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1 Introduction

A rectilinear path P between two points p, q of the plane R2 is a path connecting p and q and
consisting of only horizontal and vertical line segments. More generally, a rectilinear network
N = (V,E) consists of a finite set V of points of R2 (the vertices of N) and of a finite set of
horizontal and vertical segments connecting pairs of points of V (the edges of N). The length
l(P ) (or l(N)) of a rectilinear path P (or of a rectilinear network N) is the sum of lengths
of its edges. Analogously, the length l(N) of a rectilinear network N is the sum of lengths of
its edges. The l1-distance between two points p = (px, py) and q = (qx, qy) in the plane R2

is d(p, q) := ||p − q||1 = |px − qx| + |py − qy|. An l1-path between two points p, q ∈ R2 is a
rectilinear path connecting p, q and having length d(p, q).

Given a set T = {t1, . . . , tn} of n points (terminals) in the plane, a Manhattan network [4]
on T is a rectilinear network N(T ) = (V, E) such that T ⊆ V and for every pair of points in T,

the network N(T ) contains an l1-path between them. A minimum Manhattan network on T

is a Manhattan network of minimum possible length and the Minimum Manhattan Network
problem (MMN problem) is to find such a network.

The minimum Manhattan network problem has been introduced by Gudmundsson, Lev-
copoulos, and Narasimhan [4] and its complexity status is unknown. Gudmundsson et al. [4]
proposed an O(n3)-time algorithm with approximation factor 4, and an O(n log n)-time algo-
rithm with approximation factor 8. They also conjectured that there exists a 2-approximation
algorithm for this problem. Kato, Imai, and Asano [6] presented a factor 2 approximation
algorithm, however, their correctness proof is incomplete. Following [6], Benkert, Shirabe, and
Wolff [1] and Benkert, Wolff, and Widmann [2] described an O(n log n)-time algorithm with
approximation factor 3 and presented a mixed-integer programming formulation of the MMN
problem. Notice that all four mentioned algorithms are geometric and some of them employ
results from computational geometry. Nouioua [8] presented another O(n log n) factor 3 ap-
proximation algorithm based on the primal-dual method from linear programming. In this
paper we present a rounding method applied to the optimal solution of the flow based linear
program described in [1, 8] which leads to a factor 2 approximation algorithm for the minimum
Manhattan network problem (for approximation algorithms based on rounding techniques, see
the book by Vazirani [12]). For this, we define two subsets of pairs of terminals, called strips
and staircases, and for each of them, we describe a specific rounding procedure. Each rounded
up edge is paid by a group of parallel edges which together support at least one-half unit of
fractional flow. Finally, we prove that a rectilinear network containing l1-paths between all
the pairs belonging to strips and staircases is a Manhattan network and thus, we end-up with
an integer feasible solution whose cost is at most twice the fractional optimum.

Gudmundsson et al. [4] introduced the minimum Manhattan networks in connection with
the construction of sparse geometric spanners. Given a set T of n points in the plane endowed
with a norm ‖ · ‖, and a real number t ≥ 1, a geometric network N is a t-spanner for T if
for each pair of points p, q ∈ T, there exists a pq-path in N of length at most t times the
distance ‖p−q‖ between p and q. In the Euclidian plane (and more generally, for lp-planes with
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Figure 1: A minimum Manhattan network

p ≥ 2), the linear segment is the unique shortest path between two endpoints, and therefore
the unique 1-spanner of T is the trivial complete graph on T. On the other hand, if the unit
ball of the norm is a polygon (in particular, for l1 and l∞), the points are connected by several
shortest paths, therefore the problem of finding the sparsest 1-spanner becomes non trivial. In
this connection, minimum Manhattan networks are precisely the optimal 1-spanners for the
l1 (or l∞) plane. Sparse geometric spanners have applications in VLSI circuit design, network
design, distributed algorithms and other areas, see for example the survey of [5]. Finally,
Lam, Alexandersson, and Pachter [7] suggested to apply minimum Manhattan networks to
design efficient search spaces for pair hidden Markov model (PHMM) alignment algorithms.

2 Properties and LP-formulation

In this section, we present several properties of minimum Manhattan networks. First, we
define our notation. Denote by [p, q] the linear segment having p and q as end-points. The set
of all points of R2 lying on l1-paths between p and q constitute the smallest axis-parallel closed
rectangle R(p, q) containing the points p, q. For two terminals ti, tj ∈ T, let Ri,j := R(ti, tj).
(This rectangle is degenerate if ti and tj have the same x- or y-coordinate.) We say that
Ri,j is an empty rectangle if Ri,j ∩ T = {ti, tj}. The complete grid is obtained by drawing in
the smallest axis-parallel rectangle containing the set T a horizontal segment and a vertical
segment through every terminal which span the entire length and width of the rectangle. The
following result can be easily proven using standard methods for establishing Hanan grid-type
results.

Lemma 2.1 [4, 14] The complete grid contains at least one minimum Manhattan network
on T .

A point p ∈ R2 is said to be an efficient point of T [3, 13] if there does not exist any other
point q ∈ R2 such that d(q, ti) ≤ d(p, ti) for each ti ∈ T and d(q, tj) < d(p, tj) for at least
one tj ∈ T. Denote the set of all efficient points by P, called the Pareto envelope of T. An
optimal O(n log n) time algorithm to compute the Pareto envelope of n points in the l1-plane
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Figure 2: Pareto envelope of four points

is presented in [3]. Its correctness uses the following characterization of P presented in [3]:
P =

⋂n
i=1

⋃n
j=1 R(ti, tj). For other properties of P and an O(n2) time algorithm see also [13].

In particular, it is known that P is ortho-convex, i.e. the intersection of P with any vertical
or horizontal line is convex, and that every two points of P can be joined in P by an l1-path.
P, being ortho-convex, is a union of ortho-convex (possibly degenerate) rectilinear polygons
(called blocks) glued together along vertices (they become cut points of P); Fig. 2 presents
two generic forms of the Pareto envelope of four points. Denote by Γ = (V,E) the part of the
complete grid contained in the Pareto envelope P.

Lemma 2.2 The graph Γ contains at least one minimum Manhattan network on T .

Proof. By Lemma 2.1, the complete grid contains a minimum Manhattan network N on
T. Denote by R(N) the union of all inner faces of N. Suppose that N is selected so that to
minimize the number of faces of the complete grid which belong to R(N)\P. If some vertices
and edges of N are outside Γ, then necessarily R(N) \P 6= ∅. Let u0 be a vertex of N located
outside Γ (and P). Since P =

⋂n
i=1

⋃n
j=1 R(ti, tj) and u0 /∈ P, there exists a terminal ti such

that u0 /∈ ⋃n
j=1 R(ti, tj). Suppose without loss of generality that ux

0 ≤ txi and tyi ≤ uy
0. Then

u0 /∈ ⋃n
j=1 R(ti, tj) implies that the closed quadrant Q0 = {p : px ≤ ux

0 and uy
0 ≤ py} does not

contain any terminal of T . Therefore Q0
⋂

(
⋃n

j=1 R(ti, tj)) = ∅, yielding Q0 ∩ P = ∅.
Let u be the highest vertex of N \Γ belonging to Q0 (if there are several such vertices, then

we break ties by taking the leftmost one). The closed quadrantQ = {p : px ≤ ux and uy ≤ py}
does not contain terminals or Pareto points becauseQ ⊆ Q0. Since u is a vertex of the complete
grid, the horizontal line lh passing via u contains some terminal t′ (necessarily located on the
right of u). Analogously, the vertical line lv passing via u contains some terminal t′′ (necessarily
located below u). Since Q∩Γ = ∅, from the choice of u we infer that Q∩N = {u}. Therefore
the vertex u has exactly two neighbors v and w in N : v is to the right of u and w is below
u (see Fig. 3(a)). Since u ∈ N \ Γ, the edges [u, v] and [u,w] do not belong to Γ (however,
one or both v, w maybe vertices of this graph). Pick the point z = (vx, wy). Since v and w

are vertices of the complete grid, z is also a vertex of this grid. Denote by N ′ the rectilinear
network (of length at most l(N)) which is obtained from N by removing the edges uv and uw

and adding the vertical edge vz and the horizontal edge wz. We claim that N ′ is a Manhattan
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Figure 3: For the proof of Lemmata 2.2 and 2.3

network on T. Indeed, since all points of T are located inside or on the boundary of P, the
removed vertex u is not a terminal. Additionally, since the degree of u in N is two, any l1-path
L connecting two terminals and passing via u uses both edges uv and uw. Therefore the path
L′ obtained from L by replacing the edges vu and uw of N by the edges vz and zw of N ′

is an l1-path between the same pair of terminals. All this shows that N ′ is also a minimum
Manhattan network contained in the complete grid. Since the rectangle uvzw is a face of the
complete grid contained in R(N)\P but not in R(N ′), we get a contradiction with the choice
of N. ¤

By this result, in order to solve the MMN problem on T it suffices to complete the set of
terminals by adding to T the cut points of P and to solve a MMN problem on each block of
P with respect to the new and old terminals located inside or on its boundary. Due to this
decomposition of the MMN problem into smaller subproblems, further in this paper we can
assume without loss of generality that P consists of a single block with at least 3 terminals;
denote by ∂P the boundary of this ortho-convex rectilinear polygon.

Lemma 2.3 Let P be a block. Then (i) every convex vertex of P is a terminal of T and (ii)
the subpath P (ti, tj) of ∂P between two consecutive convex vertices ti, tj of ∂P is the unique
l1-path connecting the terminals ti, tj inside P.

Proof. In order to prove (i), suppose by way of contradiction that u is a convex vertex of P but
not a terminal. Then u has exactly two neighbors v, w in Γ. Suppose without loss of generality
that v is to the right of u and w is below u. Let z = (vx, wy). Since u is a convex vertex of
P, the face uvzw of the complete grid belongs to P. Pick 0 < δ ≤ min{d(u, v), d(u, w)} and
let u′ = (ux − δ, uy − δ). Now, we divide T into three subsets: Tz consists of all terminals
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t ∈ T which can be connected to u using an l1-path passing via z, Tv consists of all terminals
t ∈ T \ Tz such that any l1-path connecting t to u passes via v, and, finally, Tw consists of
all terminals t ∈ T \ Tz such that any l1-path connecting t to u passes via w. Notice that the
point u′ has the same distance as u to any terminal from Tv ∪Tw and u′ is closer than u from
any terminal of Tz. Since u′ cannot dominate u because u ∈ P, we conclude that Tz = ∅.
Therefore any terminal t of T either is located above and to the right of v (i.e., t ∈ Tv) or
is located below and to the left of w (i.e., t ∈ Tw). In this case, it can be easily shown that
every point p lying in the open quadrant {(px, py) : px > wx, py < wy} is dominated by the
point p′ = (px − α, py + α) where α = min{px − wx, wy − py} (see Fig. 3(b)). Analogously,
every point lying in the three open quadrants

{(qx, qy) : qx > vx, qy < vy or qx < wx, qy > wy or qx < vx, qy > vy}

is dominated. Therefore P is decomposable, namely it consists of a rectangular block uvzw,

one or several blocks located above and to the right of v, and one or several blocks located
below and to the left of w. This contradicts the assumption that P is a block, thus establishing
the property (i).

To show (ii), note that the path P (ti, tj) between two consecutive convex vertices of P
is either a single vertical or horizontal segment or it consists of two segments, one vertical
and another horizontal. In the first case, P (ti, tj) = R(ti, tj) and we are done. In the second
case, the segments constituting P (ti, tj) are incident sides of the rectangle R(ti, tj). Moreover,
P ∩R(ti, tj) = P (ti, tj), otherwise between ti and tj will be located yet another convex vertex
of P, which is impossible. Thus P (ti, tj) is the unique l1-path between ti and tj in the Pareto
envelope P. ¤

Since ∂P is covered by the l1-paths P (ti, tj) between consecutive convex vertices ti, tj of
∂P, from Lemmata 2.2 and 2.3 we obtain the following result:

Lemma 2.4 The edges of ∂P belong to any minimum Manhattan network located inside Γ.

Two edges of Γ = (V, E) are called twins if they are opposite edges of a rectangular
face of the grid Γ. Two edges e, f of Γ are called parallel if there exists a sequence e =
e1, e2, . . . , em+1 = f of edges such that for i = 1, . . . , m the edges ei, ei+1 are twins. By
definition, any edge e is parallel to itself and all edges parallel to e have the same length.
Notice also that from the ortho-convexity of P follows that exactly two edges parallel to a
given edge e belong to ∂P.

We continue with the notion of a generating set introduced in [6] and used in approximation
algorithms from [1, 8]. A generating set is a subset F of pairs of terminals (or, more compactly,
of their indices) with the property that a rectilinear network containing l1-paths for all pairs
in F is a Manhattan network on T. For example, F∅ consisting of all pairs i, j with Ri,j empty
is a generating set [6]. In the next section, we will describe a generating set which is a subset
of F∅.
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To give an LP-formulation of the minimum Manhattan network problem, let
−→
F be an

arbitrary generating set whose pairs are ordered in an arbitrary way; for each ordered pair
(i, j) ∈ −→F , let Γi,j := Γ ∩R(ti, tj) and set Γi,j = (Vi,j , Ei,j). We formulate the MMN problem
as a cut covering problem using an exponential number of constraints, which we further
convert into an equivalent formulation that employs only a polynomial number of variables
and constraints. In both formulations, le will denote the length of an edge e of the network
Γ = (V,E) and xe will be a 0-1 decision variable associated with e. A subset of edges C of
Ei,j is called a (ti, tj)-cut if every l1-path between ti and tj in Γi,j shares an edge with C.

Let Ci,j denote the collection of all (ti, tj)-cuts and set C :=
⋃

(i,j)∈−→F Ci,j . Then the minimum
Manhattan networks can be viewed as the optimal solutions of the following integer linear
program (the dual of the relaxation of this program is a packing problem of the cuts from C):

minimize
∑
e∈E

lexe (1)

subject to
∑
e∈C

xe ≥ 1, C ∈ C

xe ∈ {0, 1}, e ∈ E

Indeed, every Manhattan network is a feasible solution of (1). Conversely, let xe, e ∈ E, be
a feasible solution for (1). Considering xe’s as capacities of the edges e of Γ, and applying
the covering constraints and the Ford-Fulkerson’s theorem to each network Γi,j , (i, j) ∈ −→

F ,

oriented as described below, we conclude the existence in Γi,j of an integer (ti, tj)-flow of value
1, i.e., of an l1-path between ti and tj . As a consequence, we obtain a Manhattan network
of the same cost. This observation leads to the second integer programming formulation
for the MMN problem (but this time, having a polynomial size). For each pair (i, j) ∈ −→

F

and each edge e ∈ Ei,j introduce a (flow) variable f i,j
e . Orient the edges of Γi,j so that the

oriented paths connecting ti and tj are exactly the l1-paths between those terminals (notice
that this orientation is not overall consistent in the sense that the same edge may be oriented
in different ways in different grids to which it belongs). For a vertex v ∈ Vi,j \ {ti, tj} denote
by Γ+

i,j(v) the oriented edges of Γi,j entering v and by Γ−i,j(v) the oriented edges of Γi,j out of
v. We obtain the following integer program:

minimize
∑
e∈E

lexe (2)

subject to
∑

e∈Γ+
i,j(v)

f i,j
e =

∑
e∈Γ−i,j(v)

f i,j
e , (i, j) ∈ −→F , v ∈ Vi,j \ {ti, tj}

∑
e∈Γ−i,j(ti)

f i,j
e = 1, (i, j) ∈ −→F

0 ≤ f i,j
e ≤ xe, (i, j) ∈ −→F ,∀e ∈ Ei,j

xe ∈ {0, 1}, e ∈ E

7



Denote by (1′) and (2′) the LP-relaxation of (1) and (2) obtained by replacing the boolean
constrains xe ∈ {0, 1} by the linear constraints xe ≥ 0. (The constraint xe ≤ 1 was omitted
because in any optimal solution for each xe at least one constraint fe ≤ xe is tight and
f i,j

e ≤ 1 by first and second equalities.) Since (2′) contains a polynomial number of variables
and inequalities, it can be solved in strongly polynomial time using the algorithm of Tardos
[10]. The x-part of any optimal solution (x, f) of (2′) is an optimal solution of (1′). It can
be viewed as a “fractional Manhattan network” in the following sense. In the network Γi,j

endowed with capacities xe, e ∈ Ei,j , for each pair {i, j}, there exists one or several l1-paths
carrying flow of total value ≥ 1. If the optimal solution x is integral, i.e. xe ∈ {0, 1}, e ∈ E,

then every such flow uses a unique l1-path and therefore x is the characteristic vector of an
optimal Manhattan network. Unfortunately, this is not always the case, morever there exist
instances of the MMN problem for which the cost of an optimal (fractional) solution of (1′)
or (2′) is smaller than the cost of an optimal (integer) solution of (1) or (2). Fig. 4 shows
such an example (xe = 1 for heavy edges and xe = 1

2 for dashed edges). Notice also that by
Lemma 2.4 in any feasible solution of (1′) and (2′) for any edge e ∈ ∂P it holds that xe = 1.

Integer optimum = 28 Fractional optimum = 27.5

Figure 4: Integrality gap

3 Strips and staircases

A degenerate empty rectangle Ri,j is called a degenerate vertical or horizontal strip. A non-
degenerate empty rectangle Ri,j is called a vertical strip if there exists no terminal in T with
x-coordinate strictly between the x-coordinates of ti and tj and the intersection of Ri,j with
degenerate vertical strips is either empty or one of the points ti or tj . The first condition means
that the x-coordinates of ti and tj are consecutive entries of the sorted list of all distinct x-
coordinates of the terminals. The second condition means that either ti is the highest terminal
among all terminals having the same x-coordinate as ti and tj is the lowest terminal among all
terminals having the same x-coordinates as tj , or, vice-versa, ti is the lowest terminal and tj
is the highest terminal among respective terminals; see Fig. 5 for an illustration. The second
condition ensures that each subset of pairwise parallel horizontal edges may intersect at most
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Figure 5: Ri,j is a vertical strip, while neither Rj,k nor Rj,l are

one vertical strip. Analogously, a non-degenerate empty rectangle Ri,j is called a horizontal
strip if there exists no terminal in T with y-coordinate between the y-coordinates of ti and
tj and the intersection of horizontal sides of Ri,j with degenerate horizontal strips is either
empty or one of the points ti or tj . The sides of a vertical (resp., horizontal) strip Ri,j are
the vertical (resp., horizontal) sides of Ri,j . Notice that two points ti, tj may define both a
horizontal and a vertical strip. We say that the strips Ri,i′ and Rj,j′ (degenerate or not) form
a crossing configuration if they intersect and the Pareto envelope of the points ti, ti′ , tj , tj′ is
of type (a); see Fig. 2. The importance of such configurations resides in the following property
whose proof is straightforward:

Lemma 3.1 If the rectangles Ri,i′ and Rj,j′ form a crossing configuration as in Fig. 6, then
from the l1-paths between ti and ti′ and between tj and tj′ one can derive an l1-path connecting
ti and tj′ and an l1-path connecting ti′ and tj .

For a crossing configuration Ri,i′ , Rj,j′ , denote by o and o′ the cut points of the rectangular
block of the Pareto envelope of ti, ti′ , tj , tj′ , and assume that the four tips of this envelope
connect o with ti, tj and o′ with ti′ , tj′ . Additionally, suppose without loss of generality, that ti
and tj belong to the first quadrant Q1 with respect to the origin o (the remaining quadrants
are labelled Q2,Q3, and Q4 in counterclockwise order around o). Then ti′ and tj′ belong
to the third quadrant with respect to the origin o′. Denote by Ti,j the set of all terminals
tk ∈ (T \ {ti, tj}) ∩ Q1 such that (i) R(tk, o) ∩ T = {tk} and (ii) the region {q ∈ Q2 : qy ≤
tyk} ∪ {q ∈ Q4 : qx ≤ txk} does not contain any terminal of T. If Ti,j is nonempty, then all
its terminals belong to the rectangle Ri,j , more precisely, they are all located on a common
shortest rectilinear path between ti and tj . Denote by Si,j|i′,j′ the non-degenerate block of
the Pareto envelope of the set Ti,j ∪ {o, ti, tj} and call this rectilinear polygon a staircase; see
Fig. 6 for an illustration. The point o is called the origin of this staircase. Analogously one
can define the set Ti′,j′ and the staircase Si′,j′|i,j with origin o′. Two other types of staircases
will be defined if ti, tj belong to the second quadrant with respect to o and ti′ , tj′ belong to
the fourth quadrant with respect to o′. In order to simplify the presentation, further we will
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Figure 6: Staircase Si,j|i′,j′

prove all results under the assumption that the staircase is located in the first quadrant. By
symmetry, all these results also hold for other types of staircases. (Notice that our staircases
are different from the staircase polygons occurring in the algorithms from [4].)

Let α be the leftmost highest point of the staircase Si,j|i′,j′ and let β be the rightmost lowest
point of this staircase. Denote by Mi,j the monotone boundary path of Si,j|i′,j′ between α and
β and passing via the terminals of Ti,j . By definition, Si,j|i′,j′ ∩T = Ti,j . By the choice of Ti,j ,

there are no terminals of T located in the regions {q ∈ Q2 : qy ≤ αy} and {q ∈ Q4 : qx ≤ βx}.
In particular, no strip traverses a staircase. From the definition of a staircase, it immediately
follows that two staircases either are disjoint or their intersection is a subset of vertices of
both of them (all these vertices are terminals); in particular, every edge of the grid Γ belongs
to at most one staircase.

Let F ′ be the set of all pairs {i, j} such that Ri,j is a strip. Let F ′′ be the set of all pairs
{i′, k} such that there exists a staircase Si,j|i′,j′ such that tk belongs to the set Ti,j . From the
definition of strips and staircases immediately follows that F ′ ∪ F ′′ ⊆ F∅.

Lemma 3.2 F := F ′ ∪ F ′′ is a generating set.

Proof. Let N be a rectilinear network containing l1-paths for all pairs in F. To prove that N is
a Manhattan network on T , it suffices to establish that for an arbitrary pair {k, k′} ∈ F∅ \F,

the terminals tk and tk′ are joined in N by an l1-path. Assume without loss of generality
that txk′ ≤ txk and tyk′ ≤ tyk. The vertical and horizontal lines through the points tk and tk′

partition the plane into the rectangle Rk,k′ , four open quadrants and four closed unbounded
half-bands labelled counterclockwise B1,B2,B3, and B4. Consider the leftmost terminal ti1 of
B1, breaking ties by minimizing the y-coordinate (this terminal exists because tk ∈ B1). Now,
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consider the rightmost terminal ti′1 of B3 such that txi′1
≤ txi1 , breaking ties by maximizing

the y-coordinate (again this terminal exists because tk′ ∈ B3 and txk′ ≤ txi1). By the choice
of ti1 and ti′1 , the rectangle Ri1,i′1 is the leftmost vertical strip crossing the rectangle Rk,k′ .

Analogously, by letting ti2 , tj1 , and tj2 be the rightmost terminal of B3, the highest terminal
of B2, and the lowest terminal of B4, respectively (minimizing the distance to Rk,k′ in case
of ties), we obtain the leftmost vertical strip Ri2,i′2 , the lowest horizontal strip Rj1,j′1 , and the
highest horizontal strip Rj2,j′2 crossing the rectangle Rk,k′ . Notice that the strips Rj2,j′2 and
Ri2,i′2 as well as the strips Rj1,j′1 and Ri1,i′1 constitute crossing configurations.

Now, we will prove that N contains an l1-path between tk and ti2 and an l1-path between
tk′ and tj1 . We distinguish three cases. If tk = ti′2 , then Ri2,k = Ri2,i′2 is a strip and thus
{k, i2} ∈ F. If tk = tj′2 , then the strips Rj2,k and Ri2,i′2 form a crossing configuration. By
Lemma 3.1, from the l1-paths of N between tj2 and tk and between ti2 and ti′2 , we can derive
an l1-path between tk and ti2 . Finally, if tk /∈ {ti′2 , tj′2}, we assert that the crossing configuration
Ri2,i′2 and Rj2,j′2 defines a staircase Si′2j′2|i2j2 such that tk belongs to Ti′2,j′2 . Indeed, let o be the
highest leftmost intersection point of the strips Ri2,i′2 and Rj2,j′2 (see Fig. 7). Since R(tk, o) is
contained in the empty rectangle R(tk, tk′), we conclude that R(tk, o)∩T = {tk}. Moreover, by
the choice of ti2 and tj2 , the unbounded half-bands {q ∈ B3 : qx ≥ t′i2} and {q ∈ B2 : qy ≥ tj′2}
do not contain terminals (in Fig. 7, the shaded region does not contain terminals), thus
establishing our assertion. This implies that tk ∈ Ti′2,j′2 , whence {k, i2} ∈ F. Therefore, in all
three cases the terminals tk and ti2 are connected in N by an l1-path. Using a similar analysis,
one can show that tk′ and tj1 are also connected in N by an l1-path. By construction, the
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rectangles Rk,i2 and Rk′,j1 form a crossing configuration and thus, by Lemma 3.1, there is an
l1-path of N between the terminals tk and tk′ , concluding the proof. ¤

4 The rounding algorithm

Let (x,f)=((xe)e∈E , (f i,j
e )e∈E,(i,j)∈F ) be an optimal solution of the linear program (2′) (in

general, this solution is not half-integral). The algorithm rounds up the solution (x,f) in
three phases. In Phase 0, we insert all edges of ∂P in the integer solution. In Phase 1, the
rounding is performed inside every strip Ri,i′ , in order to ensure the existence of an l1-path
Pi,i′ between the terminals ti and ti′ . In Phase 2, an iterative rounding procedure is applied
to each staircase.

Let Ri,i′ be a strip. If Ri,i′ is degenerate, then [ti, ti′ ] is the unique l1-path between ti
and ti′ , yielding xe = f i,i′

e = 1 for any edge e ∈ [ti, ti′ ]. If Ri,i′ is not degenerate, then any
l1-path in Γ between ti and ti′ has a simple form: it goes along the side of Ri,i′ containing
ti, then it makes a turn by following an edge of Γ traversing Ri,i′ (called further a switch of
Ri,i′), and continues its way on the side containing ti′ until it reaches ti′ . It may happen that
several such l1-paths have been used by the fractional flow f i,i′ between ti and ti′ . However,
since any pair e, e′ of twins on opposite sides of the strip Ri,i′ constitute a cut separating
the terminals ti and ti′ , the value of the f i,i′-flow traversing this cut is at least 1, yielding
xe + xe′ ≥ f i,i′

e + f i,i′
e′ ≥ 1, and therefore max{xe, xe′} ≥ 1

2 .

Let p be the furthest from ti vertex on the side of Ri,i′ containing ti such that xe ≥ 1
2

for every edge e of the segment [ti, p]. Let pp′ be the edge of Γ incident to p that traverses
the strip Ri,i′ . By the choice of p, the (ti, ti′)-flow carried by the l1-paths which make a turn
before p or at the vertex p has total value ≥ 1

2 . Since all these paths contain all edges e of the
segment [p′, ti′ ], we have xe ≥ 1

2 for all such edges.

Phase 1 (procedure RoundStrip). For each strip Ri,i′ , if Ri,i′ is degenerate, then take in the
integer solution all edges of [ti, ti′ ], otherwise round up the edges of [ti, p] and [p′, ti′ ] and take
the edge pp′ as a switch of Ri,i′ ; in both cases, denote by Pi,i′ the resulting l1-path between ti
and ti′ .

Let Si,i′|j,j′ be a staircase. Denote by φ the closest to ti common point of the l1-paths Pi,i′

and Pj,j′ (this point is a corner of the rectangular face of Γ containing the vertices o and o′).
Let P+

i,i′ and P+
j,j′ be the sub-paths of Pi,i′ and Pj,j′ between φ and the terminals ti and tj ,

respectively. Now we slightly expand the staircase Si,i′|j,j′ by considering as Si,i′|j,j′ the region
bounded by the paths P+

i,i′ , P
+
j,j′ , and Mi,j (P+

i,i′ and P+
j,j′ are not included in the staircase but

Mi,j and the terminals from the set Ti,j are). Inside Si,i′|j,j′ , any flow fk,i′ (or fk,j′), tk ∈ Ti,j ,

may be highly fractional: it may happen that several l1-paths between tk and ti′ carry flow
fk,i′ . Any such l1-path intersects one of the paths P+

i,i′ or P+
j,j′ , therefore the total fk,i′-flow

arriving at P+
i,i′ ∪ P+

j,j′ is equal to 1. (This flow can be directed to φ via the paths P+
i,i′ and

P+
j,j′ , and further, along the path Pi,i′ , to the terminal ti′). Therefore it remains to decide how

to round up the flow fk,i′ inside the expanded staircase Si,i′|j,j′ . For this, notice that either
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Figure 8: Procedure RoundStaircase

the total fk,i′-flow carried by the l1-paths that arrive at P+
i,i′ is at least 1

2 or the total fk,i′-flow
on the l1-paths that arrive at P+

j,j′ is at least 1
2 .

Phase 2 (procedure RoundStaircase). For a staircase Si,i′|j,j′ defined by the l1-paths P+
i,i′ and

P+
j,j′ and the monotone path Mi,j , find the lowest terminal tm ∈ Ti,j such that the fm,i′-flow

on l1-paths between tm and ti′ that arrive first at P+
i,i′ is ≥ 1

2 . Analogously, find the highest
terminal ts ∈ Ti,j such that the f s,i′-flow on l1-paths between ts and ti′ that arrive first at
P+

j,j′ is ≥ 1
2 . Notice that at least one of the terminals tm, ts exists and if both tm, ts exist then

they are consecutive in Mij . Denote by φ′ the intersection of the horizontal line passing via
the terminal tm (if it exists) with the path P+

i,i′ . Analogously, let φ′′ denote the intersection
of the vertical line passing via ts (if it exists) with the path P+

j,j′ . If the terminal ts does not
exist, then tm is the lowest terminal of Tij and the fmi′-flow on the horizontal segment [tm, φ′]
is > 1

2 . In this case, we round up all edges of [tm, φ′]. Analogously, if tm does not exist, then
we round up the edges of the vertical segment [ts, φ′′]. Now, suppose that both tm and ts
exist. By the choice of tm, the f s,i′-flow on paths which arrive at Pj,j′ is ≥ 1

2 . Analogously,
by the choice of ts, the fm,i′-flow on paths which arrive at Pi,i′ is ≥ 1

2 . We round up all edges
of the horizontal segment [tm, φ′] and all edges of the vertical segment [ts, φ′′]. If Ti,j contains
terminals located above the horizontal line (tm, φ′), then recursively call RoundStaircase to
the expanded sub-staircase defined by [tm, φ′], the sub-path of P+

i,i′ between φ′ and ti, and
the sub-path Mi,m of the monotone path Mi,j between tm and α. Analogously, if Ti,j contains
terminals located to the right of the vertical line (ts, φ′′), then recursively call RoundStaircase
to the expanded sub-staircase defined by [ts, φ′′], the sub-path of P+

j,j′ comprised between φ′′

and tj , and the sub-path Ms,j of the monotone path Mi,j between ts and β; see Fig. 8 for an
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illustration.

Let E0 denote the edges of Γ which belong to the boundary of the Pareto envelope of T.

Let E1 be the set of all edges picked by the procedure RoundStrip and which do not belong to
E0, and let E2 be the set of all edges picked by the recursive procedure RoundStaircase and
which do not belong to E0 ∪E1. Denote by N∗ = (V ∗, E0 ∪E1 ∪E2) the resulting rectilinear
network. From Lemma 3.2 and the rounding procedures presented above we infer that N∗ is
a Manhattan network. Let x∗ be the integer solution of (1) associated with N∗, i.e., x∗e = 1
if e ∈ E0 ∪ E1 ∪ E2 and x∗e = 0 otherwise.

5 Analysis

In this section, we will show that the length of the Manhattan network N∗ is at most twice
the cost of the optimal fractional solution of (1′), i.e., that

cost(x∗) =
∑

e∈E

lex
∗
e ≤ 2

∑

e∈E

lexe = 2cost(x). (3)

To establish the inequality (3), to every edge e ∈ E1 ∪ E2 we will assign a set Ee of parallel
to e edges such that (i)

∑
e′∈Ee

xe′ ≥ 1
2 and (ii) Ee ∩Ef = ∅ for any two edges e, f ∈ E1 ∪E2

(the edges of Ee will pay for the inclusion of the edge e in N∗). By Lemma 2.4 the equality
xe = x∗e = 1 holds for every edge e ∈ E0, thus every such edge e can pay one half of xe for
itself. The another half of xe can be recycled to pay an edge from E1 ∪E2, namely it will be
used to pay some switch.

First pick an edge e ∈ E1, say e ∈ Pi,i′ for a strip Ri,i′ . If e belongs to a side of this strip,
then xe ≥ 1

2 , and in this case we can set Ee := {e}. Now, if e is the switch of Ri,i′ , then Ee

consists of one of the two edges of ∂P parallel to e. From the definition of strips one concludes
that no other switch can be parallel to these edges of ∂P. Therefore each edge of ∂P may
appear in at most one set Ee for a switch e.

Finally suppose that e ∈ E2, say e belongs to the expanded staircase Si,i′|j,j′ . If e belongs
to the segment [tm, φ′], then Ee consists of e and all parallel to e edges of Si,i′|j,j′ located
below e; see Fig. 8. Since every l1-path between tm and ti′ intersecting the path P+

i,i′ contains
an edge of Ee, we infer that the value of the fm,i′-flow traversing the set Ee is at least 1

2 ,

therefore
∑

e′∈Ee
xe′ ≥ 1

2 , thus establishing (i). Analogously, if f is an edge of the vertical
segment [ts, φ′′], then Ef consists of f and all parallel to f edges of Si,i′|j,j′ located to the left
of f. Obviously, Ee∩Ef = ∅. Since Ee and Ef belong to the region of Si,i′|j,j′ delimited by the
segments [tm, φ′] and [ts, φ′′] and the recursive calls of the procedure RoundStaircase concern
the staircases disjoint from this region, we deduce that Ee and Ef are disjoint from the sets
Ee′ for all edges e′ picked by the recursive calls of RoundStaircase to the staircase Si,i′|j,j′ .
Every edge of Γ belongs to at most one staircase, therefore Ee ∩Ef = ∅ if the edges e, f ∈ E

belong to different staircases. Finally, since there are no terminals of T located below or to
the left of the staircase Si,i′|j,j′ , no strip traverses this staircase (a strip intersecting Si,i′|j,j′
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either coincides with Ri,i′ and Rj,j′ , or intersects the staircase along segments of the boundary
path Mi,j). Therefore, no edge from E1 can be assigned to a set Ee for some e ∈ E2 ∩Si,i′|j,j′ ,
thus establishing (ii) and the desired inequality (3). Now, we are in position to formulate our
main result:

Theorem 5.1 The rounding algorithm described in Section 4 achieves an approximation
guarantee of 2 for the minimum Manhattan network problem.

Remark 1. The running time of our rounding algorithm is dominated by the time taken to
solve the linear program (2′). The number of variables f i,j

e introduced for a given edge e is
equal to the number of rectangles Ri,j , {i, j} ∈ F, to which e belongs. Since each of the O(n2)
edges of Γ belongs to at most O(n) such rectangles, we obtain that the number of variables in
(2′) is O(n3). A similar analysis shows that the number of constraints is also O(n3). Therefore,
the linear program (2′) can be solved in strongly polynomial time by using the algorithm of
Tardos [10].

Remark 2. Given a staircase Si,i′|j,j′ and the paths P+
i,i′ and P+

j,j′ , the problem of construct-
ing a minimum rectilinear network such that every terminal of Ti,j can be connected by an
l1-path to P+

i,i′ ∪ P+
j,j′ can be solved in polynomial time using dynamic programming (for ex-

ample, by adapting the algorithm from [9] for the Rectilinear Steiner Arborescence problem
on staircases). However, we do not know how to analyze this solution via linear programming.
Furthermore, we do not have examples of staircases having an integrality gap in (1′).

Remark 3. Fig. 9 illustrates the run of the algorithm on the example with 8 terminals given
in Fig. 4 (recall, this is one of the smallest instances having an integrality gap). Namely,
we round up the optimal fractional solution shown in Fig. 4 and Fig.9(a). Phase 1 returns
the rectilinear network drawn in Fig. 9(b). To perform Phase 2, notice that there are three
non-empty staircases, each having a single terminal (in each case, this is the terminal t3).
The resulting Manhattan network is given in Fig. 9(c). Its length is 29, while an optimal
Manhattan network has length 28.

t1 t2

t3

t5t4

t6

t7 t8

t1 t2

t3

t5t4

t6

t7 t8

t1 t2

t3

t5t4

t6

t7 t8

(a) Fractional optimum (b) After Phase 1 (c) Final solution

Figure 9: Example
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6 Conclusions and perspectives

In this paper, we presented a simple rounding algorithm for the minimum Manhattan net-
work problem and we established that the length of the Manhattan network returned by this
algorithm is at most twice the cost of the optimal fractional solution of the MMN problem.
Nevertheless, experiences show that the ratio between the costs of the solution returned by
our algorithm and the optimal solution of the linear programs (1′) and (2′) is much better
than 2. We do not know the worst integrality gap of (1) (the worst gap obtained by computer
experiences is about 1.087). Is this gap smaller or equal than 1.5? Does there exist a gap in
the case when the terminals are the origin and the corners of a staircase?

The minimum Manhattan network problem can be compared with the (NP -complete)
Rectilinear Steiner Arborescence problem (RSA problem) [9]. In this problem, given n termi-
nals (lying in the first quadrant), one searches for a minimum rectilinear network comprising
an l1-path between the origin of coordinates and each of the n terminals (clearly, such an
optimal network will be a tree). The LP-formulation for the MMN problem can be viewed
as a generalization of the LP-formulation of the RSA problem given in [11]. The paper [9]
presents an instance of the RSA problem having an integrality gap. To our knowledge, the
worst integrality gap for this problem is also not known.

Consider now the following common generalization of the MMN and RSA problems which
we call the F -restricted MMN problem: given a set of n terminals and a collection F of pairs
of terminals, find a minimum rectilinear network NF (T ), such that for every pair {ti, tj} ∈ F,

the network NF (T ) contains an l1-path between ti and tj . If (T, F ) is a complete graph, then
we obtain the MMN problem and if (T, F ) is a star, then we obtain the RSA problem. We can
show that there exists a minimum F -restricted Manhattan network contained in the sub-grid
of Γ generated by all empty rectangles. Using this grid, one can view (1) and (2) as integer
programming formulations for the F -restricted MMN problem.

Notice that the rounding algorithm presented in our paper (as well as all other approxima-
tion algorithms for the MMN or RSA problems) cannot be extended in a direct way to get an
approximation algorithm for the F -restricted MMN problem. Developing such an algorithm
seems to be an interesting question. A simple example shows that the integrality gap in this
case is at least 1.5: consider the four corners of a unit square as the set T of terminals, and
let F consists of the two pairs of opposite corners of this square. Then xe = 1

2 for every side
e of the square is an optimal solution of (1′) having cost 2, while an optimal integer solution
uses three edges of the square and has cost 3.
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