- 5. Quel est l'avantage d'avoir un système de réécriture terminant et confluent dans ce cas?
- **6.** Quel commentaire pouvez vous faire sur ces systèmes de réécriture en considérant que a représente une rotation d'angle $\frac{\pi}{2}$ et que b représente une symétrie selon l'axe des x?

Exercice 3. Lemme de Higman

Soit Σ un alphabet fini. On définit sur Σ^* la relation d'ordre $x \leq y$ par « x est un sous-mot de y ». On se propose de montrer le résultat suivant.

Lemme. Soit (x_i) une suite infinie de Σ^* . Alors il existe i < j tels que $x_i \le x_j$.

Une suite est dite *bonne* si elle vérifie la propriété du lemme, *mauvaise* sinon. Supposons qu'il existe une mauvaise suite. On construit une suite (x_i) récursivement : pour tout $i \geq 0$, on choisit un élément minimal x_i tel qu'il existe une mauvaise suite commençant par x_0, \ldots, x_i .

- 1. Montrer que cette suite est bien définie.
- **2.** Montrer qu'on peut extraire une sous-suite $(x_{\phi(i)})$ de (x_i) dont tous les éléments commencent par une même lettre $a \in \Sigma$.

On note $x'_{\phi(i)}$ le mot défini par $x_{\phi(i)} = ax'_{\phi(i)}$.

3. Conclure en raisonnant sur la suite $x_0, x_1, \ldots, x_{\phi(0)-1}, x'_{\phi(0)}, x'_{\phi(1)}, \ldots$

Exercice 4. *Jouons à la coiffeuse*

On considère les tressages sur trois brins, où les opérations possibles consistent à ramener un brin sur son voisin de droite : \begin{align*} & et & \end{align*}. On a naturellement \(^2\) l'équivalence entre les deux tressages suivants :

- 1. Formaliser ce jeu par un système de réécriture sur l'alphabet $\{a,b\}$. A quoi correspondent la concaténation et le mot vide ? Vérifier qu'on a bien une structure de monoïde.
- **2.** Ajouter des opérations de tressage afin de munir ce jeu d'une structure de groupe. Quelles équivalences de tressage obtient-on? Compléter également l'alphabet et le système de réécriture correspondant. On note *R* le système de réécriture ainsi obtenu.
- 3. Comment s'écrit la tresse usuelle?
- 4. R est-il nœthérien? Est-il confluent? Si non, le compléter en un système confluent, et dessiner ses règles sous forme de tresses.

^{2.} Si elle ne vous parait pas si naturelle, retournez à vos poupées.